blob: f02fa588fc4e5d628aa712919f539de4944af3a7 [file] [log] [blame]
/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <assert.h>
#include "exec.h"
void cpu_loop_exit(void)
{
longjmp(env->jmp_env, 1);
}
void do_raise_exception(void)
{
cpu_loop_exit();
}
#ifndef CONFIG_USER_ONLY
#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, is_user, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long) retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
do_raise_exception();
}
env = saved_env;
}
#endif
void helper_addc_T0_T1(void)
{
uint32_t tmp0, tmp1;
tmp1 = T0 + T1;
tmp0 = T1;
T1 = tmp1 + (env->sr & 1);
if (tmp0 > tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 > T1)
env->sr |= SR_T;
}
void helper_addv_T0_T1(void)
{
uint32_t dest, src, ans;
if ((int32_t) T1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) T0 >= 0)
src = 0;
else
src = 1;
src += dest;
T1 += T0;
if ((int32_t) T1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 0 || src == 2) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
}
#define T (env->sr & SR_T)
#define Q (env->sr & SR_Q ? 1 : 0)
#define M (env->sr & SR_M ? 1 : 0)
#define SETT env->sr |= SR_T
#define CLRT env->sr &= ~SR_T
#define SETQ env->sr |= SR_Q
#define CLRQ env->sr &= ~SR_Q
#define SETM env->sr |= SR_M
#define CLRM env->sr &= ~SR_M
void helper_div1_T0_T1(void)
{
uint32_t tmp0, tmp2;
uint8_t old_q, tmp1 = 0xff;
//printf("div1 T0=0x%08x T1=0x%08x M=%d Q=%d T=%d\n", T0, T1, M, Q, T);
old_q = Q;
if ((0x80000000 & T1) != 0)
SETQ;
else
CLRQ;
tmp2 = T0;
T1 <<= 1;
T1 |= T;
switch (old_q) {
case 0:
switch (M) {
case 0:
tmp0 = T1;
T1 -= tmp2;
tmp1 = T1 > tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = T1;
T1 += tmp2;
tmp1 = T1 < tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
case 1:
switch (M) {
case 0:
tmp0 = T1;
T1 += tmp2;
tmp1 = T1 < tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = T1;
T1 -= tmp2;
tmp1 = T1 > tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
}
if (Q == M)
SETT;
else
CLRT;
//printf("Output: T1=0x%08x M=%d Q=%d T=%d\n", T1, M, Q, T);
}
void helper_dmulsl_T0_T1()
{
int64_t res;
res = (int64_t) (int32_t) T0 *(int64_t) (int32_t) T1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
}
void helper_dmulul_T0_T1()
{
uint64_t res;
res = (uint64_t) (uint32_t) T0 *(uint64_t) (uint32_t) T1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
}
void helper_macl_T0_T1()
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int32_t) T0 *(int64_t) (int32_t) T1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < 0)
env->mach |= 0xffff0000;
else
env->mach &= 0x00007fff;
}
}
void helper_macw_T0_T1()
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int16_t) T0 *(int64_t) (int16_t) T1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < -0x80000000) {
env->mach = 1;
env->macl = 0x80000000;
} else if (res > 0x000000007fffffff) {
env->mach = 1;
env->macl = 0x7fffffff;
}
}
}
void helper_negc_T0()
{
uint32_t temp;
temp = -T0;
T0 = temp - (env->sr & SR_T);
if (0 < temp)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (temp < T0)
env->sr |= SR_T;
}
void helper_subc_T0_T1()
{
uint32_t tmp0, tmp1;
tmp1 = T1 - T0;
tmp0 = T1;
T1 = tmp1 - (env->sr & SR_T);
if (tmp0 < tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 < T1)
env->sr |= SR_T;
}
void helper_subv_T0_T1()
{
int32_t dest, src, ans;
if ((int32_t) T1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) T0 >= 0)
src = 0;
else
src = 1;
src += dest;
T1 -= T0;
if ((int32_t) T1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 1) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
}
void helper_rotcl(uint32_t * addr)
{
uint32_t new;
new = (*addr << 1) | (env->sr & SR_T);
if (*addr & 0x80000000)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
*addr = new;
}
void helper_rotcr(uint32_t * addr)
{
uint32_t new;
new = (*addr >> 1) | ((env->sr & SR_T) ? 0x80000000 : 0);
if (*addr & 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
*addr = new;
}