blob: d3da93a3e080d53508928af23f0c8b0068568b03 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name = "rustc_privacy"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "dylib"]
#![crate_type = "rlib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(rustc_diagnostic_macros)]
#![feature(rustc_private)]
#![feature(staged_api)]
#[macro_use] extern crate log;
#[macro_use] extern crate syntax;
extern crate rustc;
extern crate rustc_front;
use self::PrivacyResult::*;
use self::FieldName::*;
use std::cmp;
use std::mem::replace;
use rustc_front::hir;
use rustc_front::intravisit::{self, Visitor};
use rustc::dep_graph::DepNode;
use rustc::lint;
use rustc::middle::def;
use rustc::middle::def_id::DefId;
use rustc::middle::privacy::{AccessLevel, AccessLevels};
use rustc::middle::privacy::ImportUse::*;
use rustc::middle::privacy::LastPrivate::*;
use rustc::middle::privacy::PrivateDep::*;
use rustc::middle::privacy::ExternalExports;
use rustc::middle::ty;
use rustc::util::nodemap::{NodeMap, NodeSet};
use rustc::front::map as ast_map;
use syntax::ast;
use syntax::codemap::Span;
pub mod diagnostics;
type Context<'a, 'tcx> = (&'a ty::MethodMap<'tcx>, &'a def::ExportMap);
/// Result of a checking operation - None => no errors were found. Some => an
/// error and contains the span and message for reporting that error and
/// optionally the same for a note about the error.
type CheckResult = Option<(Span, String, Option<(Span, String)>)>;
////////////////////////////////////////////////////////////////////////////////
/// The parent visitor, used to determine what's the parent of what (node-wise)
////////////////////////////////////////////////////////////////////////////////
struct ParentVisitor<'a, 'tcx:'a> {
tcx: &'a ty::ctxt<'tcx>,
parents: NodeMap<ast::NodeId>,
curparent: ast::NodeId,
}
impl<'a, 'tcx, 'v> Visitor<'v> for ParentVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
self.parents.insert(item.id, self.curparent);
let prev = self.curparent;
match item.node {
hir::ItemMod(..) => { self.curparent = item.id; }
// Enum variants are parented to the enum definition itself because
// they inherit privacy
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
// The parent is considered the enclosing enum because the
// enum will dictate the privacy visibility of this variant
// instead.
self.parents.insert(variant.node.data.id(), item.id);
}
}
// Trait methods are always considered "public", but if the trait is
// private then we need some private item in the chain from the
// method to the root. In this case, if the trait is private, then
// parent all the methods to the trait to indicate that they're
// private.
hir::ItemTrait(_, _, _, ref trait_items) if item.vis != hir::Public => {
for trait_item in trait_items {
self.parents.insert(trait_item.id, item.id);
}
}
_ => {}
}
intravisit::walk_item(self, item);
self.curparent = prev;
}
fn visit_foreign_item(&mut self, a: &hir::ForeignItem) {
self.parents.insert(a.id, self.curparent);
intravisit::walk_foreign_item(self, a);
}
fn visit_fn(&mut self, a: intravisit::FnKind<'v>, b: &'v hir::FnDecl,
c: &'v hir::Block, d: Span, id: ast::NodeId) {
// We already took care of some trait methods above, otherwise things
// like impl methods and pub trait methods are parented to the
// containing module, not the containing trait.
if !self.parents.contains_key(&id) {
self.parents.insert(id, self.curparent);
}
intravisit::walk_fn(self, a, b, c, d);
}
fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
// visit_fn handles methods, but associated consts have to be handled
// here.
if !self.parents.contains_key(&ii.id) {
self.parents.insert(ii.id, self.curparent);
}
intravisit::walk_impl_item(self, ii);
}
fn visit_variant_data(&mut self, s: &hir::VariantData, _: ast::Name,
_: &'v hir::Generics, item_id: ast::NodeId, _: Span) {
// Struct constructors are parented to their struct definitions because
// they essentially are the struct definitions.
if !s.is_struct() {
self.parents.insert(s.id(), item_id);
}
// While we have the id of the struct definition, go ahead and parent
// all the fields.
for field in s.fields() {
self.parents.insert(field.node.id, self.curparent);
}
intravisit::walk_struct_def(self, s)
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the ast
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
export_map: &'a def::ExportMap,
// Accessibility levels for reachable nodes
access_levels: AccessLevels,
// Previous accessibility level, None means unreachable
prev_level: Option<AccessLevel>,
// Have something changed in the level map?
changed: bool,
}
impl<'a, 'tcx> EmbargoVisitor<'a, 'tcx> {
fn ty_level(&self, ty: &hir::Ty) -> Option<AccessLevel> {
if let hir::TyPath(..) = ty.node {
match self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def() {
def::DefPrimTy(..) | def::DefSelfTy(..) | def::DefTyParam(..) => {
Some(AccessLevel::Public)
}
def => {
if let Some(node_id) = self.tcx.map.as_local_node_id(def.def_id()) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
}
} else {
Some(AccessLevel::Public)
}
}
fn trait_level(&self, trait_ref: &hir::TraitRef) -> Option<AccessLevel> {
let did = self.tcx.trait_ref_to_def_id(trait_ref);
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
fn get(&self, id: ast::NodeId) -> Option<AccessLevel> {
self.access_levels.map.get(&id).cloned()
}
// Updates node level and returns the updated level
fn update(&mut self, id: ast::NodeId, level: Option<AccessLevel>) -> Option<AccessLevel> {
let old_level = self.get(id);
// Accessibility levels can only grow
if level > old_level {
self.access_levels.map.insert(id, level.unwrap());
self.changed = true;
level
} else {
old_level
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for EmbargoVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let inherited_item_level = match item.node {
// Impls inherit level from their types and traits
hir::ItemImpl(_, _, _, None, ref ty, _) => {
self.ty_level(&ty)
}
hir::ItemImpl(_, _, _, Some(ref trait_ref), ref ty, _) => {
cmp::min(self.ty_level(&ty), self.trait_level(trait_ref))
}
hir::ItemDefaultImpl(_, ref trait_ref) => {
self.trait_level(trait_ref)
}
// Foreign mods inherit level from parents
hir::ItemForeignMod(..) => {
self.prev_level
}
// Other `pub` items inherit levels from parents
_ => {
if item.vis == hir::Public { self.prev_level } else { None }
}
};
// Update id of the item itself
let item_level = self.update(item.id, inherited_item_level);
// Update ids of nested things
match item.node {
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
let variant_level = self.update(variant.node.data.id(), item_level);
for field in variant.node.data.fields() {
self.update(field.node.id, variant_level);
}
}
}
hir::ItemImpl(_, _, _, None, _, ref impl_items) => {
for impl_item in impl_items {
if impl_item.vis == hir::Public {
self.update(impl_item.id, item_level);
}
}
}
hir::ItemImpl(_, _, _, Some(_), _, ref impl_items) => {
for impl_item in impl_items {
self.update(impl_item.id, item_level);
}
}
hir::ItemTrait(_, _, _, ref trait_items) => {
for trait_item in trait_items {
self.update(trait_item.id, item_level);
}
}
hir::ItemStruct(ref def, _) => {
if !def.is_struct() {
self.update(def.id(), item_level);
}
for field in def.fields() {
if field.node.kind.visibility() == hir::Public {
self.update(field.node.id, item_level);
}
}
}
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis == hir::Public {
self.update(foreign_item.id, item_level);
}
}
}
hir::ItemTy(ref ty, _) if item_level.is_some() => {
if let hir::TyPath(..) = ty.node {
match self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def() {
def::DefPrimTy(..) | def::DefSelfTy(..) | def::DefTyParam(..) => {},
def => {
if let Some(node_id) = self.tcx.map.as_local_node_id(def.def_id()) {
self.update(node_id, Some(AccessLevel::Reachable));
}
}
}
}
}
_ => {}
}
let orig_level = self.prev_level;
self.prev_level = item_level;
intravisit::walk_item(self, item);
self.prev_level = orig_level;
}
fn visit_block(&mut self, b: &'v hir::Block) {
let orig_level = replace(&mut self.prev_level, None);
// Blocks can have public items, for example impls, but they always
// start as completely private regardless of publicity of a function,
// constant, type, field, etc. in which this block resides
intravisit::walk_block(self, b);
self.prev_level = orig_level;
}
fn visit_mod(&mut self, m: &hir::Mod, _sp: Span, id: ast::NodeId) {
// This code is here instead of in visit_item so that the
// crate module gets processed as well.
if self.prev_level.is_some() {
if let Some(exports) = self.export_map.get(&id) {
for export in exports {
if let Some(node_id) = self.tcx.map.as_local_node_id(export.def_id) {
self.update(node_id, Some(AccessLevel::Exported));
}
}
}
}
intravisit::walk_mod(self, m);
}
fn visit_macro_def(&mut self, md: &'v hir::MacroDef) {
self.update(md.id, Some(AccessLevel::Public));
}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy visitor, where privacy checks take place (violations reported)
////////////////////////////////////////////////////////////////////////////////
struct PrivacyVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
curitem: ast::NodeId,
in_foreign: bool,
parents: NodeMap<ast::NodeId>,
external_exports: ExternalExports,
}
#[derive(Debug)]
enum PrivacyResult {
Allowable,
ExternallyDenied,
DisallowedBy(ast::NodeId),
}
enum FieldName {
UnnamedField(usize), // index
NamedField(ast::Name),
}
impl<'a, 'tcx> PrivacyVisitor<'a, 'tcx> {
// used when debugging
fn nodestr(&self, id: ast::NodeId) -> String {
self.tcx.map.node_to_string(id).to_string()
}
// Determines whether the given definition is public from the point of view
// of the current item.
fn def_privacy(&self, did: DefId) -> PrivacyResult {
let node_id = if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
node_id
} else {
if self.external_exports.contains(&did) {
debug!("privacy - {:?} was externally exported", did);
return Allowable;
}
debug!("privacy - is {:?} a public method", did);
return match self.tcx.impl_or_trait_items.borrow().get(&did) {
Some(&ty::ConstTraitItem(ref ac)) => {
debug!("privacy - it's a const: {:?}", *ac);
match ac.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found inherent \
associated constant {:?}",
ac.vis);
if ac.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
Some(&ty::MethodTraitItem(ref meth)) => {
debug!("privacy - well at least it's a method: {:?}",
*meth);
match meth.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found a method {:?}",
meth.vis);
if meth.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
Some(&ty::TypeTraitItem(ref typedef)) => {
match typedef.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found a typedef {:?}",
typedef.vis);
if typedef.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
None => {
debug!("privacy - nope, not even a method");
ExternallyDenied
}
};
};
debug!("privacy - local {} not public all the way down",
self.tcx.map.node_to_string(node_id));
// return quickly for things in the same module
if self.parents.get(&node_id) == self.parents.get(&self.curitem) {
debug!("privacy - same parent, we're done here");
return Allowable;
}
// We now know that there is at least one private member between the
// destination and the root.
let mut closest_private_id = node_id;
loop {
debug!("privacy - examining {}", self.nodestr(closest_private_id));
let vis = match self.tcx.map.find(closest_private_id) {
// If this item is a method, then we know for sure that it's an
// actual method and not a static method. The reason for this is
// that these cases are only hit in the ExprMethodCall
// expression, and ExprCall will have its path checked later
// (the path of the trait/impl) if it's a static method.
//
// With this information, then we can completely ignore all
// trait methods. The privacy violation would be if the trait
// couldn't get imported, not if the method couldn't be used
// (all trait methods are public).
//
// However, if this is an impl method, then we dictate this
// decision solely based on the privacy of the method
// invocation.
// FIXME(#10573) is this the right behavior? Why not consider
// where the method was defined?
Some(ast_map::NodeImplItem(ii)) => {
match ii.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..) => {
let imp = self.tcx.map
.get_parent_did(closest_private_id);
match self.tcx.impl_trait_ref(imp) {
Some(..) => return Allowable,
_ if ii.vis == hir::Public => {
return Allowable
}
_ => ii.vis
}
}
hir::ImplItemKind::Type(_) => return Allowable,
}
}
Some(ast_map::NodeTraitItem(_)) => {
return Allowable;
}
// This is not a method call, extract the visibility as one
// would normally look at it
Some(ast_map::NodeItem(it)) => it.vis,
Some(ast_map::NodeForeignItem(_)) => {
self.tcx.map.get_foreign_vis(closest_private_id)
}
Some(ast_map::NodeVariant(..)) => {
hir::Public // need to move up a level (to the enum)
}
_ => hir::Public,
};
if vis != hir::Public { break }
// if we've reached the root, then everything was allowable and this
// access is public.
if closest_private_id == ast::CRATE_NODE_ID { return Allowable }
closest_private_id = *self.parents.get(&closest_private_id).unwrap();
// If we reached the top, then we were public all the way down and
// we can allow this access.
if closest_private_id == ast::DUMMY_NODE_ID { return Allowable }
}
debug!("privacy - closest priv {}", self.nodestr(closest_private_id));
if self.private_accessible(closest_private_id) {
Allowable
} else {
DisallowedBy(closest_private_id)
}
}
/// True if `id` is both local and private-accessible
fn local_private_accessible(&self, did: DefId) -> bool {
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.private_accessible(node_id)
} else {
false
}
}
/// For a local private node in the AST, this function will determine
/// whether the node is accessible by the current module that iteration is
/// inside.
fn private_accessible(&self, id: ast::NodeId) -> bool {
let parent = *self.parents.get(&id).unwrap();
debug!("privacy - accessible parent {}", self.nodestr(parent));
// After finding `did`'s closest private member, we roll ourselves back
// to see if this private member's parent is anywhere in our ancestry.
// By the privacy rules, we can access all of our ancestor's private
// members, so that's why we test the parent, and not the did itself.
let mut cur = self.curitem;
loop {
debug!("privacy - questioning {}, {}", self.nodestr(cur), cur);
match cur {
// If the relevant parent is in our history, then we're allowed
// to look inside any of our ancestor's immediate private items,
// so this access is valid.
x if x == parent => return true,
// If we've reached the root, then we couldn't access this item
// in the first place
ast::DUMMY_NODE_ID => return false,
// Keep going up
_ => {}
}
cur = *self.parents.get(&cur).unwrap();
}
}
fn report_error(&self, result: CheckResult) -> bool {
match result {
None => true,
Some((span, msg, note)) => {
let mut err = self.tcx.sess.struct_span_err(span, &msg[..]);
if let Some((span, msg)) = note {
err.span_note(span, &msg[..]);
}
err.emit();
false
},
}
}
/// Guarantee that a particular definition is public. Returns a CheckResult
/// which contains any errors found. These can be reported using `report_error`.
/// If the result is `None`, no errors were found.
fn ensure_public(&self,
span: Span,
to_check: DefId,
source_did: Option<DefId>,
msg: &str)
-> CheckResult {
debug!("ensure_public(span={:?}, to_check={:?}, source_did={:?}, msg={:?})",
span, to_check, source_did, msg);
let def_privacy = self.def_privacy(to_check);
debug!("ensure_public: def_privacy={:?}", def_privacy);
let id = match def_privacy {
ExternallyDenied => {
return Some((span, format!("{} is private", msg), None))
}
Allowable => return None,
DisallowedBy(id) => id,
};
// If we're disallowed by a particular id, then we attempt to
// give a nice error message to say why it was disallowed. It
// was either because the item itself is private or because
// its parent is private and its parent isn't in our
// ancestry. (Both the item being checked and its parent must
// be local.)
let def_id = source_did.unwrap_or(to_check);
let node_id = self.tcx.map.as_local_node_id(def_id);
let (err_span, err_msg) = if Some(id) == node_id {
return Some((span, format!("{} is private", msg), None));
} else {
(span, format!("{} is inaccessible", msg))
};
let item = match self.tcx.map.find(id) {
Some(ast_map::NodeItem(item)) => {
match item.node {
// If an impl disallowed this item, then this is resolve's
// way of saying that a struct/enum's static method was
// invoked, and the struct/enum itself is private. Crawl
// back up the chains to find the relevant struct/enum that
// was private.
hir::ItemImpl(_, _, _, _, ref ty, _) => {
match ty.node {
hir::TyPath(..) => {}
_ => return Some((err_span, err_msg, None)),
};
let def = self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
let did = def.def_id();
let node_id = self.tcx.map.as_local_node_id(did).unwrap();
match self.tcx.map.get(node_id) {
ast_map::NodeItem(item) => item,
_ => self.tcx.sess.span_bug(item.span,
"path is not an item")
}
}
_ => item
}
}
Some(..) | None => return Some((err_span, err_msg, None)),
};
let desc = match item.node {
hir::ItemMod(..) => "module",
hir::ItemTrait(..) => "trait",
hir::ItemStruct(..) => "struct",
hir::ItemEnum(..) => "enum",
_ => return Some((err_span, err_msg, None))
};
let msg = format!("{} `{}` is private", desc, item.name);
Some((err_span, err_msg, Some((span, msg))))
}
// Checks that a field is in scope.
fn check_field(&mut self,
span: Span,
def: ty::AdtDef<'tcx>,
v: ty::VariantDef<'tcx>,
name: FieldName) {
let field = match name {
NamedField(f_name) => {
debug!("privacy - check named field {} in struct {:?}", f_name, def);
v.field_named(f_name)
}
UnnamedField(idx) => &v.fields[idx]
};
if field.vis == hir::Public || self.local_private_accessible(field.did) {
return;
}
let struct_desc = match def.adt_kind() {
ty::AdtKind::Struct =>
format!("struct `{}`", self.tcx.item_path_str(def.did)),
// struct variant fields have inherited visibility
ty::AdtKind::Enum => return
};
let msg = match name {
NamedField(name) => format!("field `{}` of {} is private",
name, struct_desc),
UnnamedField(idx) => format!("field #{} of {} is private",
idx + 1, struct_desc),
};
span_err!(self.tcx.sess, span, E0451,
"{}", &msg[..]);
}
// Given the ID of a method, checks to ensure it's in scope.
fn check_static_method(&mut self,
span: Span,
method_id: DefId,
name: ast::Name) {
self.report_error(self.ensure_public(span,
method_id,
None,
&format!("method `{}`",
name)));
}
// Checks that a path is in scope.
fn check_path(&mut self, span: Span, path_id: ast::NodeId, last: ast::Name) {
debug!("privacy - path {}", self.nodestr(path_id));
let path_res = *self.tcx.def_map.borrow().get(&path_id).unwrap();
let ck = |tyname: &str| {
let ck_public = |def: DefId| {
debug!("privacy - ck_public {:?}", def);
let origdid = path_res.def_id();
self.ensure_public(span,
def,
Some(origdid),
&format!("{} `{}`", tyname, last))
};
match path_res.last_private {
LastMod(AllPublic) => {},
LastMod(DependsOn(def)) => {
self.report_error(ck_public(def));
},
LastImport { value_priv,
value_used: check_value,
type_priv,
type_used: check_type } => {
// This dance with found_error is because we don't want to
// report a privacy error twice for the same directive.
let found_error = match (type_priv, check_type) {
(Some(DependsOn(def)), Used) => {
!self.report_error(ck_public(def))
},
_ => false,
};
if !found_error {
match (value_priv, check_value) {
(Some(DependsOn(def)), Used) => {
self.report_error(ck_public(def));
},
_ => {},
}
}
// If an import is not used in either namespace, we still
// want to check that it could be legal. Therefore we check
// in both namespaces and only report an error if both would
// be illegal. We only report one error, even if it is
// illegal to import from both namespaces.
match (value_priv, check_value, type_priv, check_type) {
(Some(p), Unused, None, _) |
(None, _, Some(p), Unused) => {
let p = match p {
AllPublic => None,
DependsOn(def) => ck_public(def),
};
if p.is_some() {
self.report_error(p);
}
},
(Some(v), Unused, Some(t), Unused) => {
let v = match v {
AllPublic => None,
DependsOn(def) => ck_public(def),
};
let t = match t {
AllPublic => None,
DependsOn(def) => ck_public(def),
};
if let (Some(_), Some(t)) = (v, t) {
self.report_error(Some(t));
}
},
_ => {},
}
},
}
};
// FIXME(#12334) Imports can refer to definitions in both the type and
// value namespaces. The privacy information is aware of this, but the
// def map is not. Therefore the names we work out below will not always
// be accurate and we can get slightly wonky error messages (but type
// checking is always correct).
match path_res.full_def() {
def::DefFn(..) => ck("function"),
def::DefStatic(..) => ck("static"),
def::DefConst(..) => ck("const"),
def::DefAssociatedConst(..) => ck("associated const"),
def::DefVariant(..) => ck("variant"),
def::DefTy(_, false) => ck("type"),
def::DefTy(_, true) => ck("enum"),
def::DefTrait(..) => ck("trait"),
def::DefStruct(..) => ck("struct"),
def::DefMethod(..) => ck("method"),
def::DefMod(..) => ck("module"),
_ => {}
}
}
// Checks that a method is in scope.
fn check_method(&mut self, span: Span, method_def_id: DefId,
name: ast::Name) {
match self.tcx.impl_or_trait_item(method_def_id).container() {
ty::ImplContainer(_) => {
self.check_static_method(span, method_def_id, name)
}
// Trait methods are always all public. The only controlling factor
// is whether the trait itself is accessible or not.
ty::TraitContainer(trait_def_id) => {
self.report_error(self.ensure_public(span, trait_def_id,
None, "source trait"));
}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let orig_curitem = replace(&mut self.curitem, item.id);
intravisit::walk_item(self, item);
self.curitem = orig_curitem;
}
fn visit_expr(&mut self, expr: &hir::Expr) {
match expr.node {
hir::ExprField(ref base, name) => {
if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&**base).sty {
self.check_field(expr.span,
def,
def.struct_variant(),
NamedField(name.node));
}
}
hir::ExprTupField(ref base, idx) => {
if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&**base).sty {
self.check_field(expr.span,
def,
def.struct_variant(),
UnnamedField(idx.node));
}
}
hir::ExprMethodCall(name, _, _) => {
let method_call = ty::MethodCall::expr(expr.id);
let method = self.tcx.tables.borrow().method_map[&method_call];
debug!("(privacy checking) checking impl method");
self.check_method(expr.span, method.def_id, name.node);
}
hir::ExprStruct(..) => {
let adt = self.tcx.expr_ty(expr).ty_adt_def().unwrap();
let variant = adt.variant_of_def(self.tcx.resolve_expr(expr));
// RFC 736: ensure all unmentioned fields are visible.
// Rather than computing the set of unmentioned fields
// (i.e. `all_fields - fields`), just check them all.
for field in &variant.fields {
self.check_field(expr.span, adt, variant, NamedField(field.name));
}
}
hir::ExprPath(..) => {
if let def::DefStruct(_) = self.tcx.resolve_expr(expr) {
let expr_ty = self.tcx.expr_ty(expr);
let def = match expr_ty.sty {
ty::TyBareFn(_, &ty::BareFnTy { sig: ty::Binder(ty::FnSig {
output: ty::FnConverging(ty), ..
}), ..}) => ty,
_ => expr_ty
}.ty_adt_def().unwrap();
let any_priv = def.struct_variant().fields.iter().any(|f| {
f.vis != hir::Public && !self.local_private_accessible(f.did)
});
if any_priv {
span_err!(self.tcx.sess, expr.span, E0450,
"cannot invoke tuple struct constructor with private \
fields");
}
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pattern: &hir::Pat) {
// Foreign functions do not have their patterns mapped in the def_map,
// and there's nothing really relevant there anyway, so don't bother
// checking privacy. If you can name the type then you can pass it to an
// external C function anyway.
if self.in_foreign { return }
match pattern.node {
hir::PatStruct(_, ref fields, _) => {
let adt = self.tcx.pat_ty(pattern).ty_adt_def().unwrap();
let def = self.tcx.def_map.borrow().get(&pattern.id).unwrap().full_def();
let variant = adt.variant_of_def(def);
for field in fields {
self.check_field(pattern.span, adt, variant,
NamedField(field.node.name));
}
}
// Patterns which bind no fields are allowable (the path is check
// elsewhere).
hir::PatEnum(_, Some(ref fields)) => {
match self.tcx.pat_ty(pattern).sty {
ty::TyStruct(def, _) => {
for (i, field) in fields.iter().enumerate() {
if let hir::PatWild = field.node {
continue
}
self.check_field(field.span,
def,
def.struct_variant(),
UnnamedField(i));
}
}
ty::TyEnum(..) => {
// enum fields have no privacy at this time
}
_ => {}
}
}
_ => {}
}
intravisit::walk_pat(self, pattern);
}
fn visit_foreign_item(&mut self, fi: &hir::ForeignItem) {
self.in_foreign = true;
intravisit::walk_foreign_item(self, fi);
self.in_foreign = false;
}
fn visit_path(&mut self, path: &hir::Path, id: ast::NodeId) {
if !path.segments.is_empty() {
self.check_path(path.span, id, path.segments.last().unwrap().identifier.name);
intravisit::walk_path(self, path);
}
}
fn visit_path_list_item(&mut self, prefix: &hir::Path, item: &hir::PathListItem) {
let name = if let hir::PathListIdent { name, .. } = item.node {
name
} else if !prefix.segments.is_empty() {
prefix.segments.last().unwrap().identifier.name
} else {
self.tcx.sess.bug("`self` import in an import list with empty prefix");
};
self.check_path(item.span, item.node.id(), name);
intravisit::walk_path_list_item(self, prefix, item);
}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy sanity check visitor, ensures unnecessary visibility isn't here
////////////////////////////////////////////////////////////////////////////////
struct SanePrivacyVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
in_block: bool,
}
impl<'a, 'tcx, 'v> Visitor<'v> for SanePrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
self.check_sane_privacy(item);
if self.in_block {
self.check_all_inherited(item);
}
let orig_in_block = self.in_block;
// Modules turn privacy back on, otherwise we inherit
self.in_block = if let hir::ItemMod(..) = item.node { false } else { orig_in_block };
intravisit::walk_item(self, item);
self.in_block = orig_in_block;
}
fn visit_block(&mut self, b: &'v hir::Block) {
let orig_in_block = replace(&mut self.in_block, true);
intravisit::walk_block(self, b);
self.in_block = orig_in_block;
}
}
impl<'a, 'tcx> SanePrivacyVisitor<'a, 'tcx> {
/// Validates all of the visibility qualifiers placed on the item given. This
/// ensures that there are no extraneous qualifiers that don't actually do
/// anything. In theory these qualifiers wouldn't parse, but that may happen
/// later on down the road...
fn check_sane_privacy(&self, item: &hir::Item) {
let check_inherited = |sp, vis, note: &str| {
if vis != hir::Inherited {
let mut err = struct_span_err!(self.tcx.sess, sp, E0449,
"unnecessary visibility qualifier");
if !note.is_empty() {
err.span_note(sp, note);
}
err.emit();
}
};
match item.node {
// implementations of traits don't need visibility qualifiers because
// that's controlled by having the trait in scope.
hir::ItemImpl(_, _, _, Some(..), _, ref impl_items) => {
check_inherited(item.span, item.vis,
"visibility qualifiers have no effect on trait impls");
for impl_item in impl_items {
check_inherited(impl_item.span, impl_item.vis, "");
}
}
hir::ItemImpl(_, _, _, None, _, _) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual methods instead");
}
hir::ItemDefaultImpl(..) => {
check_inherited(item.span, item.vis,
"visibility qualifiers have no effect on trait impls");
}
hir::ItemForeignMod(..) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual functions instead");
}
hir::ItemStruct(..) | hir::ItemEnum(..) | hir::ItemTrait(..) |
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemMod(..) | hir::ItemExternCrate(..) |
hir::ItemUse(..) | hir::ItemTy(..) => {}
}
}
/// When inside of something like a function or a method, visibility has no
/// control over anything so this forbids any mention of any visibility
fn check_all_inherited(&self, item: &hir::Item) {
let check_inherited = |sp, vis| {
if vis != hir::Inherited {
span_err!(self.tcx.sess, sp, E0447,
"visibility has no effect inside functions or block expressions");
}
};
check_inherited(item.span, item.vis);
match item.node {
hir::ItemImpl(_, _, _, _, _, ref impl_items) => {
for impl_item in impl_items {
check_inherited(impl_item.span, impl_item.vis);
}
}
hir::ItemForeignMod(ref fm) => {
for fi in &fm.items {
check_inherited(fi.span, fi.vis);
}
}
hir::ItemStruct(ref vdata, _) => {
for f in vdata.fields() {
check_inherited(f.span, f.node.kind.visibility());
}
}
hir::ItemDefaultImpl(..) | hir::ItemEnum(..) | hir::ItemTrait(..) |
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemMod(..) | hir::ItemExternCrate(..) |
hir::ItemUse(..) | hir::ItemTy(..) => {}
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// Obsolete visitors for checking for private items in public interfaces.
/// These visitors are supposed to be kept in frozen state and produce an
/// "old error node set". For backward compatibility the new visitor reports
/// warnings instead of hard errors when the erroneous node is not in this old set.
///////////////////////////////////////////////////////////////////////////////
struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
access_levels: &'a AccessLevels,
in_variant: bool,
// set of errors produced by this obsolete visitor
old_error_set: NodeSet,
}
struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b: 'a, 'tcx: 'b> {
inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
/// whether the type refers to private types.
contains_private: bool,
/// whether we've recurred at all (i.e. if we're pointing at the
/// first type on which visit_ty was called).
at_outer_type: bool,
// whether that first type is a public path.
outer_type_is_public_path: bool,
}
impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
fn path_is_private_type(&self, path_id: ast::NodeId) -> bool {
let did = match self.tcx.def_map.borrow().get(&path_id).map(|d| d.full_def()) {
// `int` etc. (None doesn't seem to occur.)
None | Some(def::DefPrimTy(..)) | Some(def::DefSelfTy(..)) => return false,
Some(def) => def.def_id(),
};
// A path can only be private if:
// it's in this crate...
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
// .. and it corresponds to a private type in the AST (this returns
// None for type parameters)
match self.tcx.map.find(node_id) {
Some(ast_map::NodeItem(ref item)) => item.vis != hir::Public,
Some(_) | None => false,
}
} else {
return false
}
}
fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
// FIXME: this would preferably be using `exported_items`, but all
// traits are exported currently (see `EmbargoVisitor.exported_trait`)
self.access_levels.is_public(trait_id)
}
fn check_ty_param_bound(&mut self,
ty_param_bound: &hir::TyParamBound) {
if let hir::TraitTyParamBound(ref trait_ref, _) = *ty_param_bound {
if self.path_is_private_type(trait_ref.trait_ref.ref_id) {
self.old_error_set.insert(trait_ref.trait_ref.ref_id);
}
}
}
fn item_is_public(&self, id: &ast::NodeId, vis: hir::Visibility) -> bool {
self.access_levels.is_reachable(*id) || vis == hir::Public
}
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(..) = ty.node {
if self.inner.path_is_private_type(ty.id) {
self.contains_private = true;
// found what we're looking for so let's stop
// working.
return
} else if self.at_outer_type {
self.outer_type_is_public_path = true;
}
}
self.at_outer_type = false;
intravisit::walk_ty(self, ty)
}
// don't want to recurse into [, .. expr]
fn visit_expr(&mut self, _: &hir::Expr) {}
}
impl<'a, 'tcx, 'v> Visitor<'v> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
match item.node {
// contents of a private mod can be reexported, so we need
// to check internals.
hir::ItemMod(_) => {}
// An `extern {}` doesn't introduce a new privacy
// namespace (the contents have their own privacies).
hir::ItemForeignMod(_) => {}
hir::ItemTrait(_, _, ref bounds, _) => {
if !self.trait_is_public(item.id) {
return
}
for bound in bounds.iter() {
self.check_ty_param_bound(bound)
}
}
// impls need some special handling to try to offer useful
// error messages without (too many) false positives
// (i.e. we could just return here to not check them at
// all, or some worse estimation of whether an impl is
// publicly visible).
hir::ItemImpl(_, _, ref g, ref trait_ref, ref self_, ref impl_items) => {
// `impl [... for] Private` is never visible.
let self_contains_private;
// impl [... for] Public<...>, but not `impl [... for]
// Vec<Public>` or `(Public,)` etc.
let self_is_public_path;
// check the properties of the Self type:
{
let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
inner: self,
contains_private: false,
at_outer_type: true,
outer_type_is_public_path: false,
};
visitor.visit_ty(&**self_);
self_contains_private = visitor.contains_private;
self_is_public_path = visitor.outer_type_is_public_path;
}
// miscellaneous info about the impl
// `true` iff this is `impl Private for ...`.
let not_private_trait =
trait_ref.as_ref().map_or(true, // no trait counts as public trait
|tr| {
let did = self.tcx.trait_ref_to_def_id(tr);
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.trait_is_public(node_id)
} else {
true // external traits must be public
}
});
// `true` iff this is a trait impl or at least one method is public.
//
// `impl Public { $( fn ...() {} )* }` is not visible.
//
// This is required over just using the methods' privacy
// directly because we might have `impl<T: Foo<Private>> ...`,
// and we shouldn't warn about the generics if all the methods
// are private (because `T` won't be visible externally).
let trait_or_some_public_method =
trait_ref.is_some() ||
impl_items.iter()
.any(|impl_item| {
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..) => {
self.access_levels.is_reachable(impl_item.id)
}
hir::ImplItemKind::Type(_) => false,
}
});
if !self_contains_private &&
not_private_trait &&
trait_or_some_public_method {
intravisit::walk_generics(self, g);
match *trait_ref {
None => {
for impl_item in impl_items {
// This is where we choose whether to walk down
// further into the impl to check its items. We
// should only walk into public items so that we
// don't erroneously report errors for private
// types in private items.
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..)
if self.item_is_public(&impl_item.id, impl_item.vis) =>
{
intravisit::walk_impl_item(self, impl_item)
}
hir::ImplItemKind::Type(..) => {
intravisit::walk_impl_item(self, impl_item)
}
_ => {}
}
}
}
Some(ref tr) => {
// Any private types in a trait impl fall into three
// categories.
// 1. mentioned in the trait definition
// 2. mentioned in the type params/generics
// 3. mentioned in the associated types of the impl
//
// Those in 1. can only occur if the trait is in
// this crate and will've been warned about on the
// trait definition (there's no need to warn twice
// so we don't check the methods).
//
// Those in 2. are warned via walk_generics and this
// call here.
intravisit::walk_path(self, &tr.path);
// Those in 3. are warned with this call.
for impl_item in impl_items {
if let hir::ImplItemKind::Type(ref ty) = impl_item.node {
self.visit_ty(ty);
}
}
}
}
} else if trait_ref.is_none() && self_is_public_path {
// impl Public<Private> { ... }. Any public static
// methods will be visible as `Public::foo`.
let mut found_pub_static = false;
for impl_item in impl_items {
match impl_item.node {
hir::ImplItemKind::Const(..) => {
if self.item_is_public(&impl_item.id, impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
hir::ImplItemKind::Method(ref sig, _) => {
if sig.explicit_self.node == hir::SelfStatic &&
self.item_is_public(&impl_item.id, impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
_ => {}
}
}
if found_pub_static {
intravisit::walk_generics(self, g)
}
}
return
}
// `type ... = ...;` can contain private types, because
// we're introducing a new name.
hir::ItemTy(..) => return,
// not at all public, so we don't care
_ if !self.item_is_public(&item.id, item.vis) => {
return;
}
_ => {}
}
// We've carefully constructed it so that if we're here, then
// any `visit_ty`'s will be called on things that are in
// public signatures, i.e. things that we're interested in for
// this visitor.
debug!("VisiblePrivateTypesVisitor entering item {:?}", item);
intravisit::walk_item(self, item);
}
fn visit_generics(&mut self, generics: &hir::Generics) {
for ty_param in generics.ty_params.iter() {
for bound in ty_param.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(ref bound_pred) => {
for bound in bound_pred.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
&hir::WherePredicate::RegionPredicate(_) => {}
&hir::WherePredicate::EqPredicate(ref eq_pred) => {
self.visit_ty(&*eq_pred.ty);
}
}
}
}
fn visit_foreign_item(&mut self, item: &hir::ForeignItem) {
if self.access_levels.is_reachable(item.id) {
intravisit::walk_foreign_item(self, item)
}
}
fn visit_ty(&mut self, t: &hir::Ty) {
debug!("VisiblePrivateTypesVisitor checking ty {:?}", t);
if let hir::TyPath(..) = t.node {
if self.path_is_private_type(t.id) {
self.old_error_set.insert(t.id);
}
}
intravisit::walk_ty(self, t)
}
fn visit_variant(&mut self, v: &hir::Variant, g: &hir::Generics, item_id: ast::NodeId) {
if self.access_levels.is_reachable(v.node.data.id()) {
self.in_variant = true;
intravisit::walk_variant(self, v, g, item_id);
self.in_variant = false;
}
}
fn visit_struct_field(&mut self, s: &hir::StructField) {
let vis = match s.node.kind {
hir::NamedField(_, vis) | hir::UnnamedField(vis) => vis
};
if vis == hir::Public || self.in_variant {
intravisit::walk_struct_field(self, s);
}
}
// we don't need to introspect into these at all: an
// expression/block context can't possibly contain exported things.
// (Making them no-ops stops us from traversing the whole AST without
// having to be super careful about our `walk_...` calls above.)
// FIXME(#29524): Unfortunately this ^^^ is not true, blocks can contain
// exported items (e.g. impls) and actual code in rustc itself breaks
// if we don't traverse blocks in `EmbargoVisitor`
fn visit_block(&mut self, _: &hir::Block) {}
fn visit_expr(&mut self, _: &hir::Expr) {}
}
///////////////////////////////////////////////////////////////////////////////
/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
/// finds any private components in it.
/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
/// and traits in public interfaces.
///////////////////////////////////////////////////////////////////////////////
struct SearchInterfaceForPrivateItemsVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
// Do not report an error when a private type is found
is_quiet: bool,
// Is private component found?
is_public: bool,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx: 'a> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
// Check if the type alias contain private types when substituted
fn is_public_type_alias(&self, item: &hir::Item, path: &hir::Path) -> bool {
// We substitute type aliases only when determining impl publicity
// FIXME: This will probably change and all type aliases will be substituted,
// requires an amendment to RFC 136.
if !self.is_quiet {
return false
}
// Type alias is considered public if the aliased type is
// public, even if the type alias itself is private. So, something
// like `type A = u8; pub fn f() -> A {...}` doesn't cause an error.
if let hir::ItemTy(ref ty, ref generics) = item.node {
let mut check = SearchInterfaceForPrivateItemsVisitor { is_public: true, ..*self };
check.visit_ty(ty);
// If a private type alias with default type parameters is used in public
// interface we must ensure, that the defaults are public if they are actually used.
// ```
// type Alias<T = Private> = T;
// pub fn f() -> Alias {...} // `Private` is implicitly used here, so it must be public
// ```
let provided_params = path.segments.last().unwrap().parameters.types().len();
for ty_param in &generics.ty_params[provided_params..] {
if let Some(ref default_ty) = ty_param.default {
check.visit_ty(default_ty);
}
}
check.is_public
} else {
false
}
}
}
impl<'a, 'tcx: 'a, 'v> Visitor<'v> for SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if self.is_quiet && !self.is_public {
// We are in quiet mode and a private type is already found, no need to proceed
return
}
if let hir::TyPath(_, ref path) = ty.node {
let def = self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
match def {
def::DefPrimTy(..) | def::DefSelfTy(..) | def::DefTyParam(..) => {
// Public
}
def::DefAssociatedTy(..) if self.is_quiet => {
// Conservatively approximate the whole type alias as public without
// recursing into its components when determining impl publicity.
// For example, `impl <Type as Trait>::Alias {...}` may be a public impl
// even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return
}
def::DefStruct(def_id) | def::DefTy(def_id, _) |
def::DefTrait(def_id) | def::DefAssociatedTy(def_id, _) => {
// Non-local means public (private items can't leave their crate, modulo bugs)
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
if item.vis != hir::Public && !self.is_public_type_alias(item, path) {
if !self.is_quiet {
if self.old_error_set.contains(&ty.id) {
span_err!(self.tcx.sess, ty.span, E0446,
"private type in public interface");
} else {
self.tcx.sess.add_lint (
lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
ty.span,
format!("private type in public interface"),
);
}
}
self.is_public = false;
}
}
}
_ => {}
}
}
intravisit::walk_ty(self, ty);
}
fn visit_trait_ref(&mut self, trait_ref: &hir::TraitRef) {
if self.is_quiet && !self.is_public {
// We are in quiet mode and a private type is already found, no need to proceed
return
}
// Non-local means public (private items can't leave their crate, modulo bugs)
let def_id = self.tcx.trait_ref_to_def_id(trait_ref);
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
if item.vis != hir::Public {
if !self.is_quiet {
if self.old_error_set.contains(&trait_ref.ref_id) {
span_err!(self.tcx.sess, trait_ref.path.span, E0445,
"private trait in public interface");
} else {
self.tcx.sess.add_lint(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
trait_ref.path.span,
"private trait in public interface (error E0445)"
.to_string());
}
}
self.is_public = false;
}
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Don't recurse into function bodies
fn visit_block(&mut self, _: &hir::Block) {}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &hir::Pat) {}
}
struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
// A type is considered public if it doesn't contain any private components
fn is_public_ty(&self, ty: &hir::Ty) -> bool {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: true, is_public: true, old_error_set: self.old_error_set
};
check.visit_ty(ty);
check.is_public
}
// A trait reference is considered public if it doesn't contain any private components
fn is_public_trait_ref(&self, trait_ref: &hir::TraitRef) -> bool {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: true, is_public: true, old_error_set: self.old_error_set
};
check.visit_trait_ref(trait_ref);
check.is_public
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: false, is_public: true, old_error_set: self.old_error_set
};
match item.node {
// Crates are always public
hir::ItemExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemMod(..) => {}
// Checked in resolve
hir::ItemUse(..) => {}
// Subitems of these items have inherited publicity
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemEnum(..) | hir::ItemTrait(..) | hir::ItemTy(..) => {
if item.vis == hir::Public {
check.visit_item(item);
}
}
// Subitems of foreign modules have their own publicity
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis == hir::Public {
check.visit_foreign_item(foreign_item);
}
}
}
// Subitems of structs have their own publicity
hir::ItemStruct(ref struct_def, ref generics) => {
if item.vis == hir::Public {
check.visit_generics(generics);
for field in struct_def.fields() {
if field.node.kind.visibility() == hir::Public {
check.visit_struct_field(field);
}
}
}
}
// The interface is empty
hir::ItemDefaultImpl(..) => {}
// An inherent impl is public when its type is public
// Subitems of inherent impls have their own publicity
hir::ItemImpl(_, _, ref generics, None, ref ty, ref impl_items) => {
if self.is_public_ty(ty) {
check.visit_generics(generics);
for impl_item in impl_items {
if impl_item.vis == hir::Public {
check.visit_impl_item(impl_item);
}
}
}
}
// A trait impl is public when both its type and its trait are public
// Subitems of trait impls have inherited publicity
hir::ItemImpl(_, _, ref generics, Some(ref trait_ref), ref ty, ref impl_items) => {
if self.is_public_ty(ty) && self.is_public_trait_ref(trait_ref) {
check.visit_generics(generics);
for impl_item in impl_items {
check.visit_impl_item(impl_item);
}
}
}
}
}
}
pub fn check_crate(tcx: &ty::ctxt,
export_map: &def::ExportMap,
external_exports: ExternalExports)
-> AccessLevels {
let _task = tcx.dep_graph.in_task(DepNode::Privacy);
let krate = tcx.map.krate();
// Sanity check to make sure that all privacy usage and controls are
// reasonable.
let mut visitor = SanePrivacyVisitor {
tcx: tcx,
in_block: false,
};
intravisit::walk_crate(&mut visitor, krate);
// Figure out who everyone's parent is
let mut visitor = ParentVisitor {
tcx: tcx,
parents: NodeMap(),
curparent: ast::DUMMY_NODE_ID,
};
intravisit::walk_crate(&mut visitor, krate);
// Use the parent map to check the privacy of everything
let mut visitor = PrivacyVisitor {
curitem: ast::DUMMY_NODE_ID,
in_foreign: false,
tcx: tcx,
parents: visitor.parents,
external_exports: external_exports,
};
intravisit::walk_crate(&mut visitor, krate);
tcx.sess.abort_if_errors();
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx: tcx,
export_map: export_map,
access_levels: Default::default(),
prev_level: Some(AccessLevel::Public),
changed: false,
};
loop {
intravisit::walk_crate(&mut visitor, krate);
if visitor.changed {
visitor.changed = false;
} else {
break
}
}
visitor.update(ast::CRATE_NODE_ID, Some(AccessLevel::Public));
{
let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
tcx: tcx,
access_levels: &visitor.access_levels,
in_variant: false,
old_error_set: NodeSet(),
};
intravisit::walk_crate(&mut visitor, krate);
// Check for private types and traits in public interfaces
let mut visitor = PrivateItemsInPublicInterfacesVisitor {
tcx: tcx,
old_error_set: &visitor.old_error_set,
};
krate.visit_all_items(&mut visitor);
}
visitor.access_levels
}
__build_diagnostic_array! { librustc_privacy, DIAGNOSTICS }