blob: e2e5b9f7aafc08ca58cc0b47da5525fc23499825 [file] [log] [blame]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "aml-thermal.h"
#include <ddk/debug.h>
#include <fbl/auto_call.h>
#include <fbl/unique_ptr.h>
#include <hw/reg.h>
#include <string.h>
#include <threads.h>
#include <zircon/device/thermal.h>
#include <zircon/syscalls/port.h>
#include <utility>
namespace thermal {
zx_status_t AmlThermal::SetTarget(uint32_t opp_idx) {
if (opp_idx >= MAX_TRIP_POINTS) {
return ZX_ERR_INVALID_ARGS;
}
// Get current settings.
uint32_t old_voltage = voltage_regulator_->GetVoltage();
uint32_t old_frequency = cpufreq_scaling_->GetFrequency();
// Get new settings.
uint32_t new_voltage = opp_info_.opps[opp_idx].volt_mv;
uint32_t new_frequency = opp_info_.opps[opp_idx].freq_hz;
zxlogf(INFO, "Scaling from %d MHz, %u mV, --> %d MHz, %u mV\n",
old_frequency / 1000000, old_voltage / 1000,
new_frequency / 1000000, new_voltage / 1000);
// If new settings are same as old, don't do anything.
if (new_frequency == old_frequency) {
return ZX_OK;
}
zx_status_t status;
// Increasing CPU Frequency from current value, so we first change the voltage.
if (new_frequency > old_frequency) {
status = voltage_regulator_->SetVoltage(new_voltage);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not change CPU voltage: %d\n", status);
return status;
}
}
// Now let's change CPU frequency.
status = cpufreq_scaling_->SetFrequency(new_frequency);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not change CPU frequemcy: %d\n", status);
// Failed to change CPU frequemcy, change back to old
// voltage before returning.
status = voltage_regulator_->SetVoltage(old_voltage);
if (status != ZX_OK) {
return status;
}
return status;
}
// Decreasing CPU Frequency from current value, changing voltage after frequency.
if (new_frequency < old_frequency) {
status = voltage_regulator_->SetVoltage(new_voltage);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not change CPU voltage: %d\n", status);
return status;
}
}
return ZX_OK;
}
zx_status_t AmlThermal::Create(zx_device_t* device) {
// Get the voltage-table & opp metadata.
size_t actual;
opp_info_t opp_info;
zx_status_t status = device_get_metadata(device, VOLTAGE_DUTY_CYCLE_METADATA, &opp_info,
sizeof(opp_info_), &actual);
if (status != ZX_OK || actual != sizeof(opp_info_)) {
zxlogf(ERROR, "aml-thermal: Could not get voltage-table metadata %d\n", status);
return status;
}
// Get the thermal policy metadata.
thermal_device_info_t thermal_config;
status = device_get_metadata(device, THERMAL_CONFIG_METADATA, &thermal_config,
sizeof(thermal_device_info_t), &actual);
if (status != ZX_OK || actual != sizeof(thermal_device_info_t)) {
zxlogf(ERROR, "aml-thermal: Could not get thermal config metadata %d\n", status);
return status;
}
fbl::AllocChecker ac;
auto tsensor = fbl::make_unique_checked<AmlTSensor>(&ac);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
// Initialize Temperature Sensor.
status = tsensor->InitSensor(device, thermal_config);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not inititalize Temperature Sensor: %d\n", status);
return status;
}
// Create the voltage regulator.
auto voltage_regulator = fbl::make_unique_checked<AmlVoltageRegulator>(&ac);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
// Initialize Temperature Sensor.
status = voltage_regulator->Init(device, &opp_info);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not inititalize Voltage Regulator: %d\n", status);
return status;
}
// Create the CPU frequency scaling object.
auto cpufreq_scaling = fbl::make_unique_checked<AmlCpuFrequency>(&ac);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
// Initialize CPU frequency scaling.
status = cpufreq_scaling->Init(device);
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not inititalize CPU freq. scaling: %d\n", status);
return status;
}
auto thermal_device = fbl::make_unique_checked<AmlThermal>(&ac, device,
std::move(tsensor),
std::move(voltage_regulator),
std::move(cpufreq_scaling),
std::move(opp_info),
std::move(thermal_config));
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
status = thermal_device->DdkAdd("thermal");
if (status != ZX_OK) {
zxlogf(ERROR, "aml-thermal: Could not create thermal device: %d\n", status);
return status;
}
// Set the default CPU frequency.
// We could be running Zircon only, or thermal daemon might not
// run, so we manually set the CPU frequency here.
uint32_t opp_idx = thermal_device->thermal_config_.trip_point_info[0].big_cluster_dvfs_opp;
status = thermal_device->SetTarget(opp_idx);
if (status != ZX_OK) {
return status;
}
// devmgr is now in charge of the memory for dev.
__UNUSED auto ptr = thermal_device.release();
return ZX_OK;
}
zx_status_t AmlThermal::DdkIoctl(uint32_t op, const void* in_buf, size_t in_len,
void* out_buf, size_t out_len, size_t* out_actual) {
switch (op) {
case IOCTL_THERMAL_GET_TEMPERATURE: {
if (out_len != sizeof(uint32_t)) {
return ZX_ERR_INVALID_ARGS;
}
auto temperature = static_cast<uint32_t*>(out_buf);
*temperature = tsensor_->ReadTemperature();
*out_actual = sizeof(uint32_t);
return ZX_OK;
}
case IOCTL_THERMAL_GET_DEVICE_INFO: {
if (out_len != sizeof(thermal_device_info_t)) {
return ZX_ERR_INVALID_ARGS;
}
memcpy(out_buf, &thermal_config_, sizeof(thermal_device_info_t));
*out_actual = sizeof(thermal_device_info_t);
return ZX_OK;
}
case IOCTL_THERMAL_SET_DVFS_OPP: {
if (in_len != sizeof(dvfs_info_t)) {
return ZX_ERR_INVALID_ARGS;
}
auto* dvfs_info = reinterpret_cast<const dvfs_info_t*>(in_buf);
if (dvfs_info->power_domain != BIG_CLUSTER_POWER_DOMAIN) {
return ZX_ERR_INVALID_ARGS;
}
return SetTarget(dvfs_info->op_idx);
}
case IOCTL_THERMAL_GET_STATE_CHANGE_PORT: {
if (out_len != sizeof(zx_handle_t)) {
return ZX_ERR_INVALID_ARGS;
}
auto* port = reinterpret_cast<zx_handle_t*>(out_buf);
*out_actual = sizeof(zx_handle_t);
return tsensor_->GetStateChangePort(port);
}
default:
return ZX_ERR_NOT_SUPPORTED;
}
}
void AmlThermal::DdkUnbind() {
DdkRemove();
}
void AmlThermal::DdkRelease() {
delete this;
}
} // namespace thermal
extern "C" zx_status_t aml_thermal(void* ctx, zx_device_t* device) {
return thermal::AmlThermal::Create(device);
}