blob: 8f3366eacb3645ceade26085e26160d1da174f03 [file] [log] [blame]
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Standalone Tests for the Inference Module
use driver;
use rustc_lint;
use rustc_resolve as resolve;
use rustc_typeck::middle::lang_items;
use rustc_typeck::middle::free_region::FreeRegionMap;
use rustc_typeck::middle::region::{self, CodeExtent};
use rustc_typeck::middle::region::CodeExtentData;
use rustc_typeck::middle::resolve_lifetime;
use rustc_typeck::middle::stability;
use rustc_typeck::middle::subst;
use rustc_typeck::middle::subst::Subst;
use rustc_typeck::middle::ty::{self, Ty, TypeFoldable};
use rustc_typeck::middle::ty::relate::TypeRelation;
use rustc_typeck::middle::infer::{self, TypeOrigin};
use rustc_typeck::middle::infer::lub::Lub;
use rustc_typeck::middle::infer::glb::Glb;
use rustc_typeck::middle::infer::sub::Sub;
use rustc_metadata::cstore::CStore;
use rustc::front::map as hir_map;
use rustc::session::{self, config};
use std::rc::Rc;
use syntax::{abi, ast};
use syntax::codemap::{Span, CodeMap, DUMMY_SP};
use syntax::errors;
use syntax::errors::emitter::Emitter;
use syntax::errors::{Level, RenderSpan};
use syntax::parse::token;
use syntax::feature_gate::UnstableFeatures;
use rustc_front::lowering::{lower_crate, LoweringContext};
use rustc_front::hir;
struct Env<'a, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'tcx>,
}
struct RH<'a> {
id: ast::NodeId,
sub: &'a [RH<'a>],
}
const EMPTY_SOURCE_STR: &'static str = "#![feature(no_core)] #![no_core]";
struct ExpectErrorEmitter {
messages: Vec<String>,
}
fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) {
match lvl {
Level::Bug | Level::Fatal | Level::Error => {}
_ => {
return;
}
}
debug!("Error: {}", msg);
match e.messages.iter().position(|m| msg.contains(m)) {
Some(i) => {
e.messages.remove(i);
}
None => {
panic!("Unexpected error: {} Expected: {:?}", msg, e.messages);
}
}
}
impl Emitter for ExpectErrorEmitter {
fn emit(&mut self,
_sp: Option<Span>,
msg: &str,
_: Option<&str>,
lvl: Level) {
remove_message(self, msg, lvl);
}
fn custom_emit(&mut self, _sp: RenderSpan, msg: &str, lvl: Level) {
remove_message(self, msg, lvl);
}
}
fn errors(msgs: &[&str]) -> (Box<Emitter + Send>, usize) {
let v = msgs.iter().map(|m| m.to_string()).collect();
(box ExpectErrorEmitter { messages: v } as Box<Emitter + Send>,
msgs.len())
}
fn test_env<F>(source_string: &str,
(emitter, expected_err_count): (Box<Emitter + Send>, usize),
body: F)
where F: FnOnce(Env)
{
let mut options = config::basic_options();
options.debugging_opts.verbose = true;
options.unstable_features = UnstableFeatures::Allow;
let diagnostic_handler = errors::Handler::with_emitter(true, false, emitter);
let cstore = Rc::new(CStore::new(token::get_ident_interner()));
let sess = session::build_session_(options, None, diagnostic_handler,
Rc::new(CodeMap::new()), cstore.clone());
rustc_lint::register_builtins(&mut sess.lint_store.borrow_mut(), Some(&sess));
let krate_config = Vec::new();
let input = config::Input::Str(source_string.to_string());
let krate = driver::phase_1_parse_input(&sess, krate_config, &input);
let krate = driver::phase_2_configure_and_expand(&sess, &cstore, krate, "test", None)
.expect("phase 2 aborted");
let krate = driver::assign_node_ids(&sess, krate);
let lcx = LoweringContext::new(&sess, Some(&krate));
let mut hir_forest = hir_map::Forest::new(lower_crate(&lcx, &krate));
let arenas = ty::CtxtArenas::new();
let ast_map = driver::make_map(&sess, &mut hir_forest);
let krate = ast_map.krate();
// run just enough stuff to build a tcx:
let lang_items = lang_items::collect_language_items(&sess, &ast_map);
let resolve::CrateMap { def_map, freevars, .. } =
resolve::resolve_crate(&sess, &ast_map, resolve::MakeGlobMap::No);
let named_region_map = resolve_lifetime::krate(&sess, krate, &def_map.borrow());
let region_map = region::resolve_crate(&sess, krate);
ty::ctxt::create_and_enter(&sess,
&arenas,
def_map,
named_region_map,
ast_map,
freevars,
region_map,
lang_items,
stability::Index::new(krate),
|tcx| {
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, None, false);
body(Env { infcx: &infcx });
let free_regions = FreeRegionMap::new();
infcx.resolve_regions_and_report_errors(&free_regions,
ast::CRATE_NODE_ID);
assert_eq!(tcx.sess.err_count(), expected_err_count);
});
}
impl<'a, 'tcx> Env<'a, 'tcx> {
pub fn tcx(&self) -> &ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn create_region_hierarchy(&self, rh: &RH, parent: CodeExtent) {
let me = self.infcx.tcx.region_maps.intern_node(rh.id, parent);
for child_rh in rh.sub {
self.create_region_hierarchy(child_rh, me);
}
}
pub fn create_simple_region_hierarchy(&self) {
// creates a region hierarchy where 1 is root, 10 and 11 are
// children of 1, etc
let dscope = self.infcx
.tcx
.region_maps
.intern_code_extent(CodeExtentData::DestructionScope(1),
region::ROOT_CODE_EXTENT);
self.create_region_hierarchy(&RH {
id: 1,
sub: &[RH { id: 10, sub: &[] }, RH { id: 11, sub: &[] }],
},
dscope);
}
#[allow(dead_code)] // this seems like it could be useful, even if we don't use it now
pub fn lookup_item(&self, names: &[String]) -> ast::NodeId {
return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) {
Some(id) => id,
None => {
panic!("no item found: `{}`", names.join("::"));
}
};
fn search_mod(this: &Env,
m: &hir::Mod,
idx: usize,
names: &[String])
-> Option<ast::NodeId> {
assert!(idx < names.len());
for item in &m.item_ids {
let item = this.infcx.tcx.map.expect_item(item.id);
if item.name.to_string() == names[idx] {
return search(this, item, idx + 1, names);
}
}
return None;
}
fn search(this: &Env, it: &hir::Item, idx: usize, names: &[String]) -> Option<ast::NodeId> {
if idx == names.len() {
return Some(it.id);
}
return match it.node {
hir::ItemUse(..) |
hir::ItemExternCrate(..) |
hir::ItemConst(..) |
hir::ItemStatic(..) |
hir::ItemFn(..) |
hir::ItemForeignMod(..) |
hir::ItemTy(..) => {
None
}
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemTrait(..) |
hir::ItemImpl(..) |
hir::ItemDefaultImpl(..) => {
None
}
hir::ItemMod(ref m) => {
search_mod(this, m, idx, names)
}
};
}
}
pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::mk_subty(self.infcx, true, TypeOrigin::Misc(DUMMY_SP), a, b) {
Ok(_) => true,
Err(ref e) => panic!("Encountered error: {}", e),
}
}
pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::can_mk_subty(self.infcx, a, b) {
Ok(_) => true,
Err(_) => false,
}
}
pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
if !self.is_subtype(a, b) {
panic!("{} is not a subtype of {}, but it should be", a, b);
}
}
pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.assert_subtype(a, b);
self.assert_subtype(b, a);
}
pub fn t_fn(&self, input_tys: &[Ty<'tcx>], output_ty: Ty<'tcx>) -> Ty<'tcx> {
let input_args = input_tys.iter().cloned().collect();
self.infcx.tcx.mk_fn(None,
self.infcx.tcx.mk_bare_fn(ty::BareFnTy {
unsafety: hir::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: input_args,
output: ty::FnConverging(output_ty),
variadic: false,
}),
}))
}
pub fn t_nil(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_nil()
}
pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> {
self.infcx.tcx.mk_tup(vec![ty1, ty2])
}
pub fn t_param(&self, space: subst::ParamSpace, index: u32) -> Ty<'tcx> {
let name = format!("T{}", index);
self.infcx.tcx.mk_param(space, index, token::intern(&name[..]))
}
pub fn re_early_bound(&self,
space: subst::ParamSpace,
index: u32,
name: &'static str)
-> ty::Region {
let name = token::intern(name);
ty::ReEarlyBound(ty::EarlyBoundRegion {
space: space,
index: index,
name: name,
})
}
pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> ty::Region {
ty::ReLateBound(debruijn, ty::BrAnon(id))
}
pub fn t_rptr(&self, r: ty::Region) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1));
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn t_rptr_late_bound_with_debruijn(&self,
id: u32,
debruijn: ty::DebruijnIndex)
-> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, debruijn);
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> {
let r = ty::ReScope(self.tcx().region_maps.node_extent(id));
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn re_free(&self, nid: ast::NodeId, id: u32) -> ty::Region {
ty::ReFree(ty::FreeRegion {
scope: self.tcx().region_maps.item_extent(nid),
bound_region: ty::BrAnon(id),
})
}
pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> {
let r = self.re_free(nid, id);
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn t_rptr_static(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(ty::ReStatic),
self.tcx().types.isize)
}
pub fn t_rptr_empty(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(ty::ReEmpty),
self.tcx().types.isize)
}
pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> {
infer::TypeTrace::dummy(self.tcx())
}
pub fn sub(&self) -> Sub<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.sub(true, trace)
}
pub fn lub(&self) -> Lub<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.lub(true, trace)
}
pub fn glb(&self) -> Glb<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.glb(true, trace)
}
/// Checks that `t1 <: t2` is true (this may register additional
/// region checks).
pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().relate(&t1, &t2) {
Ok(_) => {}
Err(ref e) => {
panic!("unexpected error computing sub({:?},{:?}): {}", t1, t2, e);
}
}
}
/// Checks that `t1 <: t2` is false (this may register additional
/// region checks).
pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().relate(&t1, &t2) {
Err(_) => {}
Ok(_) => {
panic!("unexpected success computing sub({:?},{:?})", t1, t2);
}
}
}
/// Checks that `LUB(t1,t2) == t_lub`
pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) {
match self.lub().relate(&t1, &t2) {
Ok(t) => {
self.assert_eq(t, t_lub);
}
Err(ref e) => {
panic!("unexpected error in LUB: {}", e)
}
}
}
/// Checks that `GLB(t1,t2) == t_glb`
pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) {
debug!("check_glb(t1={}, t2={}, t_glb={})", t1, t2, t_glb);
match self.glb().relate(&t1, &t2) {
Err(e) => {
panic!("unexpected error computing LUB: {:?}", e)
}
Ok(t) => {
self.assert_eq(t, t_glb);
// sanity check for good measure:
self.assert_subtype(t, t1);
self.assert_subtype(t, t2);
}
}
}
}
#[test]
fn contravariant_region_ptr_ok() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
env.make_subtype(t_rptr1, t_rptr10);
})
}
#[test]
fn contravariant_region_ptr_err() {
test_env(EMPTY_SOURCE_STR, errors(&["lifetime mismatch"]), |env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
// will cause an error when regions are resolved
env.make_subtype(t_rptr10, t_rptr1);
})
}
#[test]
fn sub_free_bound_false() {
//! Test that:
//!
//! fn(&'a isize) <: for<'b> fn(&'b isize)
//!
//! does NOT hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1, 1);
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn sub_bound_free_true() {
//! Test that:
//!
//! for<'a> fn(&'a isize) <: fn(&'b isize)
//!
//! DOES hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1, 1);
env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn sub_free_bound_false_infer() {
//! Test that:
//!
//! fn(_#1) <: for<'b> fn(&'b isize)
//!
//! does NOT hold for any instantiation of `_#1`.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_free_bound_infer() {
//! Test result of:
//!
//! LUB(fn(_#1), for<'b> fn(&'b isize))
//!
//! This should yield `fn(&'_ isize)`. We check
//! that it yields `fn(&'x isize)` for some free `'x`,
//! anyhow.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1, 1);
env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
});
}
#[test]
fn lub_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1, 1);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_bound_inverse_order() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1),
env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1),
env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1));
})
}
#[test]
fn lub_free_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1, 1);
let t_rptr_free2 = env.t_rptr_free(1, 2);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_returning_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_scope10 = env.t_rptr_scope(10);
let t_rptr_scope11 = env.t_rptr_scope(11);
let t_rptr_empty = env.t_rptr_empty();
env.check_lub(env.t_fn(&[t_rptr_scope10], env.tcx().types.isize),
env.t_fn(&[t_rptr_scope11], env.tcx().types.isize),
env.t_fn(&[t_rptr_empty], env.tcx().types.isize));
});
}
#[test]
fn glb_free_free_with_common_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1, 1);
let t_rptr_free2 = env.t_rptr_free(1, 2);
let t_rptr_scope = env.t_rptr_scope(1);
env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_scope], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1, 1);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free_infer() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_infer1 = env.infcx.next_ty_var();
// compute GLB(fn(_) -> isize, for<'b> fn(&'b isize) -> isize),
// which should yield for<'b> fn(&'b isize) -> isize
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
// as a side-effect, computing GLB should unify `_` with
// `&'_ isize`
let t_resolve1 = env.infcx.shallow_resolve(t_infer1);
match t_resolve1.sty {
ty::TyRef(..) => {}
_ => {
panic!("t_resolve1={:?}", t_resolve1);
}
}
})
}
#[test]
fn glb_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = fn(A)
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_fn(&[t_param], env.t_nil())
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a isize)
let t_expected = {
let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_ptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_some_bounds() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = (A, fn(A))
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil()))
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = (&'a isize, fn(&'a isize))
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil()))
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
/// Test that we correctly compute whether a type has escaping regions or not.
#[test]
fn escaping() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
env.create_simple_region_hierarchy();
assert!(!env.t_nil().has_escaping_regions());
let t_rptr_free1 = env.t_rptr_free(1, 1);
assert!(!t_rptr_free1.has_escaping_regions());
let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
assert!(t_rptr_bound1.has_escaping_regions());
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
assert!(t_rptr_bound2.has_escaping_regions());
// t_fn = fn(A)
let t_param = env.t_param(subst::TypeSpace, 0);
assert!(!t_param.has_escaping_regions());
let t_fn = env.t_fn(&[t_param], env.t_nil());
assert!(!t_fn.has_escaping_regions());
})
}
/// Test applying a substitution where the value being substituted for an early-bound region is a
/// late-bound region.
#[test]
fn subst_region_renumber_region() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
// type t_source<'a> = fn(&'a isize)
let t_source = {
let re_early = env.re_early_bound(subst::TypeSpace, 0, "'a");
env.t_fn(&[env.t_rptr(re_early)], env.t_nil())
};
let substs = subst::Substs::new_type(vec![], vec![re_bound1]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a isize)
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_rptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
#[test]
fn walk_ty() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = tcx.mk_tup(vec![int_ty, uint_ty, int_ty, uint_ty]);
let tup2_ty = tcx.mk_tup(vec![tup1_ty, tup1_ty, uint_ty]);
let uniq_ty = tcx.mk_box(tup2_ty);
let walked: Vec<_> = uniq_ty.walk().collect();
assert_eq!(walked,
[uniq_ty, tup2_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, tup1_ty, int_ty,
uint_ty, int_ty, uint_ty, uint_ty]);
})
}
#[test]
fn walk_ty_skip_subtree() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = tcx.mk_tup(vec![int_ty, uint_ty, int_ty, uint_ty]);
let tup2_ty = tcx.mk_tup(vec![tup1_ty, tup1_ty, uint_ty]);
let uniq_ty = tcx.mk_box(tup2_ty);
// types we expect to see (in order), plus a boolean saying
// whether to skip the subtree.
let mut expected = vec![(uniq_ty, false),
(tup2_ty, false),
(tup1_ty, false),
(int_ty, false),
(uint_ty, false),
(int_ty, false),
(uint_ty, false),
(tup1_ty, true), // skip the isize/usize/isize/usize
(uint_ty, false)];
expected.reverse();
let mut walker = uniq_ty.walk();
while let Some(t) = walker.next() {
debug!("walked to {:?}", t);
let (expected_ty, skip) = expected.pop().unwrap();
assert_eq!(t, expected_ty);
if skip {
walker.skip_current_subtree();
}
}
assert!(expected.is_empty());
})
}