blob: 51b1753947274395a316e4a9bd358e2a76f75bbe [file] [log] [blame]
/*
* i386 virtual CPU header
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CPU_I386_H
#define CPU_I386_H
#include "config.h"
#include <setjmp.h>
#define R_EAX 0
#define R_ECX 1
#define R_EDX 2
#define R_EBX 3
#define R_ESP 4
#define R_EBP 5
#define R_ESI 6
#define R_EDI 7
#define R_AL 0
#define R_CL 1
#define R_DL 2
#define R_BL 3
#define R_AH 4
#define R_CH 5
#define R_DH 6
#define R_BH 7
#define R_ES 0
#define R_CS 1
#define R_SS 2
#define R_DS 3
#define R_FS 4
#define R_GS 5
/* segment descriptor fields */
#define DESC_G_MASK (1 << 23)
#define DESC_B_MASK (1 << 22)
#define DESC_AVL_MASK (1 << 20)
#define DESC_P_MASK (1 << 15)
#define DESC_DPL_SHIFT 13
#define DESC_S_MASK (1 << 12)
#define DESC_TYPE_SHIFT 8
#define DESC_A_MASK (1 << 8)
#define DESC_CS_MASK (1 << 11)
#define DESC_C_MASK (1 << 10)
#define DESC_R_MASK (1 << 9)
#define DESC_E_MASK (1 << 10)
#define DESC_W_MASK (1 << 9)
/* eflags masks */
#define CC_C 0x0001
#define CC_P 0x0004
#define CC_A 0x0010
#define CC_Z 0x0040
#define CC_S 0x0080
#define CC_O 0x0800
#define TF_MASK 0x00000100
#define IF_MASK 0x00000200
#define DF_MASK 0x00000400
#define IOPL_MASK 0x00003000
#define NT_MASK 0x00004000
#define RF_MASK 0x00010000
#define VM_MASK 0x00020000
#define AC_MASK 0x00040000
#define VIF_MASK 0x00080000
#define VIP_MASK 0x00100000
#define ID_MASK 0x00200000
#define EXCP00_DIVZ 0
#define EXCP01_SSTP 1
#define EXCP02_NMI 2
#define EXCP03_INT3 3
#define EXCP04_INTO 4
#define EXCP05_BOUND 5
#define EXCP06_ILLOP 6
#define EXCP07_PREX 7
#define EXCP08_DBLE 8
#define EXCP09_XERR 9
#define EXCP0A_TSS 10
#define EXCP0B_NOSEG 11
#define EXCP0C_STACK 12
#define EXCP0D_GPF 13
#define EXCP0E_PAGE 14
#define EXCP10_COPR 16
#define EXCP11_ALGN 17
#define EXCP12_MCHK 18
#define EXCP_INTERRUPT 256 /* async interruption */
enum {
CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
CC_OP_EFLAGS, /* all cc are explicitely computed, CC_SRC = flags */
CC_OP_MUL, /* modify all flags, C, O = (CC_SRC != 0) */
CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_ADDW,
CC_OP_ADDL,
CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_ADCW,
CC_OP_ADCL,
CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_SUBW,
CC_OP_SUBL,
CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_SBBW,
CC_OP_SBBL,
CC_OP_LOGICB, /* modify all flags, CC_DST = res */
CC_OP_LOGICW,
CC_OP_LOGICL,
CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */
CC_OP_INCW,
CC_OP_INCL,
CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */
CC_OP_DECW,
CC_OP_DECL,
CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
CC_OP_SHLW,
CC_OP_SHLL,
CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
CC_OP_SARW,
CC_OP_SARL,
CC_OP_NB,
};
#ifdef __i386__
#define USE_X86LDOUBLE
#endif
#ifdef USE_X86LDOUBLE
typedef long double CPU86_LDouble;
#else
typedef double CPU86_LDouble;
#endif
typedef struct SegmentCache {
uint8_t *base;
unsigned long limit;
uint8_t seg_32bit;
} SegmentCache;
typedef struct SegmentDescriptorTable {
uint8_t *base;
unsigned long limit;
/* this is the returned base when reading the register, just to
avoid that the emulated program modifies it */
unsigned long emu_base;
} SegmentDescriptorTable;
typedef struct CPUX86State {
/* standard registers */
uint32_t regs[8];
uint32_t eip;
uint32_t eflags; /* eflags register. During CPU emulation, CC
flags and DF are set to zero because they are
stored elsewhere */
/* emulator internal eflags handling */
uint32_t cc_src;
uint32_t cc_dst;
uint32_t cc_op;
int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */
/* FPU state */
unsigned int fpstt; /* top of stack index */
unsigned int fpus;
unsigned int fpuc;
uint8_t fptags[8]; /* 0 = valid, 1 = empty */
CPU86_LDouble fpregs[8];
/* emulator internal variables */
CPU86_LDouble ft0;
union {
float f;
double d;
int i32;
int64_t i64;
} fp_convert;
/* segments */
uint32_t segs[6]; /* selector values */
SegmentCache seg_cache[6]; /* info taken from LDT/GDT */
SegmentDescriptorTable gdt;
SegmentDescriptorTable ldt;
SegmentDescriptorTable idt;
/* exception/interrupt handling */
jmp_buf jmp_env;
int exception_index;
int error_code;
uint32_t cr2;
int interrupt_request;
/* user data */
void *opaque;
} CPUX86State;
/* all CPU memory access use these macros */
static inline int ldub(void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb(void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
#ifdef WORDS_BIGENDIAN
/* conservative code for little endian unaligned accesses */
static inline int lduw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq(void *ptr)
{
uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl(p);
v2 = ldl(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl(p, (uint32_t)v);
stl(p + 4, v >> 32);
}
/* float access */
static inline float ldfl(void *ptr)
{
union {
float f;
uint32_t i;
} u;
u.i = ldl(ptr);
return u.f;
}
static inline double ldfq(void *ptr)
{
union {
double d;
uint64_t i;
} u;
u.i = ldq(ptr);
return u.d;
}
static inline void stfl(void *ptr, float v)
{
union {
float f;
uint32_t i;
} u;
u.f = v;
stl(ptr, u.i);
}
static inline void stfq(void *ptr, double v)
{
union {
double d;
uint64_t i;
} u;
u.d = v;
stq(ptr, u.i);
}
#else
static inline int lduw(void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw(void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl(void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq(void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float ldfl(void *ptr)
{
return *(float *)ptr;
}
static inline double ldfq(void *ptr)
{
return *(double *)ptr;
}
static inline void stfl(void *ptr, float v)
{
*(float *)ptr = v;
}
static inline void stfq(void *ptr, double v)
{
*(double *)ptr = v;
}
#endif
#ifndef IN_OP_I386
void cpu_x86_outb(CPUX86State *env, int addr, int val);
void cpu_x86_outw(CPUX86State *env, int addr, int val);
void cpu_x86_outl(CPUX86State *env, int addr, int val);
int cpu_x86_inb(CPUX86State *env, int addr);
int cpu_x86_inw(CPUX86State *env, int addr);
int cpu_x86_inl(CPUX86State *env, int addr);
#endif
CPUX86State *cpu_x86_init(void);
int cpu_x86_exec(CPUX86State *s);
void cpu_x86_interrupt(CPUX86State *s);
void cpu_x86_close(CPUX86State *s);
/* needed to load some predefinied segment registers */
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector);
/* you can call this signal handler from your SIGBUS and SIGSEGV
signal handlers to inform the virtual CPU of exceptions. non zero
is returned if the signal was handled by the virtual CPU. */
struct siginfo;
int cpu_x86_signal_handler(int host_signum, struct siginfo *info,
void *puc);
/* used to debug */
#define X86_DUMP_FPU 0x0001 /* dump FPU state too */
#define X86_DUMP_CCOP 0x0002 /* dump qemu flag cache */
void cpu_x86_dump_state(CPUX86State *env, FILE *f, int flags);
/* page related stuff */
#define TARGET_PAGE_BITS 12
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);
#endif /* CPU_I386_H */