blob: cd2093984e618ef785f7ee748351f5a06f3c5aed [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate has two arenas implemented: `TypedArena`, which is a simpler
//! arena but can only hold objects of a single type, and `Arena`, which is a
//! more complex, slower arena which can hold objects of any type.
#![crate_name = "arena"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
test(no_crate_inject, attr(deny(warnings))))]
#![feature(alloc)]
#![feature(core_intrinsics)]
#![feature(drop_in_place)]
#![feature(heap_api)]
#![feature(raw)]
#![feature(heap_api)]
#![feature(staged_api)]
#![feature(dropck_parametricity)]
#![cfg_attr(test, feature(test))]
#![allow(deprecated)]
extern crate alloc;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::intrinsics;
use std::marker::{PhantomData, Send};
use std::mem;
use std::ptr;
use std::slice;
use alloc::heap;
use alloc::raw_vec::RawVec;
struct Chunk {
data: RawVec<u8>,
/// Index of the first unused byte.
fill: Cell<usize>,
/// Indicates whether objects with destructors are stored in this chunk.
is_copy: Cell<bool>,
}
impl Chunk {
fn new(size: usize, is_copy: bool) -> Chunk {
Chunk {
data: RawVec::with_capacity(size),
fill: Cell::new(0),
is_copy: Cell::new(is_copy),
}
}
fn capacity(&self) -> usize {
self.data.cap()
}
unsafe fn as_ptr(&self) -> *const u8 {
self.data.ptr()
}
// Walk down a chunk, running the destructors for any objects stored
// in it.
unsafe fn destroy(&self) {
let mut idx = 0;
let buf = self.as_ptr();
let fill = self.fill.get();
while idx < fill {
let tydesc_data = buf.offset(idx as isize) as *const usize;
let (tydesc, is_done) = un_bitpack_tydesc_ptr(*tydesc_data);
let (size, align) = ((*tydesc).size, (*tydesc).align);
let after_tydesc = idx + mem::size_of::<*const TyDesc>();
let start = round_up(after_tydesc, align);
if is_done {
((*tydesc).drop_glue)(buf.offset(start as isize) as *const i8);
}
// Find where the next tydesc lives
idx = round_up(start + size, mem::align_of::<*const TyDesc>());
}
}
}
/// A slower reflection-based arena that can allocate objects of any type.
///
/// This arena uses `RawVec<u8>` as a backing store to allocate objects from.
/// For each allocated object, the arena stores a pointer to the type descriptor
/// followed by the object (potentially with alignment padding after each
/// element). When the arena is destroyed, it iterates through all of its
/// chunks, and uses the tydesc information to trace through the objects,
/// calling the destructors on them. One subtle point that needs to be
/// addressed is how to handle panics while running the user provided
/// initializer function. It is important to not run the destructor on
/// uninitialized objects, but how to detect them is somewhat subtle. Since
/// `alloc()` can be invoked recursively, it is not sufficient to simply exclude
/// the most recent object. To solve this without requiring extra space, we
/// use the low order bit of the tydesc pointer to encode whether the object
/// it describes has been fully initialized.
///
/// As an optimization, objects with destructors are stored in different chunks
/// than objects without destructors. This reduces overhead when initializing
/// plain-old-data (`Copy` types) and means we don't need to waste time running
/// their destructors.
#[unstable(feature = "rustc_private",
reason = "Private to rustc", issue = "0")]
#[rustc_deprecated(since = "1.6.0-dev", reason =
"The reflection-based arena is superseded by the any-arena crate")]
pub struct Arena<'longer_than_self> {
// The heads are separated out from the list as a unbenchmarked
// microoptimization, to avoid needing to case on the list to access a head.
head: RefCell<Chunk>,
copy_head: RefCell<Chunk>,
chunks: RefCell<Vec<Chunk>>,
_marker: PhantomData<*mut &'longer_than_self ()>,
}
impl<'a> Arena<'a> {
/// Allocates a new Arena with 32 bytes preallocated.
pub fn new() -> Arena<'a> {
Arena::new_with_size(32)
}
/// Allocates a new Arena with `initial_size` bytes preallocated.
pub fn new_with_size(initial_size: usize) -> Arena<'a> {
Arena {
head: RefCell::new(Chunk::new(initial_size, false)),
copy_head: RefCell::new(Chunk::new(initial_size, true)),
chunks: RefCell::new(Vec::new()),
_marker: PhantomData,
}
}
}
impl<'longer_than_self> Drop for Arena<'longer_than_self> {
fn drop(&mut self) {
unsafe {
self.head.borrow().destroy();
for chunk in self.chunks.borrow().iter() {
if !chunk.is_copy.get() {
chunk.destroy();
}
}
}
}
}
#[inline]
fn round_up(base: usize, align: usize) -> usize {
(base.checked_add(align - 1)).unwrap() & !(align - 1)
}
// We encode whether the object a tydesc describes has been
// initialized in the arena in the low bit of the tydesc pointer. This
// is necessary in order to properly do cleanup if a panic occurs
// during an initializer.
#[inline]
fn bitpack_tydesc_ptr(p: *const TyDesc, is_done: bool) -> usize {
p as usize | (is_done as usize)
}
#[inline]
fn un_bitpack_tydesc_ptr(p: usize) -> (*const TyDesc, bool) {
((p & !1) as *const TyDesc, p & 1 == 1)
}
// HACK(eddyb) TyDesc replacement using a trait object vtable.
// This could be replaced in the future with a custom DST layout,
// or `&'static (drop_glue, size, align)` created by a `const fn`.
// Requirements:
// * rvalue promotion (issue #1056)
// * mem::{size_of, align_of} must be const fns
struct TyDesc {
drop_glue: fn(*const i8),
size: usize,
align: usize,
}
trait AllTypes {
fn dummy(&self) {}
}
impl<T: ?Sized> AllTypes for T {}
unsafe fn get_tydesc<T>() -> *const TyDesc {
use std::raw::TraitObject;
let ptr = &*(heap::EMPTY as *const T);
// Can use any trait that is implemented for all types.
let obj = mem::transmute::<&AllTypes, TraitObject>(ptr);
obj.vtable as *const TyDesc
}
impl<'longer_than_self> Arena<'longer_than_self> {
// Grows a given chunk and returns `false`, or replaces it with a bigger
// chunk and returns `true`.
// This method is shared by both parts of the arena.
#[cold]
fn alloc_grow(&self, head: &mut Chunk, used_cap: usize, n_bytes: usize) -> bool {
if head.data.reserve_in_place(used_cap, n_bytes) {
// In-place reallocation succeeded.
false
} else {
// Allocate a new chunk.
let new_min_chunk_size = cmp::max(n_bytes, head.capacity());
let new_chunk = Chunk::new((new_min_chunk_size + 1).next_power_of_two(), false);
let old_chunk = mem::replace(head, new_chunk);
if old_chunk.fill.get() != 0 {
self.chunks.borrow_mut().push(old_chunk);
}
true
}
}
// Functions for the copyable part of the arena.
#[inline]
fn alloc_copy_inner(&self, n_bytes: usize, align: usize) -> *const u8 {
let mut copy_head = self.copy_head.borrow_mut();
let fill = copy_head.fill.get();
let mut start = round_up(fill, align);
let mut end = start + n_bytes;
if end > copy_head.capacity() {
if self.alloc_grow(&mut *copy_head, fill, end - fill) {
// Continuing with a newly allocated chunk
start = 0;
end = n_bytes;
copy_head.is_copy.set(true);
}
}
copy_head.fill.set(end);
unsafe { copy_head.as_ptr().offset(start as isize) }
}
#[inline]
fn alloc_copy<T, F>(&self, op: F) -> &mut T
where F: FnOnce() -> T
{
unsafe {
let ptr = self.alloc_copy_inner(mem::size_of::<T>(), mem::align_of::<T>());
let ptr = ptr as *mut T;
ptr::write(&mut (*ptr), op());
&mut *ptr
}
}
// Functions for the non-copyable part of the arena.
#[inline]
fn alloc_noncopy_inner(&self, n_bytes: usize, align: usize) -> (*const u8, *const u8) {
let mut head = self.head.borrow_mut();
let fill = head.fill.get();
let mut tydesc_start = fill;
let after_tydesc = fill + mem::size_of::<*const TyDesc>();
let mut start = round_up(after_tydesc, align);
let mut end = round_up(start + n_bytes, mem::align_of::<*const TyDesc>());
if end > head.capacity() {
if self.alloc_grow(&mut *head, tydesc_start, end - tydesc_start) {
// Continuing with a newly allocated chunk
tydesc_start = 0;
start = round_up(mem::size_of::<*const TyDesc>(), align);
end = round_up(start + n_bytes, mem::align_of::<*const TyDesc>());
}
}
head.fill.set(end);
unsafe {
let buf = head.as_ptr();
(buf.offset(tydesc_start as isize),
buf.offset(start as isize))
}
}
#[inline]
fn alloc_noncopy<T, F>(&self, op: F) -> &mut T
where F: FnOnce() -> T
{
unsafe {
let tydesc = get_tydesc::<T>();
let (ty_ptr, ptr) = self.alloc_noncopy_inner(mem::size_of::<T>(), mem::align_of::<T>());
let ty_ptr = ty_ptr as *mut usize;
let ptr = ptr as *mut T;
// Write in our tydesc along with a bit indicating that it
// has *not* been initialized yet.
*ty_ptr = bitpack_tydesc_ptr(tydesc, false);
// Actually initialize it
ptr::write(&mut (*ptr), op());
// Now that we are done, update the tydesc to indicate that
// the object is there.
*ty_ptr = bitpack_tydesc_ptr(tydesc, true);
&mut *ptr
}
}
/// Allocates a new item in the arena, using `op` to initialize the value,
/// and returns a reference to it.
#[inline]
pub fn alloc<T: 'longer_than_self, F>(&self, op: F) -> &mut T
where F: FnOnce() -> T
{
unsafe {
if intrinsics::needs_drop::<T>() {
self.alloc_noncopy(op)
} else {
self.alloc_copy(op)
}
}
}
/// Allocates a slice of bytes of requested length. The bytes are not guaranteed to be zero
/// if the arena has previously been cleared.
///
/// # Panics
///
/// Panics if the requested length is too large and causes overflow.
pub fn alloc_bytes(&self, len: usize) -> &mut [u8] {
unsafe {
// Check for overflow.
self.copy_head.borrow().fill.get().checked_add(len).expect("length overflow");
let ptr = self.alloc_copy_inner(len, 1);
intrinsics::assume(!ptr.is_null());
slice::from_raw_parts_mut(ptr as *mut _, len)
}
}
/// Clears the arena. Deallocates all but the longest chunk which may be reused.
pub fn clear(&mut self) {
unsafe {
self.head.borrow().destroy();
self.head.borrow().fill.set(0);
self.copy_head.borrow().fill.set(0);
for chunk in self.chunks.borrow().iter() {
if !chunk.is_copy.get() {
chunk.destroy();
}
}
self.chunks.borrow_mut().clear();
}
}
}
/// A faster arena that can hold objects of only one type.
pub struct TypedArena<T> {
/// A pointer to the next object to be allocated.
ptr: Cell<*mut T>,
/// A pointer to the end of the allocated area. When this pointer is
/// reached, a new chunk is allocated.
end: Cell<*mut T>,
/// A vector arena segments.
chunks: RefCell<Vec<TypedArenaChunk<T>>>,
/// Marker indicating that dropping the arena causes its owned
/// instances of `T` to be dropped.
_own: PhantomData<T>,
}
struct TypedArenaChunk<T> {
/// Pointer to the next arena segment.
storage: RawVec<T>,
}
impl<T> TypedArenaChunk<T> {
#[inline]
unsafe fn new(capacity: usize) -> TypedArenaChunk<T> {
TypedArenaChunk { storage: RawVec::with_capacity(capacity) }
}
/// Destroys this arena chunk.
#[inline]
unsafe fn destroy(&mut self, len: usize) {
// The branch on needs_drop() is an -O1 performance optimization.
// Without the branch, dropping TypedArena<u8> takes linear time.
if intrinsics::needs_drop::<T>() {
let mut start = self.start();
// Destroy all allocated objects.
for _ in 0..len {
ptr::drop_in_place(start);
start = start.offset(1);
}
}
}
// Returns a pointer to the first allocated object.
#[inline]
fn start(&self) -> *mut T {
self.storage.ptr()
}
// Returns a pointer to the end of the allocated space.
#[inline]
fn end(&self) -> *mut T {
unsafe {
if mem::size_of::<T>() == 0 {
// A pointer as large as possible for zero-sized elements.
!0 as *mut T
} else {
self.start().offset(self.storage.cap() as isize)
}
}
}
}
const PAGE: usize = 4096;
impl<T> TypedArena<T> {
/// Creates a new `TypedArena` with preallocated space for many objects.
#[inline]
pub fn new() -> TypedArena<T> {
// Reserve at least one page.
let elem_size = cmp::max(1, mem::size_of::<T>());
TypedArena::with_capacity(PAGE / elem_size)
}
/// Creates a new `TypedArena` with preallocated space for the given number of
/// objects.
#[inline]
pub fn with_capacity(capacity: usize) -> TypedArena<T> {
unsafe {
let chunk = TypedArenaChunk::<T>::new(cmp::max(1, capacity));
TypedArena {
ptr: Cell::new(chunk.start()),
end: Cell::new(chunk.end()),
chunks: RefCell::new(vec![chunk]),
_own: PhantomData,
}
}
}
/// Allocates an object in the `TypedArena`, returning a reference to it.
#[inline]
pub fn alloc(&self, object: T) -> &mut T {
if self.ptr == self.end {
self.grow()
}
unsafe {
if mem::size_of::<T>() == 0 {
self.ptr.set(intrinsics::arith_offset(self.ptr.get() as *mut u8, 1) as *mut T);
let ptr = heap::EMPTY as *mut T;
// Don't drop the object. This `write` is equivalent to `forget`.
ptr::write(ptr, object);
&mut *ptr
} else {
let ptr = self.ptr.get();
// Advance the pointer.
self.ptr.set(self.ptr.get().offset(1));
// Write into uninitialized memory.
ptr::write(ptr, object);
&mut *ptr
}
}
}
/// Grows the arena.
#[inline(never)]
#[cold]
fn grow(&self) {
unsafe {
let mut chunks = self.chunks.borrow_mut();
let prev_capacity = chunks.last().unwrap().storage.cap();
let new_capacity = prev_capacity.checked_mul(2).unwrap();
if chunks.last_mut().unwrap().storage.double_in_place() {
self.end.set(chunks.last().unwrap().end());
} else {
let chunk = TypedArenaChunk::<T>::new(new_capacity);
self.ptr.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
}
/// Clears the arena. Deallocates all but the longest chunk which may be reused.
pub fn clear(&mut self) {
unsafe {
// Clear the last chunk, which is partially filled.
let mut chunks_borrow = self.chunks.borrow_mut();
let last_idx = chunks_borrow.len() - 1;
self.clear_last_chunk(&mut chunks_borrow[last_idx]);
// If `T` is ZST, code below has no effect.
for mut chunk in chunks_borrow.drain(..last_idx) {
let cap = chunk.storage.cap();
chunk.destroy(cap);
}
}
}
// Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
// chunks.
fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) {
// Determine how much was filled.
let start = last_chunk.start() as usize;
// We obtain the value of the pointer to the first uninitialized element.
let end = self.ptr.get() as usize;
// We then calculate the number of elements to be dropped in the last chunk,
// which is the filled area's length.
let diff = if mem::size_of::<T>() == 0 {
// `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
// the number of zero-sized values in the last and only chunk, just out of caution.
// Recall that `end` was incremented for each allocated value.
end - start
} else {
(end - start) / mem::size_of::<T>()
};
// Pass that to the `destroy` method.
unsafe {
last_chunk.destroy(diff);
}
// Reset the chunk.
self.ptr.set(last_chunk.start());
}
}
impl<T> Drop for TypedArena<T> {
#[unsafe_destructor_blind_to_params]
fn drop(&mut self) {
unsafe {
// Determine how much was filled.
let mut chunks_borrow = self.chunks.borrow_mut();
let mut last_chunk = chunks_borrow.pop().unwrap();
// Drop the contents of the last chunk.
self.clear_last_chunk(&mut last_chunk);
// The last chunk will be dropped. Destroy all other chunks.
for chunk in chunks_borrow.iter_mut() {
let cap = chunk.storage.cap();
chunk.destroy(cap);
}
// RawVec handles deallocation of `last_chunk` and `self.chunks`.
}
}
}
unsafe impl<T: Send> Send for TypedArena<T> {}
#[cfg(test)]
mod tests {
extern crate test;
use self::test::Bencher;
use super::{Arena, TypedArena};
use std::cell::Cell;
use std::rc::Rc;
#[allow(dead_code)]
#[derive(Debug, Eq, PartialEq)]
struct Point {
x: i32,
y: i32,
z: i32,
}
#[test]
fn test_arena_alloc_nested() {
struct Inner {
value: u8,
}
struct Outer<'a> {
inner: &'a Inner,
}
enum EI<'e> {
I(Inner),
O(Outer<'e>),
}
struct Wrap<'a>(TypedArena<EI<'a>>);
impl<'a> Wrap<'a> {
fn alloc_inner<F: Fn() -> Inner>(&self, f: F) -> &Inner {
let r: &EI = self.0.alloc(EI::I(f()));
if let &EI::I(ref i) = r {
i
} else {
panic!("mismatch");
}
}
fn alloc_outer<F: Fn() -> Outer<'a>>(&self, f: F) -> &Outer {
let r: &EI = self.0.alloc(EI::O(f()));
if let &EI::O(ref o) = r {
o
} else {
panic!("mismatch");
}
}
}
let arena = Wrap(TypedArena::new());
let result = arena.alloc_outer(|| {
Outer { inner: arena.alloc_inner(|| Inner { value: 10 }) }
});
assert_eq!(result.inner.value, 10);
}
#[test]
pub fn test_copy() {
let arena = TypedArena::new();
for _ in 0..100000 {
arena.alloc(Point { x: 1, y: 2, z: 3 });
}
}
#[bench]
pub fn bench_copy(b: &mut Bencher) {
let arena = TypedArena::new();
b.iter(|| arena.alloc(Point { x: 1, y: 2, z: 3 }))
}
#[bench]
pub fn bench_copy_nonarena(b: &mut Bencher) {
b.iter(|| {
let _: Box<_> = Box::new(Point { x: 1, y: 2, z: 3 });
})
}
#[bench]
pub fn bench_copy_old_arena(b: &mut Bencher) {
let arena = Arena::new();
b.iter(|| arena.alloc(|| Point { x: 1, y: 2, z: 3 }))
}
#[allow(dead_code)]
struct Noncopy {
string: String,
array: Vec<i32>,
}
#[test]
pub fn test_noncopy() {
let arena = TypedArena::new();
for _ in 0..100000 {
arena.alloc(Noncopy {
string: "hello world".to_string(),
array: vec![1, 2, 3, 4, 5],
});
}
}
#[test]
pub fn test_typed_arena_zero_sized() {
let arena = TypedArena::new();
for _ in 0..100000 {
arena.alloc(());
}
}
#[test]
pub fn test_arena_zero_sized() {
let arena = Arena::new();
let mut points = vec![];
for _ in 0..1000 {
for _ in 0..100 {
arena.alloc(|| ());
}
let point = arena.alloc(|| Point { x: 1, y: 2, z: 3 });
points.push(point);
}
for point in &points {
assert_eq!(**point, Point { x: 1, y: 2, z: 3 });
}
}
#[test]
pub fn test_typed_arena_clear() {
let mut arena = TypedArena::new();
for _ in 0..10 {
arena.clear();
for _ in 0..10000 {
arena.alloc(Point { x: 1, y: 2, z: 3 });
}
}
}
#[test]
pub fn test_arena_clear() {
let mut arena = Arena::new();
for _ in 0..10 {
arena.clear();
for _ in 0..10000 {
arena.alloc(|| Point { x: 1, y: 2, z: 3 });
arena.alloc(|| {
Noncopy {
string: "hello world".to_string(),
array: vec![],
}
});
}
}
}
#[test]
pub fn test_arena_alloc_bytes() {
let arena = Arena::new();
for i in 0..10000 {
arena.alloc(|| Point { x: 1, y: 2, z: 3 });
for byte in arena.alloc_bytes(i % 42).iter_mut() {
*byte = i as u8;
}
}
}
#[test]
fn test_arena_destructors() {
let arena = Arena::new();
for i in 0..10 {
// Arena allocate something with drop glue to make sure it
// doesn't leak.
arena.alloc(|| Rc::new(i));
// Allocate something with funny size and alignment, to keep
// things interesting.
arena.alloc(|| [0u8, 1u8, 2u8]);
}
}
#[test]
#[should_panic]
fn test_arena_destructors_fail() {
let arena = Arena::new();
// Put some stuff in the arena.
for i in 0..10 {
// Arena allocate something with drop glue to make sure it
// doesn't leak.
arena.alloc(|| Rc::new(i));
// Allocate something with funny size and alignment, to keep
// things interesting.
arena.alloc(|| [0u8, 1, 2]);
}
// Now, panic while allocating
arena.alloc::<Rc<i32>, _>(|| {
panic!();
});
}
// Drop tests
struct DropCounter<'a> {
count: &'a Cell<u32>,
}
impl<'a> Drop for DropCounter<'a> {
fn drop(&mut self) {
self.count.set(self.count.get() + 1);
}
}
#[test]
fn test_arena_drop_count() {
let counter = Cell::new(0);
{
let arena = Arena::new();
for _ in 0..100 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(|| DropCounter { count: &counter });
// Allocate something with funny size and alignment, to keep
// things interesting.
arena.alloc(|| [0u8, 1u8, 2u8]);
}
// dropping
};
assert_eq!(counter.get(), 100);
}
#[test]
fn test_arena_drop_on_clear() {
let counter = Cell::new(0);
for i in 0..10 {
let mut arena = Arena::new();
for _ in 0..100 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(|| DropCounter { count: &counter });
// Allocate something with funny size and alignment, to keep
// things interesting.
arena.alloc(|| [0u8, 1u8, 2u8]);
}
arena.clear();
assert_eq!(counter.get(), i * 100 + 100);
}
}
#[test]
fn test_typed_arena_drop_count() {
let counter = Cell::new(0);
{
let arena: TypedArena<DropCounter> = TypedArena::new();
for _ in 0..100 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(DropCounter { count: &counter });
}
};
assert_eq!(counter.get(), 100);
}
#[test]
fn test_typed_arena_drop_on_clear() {
let counter = Cell::new(0);
let mut arena: TypedArena<DropCounter> = TypedArena::new();
for i in 0..10 {
for _ in 0..100 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(DropCounter { count: &counter });
}
arena.clear();
assert_eq!(counter.get(), i * 100 + 100);
}
}
thread_local! {
static DROP_COUNTER: Cell<u32> = Cell::new(0)
}
struct SmallDroppable;
impl Drop for SmallDroppable {
fn drop(&mut self) {
DROP_COUNTER.with(|c| c.set(c.get() + 1));
}
}
#[test]
fn test_arena_drop_small_count() {
DROP_COUNTER.with(|c| c.set(0));
{
let arena = Arena::new();
for _ in 0..10 {
for _ in 0..10 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(|| SmallDroppable);
}
// Allocate something with funny size and alignment, to keep
// things interesting.
arena.alloc(|| [0u8, 1u8, 2u8]);
}
// dropping
};
assert_eq!(DROP_COUNTER.with(|c| c.get()), 100);
}
#[test]
fn test_typed_arena_drop_small_count() {
DROP_COUNTER.with(|c| c.set(0));
{
let arena: TypedArena<SmallDroppable> = TypedArena::new();
for _ in 0..100 {
// Allocate something with drop glue to make sure it doesn't leak.
arena.alloc(SmallDroppable);
}
// dropping
};
assert_eq!(DROP_COUNTER.with(|c| c.get()), 100);
}
#[bench]
pub fn bench_noncopy(b: &mut Bencher) {
let arena = TypedArena::new();
b.iter(|| {
arena.alloc(Noncopy {
string: "hello world".to_string(),
array: vec![1, 2, 3, 4, 5],
})
})
}
#[bench]
pub fn bench_noncopy_nonarena(b: &mut Bencher) {
b.iter(|| {
let _: Box<_> = Box::new(Noncopy {
string: "hello world".to_string(),
array: vec![1, 2, 3, 4, 5],
});
})
}
#[bench]
pub fn bench_noncopy_old_arena(b: &mut Bencher) {
let arena = Arena::new();
b.iter(|| {
arena.alloc(|| {
Noncopy {
string: "hello world".to_string(),
array: vec![1, 2, 3, 4, 5],
}
})
})
}
}