blob: 8974e21bd5d6fde98854878d1e1f6509022a9808 [file] [log] [blame]
#ifndef WUFFS_INCLUDE_GUARD
#define WUFFS_INCLUDE_GUARD
// Wuffs ships as a "single file C library" or "header file library" as per
// https://github.com/nothings/stb/blob/master/docs/stb_howto.txt
//
// To use that single file as a "foo.c"-like implementation, instead of a
// "foo.h"-like header, #define WUFFS_IMPLEMENTATION before #include'ing or
// compiling it.
// Wuffs' C code is generated automatically, not hand-written. These warnings'
// costs outweigh the benefits.
//
// The "elif defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#pragma GCC diagnostic ignored "-Wunreachable-code"
#pragma GCC diagnostic ignored "-Wunused-function"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#if defined(__cplusplus)
#pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wimplicit-fallthrough"
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#pragma clang diagnostic ignored "-Wunreachable-code"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-parameter"
#if defined(__cplusplus)
#pragma clang diagnostic ignored "-Wold-style-cast"
#endif
#endif
// Copyright 2017 The Wuffs Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
#if (__cplusplus >= 201103L) || defined(_MSC_VER)
#include <memory>
#define WUFFS_BASE__HAVE_EQ_DELETE
#define WUFFS_BASE__HAVE_UNIQUE_PTR
// The "defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#elif defined(__GNUC__) || defined(__clang__)
#warning "Wuffs' C++ code expects -std=c++11 or later"
#endif
extern "C" {
#endif
// ---------------- Version
// WUFFS_VERSION is the major.minor.patch version, as per https://semver.org/,
// as a uint64_t. The major number is the high 32 bits. The minor number is the
// middle 16 bits. The patch number is the low 16 bits. The pre-release label
// and build metadata are part of the string representation (such as
// "1.2.3-beta+456.20181231") but not the uint64_t representation.
//
// WUFFS_VERSION_PRE_RELEASE_LABEL (such as "", "beta" or "rc.1") being
// non-empty denotes a developer preview, not a release version, and has no
// backwards or forwards compatibility guarantees.
//
// WUFFS_VERSION_BUILD_METADATA_XXX, if non-zero, are the number of commits and
// the last commit date in the repository used to build this library. Within
// each major.minor branch, the commit count should increase monotonically.
//
// ยก Some code generation programs can override WUFFS_VERSION.
#define WUFFS_VERSION 0
#define WUFFS_VERSION_MAJOR 0
#define WUFFS_VERSION_MINOR 0
#define WUFFS_VERSION_PATCH 0
#define WUFFS_VERSION_PRE_RELEASE_LABEL "work.in.progress"
#define WUFFS_VERSION_BUILD_METADATA_COMMIT_COUNT 0
#define WUFFS_VERSION_BUILD_METADATA_COMMIT_DATE 0
#define WUFFS_VERSION_STRING "0.0.0+0.00000000"
// ---------------- Configuration
// Define WUFFS_CONFIG__AVOID_CPU_ARCH to avoid any code tied to a specific CPU
// architecture, such as SSE SIMD for the x86 CPU family.
#if defined(WUFFS_CONFIG__AVOID_CPU_ARCH) // (#if-chain ref AVOID_CPU_ARCH_0)
// No-op.
#else // (#if-chain ref AVOID_CPU_ARCH_0)
// The "defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#if defined(__GNUC__) || defined(__clang__)
#define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg) __attribute__((target(arg)))
#else
#define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg)
#endif // defined(__GNUC__) || defined(__clang__)
#if defined(__GNUC__) // (#if-chain ref AVOID_CPU_ARCH_1)
// To simplify Wuffs code, "cpu_arch >= arm_xxx" requires xxx but also
// unaligned little-endian load/stores.
#if defined(__ARM_FEATURE_UNALIGNED) && !defined(__native_client__) && \
defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
// Not all gcc versions define __ARM_ACLE, even if they support crc32
// intrinsics. Look for __ARM_FEATURE_CRC32 instead.
#if defined(__ARM_FEATURE_CRC32)
#include <arm_acle.h>
#define WUFFS_BASE__CPU_ARCH__ARM_CRC32
#endif // defined(__ARM_FEATURE_CRC32)
#if defined(__ARM_NEON)
#include <arm_neon.h>
#define WUFFS_BASE__CPU_ARCH__ARM_NEON
#endif // defined(__ARM_NEON)
#endif // defined(__ARM_FEATURE_UNALIGNED) etc
// Similarly, "cpu_arch >= x86_sse42" requires SSE4.2 but also PCLMUL and
// POPCNT. This is checked at runtime via cpuid, not at compile time.
//
// Likewise, "cpu_arch >= x86_avx2" also requires PCLMUL, POPCNT and SSE4.2.
#if defined(__i386__) || defined(__x86_64__)
#if !defined(__native_client__)
#include <cpuid.h>
#include <x86intrin.h>
// X86_FAMILY means X86 (32-bit) or X86_64 (64-bit, obviously).
#define WUFFS_BASE__CPU_ARCH__X86_FAMILY
#endif // !defined(__native_client__)
#endif // defined(__i386__) || defined(__x86_64__)
#elif defined(_MSC_VER) // (#if-chain ref AVOID_CPU_ARCH_1)
#if defined(_M_IX86) || defined(_M_X64)
#if defined(__AVX__) || defined(__clang__)
// We need <intrin.h> for the __cpuid function.
#include <intrin.h>
// That's not enough for X64 SIMD, with clang-cl, if we want to use
// "__attribute__((target(arg)))" without e.g. "/arch:AVX".
//
// Some web pages suggest that <immintrin.h> is all you need, as it pulls in
// the earlier SIMD families like SSE4.2, but that doesn't seem to work in
// practice, possibly for the same reason that just <intrin.h> doesn't work.
#include <immintrin.h> // AVX, AVX2, FMA, POPCNT
#include <nmmintrin.h> // SSE4.2
#include <wmmintrin.h> // AES, PCLMUL
// X86_FAMILY means X86 (32-bit) or X86_64 (64-bit, obviously).
#define WUFFS_BASE__CPU_ARCH__X86_FAMILY
#else // defined(__AVX__) || defined(__clang__)
// clang-cl (which defines both __clang__ and _MSC_VER) supports
// "__attribute__((target(arg)))".
//
// For MSVC's cl.exe (unlike clang or gcc), SIMD capability is a compile-time
// property of the source file (e.g. a /arch:AVX or -mavx compiler flag), not
// of individual functions (that can be conditionally selected at runtime).
#pragma message("Wuffs with MSVC+IX86/X64 needs /arch:AVX for best performance")
#endif // defined(__AVX__) || defined(__clang__)
#endif // defined(_M_IX86) || defined(_M_X64)
#endif // (#if-chain ref AVOID_CPU_ARCH_1)
#endif // (#if-chain ref AVOID_CPU_ARCH_0)
// --------
// Define WUFFS_CONFIG__STATIC_FUNCTIONS (combined with WUFFS_IMPLEMENTATION)
// to make all of Wuffs' functions have static storage.
//
// This can help the compiler ignore or discard unused code, which can produce
// faster compiles and smaller binaries. Other motivations are discussed in the
// "ALLOW STATIC IMPLEMENTATION" section of
// https://raw.githubusercontent.com/nothings/stb/master/docs/stb_howto.txt
#if defined(WUFFS_CONFIG__STATIC_FUNCTIONS)
#define WUFFS_BASE__MAYBE_STATIC static
#else
#define WUFFS_BASE__MAYBE_STATIC
#endif // defined(WUFFS_CONFIG__STATIC_FUNCTIONS)
// ---------------- CPU Architecture
static inline bool //
wuffs_base__cpu_arch__have_arm_crc32() {
#if defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32)
return true;
#else
return false;
#endif // defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32)
}
static inline bool //
wuffs_base__cpu_arch__have_arm_neon() {
#if defined(WUFFS_BASE__CPU_ARCH__ARM_NEON)
return true;
#else
return false;
#endif // defined(WUFFS_BASE__CPU_ARCH__ARM_NEON)
}
static inline bool //
wuffs_base__cpu_arch__have_x86_avx2() {
#if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
// GCC defines these macros but MSVC does not.
// - bit_AVX2 = (1 << 5)
const unsigned int avx2_ebx7 = 0x00000020;
// GCC defines these macros but MSVC does not.
// - bit_PCLMUL = (1 << 1)
// - bit_POPCNT = (1 << 23)
// - bit_SSE4_2 = (1 << 20)
const unsigned int avx2_ecx1 = 0x00900002;
// clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__).
#if defined(__GNUC__)
unsigned int eax7 = 0;
unsigned int ebx7 = 0;
unsigned int ecx7 = 0;
unsigned int edx7 = 0;
if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) &&
((ebx7 & avx2_ebx7) == avx2_ebx7)) {
unsigned int eax1 = 0;
unsigned int ebx1 = 0;
unsigned int ecx1 = 0;
unsigned int edx1 = 0;
if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) &&
((ecx1 & avx2_ecx1) == avx2_ecx1)) {
return true;
}
}
#elif defined(_MSC_VER) // defined(__GNUC__)
int x7[4];
__cpuidex(x7, 7, 0);
if ((((unsigned int)(x7[1])) & avx2_ebx7) == avx2_ebx7) {
int x1[4];
__cpuid(x1, 1);
if ((((unsigned int)(x1[2])) & avx2_ecx1) == avx2_ecx1) {
return true;
}
}
#else
#error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler"
#endif // defined(__GNUC__); defined(_MSC_VER)
#endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
return false;
}
static inline bool //
wuffs_base__cpu_arch__have_x86_bmi2() {
#if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
// GCC defines these macros but MSVC does not.
// - bit_BMI2 = (1 << 8)
const unsigned int bmi2_ebx7 = 0x00000100;
// clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__).
#if defined(__GNUC__)
unsigned int eax7 = 0;
unsigned int ebx7 = 0;
unsigned int ecx7 = 0;
unsigned int edx7 = 0;
if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) &&
((ebx7 & bmi2_ebx7) == bmi2_ebx7)) {
return true;
}
#elif defined(_MSC_VER) // defined(__GNUC__)
int x7[4];
__cpuidex(x7, 7, 0);
if ((((unsigned int)(x7[1])) & bmi2_ebx7) == bmi2_ebx7) {
return true;
}
#else
#error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler"
#endif // defined(__GNUC__); defined(_MSC_VER)
#endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
return false;
}
static inline bool //
wuffs_base__cpu_arch__have_x86_sse42() {
#if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
// GCC defines these macros but MSVC does not.
// - bit_PCLMUL = (1 << 1)
// - bit_POPCNT = (1 << 23)
// - bit_SSE4_2 = (1 << 20)
const unsigned int sse42_ecx1 = 0x00900002;
// clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__).
#if defined(__GNUC__)
unsigned int eax1 = 0;
unsigned int ebx1 = 0;
unsigned int ecx1 = 0;
unsigned int edx1 = 0;
if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) &&
((ecx1 & sse42_ecx1) == sse42_ecx1)) {
return true;
}
#elif defined(_MSC_VER) // defined(__GNUC__)
int x1[4];
__cpuid(x1, 1);
if ((((unsigned int)(x1[2])) & sse42_ecx1) == sse42_ecx1) {
return true;
}
#else
#error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler"
#endif // defined(__GNUC__); defined(_MSC_VER)
#endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY)
return false;
}
// ---------------- Fundamentals
// Wuffs assumes that:
// - converting a uint32_t to a size_t will never overflow.
// - converting a size_t to a uint64_t will never overflow.
#if defined(__WORDSIZE)
#if (__WORDSIZE != 32) && (__WORDSIZE != 64)
#error "Wuffs requires a word size of either 32 or 64 bits"
#endif
#endif
// The "defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#if defined(__GNUC__) || defined(__clang__)
#define WUFFS_BASE__POTENTIALLY_UNUSED __attribute__((unused))
#define WUFFS_BASE__WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#else
#define WUFFS_BASE__POTENTIALLY_UNUSED
#define WUFFS_BASE__WARN_UNUSED_RESULT
#endif
// --------
// Options (bitwise or'ed together) for wuffs_foo__bar__initialize functions.
#define WUFFS_INITIALIZE__DEFAULT_OPTIONS ((uint32_t)0x00000000)
// WUFFS_INITIALIZE__ALREADY_ZEROED means that the "self" receiver struct value
// has already been set to all zeroes.
#define WUFFS_INITIALIZE__ALREADY_ZEROED ((uint32_t)0x00000001)
// WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED means that, absent
// WUFFS_INITIALIZE__ALREADY_ZEROED, only some of the "self" receiver struct
// value will be set to all zeroes. Internal buffers, which tend to be a large
// proportion of the struct's size, will be left uninitialized. Internal means
// that the buffer is contained by the receiver struct, as opposed to being
// passed as a separately allocated "work buffer".
//
// For more detail, see:
// https://github.com/google/wuffs/blob/main/doc/note/initialization.md
#define WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED \
((uint32_t)0x00000002)
// --------
// wuffs_base__empty_struct is used when a Wuffs function returns an empty
// struct. In C, if a function f returns void, you can't say "x = f()", but in
// Wuffs, if a function g returns empty, you can say "y = g()".
typedef struct wuffs_base__empty_struct__struct {
// private_impl is a placeholder field. It isn't explicitly used, except that
// without it, the sizeof a struct with no fields can differ across C/C++
// compilers, and it is undefined behavior in C99. For example, gcc says that
// the sizeof an empty struct is 0, and g++ says that it is 1. This leads to
// ABI incompatibility if a Wuffs .c file is processed by one compiler and
// its .h file with another compiler.
//
// Instead, we explicitly insert an otherwise unused field, so that the
// sizeof this struct is always 1.
uint8_t private_impl;
} wuffs_base__empty_struct;
static inline wuffs_base__empty_struct //
wuffs_base__make_empty_struct() {
wuffs_base__empty_struct ret;
ret.private_impl = 0;
return ret;
}
// wuffs_base__utility is a placeholder receiver type. It enables what Java
// calls static methods, as opposed to regular methods.
typedef struct wuffs_base__utility__struct {
// private_impl is a placeholder field. It isn't explicitly used, except that
// without it, the sizeof a struct with no fields can differ across C/C++
// compilers, and it is undefined behavior in C99. For example, gcc says that
// the sizeof an empty struct is 0, and g++ says that it is 1. This leads to
// ABI incompatibility if a Wuffs .c file is processed by one compiler and
// its .h file with another compiler.
//
// Instead, we explicitly insert an otherwise unused field, so that the
// sizeof this struct is always 1.
uint8_t private_impl;
} wuffs_base__utility;
typedef struct wuffs_base__vtable__struct {
const char* vtable_name;
const void* function_pointers;
} wuffs_base__vtable;
// --------
// See https://github.com/google/wuffs/blob/main/doc/note/statuses.md
typedef struct wuffs_base__status__struct {
const char* repr;
#ifdef __cplusplus
inline bool is_complete() const;
inline bool is_error() const;
inline bool is_note() const;
inline bool is_ok() const;
inline bool is_suspension() const;
inline const char* message() const;
#endif // __cplusplus
} wuffs_base__status;
extern const char wuffs_base__note__i_o_redirect[];
extern const char wuffs_base__note__end_of_data[];
extern const char wuffs_base__note__metadata_reported[];
extern const char wuffs_base__suspension__even_more_information[];
extern const char wuffs_base__suspension__mispositioned_read[];
extern const char wuffs_base__suspension__mispositioned_write[];
extern const char wuffs_base__suspension__short_read[];
extern const char wuffs_base__suspension__short_write[];
extern const char wuffs_base__error__bad_i_o_position[];
extern const char wuffs_base__error__bad_argument_length_too_short[];
extern const char wuffs_base__error__bad_argument[];
extern const char wuffs_base__error__bad_call_sequence[];
extern const char wuffs_base__error__bad_data[];
extern const char wuffs_base__error__bad_receiver[];
extern const char wuffs_base__error__bad_restart[];
extern const char wuffs_base__error__bad_sizeof_receiver[];
extern const char wuffs_base__error__bad_vtable[];
extern const char wuffs_base__error__bad_workbuf_length[];
extern const char wuffs_base__error__bad_wuffs_version[];
extern const char wuffs_base__error__cannot_return_a_suspension[];
extern const char wuffs_base__error__disabled_by_previous_error[];
extern const char wuffs_base__error__initialize_falsely_claimed_already_zeroed[];
extern const char wuffs_base__error__initialize_not_called[];
extern const char wuffs_base__error__interleaved_coroutine_calls[];
extern const char wuffs_base__error__no_more_information[];
extern const char wuffs_base__error__not_enough_data[];
extern const char wuffs_base__error__out_of_bounds[];
extern const char wuffs_base__error__unsupported_method[];
extern const char wuffs_base__error__unsupported_option[];
extern const char wuffs_base__error__unsupported_pixel_swizzler_option[];
extern const char wuffs_base__error__too_much_data[];
static inline wuffs_base__status //
wuffs_base__make_status(const char* repr) {
wuffs_base__status z;
z.repr = repr;
return z;
}
static inline bool //
wuffs_base__status__is_complete(const wuffs_base__status* z) {
return (z->repr == NULL) || ((*z->repr != '$') && (*z->repr != '#'));
}
static inline bool //
wuffs_base__status__is_error(const wuffs_base__status* z) {
return z->repr && (*z->repr == '#');
}
static inline bool //
wuffs_base__status__is_note(const wuffs_base__status* z) {
return z->repr && (*z->repr != '$') && (*z->repr != '#');
}
static inline bool //
wuffs_base__status__is_ok(const wuffs_base__status* z) {
return z->repr == NULL;
}
static inline bool //
wuffs_base__status__is_suspension(const wuffs_base__status* z) {
return z->repr && (*z->repr == '$');
}
// wuffs_base__status__message strips the leading '$', '#' or '@'.
static inline const char* //
wuffs_base__status__message(const wuffs_base__status* z) {
if (z->repr) {
if ((*z->repr == '$') || (*z->repr == '#') || (*z->repr == '@')) {
return z->repr + 1;
}
}
return z->repr;
}
#ifdef __cplusplus
inline bool //
wuffs_base__status::is_complete() const {
return wuffs_base__status__is_complete(this);
}
inline bool //
wuffs_base__status::is_error() const {
return wuffs_base__status__is_error(this);
}
inline bool //
wuffs_base__status::is_note() const {
return wuffs_base__status__is_note(this);
}
inline bool //
wuffs_base__status::is_ok() const {
return wuffs_base__status__is_ok(this);
}
inline bool //
wuffs_base__status::is_suspension() const {
return wuffs_base__status__is_suspension(this);
}
inline const char* //
wuffs_base__status::message() const {
return wuffs_base__status__message(this);
}
#endif // __cplusplus
// --------
// WUFFS_BASE__RESULT is a result type: either a status (an error) or a value.
//
// A result with all fields NULL or zero is as valid as a zero-valued T.
#define WUFFS_BASE__RESULT(T) \
struct { \
wuffs_base__status status; \
T value; \
}
typedef WUFFS_BASE__RESULT(double) wuffs_base__result_f64;
typedef WUFFS_BASE__RESULT(int64_t) wuffs_base__result_i64;
typedef WUFFS_BASE__RESULT(uint64_t) wuffs_base__result_u64;
// --------
// wuffs_base__transform__output is the result of transforming from a src slice
// to a dst slice.
typedef struct wuffs_base__transform__output__struct {
wuffs_base__status status;
size_t num_dst;
size_t num_src;
} wuffs_base__transform__output;
// --------
// FourCC constants. Four Character Codes are literally four ASCII characters
// (sometimes padded with ' ' spaces) that pack neatly into a signed or
// unsigned 32-bit integer. ASCII letters are conventionally upper case.
//
// They are often used to identify video codecs (e.g. "H265") and pixel formats
// (e.g. "YV12"). Wuffs uses them for that but also generally for naming
// various things: compression formats (e.g. "BZ2 "), image metadata (e.g.
// "EXIF"), file formats (e.g. "HTML"), etc.
//
// Wuffs' u32 values are big-endian ("JPEG" is 0x4A504547 not 0x4745504A) to
// preserve ordering: "JPEG" < "MP3 " and 0x4A504547 < 0x4D503320.
// Background Color.
#define WUFFS_BASE__FOURCC__BGCL 0x4247434C
// Bitmap.
#define WUFFS_BASE__FOURCC__BMP 0x424D5020
// Brotli.
#define WUFFS_BASE__FOURCC__BRTL 0x4252544C
// Bzip2.
#define WUFFS_BASE__FOURCC__BZ2 0x425A3220
// Concise Binary Object Representation.
#define WUFFS_BASE__FOURCC__CBOR 0x43424F52
// Primary Chromaticities and White Point.
#define WUFFS_BASE__FOURCC__CHRM 0x4348524D
// Cascading Style Sheets.
#define WUFFS_BASE__FOURCC__CSS 0x43535320
// Encapsulated PostScript.
#define WUFFS_BASE__FOURCC__EPS 0x45505320
// Exchangeable Image File Format.
#define WUFFS_BASE__FOURCC__EXIF 0x45584946
// Free Lossless Audio Codec.
#define WUFFS_BASE__FOURCC__FLAC 0x464C4143
// Gamma Correction.
#define WUFFS_BASE__FOURCC__GAMA 0x47414D41
// Graphics Interchange Format.
#define WUFFS_BASE__FOURCC__GIF 0x47494620
// GNU Zip.
#define WUFFS_BASE__FOURCC__GZ 0x475A2020
// High Efficiency Image File.
#define WUFFS_BASE__FOURCC__HEIF 0x48454946
// Hypertext Markup Language.
#define WUFFS_BASE__FOURCC__HTML 0x48544D4C
// International Color Consortium Profile.
#define WUFFS_BASE__FOURCC__ICCP 0x49434350
// Icon.
#define WUFFS_BASE__FOURCC__ICO 0x49434F20
// Icon Vector Graphics.
#define WUFFS_BASE__FOURCC__ICVG 0x49435647
// Initialization.
#define WUFFS_BASE__FOURCC__INI 0x494E4920
// Joint Photographic Experts Group.
#define WUFFS_BASE__FOURCC__JPEG 0x4A504547
// JavaScript.
#define WUFFS_BASE__FOURCC__JS 0x4A532020
// JavaScript Object Notation.
#define WUFFS_BASE__FOURCC__JSON 0x4A534F4E
// JSON With Commas and Comments.
#define WUFFS_BASE__FOURCC__JWCC 0x4A574343
// Key-Value Pair.
#define WUFFS_BASE__FOURCC__KVP 0x4B565020
// Key-Value Pair (Key).
#define WUFFS_BASE__FOURCC__KVPK 0x4B56504B
// Key-Value Pair (Value).
#define WUFFS_BASE__FOURCC__KVPV 0x4B565056
// Lempelโ€“Ziv 4.
#define WUFFS_BASE__FOURCC__LZ4 0x4C5A3420
// Markdown.
#define WUFFS_BASE__FOURCC__MD 0x4D442020
// Modification Time.
#define WUFFS_BASE__FOURCC__MTIM 0x4D54494D
// MPEG-1 Audio Layer III.
#define WUFFS_BASE__FOURCC__MP3 0x4D503320
// Naive Image.
#define WUFFS_BASE__FOURCC__NIE 0x4E494520
// Offset (2-Dimensional).
#define WUFFS_BASE__FOURCC__OFS2 0x4F465332
// Open Type Format.
#define WUFFS_BASE__FOURCC__OTF 0x4F544620
// Portable Document Format.
#define WUFFS_BASE__FOURCC__PDF 0x50444620
// Physical Dimensions.
#define WUFFS_BASE__FOURCC__PHYD 0x50485944
// Portable Network Graphics.
#define WUFFS_BASE__FOURCC__PNG 0x504E4720
// Portable Anymap.
#define WUFFS_BASE__FOURCC__PNM 0x504E4D20
// PostScript.
#define WUFFS_BASE__FOURCC__PS 0x50532020
// Random Access Compression.
#define WUFFS_BASE__FOURCC__RAC 0x52414320
// Raw.
#define WUFFS_BASE__FOURCC__RAW 0x52415720
// Resource Interchange File Format.
#define WUFFS_BASE__FOURCC__RIFF 0x52494646
// Riegeli Records.
#define WUFFS_BASE__FOURCC__RIGL 0x5249474C
// Snappy.
#define WUFFS_BASE__FOURCC__SNPY 0x534E5059
// Standard Red Green Blue (Rendering Intent).
#define WUFFS_BASE__FOURCC__SRGB 0x53524742
// Scalable Vector Graphics.
#define WUFFS_BASE__FOURCC__SVG 0x53564720
// Tape Archive.
#define WUFFS_BASE__FOURCC__TAR 0x54415220
// Text.
#define WUFFS_BASE__FOURCC__TEXT 0x54455854
// Tagged Image File Format.
#define WUFFS_BASE__FOURCC__TIFF 0x54494646
// Tom's Obvious Minimal Language.
#define WUFFS_BASE__FOURCC__TOML 0x544F4D4C
// Waveform.
#define WUFFS_BASE__FOURCC__WAVE 0x57415645
// Wireless Bitmap.
#define WUFFS_BASE__FOURCC__WBMP 0x57424D50
// Web Open Font Format.
#define WUFFS_BASE__FOURCC__WOFF 0x574F4646
// Web Picture (VP8).
#define WUFFS_BASE__FOURCC__WP8 0x57503820
// Web Picture (VP8 Lossless).
#define WUFFS_BASE__FOURCC__WP8L 0x5750384C
// Extensible Markup Language.
#define WUFFS_BASE__FOURCC__XML 0x584D4C20
// Extensible Metadata Platform.
#define WUFFS_BASE__FOURCC__XMP 0x584D5020
// Xz.
#define WUFFS_BASE__FOURCC__XZ 0x585A2020
// Zip.
#define WUFFS_BASE__FOURCC__ZIP 0x5A495020
// Zlib.
#define WUFFS_BASE__FOURCC__ZLIB 0x5A4C4942
// Zstandard.
#define WUFFS_BASE__FOURCC__ZSTD 0x5A535444
// --------
// Quirks.
#define WUFFS_BASE__QUIRK_IGNORE_CHECKSUM 1
// --------
// Flicks are a unit of time. One flick (frame-tick) is 1 / 705_600_000 of a
// second. See https://github.com/OculusVR/Flicks
typedef int64_t wuffs_base__flicks;
#define WUFFS_BASE__FLICKS_PER_SECOND ((uint64_t)705600000)
#define WUFFS_BASE__FLICKS_PER_MILLISECOND ((uint64_t)705600)
// ---------------- Numeric Types
// The helpers below are functions, instead of macros, because their arguments
// can be an expression that we shouldn't evaluate more than once.
//
// They are static, so that linking multiple wuffs .o files won't complain about
// duplicate function definitions.
//
// They are explicitly marked inline, even if modern compilers don't use the
// inline attribute to guide optimizations such as inlining, to avoid the
// -Wunused-function warning, and we like to compile with -Wall -Werror.
static inline int8_t //
wuffs_base__i8__min(int8_t x, int8_t y) {
return x < y ? x : y;
}
static inline int8_t //
wuffs_base__i8__max(int8_t x, int8_t y) {
return x > y ? x : y;
}
static inline int16_t //
wuffs_base__i16__min(int16_t x, int16_t y) {
return x < y ? x : y;
}
static inline int16_t //
wuffs_base__i16__max(int16_t x, int16_t y) {
return x > y ? x : y;
}
static inline int32_t //
wuffs_base__i32__min(int32_t x, int32_t y) {
return x < y ? x : y;
}
static inline int32_t //
wuffs_base__i32__max(int32_t x, int32_t y) {
return x > y ? x : y;
}
static inline int64_t //
wuffs_base__i64__min(int64_t x, int64_t y) {
return x < y ? x : y;
}
static inline int64_t //
wuffs_base__i64__max(int64_t x, int64_t y) {
return x > y ? x : y;
}
static inline uint8_t //
wuffs_base__u8__min(uint8_t x, uint8_t y) {
return x < y ? x : y;
}
static inline uint8_t //
wuffs_base__u8__max(uint8_t x, uint8_t y) {
return x > y ? x : y;
}
static inline uint16_t //
wuffs_base__u16__min(uint16_t x, uint16_t y) {
return x < y ? x : y;
}
static inline uint16_t //
wuffs_base__u16__max(uint16_t x, uint16_t y) {
return x > y ? x : y;
}
static inline uint32_t //
wuffs_base__u32__min(uint32_t x, uint32_t y) {
return x < y ? x : y;
}
static inline uint32_t //
wuffs_base__u32__max(uint32_t x, uint32_t y) {
return x > y ? x : y;
}
static inline uint64_t //
wuffs_base__u64__min(uint64_t x, uint64_t y) {
return x < y ? x : y;
}
static inline uint64_t //
wuffs_base__u64__max(uint64_t x, uint64_t y) {
return x > y ? x : y;
}
// --------
static inline uint8_t //
wuffs_base__u8__rotate_left(uint8_t x, uint32_t n) {
n &= 7;
return ((uint8_t)(x << n)) | ((uint8_t)(x >> (8 - n)));
}
static inline uint8_t //
wuffs_base__u8__rotate_right(uint8_t x, uint32_t n) {
n &= 7;
return ((uint8_t)(x >> n)) | ((uint8_t)(x << (8 - n)));
}
static inline uint16_t //
wuffs_base__u16__rotate_left(uint16_t x, uint32_t n) {
n &= 15;
return ((uint16_t)(x << n)) | ((uint16_t)(x >> (16 - n)));
}
static inline uint16_t //
wuffs_base__u16__rotate_right(uint16_t x, uint32_t n) {
n &= 15;
return ((uint16_t)(x >> n)) | ((uint16_t)(x << (16 - n)));
}
static inline uint32_t //
wuffs_base__u32__rotate_left(uint32_t x, uint32_t n) {
n &= 31;
return ((uint32_t)(x << n)) | ((uint32_t)(x >> (32 - n)));
}
static inline uint32_t //
wuffs_base__u32__rotate_right(uint32_t x, uint32_t n) {
n &= 31;
return ((uint32_t)(x >> n)) | ((uint32_t)(x << (32 - n)));
}
static inline uint64_t //
wuffs_base__u64__rotate_left(uint64_t x, uint32_t n) {
n &= 63;
return ((uint64_t)(x << n)) | ((uint64_t)(x >> (64 - n)));
}
static inline uint64_t //
wuffs_base__u64__rotate_right(uint64_t x, uint32_t n) {
n &= 63;
return ((uint64_t)(x >> n)) | ((uint64_t)(x << (64 - n)));
}
// --------
// Saturating arithmetic (sat_add, sat_sub) branchless bit-twiddling algorithms
// are per https://locklessinc.com/articles/sat_arithmetic/
//
// It is important that the underlying types are unsigned integers, as signed
// integer arithmetic overflow is undefined behavior in C.
static inline uint8_t //
wuffs_base__u8__sat_add(uint8_t x, uint8_t y) {
uint8_t res = (uint8_t)(x + y);
res |= (uint8_t)(-(res < x));
return res;
}
static inline uint8_t //
wuffs_base__u8__sat_sub(uint8_t x, uint8_t y) {
uint8_t res = (uint8_t)(x - y);
res &= (uint8_t)(-(res <= x));
return res;
}
static inline uint16_t //
wuffs_base__u16__sat_add(uint16_t x, uint16_t y) {
uint16_t res = (uint16_t)(x + y);
res |= (uint16_t)(-(res < x));
return res;
}
static inline uint16_t //
wuffs_base__u16__sat_sub(uint16_t x, uint16_t y) {
uint16_t res = (uint16_t)(x - y);
res &= (uint16_t)(-(res <= x));
return res;
}
static inline uint32_t //
wuffs_base__u32__sat_add(uint32_t x, uint32_t y) {
uint32_t res = (uint32_t)(x + y);
res |= (uint32_t)(-(res < x));
return res;
}
static inline uint32_t //
wuffs_base__u32__sat_sub(uint32_t x, uint32_t y) {
uint32_t res = (uint32_t)(x - y);
res &= (uint32_t)(-(res <= x));
return res;
}
static inline uint64_t //
wuffs_base__u64__sat_add(uint64_t x, uint64_t y) {
uint64_t res = (uint64_t)(x + y);
res |= (uint64_t)(-(res < x));
return res;
}
static inline uint64_t //
wuffs_base__u64__sat_sub(uint64_t x, uint64_t y) {
uint64_t res = (uint64_t)(x - y);
res &= (uint64_t)(-(res <= x));
return res;
}
// --------
typedef struct wuffs_base__multiply_u64__output__struct {
uint64_t lo;
uint64_t hi;
} wuffs_base__multiply_u64__output;
// wuffs_base__multiply_u64 returns x*y as a 128-bit value.
//
// The maximum inclusive output hi_lo is 0xFFFFFFFFFFFFFFFE_0000000000000001.
static inline wuffs_base__multiply_u64__output //
wuffs_base__multiply_u64(uint64_t x, uint64_t y) {
#if defined(__SIZEOF_INT128__)
__uint128_t z = ((__uint128_t)x) * ((__uint128_t)y);
wuffs_base__multiply_u64__output o;
o.lo = ((uint64_t)(z));
o.hi = ((uint64_t)(z >> 64));
return o;
#else
// TODO: consider using the _mul128 intrinsic if defined(_MSC_VER).
uint64_t x0 = x & 0xFFFFFFFF;
uint64_t x1 = x >> 32;
uint64_t y0 = y & 0xFFFFFFFF;
uint64_t y1 = y >> 32;
uint64_t w0 = x0 * y0;
uint64_t t = (x1 * y0) + (w0 >> 32);
uint64_t w1 = t & 0xFFFFFFFF;
uint64_t w2 = t >> 32;
w1 += x0 * y1;
wuffs_base__multiply_u64__output o;
o.lo = x * y;
o.hi = (x1 * y1) + w2 + (w1 >> 32);
return o;
#endif
}
// --------
// The "defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#if (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8)
static inline uint32_t //
wuffs_base__count_leading_zeroes_u64(uint64_t u) {
return u ? ((uint32_t)(__builtin_clzl(u))) : 64u;
}
#else
// TODO: consider using the _BitScanReverse intrinsic if defined(_MSC_VER).
static inline uint32_t //
wuffs_base__count_leading_zeroes_u64(uint64_t u) {
if (u == 0) {
return 64;
}
uint32_t n = 0;
if ((u >> 32) == 0) {
n |= 32;
u <<= 32;
}
if ((u >> 48) == 0) {
n |= 16;
u <<= 16;
}
if ((u >> 56) == 0) {
n |= 8;
u <<= 8;
}
if ((u >> 60) == 0) {
n |= 4;
u <<= 4;
}
if ((u >> 62) == 0) {
n |= 2;
u <<= 2;
}
if ((u >> 63) == 0) {
n |= 1;
u <<= 1;
}
return n;
}
#endif // (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8)
// --------
#define wuffs_base__peek_u8be__no_bounds_check \
wuffs_base__peek_u8__no_bounds_check
#define wuffs_base__peek_u8le__no_bounds_check \
wuffs_base__peek_u8__no_bounds_check
static inline uint8_t //
wuffs_base__peek_u8__no_bounds_check(const uint8_t* p) {
return p[0];
}
static inline uint16_t //
wuffs_base__peek_u16be__no_bounds_check(const uint8_t* p) {
return (uint16_t)(((uint16_t)(p[0]) << 8) | ((uint16_t)(p[1]) << 0));
}
static inline uint16_t //
wuffs_base__peek_u16le__no_bounds_check(const uint8_t* p) {
return (uint16_t)(((uint16_t)(p[0]) << 0) | ((uint16_t)(p[1]) << 8));
}
static inline uint32_t //
wuffs_base__peek_u24be__no_bounds_check(const uint8_t* p) {
return ((uint32_t)(p[0]) << 16) | ((uint32_t)(p[1]) << 8) |
((uint32_t)(p[2]) << 0);
}
static inline uint32_t //
wuffs_base__peek_u24le__no_bounds_check(const uint8_t* p) {
return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
((uint32_t)(p[2]) << 16);
}
static inline uint32_t //
wuffs_base__peek_u32be__no_bounds_check(const uint8_t* p) {
return ((uint32_t)(p[0]) << 24) | ((uint32_t)(p[1]) << 16) |
((uint32_t)(p[2]) << 8) | ((uint32_t)(p[3]) << 0);
}
static inline uint32_t //
wuffs_base__peek_u32le__no_bounds_check(const uint8_t* p) {
return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24);
}
static inline uint64_t //
wuffs_base__peek_u40be__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 32) | ((uint64_t)(p[1]) << 24) |
((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 8) |
((uint64_t)(p[4]) << 0);
}
static inline uint64_t //
wuffs_base__peek_u40le__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) |
((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) |
((uint64_t)(p[4]) << 32);
}
static inline uint64_t //
wuffs_base__peek_u48be__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 40) | ((uint64_t)(p[1]) << 32) |
((uint64_t)(p[2]) << 24) | ((uint64_t)(p[3]) << 16) |
((uint64_t)(p[4]) << 8) | ((uint64_t)(p[5]) << 0);
}
static inline uint64_t //
wuffs_base__peek_u48le__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) |
((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) |
((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40);
}
static inline uint64_t //
wuffs_base__peek_u56be__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 48) | ((uint64_t)(p[1]) << 40) |
((uint64_t)(p[2]) << 32) | ((uint64_t)(p[3]) << 24) |
((uint64_t)(p[4]) << 16) | ((uint64_t)(p[5]) << 8) |
((uint64_t)(p[6]) << 0);
}
static inline uint64_t //
wuffs_base__peek_u56le__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) |
((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) |
((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) |
((uint64_t)(p[6]) << 48);
}
static inline uint64_t //
wuffs_base__peek_u64be__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 56) | ((uint64_t)(p[1]) << 48) |
((uint64_t)(p[2]) << 40) | ((uint64_t)(p[3]) << 32) |
((uint64_t)(p[4]) << 24) | ((uint64_t)(p[5]) << 16) |
((uint64_t)(p[6]) << 8) | ((uint64_t)(p[7]) << 0);
}
static inline uint64_t //
wuffs_base__peek_u64le__no_bounds_check(const uint8_t* p) {
return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) |
((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) |
((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) |
((uint64_t)(p[6]) << 48) | ((uint64_t)(p[7]) << 56);
}
// --------
#define wuffs_base__poke_u8be__no_bounds_check \
wuffs_base__poke_u8__no_bounds_check
#define wuffs_base__poke_u8le__no_bounds_check \
wuffs_base__poke_u8__no_bounds_check
static inline void //
wuffs_base__poke_u8__no_bounds_check(uint8_t* p, uint8_t x) {
p[0] = x;
}
static inline void //
wuffs_base__poke_u16be__no_bounds_check(uint8_t* p, uint16_t x) {
p[0] = (uint8_t)(x >> 8);
p[1] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u16le__no_bounds_check(uint8_t* p, uint16_t x) {
#if defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)
// This seems to perform better on gcc 10 (but not clang 9). Clang also
// defines "__GNUC__".
memcpy(p, &x, 2);
#else
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
#endif
}
static inline void //
wuffs_base__poke_u24be__no_bounds_check(uint8_t* p, uint32_t x) {
p[0] = (uint8_t)(x >> 16);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u24le__no_bounds_check(uint8_t* p, uint32_t x) {
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
}
static inline void //
wuffs_base__poke_u32be__no_bounds_check(uint8_t* p, uint32_t x) {
p[0] = (uint8_t)(x >> 24);
p[1] = (uint8_t)(x >> 16);
p[2] = (uint8_t)(x >> 8);
p[3] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u32le__no_bounds_check(uint8_t* p, uint32_t x) {
#if defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)
// This seems to perform better on gcc 10 (but not clang 9). Clang also
// defines "__GNUC__".
memcpy(p, &x, 4);
#else
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 24);
#endif
}
static inline void //
wuffs_base__poke_u40be__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 32);
p[1] = (uint8_t)(x >> 24);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 8);
p[4] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u40le__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 24);
p[4] = (uint8_t)(x >> 32);
}
static inline void //
wuffs_base__poke_u48be__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 40);
p[1] = (uint8_t)(x >> 32);
p[2] = (uint8_t)(x >> 24);
p[3] = (uint8_t)(x >> 16);
p[4] = (uint8_t)(x >> 8);
p[5] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u48le__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 24);
p[4] = (uint8_t)(x >> 32);
p[5] = (uint8_t)(x >> 40);
}
static inline void //
wuffs_base__poke_u56be__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 48);
p[1] = (uint8_t)(x >> 40);
p[2] = (uint8_t)(x >> 32);
p[3] = (uint8_t)(x >> 24);
p[4] = (uint8_t)(x >> 16);
p[5] = (uint8_t)(x >> 8);
p[6] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u56le__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 24);
p[4] = (uint8_t)(x >> 32);
p[5] = (uint8_t)(x >> 40);
p[6] = (uint8_t)(x >> 48);
}
static inline void //
wuffs_base__poke_u64be__no_bounds_check(uint8_t* p, uint64_t x) {
p[0] = (uint8_t)(x >> 56);
p[1] = (uint8_t)(x >> 48);
p[2] = (uint8_t)(x >> 40);
p[3] = (uint8_t)(x >> 32);
p[4] = (uint8_t)(x >> 24);
p[5] = (uint8_t)(x >> 16);
p[6] = (uint8_t)(x >> 8);
p[7] = (uint8_t)(x >> 0);
}
static inline void //
wuffs_base__poke_u64le__no_bounds_check(uint8_t* p, uint64_t x) {
#if defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)
// This seems to perform better on gcc 10 (but not clang 9). Clang also
// defines "__GNUC__".
memcpy(p, &x, 8);
#else
p[0] = (uint8_t)(x >> 0);
p[1] = (uint8_t)(x >> 8);
p[2] = (uint8_t)(x >> 16);
p[3] = (uint8_t)(x >> 24);
p[4] = (uint8_t)(x >> 32);
p[5] = (uint8_t)(x >> 40);
p[6] = (uint8_t)(x >> 48);
p[7] = (uint8_t)(x >> 56);
#endif
}
// --------
// Load and Store functions are deprecated. Use Peek and Poke instead.
#define wuffs_base__load_u8__no_bounds_check \
wuffs_base__peek_u8__no_bounds_check
#define wuffs_base__load_u16be__no_bounds_check \
wuffs_base__peek_u16be__no_bounds_check
#define wuffs_base__load_u16le__no_bounds_check \
wuffs_base__peek_u16le__no_bounds_check
#define wuffs_base__load_u24be__no_bounds_check \
wuffs_base__peek_u24be__no_bounds_check
#define wuffs_base__load_u24le__no_bounds_check \
wuffs_base__peek_u24le__no_bounds_check
#define wuffs_base__load_u32be__no_bounds_check \
wuffs_base__peek_u32be__no_bounds_check
#define wuffs_base__load_u32le__no_bounds_check \
wuffs_base__peek_u32le__no_bounds_check
#define wuffs_base__load_u40be__no_bounds_check \
wuffs_base__peek_u40be__no_bounds_check
#define wuffs_base__load_u40le__no_bounds_check \
wuffs_base__peek_u40le__no_bounds_check
#define wuffs_base__load_u48be__no_bounds_check \
wuffs_base__peek_u48be__no_bounds_check
#define wuffs_base__load_u48le__no_bounds_check \
wuffs_base__peek_u48le__no_bounds_check
#define wuffs_base__load_u56be__no_bounds_check \
wuffs_base__peek_u56be__no_bounds_check
#define wuffs_base__load_u56le__no_bounds_check \
wuffs_base__peek_u56le__no_bounds_check
#define wuffs_base__load_u64be__no_bounds_check \
wuffs_base__peek_u64be__no_bounds_check
#define wuffs_base__load_u64le__no_bounds_check \
wuffs_base__peek_u64le__no_bounds_check
#define wuffs_base__store_u8__no_bounds_check \
wuffs_base__poke_u8__no_bounds_check
#define wuffs_base__store_u16be__no_bounds_check \
wuffs_base__poke_u16be__no_bounds_check
#define wuffs_base__store_u16le__no_bounds_check \
wuffs_base__poke_u16le__no_bounds_check
#define wuffs_base__store_u24be__no_bounds_check \
wuffs_base__poke_u24be__no_bounds_check
#define wuffs_base__store_u24le__no_bounds_check \
wuffs_base__poke_u24le__no_bounds_check
#define wuffs_base__store_u32be__no_bounds_check \
wuffs_base__poke_u32be__no_bounds_check
#define wuffs_base__store_u32le__no_bounds_check \
wuffs_base__poke_u32le__no_bounds_check
#define wuffs_base__store_u40be__no_bounds_check \
wuffs_base__poke_u40be__no_bounds_check
#define wuffs_base__store_u40le__no_bounds_check \
wuffs_base__poke_u40le__no_bounds_check
#define wuffs_base__store_u48be__no_bounds_check \
wuffs_base__poke_u48be__no_bounds_check
#define wuffs_base__store_u48le__no_bounds_check \
wuffs_base__poke_u48le__no_bounds_check
#define wuffs_base__store_u56be__no_bounds_check \
wuffs_base__poke_u56be__no_bounds_check
#define wuffs_base__store_u56le__no_bounds_check \
wuffs_base__poke_u56le__no_bounds_check
#define wuffs_base__store_u64be__no_bounds_check \
wuffs_base__poke_u64be__no_bounds_check
#define wuffs_base__store_u64le__no_bounds_check \
wuffs_base__poke_u64le__no_bounds_check
// ---------------- Slices and Tables
// WUFFS_BASE__SLICE is a 1-dimensional buffer.
//
// len measures a number of elements, not necessarily a size in bytes.
//
// A value with all fields NULL or zero is a valid, empty slice.
#define WUFFS_BASE__SLICE(T) \
struct { \
T* ptr; \
size_t len; \
}
// WUFFS_BASE__TABLE is a 2-dimensional buffer.
//
// width, height and stride measure a number of elements, not necessarily a
// size in bytes.
//
// A value with all fields NULL or zero is a valid, empty table.
#define WUFFS_BASE__TABLE(T) \
struct { \
T* ptr; \
size_t width; \
size_t height; \
size_t stride; \
}
typedef WUFFS_BASE__SLICE(uint8_t) wuffs_base__slice_u8;
typedef WUFFS_BASE__SLICE(uint16_t) wuffs_base__slice_u16;
typedef WUFFS_BASE__SLICE(uint32_t) wuffs_base__slice_u32;
typedef WUFFS_BASE__SLICE(uint64_t) wuffs_base__slice_u64;
typedef WUFFS_BASE__TABLE(uint8_t) wuffs_base__table_u8;
typedef WUFFS_BASE__TABLE(uint16_t) wuffs_base__table_u16;
typedef WUFFS_BASE__TABLE(uint32_t) wuffs_base__table_u32;
typedef WUFFS_BASE__TABLE(uint64_t) wuffs_base__table_u64;
static inline wuffs_base__slice_u8 //
wuffs_base__make_slice_u8(uint8_t* ptr, size_t len) {
wuffs_base__slice_u8 ret;
ret.ptr = ptr;
ret.len = len;
return ret;
}
static inline wuffs_base__slice_u16 //
wuffs_base__make_slice_u16(uint16_t* ptr, size_t len) {
wuffs_base__slice_u16 ret;
ret.ptr = ptr;
ret.len = len;
return ret;
}
static inline wuffs_base__slice_u32 //
wuffs_base__make_slice_u32(uint32_t* ptr, size_t len) {
wuffs_base__slice_u32 ret;
ret.ptr = ptr;
ret.len = len;
return ret;
}
static inline wuffs_base__slice_u64 //
wuffs_base__make_slice_u64(uint64_t* ptr, size_t len) {
wuffs_base__slice_u64 ret;
ret.ptr = ptr;
ret.len = len;
return ret;
}
static inline wuffs_base__slice_u8 //
wuffs_base__empty_slice_u8() {
wuffs_base__slice_u8 ret;
ret.ptr = NULL;
ret.len = 0;
return ret;
}
static inline wuffs_base__slice_u16 //
wuffs_base__empty_slice_u16() {
wuffs_base__slice_u16 ret;
ret.ptr = NULL;
ret.len = 0;
return ret;
}
static inline wuffs_base__slice_u32 //
wuffs_base__empty_slice_u32() {
wuffs_base__slice_u32 ret;
ret.ptr = NULL;
ret.len = 0;
return ret;
}
static inline wuffs_base__slice_u64 //
wuffs_base__empty_slice_u64() {
wuffs_base__slice_u64 ret;
ret.ptr = NULL;
ret.len = 0;
return ret;
}
static inline wuffs_base__table_u8 //
wuffs_base__make_table_u8(uint8_t* ptr,
size_t width,
size_t height,
size_t stride) {
wuffs_base__table_u8 ret;
ret.ptr = ptr;
ret.width = width;
ret.height = height;
ret.stride = stride;
return ret;
}
static inline wuffs_base__table_u16 //
wuffs_base__make_table_u16(uint16_t* ptr,
size_t width,
size_t height,
size_t stride) {
wuffs_base__table_u16 ret;
ret.ptr = ptr;
ret.width = width;
ret.height = height;
ret.stride = stride;
return ret;
}
static inline wuffs_base__table_u32 //
wuffs_base__make_table_u32(uint32_t* ptr,
size_t width,
size_t height,
size_t stride) {
wuffs_base__table_u32 ret;
ret.ptr = ptr;
ret.width = width;
ret.height = height;
ret.stride = stride;
return ret;
}
static inline wuffs_base__table_u64 //
wuffs_base__make_table_u64(uint64_t* ptr,
size_t width,
size_t height,
size_t stride) {
wuffs_base__table_u64 ret;
ret.ptr = ptr;
ret.width = width;
ret.height = height;
ret.stride = stride;
return ret;
}
static inline wuffs_base__table_u8 //
wuffs_base__empty_table_u8() {
wuffs_base__table_u8 ret;
ret.ptr = NULL;
ret.width = 0;
ret.height = 0;
ret.stride = 0;
return ret;
}
static inline wuffs_base__table_u16 //
wuffs_base__empty_table_u16() {
wuffs_base__table_u16 ret;
ret.ptr = NULL;
ret.width = 0;
ret.height = 0;
ret.stride = 0;
return ret;
}
static inline wuffs_base__table_u32 //
wuffs_base__empty_table_u32() {
wuffs_base__table_u32 ret;
ret.ptr = NULL;
ret.width = 0;
ret.height = 0;
ret.stride = 0;
return ret;
}
static inline wuffs_base__table_u64 //
wuffs_base__empty_table_u64() {
wuffs_base__table_u64 ret;
ret.ptr = NULL;
ret.width = 0;
ret.height = 0;
ret.stride = 0;
return ret;
}
static inline bool //
wuffs_base__slice_u8__overlaps(wuffs_base__slice_u8 s, wuffs_base__slice_u8 t) {
return ((s.ptr <= t.ptr) && (t.ptr < (s.ptr + s.len))) ||
((t.ptr <= s.ptr) && (s.ptr < (t.ptr + t.len)));
}
// wuffs_base__slice_u8__subslice_i returns s[i:].
//
// It returns an empty slice if i is out of bounds.
static inline wuffs_base__slice_u8 //
wuffs_base__slice_u8__subslice_i(wuffs_base__slice_u8 s, uint64_t i) {
if ((i <= SIZE_MAX) && (i <= s.len)) {
return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(s.len - i)));
}
return wuffs_base__make_slice_u8(NULL, 0);
}
// wuffs_base__slice_u8__subslice_j returns s[:j].
//
// It returns an empty slice if j is out of bounds.
static inline wuffs_base__slice_u8 //
wuffs_base__slice_u8__subslice_j(wuffs_base__slice_u8 s, uint64_t j) {
if ((j <= SIZE_MAX) && (j <= s.len)) {
return wuffs_base__make_slice_u8(s.ptr, ((size_t)j));
}
return wuffs_base__make_slice_u8(NULL, 0);
}
// wuffs_base__slice_u8__subslice_ij returns s[i:j].
//
// It returns an empty slice if i or j is out of bounds.
static inline wuffs_base__slice_u8 //
wuffs_base__slice_u8__subslice_ij(wuffs_base__slice_u8 s,
uint64_t i,
uint64_t j) {
if ((i <= j) && (j <= SIZE_MAX) && (j <= s.len)) {
return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(j - i)));
}
return wuffs_base__make_slice_u8(NULL, 0);
}
// wuffs_base__table_u8__subtable_ij returns t[ix:jx, iy:jy].
//
// It returns an empty table if i or j is out of bounds.
static inline wuffs_base__table_u8 //
wuffs_base__table_u8__subtable_ij(wuffs_base__table_u8 t,
uint64_t ix,
uint64_t iy,
uint64_t jx,
uint64_t jy) {
if ((ix <= jx) && (jx <= SIZE_MAX) && (jx <= t.width) && //
(iy <= jy) && (jy <= SIZE_MAX) && (jy <= t.height)) {
return wuffs_base__make_table_u8(t.ptr + ix + (iy * t.stride), //
((size_t)(jx - ix)), //
((size_t)(jy - iy)), //
t.stride); //
}
return wuffs_base__make_table_u8(NULL, 0, 0, 0);
}
// wuffs_base__table__flattened_length returns the number of elements covered
// by the 1-dimensional span that backs a 2-dimensional table. This counts the
// elements inside the table and, when width != stride, the elements outside
// the table but between its rows.
//
// For example, consider a width 10, height 4, stride 10 table. Mark its first
// and last (inclusive) elements with 'a' and 'z'. This function returns 40.
//
// a123456789
// 0123456789
// 0123456789
// 012345678z
//
// Now consider the sub-table of that from (2, 1) inclusive to (8, 4) exclusive.
//
// a123456789
// 01iiiiiioo
// ooiiiiiioo
// ooiiiiii8z
//
// This function (called with width 6, height 3, stride 10) returns 26: 18 'i'
// inside elements plus 8 'o' outside elements. Note that 26 is less than a
// naive (height * stride = 30) computation. Indeed, advancing 29 elements from
// the first 'i' would venture past 'z', out of bounds of the original table.
//
// It does not check for overflow, but if the arguments come from a table that
// exists in memory and each element occupies a positive number of bytes then
// the result should be bounded by the amount of allocatable memory (which
// shouldn't overflow SIZE_MAX).
static inline size_t //
wuffs_base__table__flattened_length(size_t width,
size_t height,
size_t stride) {
if (height == 0) {
return 0;
}
return ((height - 1) * stride) + width;
}
// ---------------- Magic Numbers
// wuffs_base__magic_number_guess_fourcc guesses the file format of some data,
// given its opening bytes. It returns a positive FourCC value on success.
//
// It returns zero if nothing matches its hard-coded list of 'magic numbers'.
//
// It returns a negative value if a longer prefix is required for a conclusive
// result. For example, seeing a single 'B' byte is not enough to discriminate
// the BMP and BPG image file formats.
//
// It does not do a full validity check. Like any guess made from a short
// prefix of the data, it may return false positives. Data that starts with 99
// bytes of valid JPEG followed by corruption or truncation is an invalid JPEG
// image overall, but this function will still return WUFFS_BASE__FOURCC__JPEG.
//
// Another source of false positives is that some 'magic numbers' are valid
// ASCII data. A file starting with "GIF87a and GIF89a are the two versions of
// GIF" will match GIF's 'magic number' even if it's plain text, not an image.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__MAGIC sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC int32_t //
wuffs_base__magic_number_guess_fourcc(wuffs_base__slice_u8 prefix);
// ---------------- Ranges and Rects
// See https://github.com/google/wuffs/blob/main/doc/note/ranges-and-rects.md
typedef struct wuffs_base__range_ii_u32__struct {
uint32_t min_incl;
uint32_t max_incl;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__range_ii_u32__struct s) const;
inline wuffs_base__range_ii_u32__struct intersect(
wuffs_base__range_ii_u32__struct s) const;
inline wuffs_base__range_ii_u32__struct unite(
wuffs_base__range_ii_u32__struct s) const;
inline bool contains(uint32_t x) const;
inline bool contains_range(wuffs_base__range_ii_u32__struct s) const;
#endif // __cplusplus
} wuffs_base__range_ii_u32;
static inline wuffs_base__range_ii_u32 //
wuffs_base__empty_range_ii_u32() {
wuffs_base__range_ii_u32 ret;
ret.min_incl = 0;
ret.max_incl = 0;
return ret;
}
static inline wuffs_base__range_ii_u32 //
wuffs_base__make_range_ii_u32(uint32_t min_incl, uint32_t max_incl) {
wuffs_base__range_ii_u32 ret;
ret.min_incl = min_incl;
ret.max_incl = max_incl;
return ret;
}
static inline bool //
wuffs_base__range_ii_u32__is_empty(const wuffs_base__range_ii_u32* r) {
return r->min_incl > r->max_incl;
}
static inline bool //
wuffs_base__range_ii_u32__equals(const wuffs_base__range_ii_u32* r,
wuffs_base__range_ii_u32 s) {
return (r->min_incl == s.min_incl && r->max_incl == s.max_incl) ||
(wuffs_base__range_ii_u32__is_empty(r) &&
wuffs_base__range_ii_u32__is_empty(&s));
}
static inline wuffs_base__range_ii_u32 //
wuffs_base__range_ii_u32__intersect(const wuffs_base__range_ii_u32* r,
wuffs_base__range_ii_u32 s) {
wuffs_base__range_ii_u32 t;
t.min_incl = wuffs_base__u32__max(r->min_incl, s.min_incl);
t.max_incl = wuffs_base__u32__min(r->max_incl, s.max_incl);
return t;
}
static inline wuffs_base__range_ii_u32 //
wuffs_base__range_ii_u32__unite(const wuffs_base__range_ii_u32* r,
wuffs_base__range_ii_u32 s) {
if (wuffs_base__range_ii_u32__is_empty(r)) {
return s;
}
if (wuffs_base__range_ii_u32__is_empty(&s)) {
return *r;
}
wuffs_base__range_ii_u32 t;
t.min_incl = wuffs_base__u32__min(r->min_incl, s.min_incl);
t.max_incl = wuffs_base__u32__max(r->max_incl, s.max_incl);
return t;
}
static inline bool //
wuffs_base__range_ii_u32__contains(const wuffs_base__range_ii_u32* r,
uint32_t x) {
return (r->min_incl <= x) && (x <= r->max_incl);
}
static inline bool //
wuffs_base__range_ii_u32__contains_range(const wuffs_base__range_ii_u32* r,
wuffs_base__range_ii_u32 s) {
return wuffs_base__range_ii_u32__equals(
&s, wuffs_base__range_ii_u32__intersect(r, s));
}
#ifdef __cplusplus
inline bool //
wuffs_base__range_ii_u32::is_empty() const {
return wuffs_base__range_ii_u32__is_empty(this);
}
inline bool //
wuffs_base__range_ii_u32::equals(wuffs_base__range_ii_u32 s) const {
return wuffs_base__range_ii_u32__equals(this, s);
}
inline wuffs_base__range_ii_u32 //
wuffs_base__range_ii_u32::intersect(wuffs_base__range_ii_u32 s) const {
return wuffs_base__range_ii_u32__intersect(this, s);
}
inline wuffs_base__range_ii_u32 //
wuffs_base__range_ii_u32::unite(wuffs_base__range_ii_u32 s) const {
return wuffs_base__range_ii_u32__unite(this, s);
}
inline bool //
wuffs_base__range_ii_u32::contains(uint32_t x) const {
return wuffs_base__range_ii_u32__contains(this, x);
}
inline bool //
wuffs_base__range_ii_u32::contains_range(wuffs_base__range_ii_u32 s) const {
return wuffs_base__range_ii_u32__contains_range(this, s);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__range_ie_u32__struct {
uint32_t min_incl;
uint32_t max_excl;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__range_ie_u32__struct s) const;
inline wuffs_base__range_ie_u32__struct intersect(
wuffs_base__range_ie_u32__struct s) const;
inline wuffs_base__range_ie_u32__struct unite(
wuffs_base__range_ie_u32__struct s) const;
inline bool contains(uint32_t x) const;
inline bool contains_range(wuffs_base__range_ie_u32__struct s) const;
inline uint32_t length() const;
#endif // __cplusplus
} wuffs_base__range_ie_u32;
static inline wuffs_base__range_ie_u32 //
wuffs_base__empty_range_ie_u32() {
wuffs_base__range_ie_u32 ret;
ret.min_incl = 0;
ret.max_excl = 0;
return ret;
}
static inline wuffs_base__range_ie_u32 //
wuffs_base__make_range_ie_u32(uint32_t min_incl, uint32_t max_excl) {
wuffs_base__range_ie_u32 ret;
ret.min_incl = min_incl;
ret.max_excl = max_excl;
return ret;
}
static inline bool //
wuffs_base__range_ie_u32__is_empty(const wuffs_base__range_ie_u32* r) {
return r->min_incl >= r->max_excl;
}
static inline bool //
wuffs_base__range_ie_u32__equals(const wuffs_base__range_ie_u32* r,
wuffs_base__range_ie_u32 s) {
return (r->min_incl == s.min_incl && r->max_excl == s.max_excl) ||
(wuffs_base__range_ie_u32__is_empty(r) &&
wuffs_base__range_ie_u32__is_empty(&s));
}
static inline wuffs_base__range_ie_u32 //
wuffs_base__range_ie_u32__intersect(const wuffs_base__range_ie_u32* r,
wuffs_base__range_ie_u32 s) {
wuffs_base__range_ie_u32 t;
t.min_incl = wuffs_base__u32__max(r->min_incl, s.min_incl);
t.max_excl = wuffs_base__u32__min(r->max_excl, s.max_excl);
return t;
}
static inline wuffs_base__range_ie_u32 //
wuffs_base__range_ie_u32__unite(const wuffs_base__range_ie_u32* r,
wuffs_base__range_ie_u32 s) {
if (wuffs_base__range_ie_u32__is_empty(r)) {
return s;
}
if (wuffs_base__range_ie_u32__is_empty(&s)) {
return *r;
}
wuffs_base__range_ie_u32 t;
t.min_incl = wuffs_base__u32__min(r->min_incl, s.min_incl);
t.max_excl = wuffs_base__u32__max(r->max_excl, s.max_excl);
return t;
}
static inline bool //
wuffs_base__range_ie_u32__contains(const wuffs_base__range_ie_u32* r,
uint32_t x) {
return (r->min_incl <= x) && (x < r->max_excl);
}
static inline bool //
wuffs_base__range_ie_u32__contains_range(const wuffs_base__range_ie_u32* r,
wuffs_base__range_ie_u32 s) {
return wuffs_base__range_ie_u32__equals(
&s, wuffs_base__range_ie_u32__intersect(r, s));
}
static inline uint32_t //
wuffs_base__range_ie_u32__length(const wuffs_base__range_ie_u32* r) {
return wuffs_base__u32__sat_sub(r->max_excl, r->min_incl);
}
#ifdef __cplusplus
inline bool //
wuffs_base__range_ie_u32::is_empty() const {
return wuffs_base__range_ie_u32__is_empty(this);
}
inline bool //
wuffs_base__range_ie_u32::equals(wuffs_base__range_ie_u32 s) const {
return wuffs_base__range_ie_u32__equals(this, s);
}
inline wuffs_base__range_ie_u32 //
wuffs_base__range_ie_u32::intersect(wuffs_base__range_ie_u32 s) const {
return wuffs_base__range_ie_u32__intersect(this, s);
}
inline wuffs_base__range_ie_u32 //
wuffs_base__range_ie_u32::unite(wuffs_base__range_ie_u32 s) const {
return wuffs_base__range_ie_u32__unite(this, s);
}
inline bool //
wuffs_base__range_ie_u32::contains(uint32_t x) const {
return wuffs_base__range_ie_u32__contains(this, x);
}
inline bool //
wuffs_base__range_ie_u32::contains_range(wuffs_base__range_ie_u32 s) const {
return wuffs_base__range_ie_u32__contains_range(this, s);
}
inline uint32_t //
wuffs_base__range_ie_u32::length() const {
return wuffs_base__range_ie_u32__length(this);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__range_ii_u64__struct {
uint64_t min_incl;
uint64_t max_incl;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__range_ii_u64__struct s) const;
inline wuffs_base__range_ii_u64__struct intersect(
wuffs_base__range_ii_u64__struct s) const;
inline wuffs_base__range_ii_u64__struct unite(
wuffs_base__range_ii_u64__struct s) const;
inline bool contains(uint64_t x) const;
inline bool contains_range(wuffs_base__range_ii_u64__struct s) const;
#endif // __cplusplus
} wuffs_base__range_ii_u64;
static inline wuffs_base__range_ii_u64 //
wuffs_base__empty_range_ii_u64() {
wuffs_base__range_ii_u64 ret;
ret.min_incl = 0;
ret.max_incl = 0;
return ret;
}
static inline wuffs_base__range_ii_u64 //
wuffs_base__make_range_ii_u64(uint64_t min_incl, uint64_t max_incl) {
wuffs_base__range_ii_u64 ret;
ret.min_incl = min_incl;
ret.max_incl = max_incl;
return ret;
}
static inline bool //
wuffs_base__range_ii_u64__is_empty(const wuffs_base__range_ii_u64* r) {
return r->min_incl > r->max_incl;
}
static inline bool //
wuffs_base__range_ii_u64__equals(const wuffs_base__range_ii_u64* r,
wuffs_base__range_ii_u64 s) {
return (r->min_incl == s.min_incl && r->max_incl == s.max_incl) ||
(wuffs_base__range_ii_u64__is_empty(r) &&
wuffs_base__range_ii_u64__is_empty(&s));
}
static inline wuffs_base__range_ii_u64 //
wuffs_base__range_ii_u64__intersect(const wuffs_base__range_ii_u64* r,
wuffs_base__range_ii_u64 s) {
wuffs_base__range_ii_u64 t;
t.min_incl = wuffs_base__u64__max(r->min_incl, s.min_incl);
t.max_incl = wuffs_base__u64__min(r->max_incl, s.max_incl);
return t;
}
static inline wuffs_base__range_ii_u64 //
wuffs_base__range_ii_u64__unite(const wuffs_base__range_ii_u64* r,
wuffs_base__range_ii_u64 s) {
if (wuffs_base__range_ii_u64__is_empty(r)) {
return s;
}
if (wuffs_base__range_ii_u64__is_empty(&s)) {
return *r;
}
wuffs_base__range_ii_u64 t;
t.min_incl = wuffs_base__u64__min(r->min_incl, s.min_incl);
t.max_incl = wuffs_base__u64__max(r->max_incl, s.max_incl);
return t;
}
static inline bool //
wuffs_base__range_ii_u64__contains(const wuffs_base__range_ii_u64* r,
uint64_t x) {
return (r->min_incl <= x) && (x <= r->max_incl);
}
static inline bool //
wuffs_base__range_ii_u64__contains_range(const wuffs_base__range_ii_u64* r,
wuffs_base__range_ii_u64 s) {
return wuffs_base__range_ii_u64__equals(
&s, wuffs_base__range_ii_u64__intersect(r, s));
}
#ifdef __cplusplus
inline bool //
wuffs_base__range_ii_u64::is_empty() const {
return wuffs_base__range_ii_u64__is_empty(this);
}
inline bool //
wuffs_base__range_ii_u64::equals(wuffs_base__range_ii_u64 s) const {
return wuffs_base__range_ii_u64__equals(this, s);
}
inline wuffs_base__range_ii_u64 //
wuffs_base__range_ii_u64::intersect(wuffs_base__range_ii_u64 s) const {
return wuffs_base__range_ii_u64__intersect(this, s);
}
inline wuffs_base__range_ii_u64 //
wuffs_base__range_ii_u64::unite(wuffs_base__range_ii_u64 s) const {
return wuffs_base__range_ii_u64__unite(this, s);
}
inline bool //
wuffs_base__range_ii_u64::contains(uint64_t x) const {
return wuffs_base__range_ii_u64__contains(this, x);
}
inline bool //
wuffs_base__range_ii_u64::contains_range(wuffs_base__range_ii_u64 s) const {
return wuffs_base__range_ii_u64__contains_range(this, s);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__range_ie_u64__struct {
uint64_t min_incl;
uint64_t max_excl;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__range_ie_u64__struct s) const;
inline wuffs_base__range_ie_u64__struct intersect(
wuffs_base__range_ie_u64__struct s) const;
inline wuffs_base__range_ie_u64__struct unite(
wuffs_base__range_ie_u64__struct s) const;
inline bool contains(uint64_t x) const;
inline bool contains_range(wuffs_base__range_ie_u64__struct s) const;
inline uint64_t length() const;
#endif // __cplusplus
} wuffs_base__range_ie_u64;
static inline wuffs_base__range_ie_u64 //
wuffs_base__empty_range_ie_u64() {
wuffs_base__range_ie_u64 ret;
ret.min_incl = 0;
ret.max_excl = 0;
return ret;
}
static inline wuffs_base__range_ie_u64 //
wuffs_base__make_range_ie_u64(uint64_t min_incl, uint64_t max_excl) {
wuffs_base__range_ie_u64 ret;
ret.min_incl = min_incl;
ret.max_excl = max_excl;
return ret;
}
static inline bool //
wuffs_base__range_ie_u64__is_empty(const wuffs_base__range_ie_u64* r) {
return r->min_incl >= r->max_excl;
}
static inline bool //
wuffs_base__range_ie_u64__equals(const wuffs_base__range_ie_u64* r,
wuffs_base__range_ie_u64 s) {
return (r->min_incl == s.min_incl && r->max_excl == s.max_excl) ||
(wuffs_base__range_ie_u64__is_empty(r) &&
wuffs_base__range_ie_u64__is_empty(&s));
}
static inline wuffs_base__range_ie_u64 //
wuffs_base__range_ie_u64__intersect(const wuffs_base__range_ie_u64* r,
wuffs_base__range_ie_u64 s) {
wuffs_base__range_ie_u64 t;
t.min_incl = wuffs_base__u64__max(r->min_incl, s.min_incl);
t.max_excl = wuffs_base__u64__min(r->max_excl, s.max_excl);
return t;
}
static inline wuffs_base__range_ie_u64 //
wuffs_base__range_ie_u64__unite(const wuffs_base__range_ie_u64* r,
wuffs_base__range_ie_u64 s) {
if (wuffs_base__range_ie_u64__is_empty(r)) {
return s;
}
if (wuffs_base__range_ie_u64__is_empty(&s)) {
return *r;
}
wuffs_base__range_ie_u64 t;
t.min_incl = wuffs_base__u64__min(r->min_incl, s.min_incl);
t.max_excl = wuffs_base__u64__max(r->max_excl, s.max_excl);
return t;
}
static inline bool //
wuffs_base__range_ie_u64__contains(const wuffs_base__range_ie_u64* r,
uint64_t x) {
return (r->min_incl <= x) && (x < r->max_excl);
}
static inline bool //
wuffs_base__range_ie_u64__contains_range(const wuffs_base__range_ie_u64* r,
wuffs_base__range_ie_u64 s) {
return wuffs_base__range_ie_u64__equals(
&s, wuffs_base__range_ie_u64__intersect(r, s));
}
static inline uint64_t //
wuffs_base__range_ie_u64__length(const wuffs_base__range_ie_u64* r) {
return wuffs_base__u64__sat_sub(r->max_excl, r->min_incl);
}
#ifdef __cplusplus
inline bool //
wuffs_base__range_ie_u64::is_empty() const {
return wuffs_base__range_ie_u64__is_empty(this);
}
inline bool //
wuffs_base__range_ie_u64::equals(wuffs_base__range_ie_u64 s) const {
return wuffs_base__range_ie_u64__equals(this, s);
}
inline wuffs_base__range_ie_u64 //
wuffs_base__range_ie_u64::intersect(wuffs_base__range_ie_u64 s) const {
return wuffs_base__range_ie_u64__intersect(this, s);
}
inline wuffs_base__range_ie_u64 //
wuffs_base__range_ie_u64::unite(wuffs_base__range_ie_u64 s) const {
return wuffs_base__range_ie_u64__unite(this, s);
}
inline bool //
wuffs_base__range_ie_u64::contains(uint64_t x) const {
return wuffs_base__range_ie_u64__contains(this, x);
}
inline bool //
wuffs_base__range_ie_u64::contains_range(wuffs_base__range_ie_u64 s) const {
return wuffs_base__range_ie_u64__contains_range(this, s);
}
inline uint64_t //
wuffs_base__range_ie_u64::length() const {
return wuffs_base__range_ie_u64__length(this);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__rect_ii_u32__struct {
uint32_t min_incl_x;
uint32_t min_incl_y;
uint32_t max_incl_x;
uint32_t max_incl_y;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__rect_ii_u32__struct s) const;
inline wuffs_base__rect_ii_u32__struct intersect(
wuffs_base__rect_ii_u32__struct s) const;
inline wuffs_base__rect_ii_u32__struct unite(
wuffs_base__rect_ii_u32__struct s) const;
inline bool contains(uint32_t x, uint32_t y) const;
inline bool contains_rect(wuffs_base__rect_ii_u32__struct s) const;
#endif // __cplusplus
} wuffs_base__rect_ii_u32;
static inline wuffs_base__rect_ii_u32 //
wuffs_base__empty_rect_ii_u32() {
wuffs_base__rect_ii_u32 ret;
ret.min_incl_x = 0;
ret.min_incl_y = 0;
ret.max_incl_x = 0;
ret.max_incl_y = 0;
return ret;
}
static inline wuffs_base__rect_ii_u32 //
wuffs_base__make_rect_ii_u32(uint32_t min_incl_x,
uint32_t min_incl_y,
uint32_t max_incl_x,
uint32_t max_incl_y) {
wuffs_base__rect_ii_u32 ret;
ret.min_incl_x = min_incl_x;
ret.min_incl_y = min_incl_y;
ret.max_incl_x = max_incl_x;
ret.max_incl_y = max_incl_y;
return ret;
}
static inline bool //
wuffs_base__rect_ii_u32__is_empty(const wuffs_base__rect_ii_u32* r) {
return (r->min_incl_x > r->max_incl_x) || (r->min_incl_y > r->max_incl_y);
}
static inline bool //
wuffs_base__rect_ii_u32__equals(const wuffs_base__rect_ii_u32* r,
wuffs_base__rect_ii_u32 s) {
return (r->min_incl_x == s.min_incl_x && r->min_incl_y == s.min_incl_y &&
r->max_incl_x == s.max_incl_x && r->max_incl_y == s.max_incl_y) ||
(wuffs_base__rect_ii_u32__is_empty(r) &&
wuffs_base__rect_ii_u32__is_empty(&s));
}
static inline wuffs_base__rect_ii_u32 //
wuffs_base__rect_ii_u32__intersect(const wuffs_base__rect_ii_u32* r,
wuffs_base__rect_ii_u32 s) {
wuffs_base__rect_ii_u32 t;
t.min_incl_x = wuffs_base__u32__max(r->min_incl_x, s.min_incl_x);
t.min_incl_y = wuffs_base__u32__max(r->min_incl_y, s.min_incl_y);
t.max_incl_x = wuffs_base__u32__min(r->max_incl_x, s.max_incl_x);
t.max_incl_y = wuffs_base__u32__min(r->max_incl_y, s.max_incl_y);
return t;
}
static inline wuffs_base__rect_ii_u32 //
wuffs_base__rect_ii_u32__unite(const wuffs_base__rect_ii_u32* r,
wuffs_base__rect_ii_u32 s) {
if (wuffs_base__rect_ii_u32__is_empty(r)) {
return s;
}
if (wuffs_base__rect_ii_u32__is_empty(&s)) {
return *r;
}
wuffs_base__rect_ii_u32 t;
t.min_incl_x = wuffs_base__u32__min(r->min_incl_x, s.min_incl_x);
t.min_incl_y = wuffs_base__u32__min(r->min_incl_y, s.min_incl_y);
t.max_incl_x = wuffs_base__u32__max(r->max_incl_x, s.max_incl_x);
t.max_incl_y = wuffs_base__u32__max(r->max_incl_y, s.max_incl_y);
return t;
}
static inline bool //
wuffs_base__rect_ii_u32__contains(const wuffs_base__rect_ii_u32* r,
uint32_t x,
uint32_t y) {
return (r->min_incl_x <= x) && (x <= r->max_incl_x) && (r->min_incl_y <= y) &&
(y <= r->max_incl_y);
}
static inline bool //
wuffs_base__rect_ii_u32__contains_rect(const wuffs_base__rect_ii_u32* r,
wuffs_base__rect_ii_u32 s) {
return wuffs_base__rect_ii_u32__equals(
&s, wuffs_base__rect_ii_u32__intersect(r, s));
}
#ifdef __cplusplus
inline bool //
wuffs_base__rect_ii_u32::is_empty() const {
return wuffs_base__rect_ii_u32__is_empty(this);
}
inline bool //
wuffs_base__rect_ii_u32::equals(wuffs_base__rect_ii_u32 s) const {
return wuffs_base__rect_ii_u32__equals(this, s);
}
inline wuffs_base__rect_ii_u32 //
wuffs_base__rect_ii_u32::intersect(wuffs_base__rect_ii_u32 s) const {
return wuffs_base__rect_ii_u32__intersect(this, s);
}
inline wuffs_base__rect_ii_u32 //
wuffs_base__rect_ii_u32::unite(wuffs_base__rect_ii_u32 s) const {
return wuffs_base__rect_ii_u32__unite(this, s);
}
inline bool //
wuffs_base__rect_ii_u32::contains(uint32_t x, uint32_t y) const {
return wuffs_base__rect_ii_u32__contains(this, x, y);
}
inline bool //
wuffs_base__rect_ii_u32::contains_rect(wuffs_base__rect_ii_u32 s) const {
return wuffs_base__rect_ii_u32__contains_rect(this, s);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__rect_ie_u32__struct {
uint32_t min_incl_x;
uint32_t min_incl_y;
uint32_t max_excl_x;
uint32_t max_excl_y;
#ifdef __cplusplus
inline bool is_empty() const;
inline bool equals(wuffs_base__rect_ie_u32__struct s) const;
inline wuffs_base__rect_ie_u32__struct intersect(
wuffs_base__rect_ie_u32__struct s) const;
inline wuffs_base__rect_ie_u32__struct unite(
wuffs_base__rect_ie_u32__struct s) const;
inline bool contains(uint32_t x, uint32_t y) const;
inline bool contains_rect(wuffs_base__rect_ie_u32__struct s) const;
inline uint32_t width() const;
inline uint32_t height() const;
#endif // __cplusplus
} wuffs_base__rect_ie_u32;
static inline wuffs_base__rect_ie_u32 //
wuffs_base__empty_rect_ie_u32() {
wuffs_base__rect_ie_u32 ret;
ret.min_incl_x = 0;
ret.min_incl_y = 0;
ret.max_excl_x = 0;
ret.max_excl_y = 0;
return ret;
}
static inline wuffs_base__rect_ie_u32 //
wuffs_base__make_rect_ie_u32(uint32_t min_incl_x,
uint32_t min_incl_y,
uint32_t max_excl_x,
uint32_t max_excl_y) {
wuffs_base__rect_ie_u32 ret;
ret.min_incl_x = min_incl_x;
ret.min_incl_y = min_incl_y;
ret.max_excl_x = max_excl_x;
ret.max_excl_y = max_excl_y;
return ret;
}
static inline bool //
wuffs_base__rect_ie_u32__is_empty(const wuffs_base__rect_ie_u32* r) {
return (r->min_incl_x >= r->max_excl_x) || (r->min_incl_y >= r->max_excl_y);
}
static inline bool //
wuffs_base__rect_ie_u32__equals(const wuffs_base__rect_ie_u32* r,
wuffs_base__rect_ie_u32 s) {
return (r->min_incl_x == s.min_incl_x && r->min_incl_y == s.min_incl_y &&
r->max_excl_x == s.max_excl_x && r->max_excl_y == s.max_excl_y) ||
(wuffs_base__rect_ie_u32__is_empty(r) &&
wuffs_base__rect_ie_u32__is_empty(&s));
}
static inline wuffs_base__rect_ie_u32 //
wuffs_base__rect_ie_u32__intersect(const wuffs_base__rect_ie_u32* r,
wuffs_base__rect_ie_u32 s) {
wuffs_base__rect_ie_u32 t;
t.min_incl_x = wuffs_base__u32__max(r->min_incl_x, s.min_incl_x);
t.min_incl_y = wuffs_base__u32__max(r->min_incl_y, s.min_incl_y);
t.max_excl_x = wuffs_base__u32__min(r->max_excl_x, s.max_excl_x);
t.max_excl_y = wuffs_base__u32__min(r->max_excl_y, s.max_excl_y);
return t;
}
static inline wuffs_base__rect_ie_u32 //
wuffs_base__rect_ie_u32__unite(const wuffs_base__rect_ie_u32* r,
wuffs_base__rect_ie_u32 s) {
if (wuffs_base__rect_ie_u32__is_empty(r)) {
return s;
}
if (wuffs_base__rect_ie_u32__is_empty(&s)) {
return *r;
}
wuffs_base__rect_ie_u32 t;
t.min_incl_x = wuffs_base__u32__min(r->min_incl_x, s.min_incl_x);
t.min_incl_y = wuffs_base__u32__min(r->min_incl_y, s.min_incl_y);
t.max_excl_x = wuffs_base__u32__max(r->max_excl_x, s.max_excl_x);
t.max_excl_y = wuffs_base__u32__max(r->max_excl_y, s.max_excl_y);
return t;
}
static inline bool //
wuffs_base__rect_ie_u32__contains(const wuffs_base__rect_ie_u32* r,
uint32_t x,
uint32_t y) {
return (r->min_incl_x <= x) && (x < r->max_excl_x) && (r->min_incl_y <= y) &&
(y < r->max_excl_y);
}
static inline bool //
wuffs_base__rect_ie_u32__contains_rect(const wuffs_base__rect_ie_u32* r,
wuffs_base__rect_ie_u32 s) {
return wuffs_base__rect_ie_u32__equals(
&s, wuffs_base__rect_ie_u32__intersect(r, s));
}
static inline uint32_t //
wuffs_base__rect_ie_u32__width(const wuffs_base__rect_ie_u32* r) {
return wuffs_base__u32__sat_sub(r->max_excl_x, r->min_incl_x);
}
static inline uint32_t //
wuffs_base__rect_ie_u32__height(const wuffs_base__rect_ie_u32* r) {
return wuffs_base__u32__sat_sub(r->max_excl_y, r->min_incl_y);
}
#ifdef __cplusplus
inline bool //
wuffs_base__rect_ie_u32::is_empty() const {
return wuffs_base__rect_ie_u32__is_empty(this);
}
inline bool //
wuffs_base__rect_ie_u32::equals(wuffs_base__rect_ie_u32 s) const {
return wuffs_base__rect_ie_u32__equals(this, s);
}
inline wuffs_base__rect_ie_u32 //
wuffs_base__rect_ie_u32::intersect(wuffs_base__rect_ie_u32 s) const {
return wuffs_base__rect_ie_u32__intersect(this, s);
}
inline wuffs_base__rect_ie_u32 //
wuffs_base__rect_ie_u32::unite(wuffs_base__rect_ie_u32 s) const {
return wuffs_base__rect_ie_u32__unite(this, s);
}
inline bool //
wuffs_base__rect_ie_u32::contains(uint32_t x, uint32_t y) const {
return wuffs_base__rect_ie_u32__contains(this, x, y);
}
inline bool //
wuffs_base__rect_ie_u32::contains_rect(wuffs_base__rect_ie_u32 s) const {
return wuffs_base__rect_ie_u32__contains_rect(this, s);
}
inline uint32_t //
wuffs_base__rect_ie_u32::width() const {
return wuffs_base__rect_ie_u32__width(this);
}
inline uint32_t //
wuffs_base__rect_ie_u32::height() const {
return wuffs_base__rect_ie_u32__height(this);
}
#endif // __cplusplus
// ---------------- More Information
// wuffs_base__more_information holds additional fields, typically when a Wuffs
// method returns a [note status](/doc/note/statuses.md).
//
// The flavor field follows the base38 namespace
// convention](/doc/note/base38-and-fourcc.md). The other fields' semantics
// depends on the flavor.
typedef struct wuffs_base__more_information__struct {
uint32_t flavor;
uint32_t w;
uint64_t x;
uint64_t y;
uint64_t z;
#ifdef __cplusplus
inline void set(uint32_t flavor_arg,
uint32_t w_arg,
uint64_t x_arg,
uint64_t y_arg,
uint64_t z_arg);
inline uint32_t io_redirect__fourcc() const;
inline wuffs_base__range_ie_u64 io_redirect__range() const;
inline uint64_t io_seek__position() const;
inline uint32_t metadata__fourcc() const;
// Deprecated: use metadata_raw_passthrough__range.
inline wuffs_base__range_ie_u64 metadata__range() const;
inline wuffs_base__range_ie_u64 metadata_raw_passthrough__range() const;
inline int32_t metadata_parsed__chrm(uint32_t component) const;
inline uint32_t metadata_parsed__gama() const;
inline uint32_t metadata_parsed__srgb() const;
#endif // __cplusplus
} wuffs_base__more_information;
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__IO_REDIRECT 1
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__IO_SEEK 2
// Deprecated: use
// WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_PASSTHROUGH.
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA 3
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_PASSTHROUGH 3
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_TRANSFORM 4
#define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_PARSED 5
static inline wuffs_base__more_information //
wuffs_base__empty_more_information() {
wuffs_base__more_information ret;
ret.flavor = 0;
ret.w = 0;
ret.x = 0;
ret.y = 0;
ret.z = 0;
return ret;
}
static inline void //
wuffs_base__more_information__set(wuffs_base__more_information* m,
uint32_t flavor,
uint32_t w,
uint64_t x,
uint64_t y,
uint64_t z) {
if (!m) {
return;
}
m->flavor = flavor;
m->w = w;
m->x = x;
m->y = y;
m->z = z;
}
static inline uint32_t //
wuffs_base__more_information__io_redirect__fourcc(
const wuffs_base__more_information* m) {
return m->w;
}
static inline wuffs_base__range_ie_u64 //
wuffs_base__more_information__io_redirect__range(
const wuffs_base__more_information* m) {
wuffs_base__range_ie_u64 ret;
ret.min_incl = m->y;
ret.max_excl = m->z;
return ret;
}
static inline uint64_t //
wuffs_base__more_information__io_seek__position(
const wuffs_base__more_information* m) {
return m->x;
}
static inline uint32_t //
wuffs_base__more_information__metadata__fourcc(
const wuffs_base__more_information* m) {
return m->w;
}
// Deprecated: use
// wuffs_base__more_information__metadata_raw_passthrough__range.
static inline wuffs_base__range_ie_u64 //
wuffs_base__more_information__metadata__range(
const wuffs_base__more_information* m) {
wuffs_base__range_ie_u64 ret;
ret.min_incl = m->y;
ret.max_excl = m->z;
return ret;
}
static inline wuffs_base__range_ie_u64 //
wuffs_base__more_information__metadata_raw_passthrough__range(
const wuffs_base__more_information* m) {
wuffs_base__range_ie_u64 ret;
ret.min_incl = m->y;
ret.max_excl = m->z;
return ret;
}
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__WHITE_X 0
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__WHITE_Y 1
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__RED_X 2
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__RED_Y 3
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__GREEN_X 4
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__GREEN_Y 5
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__BLUE_X 6
#define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__BLUE_Y 7
// wuffs_base__more_information__metadata_parsed__chrm returns chromaticity
// values (scaled by 100000) like the PNG "cHRM" chunk. For example, the sRGB
// color space corresponds to:
// - ETC__CHRM__WHITE_X 31270
// - ETC__CHRM__WHITE_Y 32900
// - ETC__CHRM__RED_X 64000
// - ETC__CHRM__RED_Y 33000
// - ETC__CHRM__GREEN_X 30000
// - ETC__CHRM__GREEN_Y 60000
// - ETC__CHRM__BLUE_X 15000
// - ETC__CHRM__BLUE_Y 6000
//
// See
// https://ciechanow.ski/color-spaces/#chromaticity-and-white-point-coordinates
static inline int32_t //
wuffs_base__more_information__metadata_parsed__chrm(
const wuffs_base__more_information* m,
uint32_t component) {
// After the flavor and the w field (holding a FourCC), a
// wuffs_base__more_information holds 24 bytes of data in three uint64_t
// typed fields (x, y and z). We pack the eight chromaticity values (wx, wy,
// rx, ..., by), basically int24_t values, into 24 bytes like this:
// - LSB MSB
// - x: wx wx wx wy wy wy rx rx
// - y: rx ry ry ry gx gx gx gy
// - z: gy gy bx bx bx by by by
uint32_t u = 0;
switch (component & 7) {
case 0:
u = ((uint32_t)(m->x >> 0));
break;
case 1:
u = ((uint32_t)(m->x >> 24));
break;
case 2:
u = ((uint32_t)((m->x >> 48) | (m->y << 16)));
break;
case 3:
u = ((uint32_t)(m->y >> 8));
break;
case 4:
u = ((uint32_t)(m->y >> 32));
break;
case 5:
u = ((uint32_t)((m->y >> 56) | (m->z << 8)));
break;
case 6:
u = ((uint32_t)(m->z >> 16));
break;
case 7:
u = ((uint32_t)(m->z >> 40));
break;
}
// The left-right shifts sign-extend from 24-bit to 32-bit integers.
return ((int32_t)(u << 8)) >> 8;
}
// wuffs_base__more_information__metadata_parsed__gama returns inverse gamma
// correction values (scaled by 100000) like the PNG "gAMA" chunk. For example,
// for gamma = 2.2, this returns 45455 (approximating 100000 / 2.2).
static inline uint32_t //
wuffs_base__more_information__metadata_parsed__gama(
const wuffs_base__more_information* m) {
return ((uint32_t)(m->x));
}
#define WUFFS_BASE__SRGB_RENDERING_INTENT__PERCEPTUAL 0
#define WUFFS_BASE__SRGB_RENDERING_INTENT__RELATIVE_COLORIMETRIC 1
#define WUFFS_BASE__SRGB_RENDERING_INTENT__SATURATION 2
#define WUFFS_BASE__SRGB_RENDERING_INTENT__ABSOLUTE_COLORIMETRIC 3
// wuffs_base__more_information__metadata_parsed__srgb returns the sRGB
// rendering intent like the PNG "sRGB" chunk.
static inline uint32_t //
wuffs_base__more_information__metadata_parsed__srgb(
const wuffs_base__more_information* m) {
return m->x & 3;
}
#ifdef __cplusplus
inline void //
wuffs_base__more_information::set(uint32_t flavor_arg,
uint32_t w_arg,
uint64_t x_arg,
uint64_t y_arg,
uint64_t z_arg) {
wuffs_base__more_information__set(this, flavor_arg, w_arg, x_arg, y_arg,
z_arg);
}
inline uint32_t //
wuffs_base__more_information::io_redirect__fourcc() const {
return wuffs_base__more_information__io_redirect__fourcc(this);
}
inline wuffs_base__range_ie_u64 //
wuffs_base__more_information::io_redirect__range() const {
return wuffs_base__more_information__io_redirect__range(this);
}
inline uint64_t //
wuffs_base__more_information::io_seek__position() const {
return wuffs_base__more_information__io_seek__position(this);
}
inline uint32_t //
wuffs_base__more_information::metadata__fourcc() const {
return wuffs_base__more_information__metadata__fourcc(this);
}
inline wuffs_base__range_ie_u64 //
wuffs_base__more_information::metadata__range() const {
return wuffs_base__more_information__metadata__range(this);
}
inline wuffs_base__range_ie_u64 //
wuffs_base__more_information::metadata_raw_passthrough__range() const {
return wuffs_base__more_information__metadata_raw_passthrough__range(this);
}
inline int32_t //
wuffs_base__more_information::metadata_parsed__chrm(uint32_t component) const {
return wuffs_base__more_information__metadata_parsed__chrm(this, component);
}
inline uint32_t //
wuffs_base__more_information::metadata_parsed__gama() const {
return wuffs_base__more_information__metadata_parsed__gama(this);
}
inline uint32_t //
wuffs_base__more_information::metadata_parsed__srgb() const {
return wuffs_base__more_information__metadata_parsed__srgb(this);
}
#endif // __cplusplus
// ---------------- I/O
//
// See (/doc/note/io-input-output.md).
// wuffs_base__io_buffer_meta is the metadata for a wuffs_base__io_buffer's
// data.
typedef struct wuffs_base__io_buffer_meta__struct {
size_t wi; // Write index. Invariant: wi <= len.
size_t ri; // Read index. Invariant: ri <= wi.
uint64_t pos; // Buffer position (relative to the start of stream).
bool closed; // No further writes are expected.
} wuffs_base__io_buffer_meta;
// wuffs_base__io_buffer is a 1-dimensional buffer (a pointer and length) plus
// additional metadata.
//
// A value with all fields zero is a valid, empty buffer.
typedef struct wuffs_base__io_buffer__struct {
wuffs_base__slice_u8 data;
wuffs_base__io_buffer_meta meta;
#ifdef __cplusplus
inline bool is_valid() const;
inline void compact();
inline size_t reader_length() const;
inline uint8_t* reader_pointer() const;
inline uint64_t reader_position() const;
inline wuffs_base__slice_u8 reader_slice() const;
inline size_t writer_length() const;
inline uint8_t* writer_pointer() const;
inline uint64_t writer_position() const;
inline wuffs_base__slice_u8 writer_slice() const;
// Deprecated: use reader_position.
inline uint64_t reader_io_position() const;
// Deprecated: use writer_position.
inline uint64_t writer_io_position() const;
#endif // __cplusplus
} wuffs_base__io_buffer;
static inline wuffs_base__io_buffer //
wuffs_base__make_io_buffer(wuffs_base__slice_u8 data,
wuffs_base__io_buffer_meta meta) {
wuffs_base__io_buffer ret;
ret.data = data;
ret.meta = meta;
return ret;
}
static inline wuffs_base__io_buffer_meta //
wuffs_base__make_io_buffer_meta(size_t wi,
size_t ri,
uint64_t pos,
bool closed) {
wuffs_base__io_buffer_meta ret;
ret.wi = wi;
ret.ri = ri;
ret.pos = pos;
ret.closed = closed;
return ret;
}
static inline wuffs_base__io_buffer //
wuffs_base__ptr_u8__reader(uint8_t* ptr, size_t len, bool closed) {
wuffs_base__io_buffer ret;
ret.data.ptr = ptr;
ret.data.len = len;
ret.meta.wi = len;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = closed;
return ret;
}
static inline wuffs_base__io_buffer //
wuffs_base__ptr_u8__writer(uint8_t* ptr, size_t len) {
wuffs_base__io_buffer ret;
ret.data.ptr = ptr;
ret.data.len = len;
ret.meta.wi = 0;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = false;
return ret;
}
static inline wuffs_base__io_buffer //
wuffs_base__slice_u8__reader(wuffs_base__slice_u8 s, bool closed) {
wuffs_base__io_buffer ret;
ret.data.ptr = s.ptr;
ret.data.len = s.len;
ret.meta.wi = s.len;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = closed;
return ret;
}
static inline wuffs_base__io_buffer //
wuffs_base__slice_u8__writer(wuffs_base__slice_u8 s) {
wuffs_base__io_buffer ret;
ret.data.ptr = s.ptr;
ret.data.len = s.len;
ret.meta.wi = 0;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = false;
return ret;
}
static inline wuffs_base__io_buffer //
wuffs_base__empty_io_buffer() {
wuffs_base__io_buffer ret;
ret.data.ptr = NULL;
ret.data.len = 0;
ret.meta.wi = 0;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = false;
return ret;
}
static inline wuffs_base__io_buffer_meta //
wuffs_base__empty_io_buffer_meta() {
wuffs_base__io_buffer_meta ret;
ret.wi = 0;
ret.ri = 0;
ret.pos = 0;
ret.closed = false;
return ret;
}
static inline bool //
wuffs_base__io_buffer__is_valid(const wuffs_base__io_buffer* buf) {
if (buf) {
if (buf->data.ptr) {
return (buf->meta.ri <= buf->meta.wi) && (buf->meta.wi <= buf->data.len);
} else {
return (buf->meta.ri == 0) && (buf->meta.wi == 0) && (buf->data.len == 0);
}
}
return false;
}
// wuffs_base__io_buffer__compact moves any written but unread bytes to the
// start of the buffer.
static inline void //
wuffs_base__io_buffer__compact(wuffs_base__io_buffer* buf) {
if (!buf || (buf->meta.ri == 0)) {
return;
}
buf->meta.pos = wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri);
size_t n = buf->meta.wi - buf->meta.ri;
if (n != 0) {
memmove(buf->data.ptr, buf->data.ptr + buf->meta.ri, n);
}
buf->meta.wi = n;
buf->meta.ri = 0;
}
// Deprecated. Use wuffs_base__io_buffer__reader_position.
static inline uint64_t //
wuffs_base__io_buffer__reader_io_position(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0;
}
static inline size_t //
wuffs_base__io_buffer__reader_length(const wuffs_base__io_buffer* buf) {
return buf ? buf->meta.wi - buf->meta.ri : 0;
}
static inline uint8_t* //
wuffs_base__io_buffer__reader_pointer(const wuffs_base__io_buffer* buf) {
return buf ? (buf->data.ptr + buf->meta.ri) : NULL;
}
static inline uint64_t //
wuffs_base__io_buffer__reader_position(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0;
}
static inline wuffs_base__slice_u8 //
wuffs_base__io_buffer__reader_slice(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__make_slice_u8(buf->data.ptr + buf->meta.ri,
buf->meta.wi - buf->meta.ri)
: wuffs_base__empty_slice_u8();
}
// Deprecated. Use wuffs_base__io_buffer__writer_position.
static inline uint64_t //
wuffs_base__io_buffer__writer_io_position(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0;
}
static inline size_t //
wuffs_base__io_buffer__writer_length(const wuffs_base__io_buffer* buf) {
return buf ? buf->data.len - buf->meta.wi : 0;
}
static inline uint8_t* //
wuffs_base__io_buffer__writer_pointer(const wuffs_base__io_buffer* buf) {
return buf ? (buf->data.ptr + buf->meta.wi) : NULL;
}
static inline uint64_t //
wuffs_base__io_buffer__writer_position(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0;
}
static inline wuffs_base__slice_u8 //
wuffs_base__io_buffer__writer_slice(const wuffs_base__io_buffer* buf) {
return buf ? wuffs_base__make_slice_u8(buf->data.ptr + buf->meta.wi,
buf->data.len - buf->meta.wi)
: wuffs_base__empty_slice_u8();
}
#ifdef __cplusplus
inline bool //
wuffs_base__io_buffer::is_valid() const {
return wuffs_base__io_buffer__is_valid(this);
}
inline void //
wuffs_base__io_buffer::compact() {
wuffs_base__io_buffer__compact(this);
}
inline uint64_t //
wuffs_base__io_buffer::reader_io_position() const {
return wuffs_base__io_buffer__reader_io_position(this);
}
inline size_t //
wuffs_base__io_buffer::reader_length() const {
return wuffs_base__io_buffer__reader_length(this);
}
inline uint8_t* //
wuffs_base__io_buffer::reader_pointer() const {
return wuffs_base__io_buffer__reader_pointer(this);
}
inline uint64_t //
wuffs_base__io_buffer::reader_position() const {
return wuffs_base__io_buffer__reader_position(this);
}
inline wuffs_base__slice_u8 //
wuffs_base__io_buffer::reader_slice() const {
return wuffs_base__io_buffer__reader_slice(this);
}
inline uint64_t //
wuffs_base__io_buffer::writer_io_position() const {
return wuffs_base__io_buffer__writer_io_position(this);
}
inline size_t //
wuffs_base__io_buffer::writer_length() const {
return wuffs_base__io_buffer__writer_length(this);
}
inline uint8_t* //
wuffs_base__io_buffer::writer_pointer() const {
return wuffs_base__io_buffer__writer_pointer(this);
}
inline uint64_t //
wuffs_base__io_buffer::writer_position() const {
return wuffs_base__io_buffer__writer_position(this);
}
inline wuffs_base__slice_u8 //
wuffs_base__io_buffer::writer_slice() const {
return wuffs_base__io_buffer__writer_slice(this);
}
#endif // __cplusplus
// ---------------- Tokens
// wuffs_base__token is an element of a byte stream's tokenization.
//
// See https://github.com/google/wuffs/blob/main/doc/note/tokens.md
typedef struct wuffs_base__token__struct {
uint64_t repr;
#ifdef __cplusplus
inline int64_t value() const;
inline int64_t value_extension() const;
inline int64_t value_major() const;
inline int64_t value_base_category() const;
inline uint64_t value_minor() const;
inline uint64_t value_base_detail() const;
inline int64_t value_base_detail__sign_extended() const;
inline bool continued() const;
inline uint64_t length() const;
#endif // __cplusplus
} wuffs_base__token;
static inline wuffs_base__token //
wuffs_base__make_token(uint64_t repr) {
wuffs_base__token ret;
ret.repr = repr;
return ret;
}
// --------
#define WUFFS_BASE__TOKEN__LENGTH__MAX_INCL 0xFFFF
#define WUFFS_BASE__TOKEN__VALUE__SHIFT 17
#define WUFFS_BASE__TOKEN__VALUE_EXTENSION__SHIFT 17
#define WUFFS_BASE__TOKEN__VALUE_MAJOR__SHIFT 42
#define WUFFS_BASE__TOKEN__VALUE_MINOR__SHIFT 17
#define WUFFS_BASE__TOKEN__VALUE_BASE_CATEGORY__SHIFT 38
#define WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT 17
#define WUFFS_BASE__TOKEN__CONTINUED__SHIFT 16
#define WUFFS_BASE__TOKEN__LENGTH__SHIFT 0
#define WUFFS_BASE__TOKEN__VALUE_EXTENSION__NUM_BITS 46
// --------
#define WUFFS_BASE__TOKEN__VBC__FILLER 0
#define WUFFS_BASE__TOKEN__VBC__STRUCTURE 1
#define WUFFS_BASE__TOKEN__VBC__STRING 2
#define WUFFS_BASE__TOKEN__VBC__UNICODE_CODE_POINT 3
#define WUFFS_BASE__TOKEN__VBC__LITERAL 4
#define WUFFS_BASE__TOKEN__VBC__NUMBER 5
#define WUFFS_BASE__TOKEN__VBC__INLINE_INTEGER_SIGNED 6
#define WUFFS_BASE__TOKEN__VBC__INLINE_INTEGER_UNSIGNED 7
// --------
#define WUFFS_BASE__TOKEN__VBD__FILLER__PUNCTUATION 0x00001
#define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_BLOCK 0x00002
#define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_LINE 0x00004
// COMMENT_ANY is a bit-wise or of COMMENT_BLOCK AND COMMENT_LINE.
#define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_ANY 0x00006
// --------
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__PUSH 0x00001
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__POP 0x00002
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_NONE 0x00010
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_LIST 0x00020
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_DICT 0x00040
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_NONE 0x01000
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_LIST 0x02000
#define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_DICT 0x04000
// --------
// DEFINITELY_FOO means that the destination bytes (and also the source bytes,
// for 1_DST_1_SRC_COPY) are in the FOO format. Definitely means that the lack
// of the bit means "maybe FOO". It does not necessarily mean "not FOO".
//
// CHAIN_ETC means that decoding the entire token chain forms a UTF-8 or ASCII
// string, not just this current token. CHAIN_ETC_UTF_8 therefore distinguishes
// Unicode (UTF-8) strings from byte strings. MUST means that the the token
// producer (e.g. parser) must verify this. SHOULD means that the token
// consumer (e.g. renderer) should verify this.
//
// When a CHAIN_ETC_UTF_8 bit is set, the parser must ensure that non-ASCII
// code points (with multi-byte UTF-8 encodings) do not straddle token
// boundaries. Checking UTF-8 validity can inspect each token separately.
//
// The lack of any particular bit is conservative: it is valid for all-ASCII
// strings, in a single- or multi-token chain, to have none of these bits set.
#define WUFFS_BASE__TOKEN__VBD__STRING__DEFINITELY_UTF_8 0x00001
#define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_MUST_BE_UTF_8 0x00002
#define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_SHOULD_BE_UTF_8 0x00004
#define WUFFS_BASE__TOKEN__VBD__STRING__DEFINITELY_ASCII 0x00010
#define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_MUST_BE_ASCII 0x00020
#define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_SHOULD_BE_ASCII 0x00040
// CONVERT_D_DST_S_SRC means that multiples of S source bytes (possibly padded)
// produces multiples of D destination bytes. For example,
// CONVERT_1_DST_4_SRC_BACKSLASH_X means a source like "\\x23\\x67\\xAB", where
// 12 src bytes encode 3 dst bytes.
//
// Post-processing may further transform those D destination bytes (e.g. treat
// "\\xFF" as the Unicode code point U+00FF instead of the byte 0xFF), but that
// is out of scope of this VBD's semantics.
//
// When src is the empty string, multiple conversion algorithms are applicable
// (so these bits are not necessarily mutually exclusive), all producing the
// same empty dst string.
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_0_DST_1_SRC_DROP 0x00100
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_1_SRC_COPY 0x00200
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_2_SRC_HEXADECIMAL 0x00400
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_4_SRC_BACKSLASH_X 0x00800
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_3_DST_4_SRC_BASE_64_STD 0x01000
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_3_DST_4_SRC_BASE_64_URL 0x02000
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_4_DST_5_SRC_ASCII_85 0x04000
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_5_DST_8_SRC_BASE_32_HEX 0x08000
#define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_5_DST_8_SRC_BASE_32_STD 0x10000
// --------
#define WUFFS_BASE__TOKEN__VBD__LITERAL__UNDEFINED 0x00001
#define WUFFS_BASE__TOKEN__VBD__LITERAL__NULL 0x00002
#define WUFFS_BASE__TOKEN__VBD__LITERAL__FALSE 0x00004
#define WUFFS_BASE__TOKEN__VBD__LITERAL__TRUE 0x00008
// --------
// For a source string of "123" or "0x9A", it is valid for a tokenizer to
// return any combination of:
// - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_FLOATING_POINT.
// - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_SIGNED.
// - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_UNSIGNED.
//
// For a source string of "+123" or "-0x9A", only the first two are valid.
//
// For a source string of "123.", only the first one is valid.
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_FLOATING_POINT 0x00001
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_SIGNED 0x00002
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_UNSIGNED 0x00004
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_NEG_INF 0x00010
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_POS_INF 0x00020
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_NEG_NAN 0x00040
#define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_POS_NAN 0x00080
// The number 300 might be represented as "\x01\x2C", "\x2C\x01\x00\x00" or
// "300", which are big-endian, little-endian or text. For binary formats, the
// token length (after adjusting for FORMAT_IGNORE_ETC) discriminates
// e.g. u16 little-endian vs u32 little-endian.
#define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_BINARY_BIG_ENDIAN 0x00100
#define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_BINARY_LITTLE_ENDIAN 0x00200
#define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_TEXT 0x00400
#define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_IGNORE_FIRST_BYTE 0x01000
// --------
// wuffs_base__token__value returns the token's high 46 bits, sign-extended. A
// negative value means an extended token, non-negative means a simple token.
static inline int64_t //
wuffs_base__token__value(const wuffs_base__token* t) {
return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE__SHIFT;
}
// wuffs_base__token__value_extension returns a negative value if the token was
// not an extended token.
static inline int64_t //
wuffs_base__token__value_extension(const wuffs_base__token* t) {
return (~(int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_EXTENSION__SHIFT;
}
// wuffs_base__token__value_major returns a negative value if the token was not
// a simple token.
static inline int64_t //
wuffs_base__token__value_major(const wuffs_base__token* t) {
return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_MAJOR__SHIFT;
}
// wuffs_base__token__value_base_category returns a negative value if the token
// was not a simple token.
static inline int64_t //
wuffs_base__token__value_base_category(const wuffs_base__token* t) {
return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_BASE_CATEGORY__SHIFT;
}
static inline uint64_t //
wuffs_base__token__value_minor(const wuffs_base__token* t) {
return (t->repr >> WUFFS_BASE__TOKEN__VALUE_MINOR__SHIFT) & 0x1FFFFFF;
}
static inline uint64_t //
wuffs_base__token__value_base_detail(const wuffs_base__token* t) {
return (t->repr >> WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT) & 0x1FFFFF;
}
static inline int64_t //
wuffs_base__token__value_base_detail__sign_extended(
const wuffs_base__token* t) {
// The VBD is 21 bits in the middle of t->repr. Left shift the high (64 - 21
// - ETC__SHIFT) bits off, then right shift (sign-extending) back down.
uint64_t u = t->repr << (43 - WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT);
return ((int64_t)u) >> 43;
}
static inline bool //
wuffs_base__token__continued(const wuffs_base__token* t) {
return t->repr & 0x10000;
}
static inline uint64_t //
wuffs_base__token__length(const wuffs_base__token* t) {
return (t->repr >> WUFFS_BASE__TOKEN__LENGTH__SHIFT) & 0xFFFF;
}
#ifdef __cplusplus
inline int64_t //
wuffs_base__token::value() const {
return wuffs_base__token__value(this);
}
inline int64_t //
wuffs_base__token::value_extension() const {
return wuffs_base__token__value_extension(this);
}
inline int64_t //
wuffs_base__token::value_major() const {
return wuffs_base__token__value_major(this);
}
inline int64_t //
wuffs_base__token::value_base_category() const {
return wuffs_base__token__value_base_category(this);
}
inline uint64_t //
wuffs_base__token::value_minor() const {
return wuffs_base__token__value_minor(this);
}
inline uint64_t //
wuffs_base__token::value_base_detail() const {
return wuffs_base__token__value_base_detail(this);
}
inline int64_t //
wuffs_base__token::value_base_detail__sign_extended() const {
return wuffs_base__token__value_base_detail__sign_extended(this);
}
inline bool //
wuffs_base__token::continued() const {
return wuffs_base__token__continued(this);
}
inline uint64_t //
wuffs_base__token::length() const {
return wuffs_base__token__length(this);
}
#endif // __cplusplus
// --------
typedef WUFFS_BASE__SLICE(wuffs_base__token) wuffs_base__slice_token;
static inline wuffs_base__slice_token //
wuffs_base__make_slice_token(wuffs_base__token* ptr, size_t len) {
wuffs_base__slice_token ret;
ret.ptr = ptr;
ret.len = len;
return ret;
}
static inline wuffs_base__slice_token //
wuffs_base__empty_slice_token() {
wuffs_base__slice_token ret;
ret.ptr = NULL;
ret.len = 0;
return ret;
}
// --------
// wuffs_base__token_buffer_meta is the metadata for a
// wuffs_base__token_buffer's data.
typedef struct wuffs_base__token_buffer_meta__struct {
size_t wi; // Write index. Invariant: wi <= len.
size_t ri; // Read index. Invariant: ri <= wi.
uint64_t pos; // Position of the buffer start relative to the stream start.
bool closed; // No further writes are expected.
} wuffs_base__token_buffer_meta;
// wuffs_base__token_buffer is a 1-dimensional buffer (a pointer and length)
// plus additional metadata.
//
// A value with all fields zero is a valid, empty buffer.
typedef struct wuffs_base__token_buffer__struct {
wuffs_base__slice_token data;
wuffs_base__token_buffer_meta meta;
#ifdef __cplusplus
inline bool is_valid() const;
inline void compact();
inline uint64_t reader_length() const;
inline wuffs_base__token* reader_pointer() const;
inline wuffs_base__slice_token reader_slice() const;
inline uint64_t reader_token_position() const;
inline uint64_t writer_length() const;
inline uint64_t writer_token_position() const;
inline wuffs_base__token* writer_pointer() const;
inline wuffs_base__slice_token writer_slice() const;
#endif // __cplusplus
} wuffs_base__token_buffer;
static inline wuffs_base__token_buffer //
wuffs_base__make_token_buffer(wuffs_base__slice_token data,
wuffs_base__token_buffer_meta meta) {
wuffs_base__token_buffer ret;
ret.data = data;
ret.meta = meta;
return ret;
}
static inline wuffs_base__token_buffer_meta //
wuffs_base__make_token_buffer_meta(size_t wi,
size_t ri,
uint64_t pos,
bool closed) {
wuffs_base__token_buffer_meta ret;
ret.wi = wi;
ret.ri = ri;
ret.pos = pos;
ret.closed = closed;
return ret;
}
static inline wuffs_base__token_buffer //
wuffs_base__slice_token__reader(wuffs_base__slice_token s, bool closed) {
wuffs_base__token_buffer ret;
ret.data.ptr = s.ptr;
ret.data.len = s.len;
ret.meta.wi = s.len;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = closed;
return ret;
}
static inline wuffs_base__token_buffer //
wuffs_base__slice_token__writer(wuffs_base__slice_token s) {
wuffs_base__token_buffer ret;
ret.data.ptr = s.ptr;
ret.data.len = s.len;
ret.meta.wi = 0;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = false;
return ret;
}
static inline wuffs_base__token_buffer //
wuffs_base__empty_token_buffer() {
wuffs_base__token_buffer ret;
ret.data.ptr = NULL;
ret.data.len = 0;
ret.meta.wi = 0;
ret.meta.ri = 0;
ret.meta.pos = 0;
ret.meta.closed = false;
return ret;
}
static inline wuffs_base__token_buffer_meta //
wuffs_base__empty_token_buffer_meta() {
wuffs_base__token_buffer_meta ret;
ret.wi = 0;
ret.ri = 0;
ret.pos = 0;
ret.closed = false;
return ret;
}
static inline bool //
wuffs_base__token_buffer__is_valid(const wuffs_base__token_buffer* buf) {
if (buf) {
if (buf->data.ptr) {
return (buf->meta.ri <= buf->meta.wi) && (buf->meta.wi <= buf->data.len);
} else {
return (buf->meta.ri == 0) && (buf->meta.wi == 0) && (buf->data.len == 0);
}
}
return false;
}
// wuffs_base__token_buffer__compact moves any written but unread tokens to the
// start of the buffer.
static inline void //
wuffs_base__token_buffer__compact(wuffs_base__token_buffer* buf) {
if (!buf || (buf->meta.ri == 0)) {
return;
}
buf->meta.pos = wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri);
size_t n = buf->meta.wi - buf->meta.ri;
if (n != 0) {
memmove(buf->data.ptr, buf->data.ptr + buf->meta.ri,
n * sizeof(wuffs_base__token));
}
buf->meta.wi = n;
buf->meta.ri = 0;
}
static inline uint64_t //
wuffs_base__token_buffer__reader_length(const wuffs_base__token_buffer* buf) {
return buf ? buf->meta.wi - buf->meta.ri : 0;
}
static inline wuffs_base__token* //
wuffs_base__token_buffer__reader_pointer(const wuffs_base__token_buffer* buf) {
return buf ? (buf->data.ptr + buf->meta.ri) : NULL;
}
static inline wuffs_base__slice_token //
wuffs_base__token_buffer__reader_slice(const wuffs_base__token_buffer* buf) {
return buf ? wuffs_base__make_slice_token(buf->data.ptr + buf->meta.ri,
buf->meta.wi - buf->meta.ri)
: wuffs_base__empty_slice_token();
}
static inline uint64_t //
wuffs_base__token_buffer__reader_token_position(
const wuffs_base__token_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0;
}
static inline uint64_t //
wuffs_base__token_buffer__writer_length(const wuffs_base__token_buffer* buf) {
return buf ? buf->data.len - buf->meta.wi : 0;
}
static inline wuffs_base__token* //
wuffs_base__token_buffer__writer_pointer(const wuffs_base__token_buffer* buf) {
return buf ? (buf->data.ptr + buf->meta.wi) : NULL;
}
static inline wuffs_base__slice_token //
wuffs_base__token_buffer__writer_slice(const wuffs_base__token_buffer* buf) {
return buf ? wuffs_base__make_slice_token(buf->data.ptr + buf->meta.wi,
buf->data.len - buf->meta.wi)
: wuffs_base__empty_slice_token();
}
static inline uint64_t //
wuffs_base__token_buffer__writer_token_position(
const wuffs_base__token_buffer* buf) {
return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0;
}
#ifdef __cplusplus
inline bool //
wuffs_base__token_buffer::is_valid() const {
return wuffs_base__token_buffer__is_valid(this);
}
inline void //
wuffs_base__token_buffer::compact() {
wuffs_base__token_buffer__compact(this);
}
inline uint64_t //
wuffs_base__token_buffer::reader_length() const {
return wuffs_base__token_buffer__reader_length(this);
}
inline wuffs_base__token* //
wuffs_base__token_buffer::reader_pointer() const {
return wuffs_base__token_buffer__reader_pointer(this);
}
inline wuffs_base__slice_token //
wuffs_base__token_buffer::reader_slice() const {
return wuffs_base__token_buffer__reader_slice(this);
}
inline uint64_t //
wuffs_base__token_buffer::reader_token_position() const {
return wuffs_base__token_buffer__reader_token_position(this);
}
inline uint64_t //
wuffs_base__token_buffer::writer_length() const {
return wuffs_base__token_buffer__writer_length(this);
}
inline wuffs_base__token* //
wuffs_base__token_buffer::writer_pointer() const {
return wuffs_base__token_buffer__writer_pointer(this);
}
inline wuffs_base__slice_token //
wuffs_base__token_buffer::writer_slice() const {
return wuffs_base__token_buffer__writer_slice(this);
}
inline uint64_t //
wuffs_base__token_buffer::writer_token_position() const {
return wuffs_base__token_buffer__writer_token_position(this);
}
#endif // __cplusplus
// ---------------- Memory Allocation
// The memory allocation related functions in this section aren't used by Wuffs
// per se, but they may be helpful to the code that uses Wuffs.
// wuffs_base__malloc_slice_uxx wraps calling a malloc-like function, except
// that it takes a uint64_t number of elements instead of a size_t size in
// bytes, and it returns a slice (a pointer and a length) instead of just a
// pointer.
//
// You can pass the C stdlib's malloc as the malloc_func.
//
// It returns an empty slice (containing a NULL ptr field) if (num_uxx *
// sizeof(uintxx_t)) would overflow SIZE_MAX.
static inline wuffs_base__slice_u8 //
wuffs_base__malloc_slice_u8(void* (*malloc_func)(size_t), uint64_t num_u8) {
if (malloc_func && (num_u8 <= (SIZE_MAX / sizeof(uint8_t)))) {
void* p = (*malloc_func)((size_t)(num_u8 * sizeof(uint8_t)));
if (p) {
return wuffs_base__make_slice_u8((uint8_t*)(p), (size_t)num_u8);
}
}
return wuffs_base__make_slice_u8(NULL, 0);
}
static inline wuffs_base__slice_u16 //
wuffs_base__malloc_slice_u16(void* (*malloc_func)(size_t), uint64_t num_u16) {
if (malloc_func && (num_u16 <= (SIZE_MAX / sizeof(uint16_t)))) {
void* p = (*malloc_func)((size_t)(num_u16 * sizeof(uint16_t)));
if (p) {
return wuffs_base__make_slice_u16((uint16_t*)(p), (size_t)num_u16);
}
}
return wuffs_base__make_slice_u16(NULL, 0);
}
static inline wuffs_base__slice_u32 //
wuffs_base__malloc_slice_u32(void* (*malloc_func)(size_t), uint64_t num_u32) {
if (malloc_func && (num_u32 <= (SIZE_MAX / sizeof(uint32_t)))) {
void* p = (*malloc_func)((size_t)(num_u32 * sizeof(uint32_t)));
if (p) {
return wuffs_base__make_slice_u32((uint32_t*)(p), (size_t)num_u32);
}
}
return wuffs_base__make_slice_u32(NULL, 0);
}
static inline wuffs_base__slice_u64 //
wuffs_base__malloc_slice_u64(void* (*malloc_func)(size_t), uint64_t num_u64) {
if (malloc_func && (num_u64 <= (SIZE_MAX / sizeof(uint64_t)))) {
void* p = (*malloc_func)((size_t)(num_u64 * sizeof(uint64_t)));
if (p) {
return wuffs_base__make_slice_u64((uint64_t*)(p), (size_t)num_u64);
}
}
return wuffs_base__make_slice_u64(NULL, 0);
}
// ---------------- Images
// wuffs_base__color_u32_argb_premul is an 8 bit per channel premultiplied
// Alpha, Red, Green, Blue color, as a uint32_t value. Its value is always
// 0xAARRGGBB (Alpha most significant, Blue least), regardless of endianness.
typedef uint32_t wuffs_base__color_u32_argb_premul;
// wuffs_base__color_u32_argb_premul__is_valid returns whether c's Red, Green
// and Blue channels are all less than or equal to its Alpha channel. c uses
// premultiplied alpha, so 50% opaque 100% saturated red is 0x7F7F_0000 and a
// value like 0x7F80_0000 is invalid.
static inline bool //
wuffs_base__color_u32_argb_premul__is_valid(
wuffs_base__color_u32_argb_premul c) {
uint32_t a = 0xFF & (c >> 24);
uint32_t r = 0xFF & (c >> 16);
uint32_t g = 0xFF & (c >> 8);
uint32_t b = 0xFF & (c >> 0);
return (a >= r) && (a >= g) && (a >= b);
}
static inline uint16_t //
wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565(
wuffs_base__color_u32_argb_premul c) {
uint32_t r5 = 0xF800 & (c >> 8);
uint32_t g6 = 0x07E0 & (c >> 5);
uint32_t b5 = 0x001F & (c >> 3);
return (uint16_t)(r5 | g6 | b5);
}
static inline wuffs_base__color_u32_argb_premul //
wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul(uint16_t rgb_565) {
uint32_t b5 = 0x1F & (rgb_565 >> 0);
uint32_t b = (b5 << 3) | (b5 >> 2);
uint32_t g6 = 0x3F & (rgb_565 >> 5);
uint32_t g = (g6 << 2) | (g6 >> 4);
uint32_t r5 = 0x1F & (rgb_565 >> 11);
uint32_t r = (r5 << 3) | (r5 >> 2);
return 0xFF000000 | (r << 16) | (g << 8) | (b << 0);
}
static inline uint8_t //
wuffs_base__color_u32_argb_premul__as__color_u8_gray(
wuffs_base__color_u32_argb_premul c) {
// Work in 16-bit color.
uint32_t cr = 0x101 * (0xFF & (c >> 16));
uint32_t cg = 0x101 * (0xFF & (c >> 8));
uint32_t cb = 0x101 * (0xFF & (c >> 0));
// These coefficients (the fractions 0.299, 0.587 and 0.114) are the same
// as those given by the JFIF specification.
//
// Note that 19595 + 38470 + 7471 equals 65536, also known as (1 << 16). We
// shift by 24, not just by 16, because the return value is 8-bit color, not
// 16-bit color.
uint32_t weighted_average = (19595 * cr) + (38470 * cg) + (7471 * cb) + 32768;
return (uint8_t)(weighted_average >> 24);
}
static inline uint16_t //
wuffs_base__color_u32_argb_premul__as__color_u16_gray(
wuffs_base__color_u32_argb_premul c) {
// Work in 16-bit color.
uint32_t cr = 0x101 * (0xFF & (c >> 16));
uint32_t cg = 0x101 * (0xFF & (c >> 8));
uint32_t cb = 0x101 * (0xFF & (c >> 0));
// These coefficients (the fractions 0.299, 0.587 and 0.114) are the same
// as those given by the JFIF specification.
//
// Note that 19595 + 38470 + 7471 equals 65536, also known as (1 << 16).
uint32_t weighted_average = (19595 * cr) + (38470 * cg) + (7471 * cb) + 32768;
return (uint16_t)(weighted_average >> 16);
}
// wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul converts
// from non-premultiplied alpha to premultiplied alpha.
static inline wuffs_base__color_u32_argb_premul //
wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul(
uint32_t argb_nonpremul) {
// Multiplying by 0x101 (twice, once for alpha and once for color) converts
// from 8-bit to 16-bit color. Shifting right by 8 undoes that.
//
// Working in the higher bit depth can produce slightly different (and
// arguably slightly more accurate) results. For example, given 8-bit blue
// and alpha of 0x80 and 0x81:
//
// - ((0x80 * 0x81 ) / 0xFF ) = 0x40 = 0x40
// - ((0x8080 * 0x8181) / 0xFFFF) >> 8 = 0x4101 >> 8 = 0x41
uint32_t a = 0xFF & (argb_nonpremul >> 24);
uint32_t a16 = a * (0x101 * 0x101);
uint32_t r = 0xFF & (argb_nonpremul >> 16);
r = ((r * a16) / 0xFFFF) >> 8;
uint32_t g = 0xFF & (argb_nonpremul >> 8);
g = ((g * a16) / 0xFFFF) >> 8;
uint32_t b = 0xFF & (argb_nonpremul >> 0);
b = ((b * a16) / 0xFFFF) >> 8;
return (a << 24) | (r << 16) | (g << 8) | (b << 0);
}
// wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul converts
// from premultiplied alpha to non-premultiplied alpha.
static inline uint32_t //
wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul(
wuffs_base__color_u32_argb_premul c) {
uint32_t a = 0xFF & (c >> 24);
if (a == 0xFF) {
return c;
} else if (a == 0) {
return 0;
}
uint32_t a16 = a * 0x101;
uint32_t r = 0xFF & (c >> 16);
r = ((r * (0x101 * 0xFFFF)) / a16) >> 8;
uint32_t g = 0xFF & (c >> 8);
g = ((g * (0x101 * 0xFFFF)) / a16) >> 8;
uint32_t b = 0xFF & (c >> 0);
b = ((b * (0x101 * 0xFFFF)) / a16) >> 8;
return (a << 24) | (r << 16) | (g << 8) | (b << 0);
}
// wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul converts
// from 4x16LE non-premultiplied alpha to 4x8 premultiplied alpha.
static inline wuffs_base__color_u32_argb_premul //
wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul(
uint64_t argb_nonpremul) {
uint32_t a16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 48)));
uint32_t r16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 32)));
r16 = (r16 * a16) / 0xFFFF;
uint32_t g16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 16)));
g16 = (g16 * a16) / 0xFFFF;
uint32_t b16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 0)));
b16 = (b16 * a16) / 0xFFFF;
return ((a16 >> 8) << 24) | ((r16 >> 8) << 16) | ((g16 >> 8) << 8) |
((b16 >> 8) << 0);
}
// wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul converts
// from 4x8 premultiplied alpha to 4x16LE non-premultiplied alpha.
static inline uint64_t //
wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul(
wuffs_base__color_u32_argb_premul c) {
uint32_t a = 0xFF & (c >> 24);
if (a == 0xFF) {
uint64_t r16 = 0x101 * (0xFF & (c >> 16));
uint64_t g16 = 0x101 * (0xFF & (c >> 8));
uint64_t b16 = 0x101 * (0xFF & (c >> 0));
return 0xFFFF000000000000u | (r16 << 32) | (g16 << 16) | (b16 << 0);
} else if (a == 0) {
return 0;
}
uint64_t a16 = a * 0x101;
uint64_t r = 0xFF & (c >> 16);
uint64_t r16 = (r * (0x101 * 0xFFFF)) / a16;
uint64_t g = 0xFF & (c >> 8);
uint64_t g16 = (g * (0x101 * 0xFFFF)) / a16;
uint64_t b = 0xFF & (c >> 0);
uint64_t b16 = (b * (0x101 * 0xFFFF)) / a16;
return (a16 << 48) | (r16 << 32) | (g16 << 16) | (b16 << 0);
}
static inline uint64_t //
wuffs_base__color_u32__as__color_u64(uint32_t c) {
uint64_t a16 = 0x101 * (0xFF & (c >> 24));
uint64_t r16 = 0x101 * (0xFF & (c >> 16));
uint64_t g16 = 0x101 * (0xFF & (c >> 8));
uint64_t b16 = 0x101 * (0xFF & (c >> 0));
return (a16 << 48) | (r16 << 32) | (g16 << 16) | (b16 << 0);
}
static inline uint32_t //
wuffs_base__color_u64__as__color_u32(uint64_t c) {
uint32_t a = ((uint32_t)(0xFF & (c >> 56)));
uint32_t r = ((uint32_t)(0xFF & (c >> 40)));
uint32_t g = ((uint32_t)(0xFF & (c >> 24)));
uint32_t b = ((uint32_t)(0xFF & (c >> 8)));
return (a << 24) | (r << 16) | (g << 8) | (b << 0);
}
// --------
typedef uint8_t wuffs_base__pixel_blend;
// wuffs_base__pixel_blend encodes how to blend source and destination pixels,
// accounting for transparency. It encompasses the Porter-Duff compositing
// operators as well as the other blending modes defined by PDF.
//
// TODO: implement the other modes.
#define WUFFS_BASE__PIXEL_BLEND__SRC ((wuffs_base__pixel_blend)0)
#define WUFFS_BASE__PIXEL_BLEND__SRC_OVER ((wuffs_base__pixel_blend)1)
// --------
// wuffs_base__pixel_alpha_transparency is a pixel format's alpha channel
// model. It is a property of the pixel format in general, not of a specific
// pixel. An RGBA pixel format (with alpha) can still have fully opaque pixels.
typedef uint32_t wuffs_base__pixel_alpha_transparency;
#define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__OPAQUE 0
#define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NONPREMULTIPLIED_ALPHA 1
#define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__PREMULTIPLIED_ALPHA 2
#define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__BINARY_ALPHA 3
// Deprecated: use WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NONPREMULTIPLIED_ALPHA
// instead.
#define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NON_PREMULTIPLIED_ALPHA 1
// --------
#define WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX 4
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__INDEX_PLANE 0
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE 3
// A palette is 256 entries ร— 4 bytes per entry (e.g. BGRA).
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH 1024
// wuffs_base__pixel_format encodes the format of the bytes that constitute an
// image frame's pixel data.
//
// See https://github.com/google/wuffs/blob/main/doc/note/pixel-formats.md
//
// Do not manipulate its bits directly; they are private implementation
// details. Use methods such as wuffs_base__pixel_format__num_planes instead.
typedef struct wuffs_base__pixel_format__struct {
uint32_t repr;
#ifdef __cplusplus
inline bool is_valid() const;
inline uint32_t bits_per_pixel() const;
inline bool is_direct() const;
inline bool is_indexed() const;
inline bool is_interleaved() const;
inline bool is_planar() const;
inline uint32_t num_planes() const;
inline wuffs_base__pixel_alpha_transparency transparency() const;
#endif // __cplusplus
} wuffs_base__pixel_format;
static inline wuffs_base__pixel_format //
wuffs_base__make_pixel_format(uint32_t repr) {
wuffs_base__pixel_format f;
f.repr = repr;
return f;
}
// Common 8-bit-depth pixel formats. This list is not exhaustive; not all valid
// wuffs_base__pixel_format values are present.
#define WUFFS_BASE__PIXEL_FORMAT__INVALID 0x00000000
#define WUFFS_BASE__PIXEL_FORMAT__A 0x02000008
#define WUFFS_BASE__PIXEL_FORMAT__Y 0x20000008
#define WUFFS_BASE__PIXEL_FORMAT__Y_16LE 0x2000000B
#define WUFFS_BASE__PIXEL_FORMAT__Y_16BE 0x2010000B
#define WUFFS_BASE__PIXEL_FORMAT__YA_NONPREMUL 0x21000008
#define WUFFS_BASE__PIXEL_FORMAT__YA_PREMUL 0x22000008
#define WUFFS_BASE__PIXEL_FORMAT__YCBCR 0x40020888
#define WUFFS_BASE__PIXEL_FORMAT__YCBCRA_NONPREMUL 0x41038888
#define WUFFS_BASE__PIXEL_FORMAT__YCBCRK 0x50038888
#define WUFFS_BASE__PIXEL_FORMAT__YCOCG 0x60020888
#define WUFFS_BASE__PIXEL_FORMAT__YCOCGA_NONPREMUL 0x61038888
#define WUFFS_BASE__PIXEL_FORMAT__YCOCGK 0x70038888
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL 0x81040008
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL 0x82040008
#define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY 0x83040008
#define WUFFS_BASE__PIXEL_FORMAT__BGR_565 0x80000565
#define WUFFS_BASE__PIXEL_FORMAT__BGR 0x80000888
#define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL 0x81008888
#define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE 0x8100BBBB
#define WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL 0x82008888
#define WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE 0x8200BBBB
#define WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY 0x83008888
#define WUFFS_BASE__PIXEL_FORMAT__BGRX 0x90008888
#define WUFFS_BASE__PIXEL_FORMAT__RGB 0xA0000888
#define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL 0xA1008888
#define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL_4X16LE 0xA100BBBB
#define WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL 0xA2008888
#define WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL_4X16LE 0xA200BBBB
#define WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY 0xA3008888
#define WUFFS_BASE__PIXEL_FORMAT__RGBX 0xB0008888
#define WUFFS_BASE__PIXEL_FORMAT__CMY 0xC0020888
#define WUFFS_BASE__PIXEL_FORMAT__CMYK 0xD0038888
extern const uint32_t wuffs_base__pixel_format__bits_per_channel[16];
static inline bool //
wuffs_base__pixel_format__is_valid(const wuffs_base__pixel_format* f) {
return f->repr != 0;
}
// wuffs_base__pixel_format__bits_per_pixel returns the number of bits per
// pixel for interleaved pixel formats, and returns 0 for planar pixel formats.
static inline uint32_t //
wuffs_base__pixel_format__bits_per_pixel(const wuffs_base__pixel_format* f) {
if (((f->repr >> 16) & 0x03) != 0) {
return 0;
}
return wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 0)] +
wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 4)] +
wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 8)] +
wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 12)];
}
static inline bool //
wuffs_base__pixel_format__is_direct(const wuffs_base__pixel_format* f) {
return ((f->repr >> 18) & 0x01) == 0;
}
static inline bool //
wuffs_base__pixel_format__is_indexed(const wuffs_base__pixel_format* f) {
return ((f->repr >> 18) & 0x01) != 0;
}
static inline bool //
wuffs_base__pixel_format__is_interleaved(const wuffs_base__pixel_format* f) {
return ((f->repr >> 16) & 0x03) == 0;
}
static inline bool //
wuffs_base__pixel_format__is_planar(const wuffs_base__pixel_format* f) {
return ((f->repr >> 16) & 0x03) != 0;
}
static inline uint32_t //
wuffs_base__pixel_format__num_planes(const wuffs_base__pixel_format* f) {
return ((f->repr >> 16) & 0x03) + 1;
}
static inline wuffs_base__pixel_alpha_transparency //
wuffs_base__pixel_format__transparency(const wuffs_base__pixel_format* f) {
return (wuffs_base__pixel_alpha_transparency)((f->repr >> 24) & 0x03);
}
#ifdef __cplusplus
inline bool //
wuffs_base__pixel_format::is_valid() const {
return wuffs_base__pixel_format__is_valid(this);
}
inline uint32_t //
wuffs_base__pixel_format::bits_per_pixel() const {
return wuffs_base__pixel_format__bits_per_pixel(this);
}
inline bool //
wuffs_base__pixel_format::is_direct() const {
return wuffs_base__pixel_format__is_direct(this);
}
inline bool //
wuffs_base__pixel_format::is_indexed() const {
return wuffs_base__pixel_format__is_indexed(this);
}
inline bool //
wuffs_base__pixel_format::is_interleaved() const {
return wuffs_base__pixel_format__is_interleaved(this);
}
inline bool //
wuffs_base__pixel_format::is_planar() const {
return wuffs_base__pixel_format__is_planar(this);
}
inline uint32_t //
wuffs_base__pixel_format::num_planes() const {
return wuffs_base__pixel_format__num_planes(this);
}
inline wuffs_base__pixel_alpha_transparency //
wuffs_base__pixel_format::transparency() const {
return wuffs_base__pixel_format__transparency(this);
}
#endif // __cplusplus
// --------
// wuffs_base__pixel_subsampling encodes whether sample values cover one pixel
// or cover multiple pixels.
//
// See https://github.com/google/wuffs/blob/main/doc/note/pixel-subsampling.md
//
// Do not manipulate its bits directly; they are private implementation
// details. Use methods such as wuffs_base__pixel_subsampling__bias_x instead.
typedef struct wuffs_base__pixel_subsampling__struct {
uint32_t repr;
#ifdef __cplusplus
inline uint32_t bias_x(uint32_t plane) const;
inline uint32_t denominator_x(uint32_t plane) const;
inline uint32_t bias_y(uint32_t plane) const;
inline uint32_t denominator_y(uint32_t plane) const;
#endif // __cplusplus
} wuffs_base__pixel_subsampling;
static inline wuffs_base__pixel_subsampling //
wuffs_base__make_pixel_subsampling(uint32_t repr) {
wuffs_base__pixel_subsampling s;
s.repr = repr;
return s;
}
#define WUFFS_BASE__PIXEL_SUBSAMPLING__NONE 0x00000000
#define WUFFS_BASE__PIXEL_SUBSAMPLING__444 0x000000
#define WUFFS_BASE__PIXEL_SUBSAMPLING__440 0x010100
#define WUFFS_BASE__PIXEL_SUBSAMPLING__422 0x101000
#define WUFFS_BASE__PIXEL_SUBSAMPLING__420 0x111100
#define WUFFS_BASE__PIXEL_SUBSAMPLING__411 0x303000
#define WUFFS_BASE__PIXEL_SUBSAMPLING__410 0x313100
static inline uint32_t //
wuffs_base__pixel_subsampling__bias_x(const wuffs_base__pixel_subsampling* s,
uint32_t plane) {
uint32_t shift = ((plane & 0x03) * 8) + 6;
return (s->repr >> shift) & 0x03;
}
static inline uint32_t //
wuffs_base__pixel_subsampling__denominator_x(
const wuffs_base__pixel_subsampling* s,
uint32_t plane) {
uint32_t shift = ((plane & 0x03) * 8) + 4;
return ((s->repr >> shift) & 0x03) + 1;
}
static inline uint32_t //
wuffs_base__pixel_subsampling__bias_y(const wuffs_base__pixel_subsampling* s,
uint32_t plane) {
uint32_t shift = ((plane & 0x03) * 8) + 2;
return (s->repr >> shift) & 0x03;
}
static inline uint32_t //
wuffs_base__pixel_subsampling__denominator_y(
const wuffs_base__pixel_subsampling* s,
uint32_t plane) {
uint32_t shift = ((plane & 0x03) * 8) + 0;
return ((s->repr >> shift) & 0x03) + 1;
}
#ifdef __cplusplus
inline uint32_t //
wuffs_base__pixel_subsampling::bias_x(uint32_t plane) const {
return wuffs_base__pixel_subsampling__bias_x(this, plane);
}
inline uint32_t //
wuffs_base__pixel_subsampling::denominator_x(uint32_t plane) const {
return wuffs_base__pixel_subsampling__denominator_x(this, plane);
}
inline uint32_t //
wuffs_base__pixel_subsampling::bias_y(uint32_t plane) const {
return wuffs_base__pixel_subsampling__bias_y(this, plane);
}
inline uint32_t //
wuffs_base__pixel_subsampling::denominator_y(uint32_t plane) const {
return wuffs_base__pixel_subsampling__denominator_y(this, plane);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__pixel_config__struct {
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
wuffs_base__pixel_format pixfmt;
wuffs_base__pixel_subsampling pixsub;
uint32_t width;
uint32_t height;
} private_impl;
#ifdef __cplusplus
inline void set(uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height);
inline void invalidate();
inline bool is_valid() const;
inline wuffs_base__pixel_format pixel_format() const;
inline wuffs_base__pixel_subsampling pixel_subsampling() const;
inline wuffs_base__rect_ie_u32 bounds() const;
inline uint32_t width() const;
inline uint32_t height() const;
inline uint64_t pixbuf_len() const;
#endif // __cplusplus
} wuffs_base__pixel_config;
static inline wuffs_base__pixel_config //
wuffs_base__null_pixel_config() {
wuffs_base__pixel_config ret;
ret.private_impl.pixfmt.repr = 0;
ret.private_impl.pixsub.repr = 0;
ret.private_impl.width = 0;
ret.private_impl.height = 0;
return ret;
}
// TODO: Should this function return bool? An error type?
static inline void //
wuffs_base__pixel_config__set(wuffs_base__pixel_config* c,
uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height) {
if (!c) {
return;
}
if (pixfmt_repr) {
uint64_t wh = ((uint64_t)width) * ((uint64_t)height);
// TODO: handle things other than 1 byte per pixel.
if (wh <= ((uint64_t)SIZE_MAX)) {
c->private_impl.pixfmt.repr = pixfmt_repr;
c->private_impl.pixsub.repr = pixsub_repr;
c->private_impl.width = width;
c->private_impl.height = height;
return;
}
}
c->private_impl.pixfmt.repr = 0;
c->private_impl.pixsub.repr = 0;
c->private_impl.width = 0;
c->private_impl.height = 0;
}
static inline void //
wuffs_base__pixel_config__invalidate(wuffs_base__pixel_config* c) {
if (c) {
c->private_impl.pixfmt.repr = 0;
c->private_impl.pixsub.repr = 0;
c->private_impl.width = 0;
c->private_impl.height = 0;
}
}
static inline bool //
wuffs_base__pixel_config__is_valid(const wuffs_base__pixel_config* c) {
return c && c->private_impl.pixfmt.repr;
}
static inline wuffs_base__pixel_format //
wuffs_base__pixel_config__pixel_format(const wuffs_base__pixel_config* c) {
return c ? c->private_impl.pixfmt : wuffs_base__make_pixel_format(0);
}
static inline wuffs_base__pixel_subsampling //
wuffs_base__pixel_config__pixel_subsampling(const wuffs_base__pixel_config* c) {
return c ? c->private_impl.pixsub : wuffs_base__make_pixel_subsampling(0);
}
static inline wuffs_base__rect_ie_u32 //
wuffs_base__pixel_config__bounds(const wuffs_base__pixel_config* c) {
if (c) {
wuffs_base__rect_ie_u32 ret;
ret.min_incl_x = 0;
ret.min_incl_y = 0;
ret.max_excl_x = c->private_impl.width;
ret.max_excl_y = c->private_impl.height;
return ret;
}
wuffs_base__rect_ie_u32 ret;
ret.min_incl_x = 0;
ret.min_incl_y = 0;
ret.max_excl_x = 0;
ret.max_excl_y = 0;
return ret;
}
static inline uint32_t //
wuffs_base__pixel_config__width(const wuffs_base__pixel_config* c) {
return c ? c->private_impl.width : 0;
}
static inline uint32_t //
wuffs_base__pixel_config__height(const wuffs_base__pixel_config* c) {
return c ? c->private_impl.height : 0;
}
// TODO: this is the right API for planar (not interleaved) pixbufs? Should it
// allow decoding into a color model different from the format's intrinsic one?
// For example, decoding a JPEG image straight to RGBA instead of to YCbCr?
static inline uint64_t //
wuffs_base__pixel_config__pixbuf_len(const wuffs_base__pixel_config* c) {
if (!c) {
return 0;
}
if (wuffs_base__pixel_format__is_planar(&c->private_impl.pixfmt)) {
// TODO: support planar pixel formats, concious of pixel subsampling.
return 0;
}
uint32_t bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(&c->private_impl.pixfmt);
if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) {
// TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel?
return 0;
}
uint64_t bytes_per_pixel = bits_per_pixel / 8;
uint64_t n =
((uint64_t)c->private_impl.width) * ((uint64_t)c->private_impl.height);
if (n > (UINT64_MAX / bytes_per_pixel)) {
return 0;
}
n *= bytes_per_pixel;
if (wuffs_base__pixel_format__is_indexed(&c->private_impl.pixfmt)) {
if (n >
(UINT64_MAX - WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH)) {
return 0;
}
n += WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
}
return n;
}
#ifdef __cplusplus
inline void //
wuffs_base__pixel_config::set(uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height) {
wuffs_base__pixel_config__set(this, pixfmt_repr, pixsub_repr, width, height);
}
inline void //
wuffs_base__pixel_config::invalidate() {
wuffs_base__pixel_config__invalidate(this);
}
inline bool //
wuffs_base__pixel_config::is_valid() const {
return wuffs_base__pixel_config__is_valid(this);
}
inline wuffs_base__pixel_format //
wuffs_base__pixel_config::pixel_format() const {
return wuffs_base__pixel_config__pixel_format(this);
}
inline wuffs_base__pixel_subsampling //
wuffs_base__pixel_config::pixel_subsampling() const {
return wuffs_base__pixel_config__pixel_subsampling(this);
}
inline wuffs_base__rect_ie_u32 //
wuffs_base__pixel_config::bounds() const {
return wuffs_base__pixel_config__bounds(this);
}
inline uint32_t //
wuffs_base__pixel_config::width() const {
return wuffs_base__pixel_config__width(this);
}
inline uint32_t //
wuffs_base__pixel_config::height() const {
return wuffs_base__pixel_config__height(this);
}
inline uint64_t //
wuffs_base__pixel_config::pixbuf_len() const {
return wuffs_base__pixel_config__pixbuf_len(this);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__image_config__struct {
wuffs_base__pixel_config pixcfg;
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
uint64_t first_frame_io_position;
bool first_frame_is_opaque;
} private_impl;
#ifdef __cplusplus
inline void set(uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height,
uint64_t first_frame_io_position,
bool first_frame_is_opaque);
inline void invalidate();
inline bool is_valid() const;
inline uint64_t first_frame_io_position() const;
inline bool first_frame_is_opaque() const;
#endif // __cplusplus
} wuffs_base__image_config;
static inline wuffs_base__image_config //
wuffs_base__null_image_config() {
wuffs_base__image_config ret;
ret.pixcfg = wuffs_base__null_pixel_config();
ret.private_impl.first_frame_io_position = 0;
ret.private_impl.first_frame_is_opaque = false;
return ret;
}
// TODO: Should this function return bool? An error type?
static inline void //
wuffs_base__image_config__set(wuffs_base__image_config* c,
uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height,
uint64_t first_frame_io_position,
bool first_frame_is_opaque) {
if (!c) {
return;
}
if (pixfmt_repr) {
c->pixcfg.private_impl.pixfmt.repr = pixfmt_repr;
c->pixcfg.private_impl.pixsub.repr = pixsub_repr;
c->pixcfg.private_impl.width = width;
c->pixcfg.private_impl.height = height;
c->private_impl.first_frame_io_position = first_frame_io_position;
c->private_impl.first_frame_is_opaque = first_frame_is_opaque;
return;
}
c->pixcfg.private_impl.pixfmt.repr = 0;
c->pixcfg.private_impl.pixsub.repr = 0;
c->pixcfg.private_impl.width = 0;
c->pixcfg.private_impl.height = 0;
c->private_impl.first_frame_io_position = 0;
c->private_impl.first_frame_is_opaque = 0;
}
static inline void //
wuffs_base__image_config__invalidate(wuffs_base__image_config* c) {
if (c) {
c->pixcfg.private_impl.pixfmt.repr = 0;
c->pixcfg.private_impl.pixsub.repr = 0;
c->pixcfg.private_impl.width = 0;
c->pixcfg.private_impl.height = 0;
c->private_impl.first_frame_io_position = 0;
c->private_impl.first_frame_is_opaque = 0;
}
}
static inline bool //
wuffs_base__image_config__is_valid(const wuffs_base__image_config* c) {
return c && wuffs_base__pixel_config__is_valid(&(c->pixcfg));
}
static inline uint64_t //
wuffs_base__image_config__first_frame_io_position(
const wuffs_base__image_config* c) {
return c ? c->private_impl.first_frame_io_position : 0;
}
static inline bool //
wuffs_base__image_config__first_frame_is_opaque(
const wuffs_base__image_config* c) {
return c ? c->private_impl.first_frame_is_opaque : false;
}
#ifdef __cplusplus
inline void //
wuffs_base__image_config::set(uint32_t pixfmt_repr,
uint32_t pixsub_repr,
uint32_t width,
uint32_t height,
uint64_t first_frame_io_position,
bool first_frame_is_opaque) {
wuffs_base__image_config__set(this, pixfmt_repr, pixsub_repr, width, height,
first_frame_io_position, first_frame_is_opaque);
}
inline void //
wuffs_base__image_config::invalidate() {
wuffs_base__image_config__invalidate(this);
}
inline bool //
wuffs_base__image_config::is_valid() const {
return wuffs_base__image_config__is_valid(this);
}
inline uint64_t //
wuffs_base__image_config::first_frame_io_position() const {
return wuffs_base__image_config__first_frame_io_position(this);
}
inline bool //
wuffs_base__image_config::first_frame_is_opaque() const {
return wuffs_base__image_config__first_frame_is_opaque(this);
}
#endif // __cplusplus
// --------
// wuffs_base__animation_disposal encodes, for an animated image, how to
// dispose of a frame after displaying it:
// - None means to draw the next frame on top of this one.
// - Restore Background means to clear the frame's dirty rectangle to "the
// background color" (in practice, this means transparent black) before
// drawing the next frame.
// - Restore Previous means to undo the current frame, so that the next frame
// is drawn on top of the previous one.
typedef uint8_t wuffs_base__animation_disposal;
#define WUFFS_BASE__ANIMATION_DISPOSAL__NONE ((wuffs_base__animation_disposal)0)
#define WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_BACKGROUND \
((wuffs_base__animation_disposal)1)
#define WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_PREVIOUS \
((wuffs_base__animation_disposal)2)
// --------
typedef struct wuffs_base__frame_config__struct {
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
wuffs_base__rect_ie_u32 bounds;
wuffs_base__flicks duration;
uint64_t index;
uint64_t io_position;
wuffs_base__animation_disposal disposal;
bool opaque_within_bounds;
bool overwrite_instead_of_blend;
wuffs_base__color_u32_argb_premul background_color;
} private_impl;
#ifdef __cplusplus
inline void set(wuffs_base__rect_ie_u32 bounds,
wuffs_base__flicks duration,
uint64_t index,
uint64_t io_position,
wuffs_base__animation_disposal disposal,
bool opaque_within_bounds,
bool overwrite_instead_of_blend,
wuffs_base__color_u32_argb_premul background_color);
inline wuffs_base__rect_ie_u32 bounds() const;
inline uint32_t width() const;
inline uint32_t height() const;
inline wuffs_base__flicks duration() const;
inline uint64_t index() const;
inline uint64_t io_position() const;
inline wuffs_base__animation_disposal disposal() const;
inline bool opaque_within_bounds() const;
inline bool overwrite_instead_of_blend() const;
inline wuffs_base__color_u32_argb_premul background_color() const;
#endif // __cplusplus
} wuffs_base__frame_config;
static inline wuffs_base__frame_config //
wuffs_base__null_frame_config() {
wuffs_base__frame_config ret;
ret.private_impl.bounds = wuffs_base__make_rect_ie_u32(0, 0, 0, 0);
ret.private_impl.duration = 0;
ret.private_impl.index = 0;
ret.private_impl.io_position = 0;
ret.private_impl.disposal = 0;
ret.private_impl.opaque_within_bounds = false;
ret.private_impl.overwrite_instead_of_blend = false;
return ret;
}
static inline void //
wuffs_base__frame_config__set(
wuffs_base__frame_config* c,
wuffs_base__rect_ie_u32 bounds,
wuffs_base__flicks duration,
uint64_t index,
uint64_t io_position,
wuffs_base__animation_disposal disposal,
bool opaque_within_bounds,
bool overwrite_instead_of_blend,
wuffs_base__color_u32_argb_premul background_color) {
if (!c) {
return;
}
c->private_impl.bounds = bounds;
c->private_impl.duration = duration;
c->private_impl.index = index;
c->private_impl.io_position = io_position;
c->private_impl.disposal = disposal;
c->private_impl.opaque_within_bounds = opaque_within_bounds;
c->private_impl.overwrite_instead_of_blend = overwrite_instead_of_blend;
c->private_impl.background_color = background_color;
}
static inline wuffs_base__rect_ie_u32 //
wuffs_base__frame_config__bounds(const wuffs_base__frame_config* c) {
if (c) {
return c->private_impl.bounds;
}
wuffs_base__rect_ie_u32 ret;
ret.min_incl_x = 0;
ret.min_incl_y = 0;
ret.max_excl_x = 0;
ret.max_excl_y = 0;
return ret;
}
static inline uint32_t //
wuffs_base__frame_config__width(const wuffs_base__frame_config* c) {
return c ? wuffs_base__rect_ie_u32__width(&c->private_impl.bounds) : 0;
}
static inline uint32_t //
wuffs_base__frame_config__height(const wuffs_base__frame_config* c) {
return c ? wuffs_base__rect_ie_u32__height(&c->private_impl.bounds) : 0;
}
// wuffs_base__frame_config__duration returns the amount of time to display
// this frame. Zero means to display forever - a still (non-animated) image.
static inline wuffs_base__flicks //
wuffs_base__frame_config__duration(const wuffs_base__frame_config* c) {
return c ? c->private_impl.duration : 0;
}
// wuffs_base__frame_config__index returns the index of this frame. The first
// frame in an image has index 0, the second frame has index 1, and so on.
static inline uint64_t //
wuffs_base__frame_config__index(const wuffs_base__frame_config* c) {
return c ? c->private_impl.index : 0;
}
// wuffs_base__frame_config__io_position returns the I/O stream position before
// the frame config.
static inline uint64_t //
wuffs_base__frame_config__io_position(const wuffs_base__frame_config* c) {
return c ? c->private_impl.io_position : 0;
}
// wuffs_base__frame_config__disposal returns, for an animated image, how to
// dispose of this frame after displaying it.
static inline wuffs_base__animation_disposal //
wuffs_base__frame_config__disposal(const wuffs_base__frame_config* c) {
return c ? c->private_impl.disposal : 0;
}
// wuffs_base__frame_config__opaque_within_bounds returns whether all pixels
// within the frame's bounds are fully opaque. It makes no claim about pixels
// outside the frame bounds but still inside the overall image. The two
// bounding rectangles can differ for animated images.
//
// Its semantics are conservative. It is valid for a fully opaque frame to have
// this value be false: a false negative.
//
// If true, drawing the frame with WUFFS_BASE__PIXEL_BLEND__SRC and
// WUFFS_BASE__PIXEL_BLEND__SRC_OVER should be equivalent, in terms of
// resultant pixels, but the former may be faster.
static inline bool //
wuffs_base__frame_config__opaque_within_bounds(
const wuffs_base__frame_config* c) {
return c && c->private_impl.opaque_within_bounds;
}
// wuffs_base__frame_config__overwrite_instead_of_blend returns, for an
// animated image, whether to ignore the previous image state (within the frame
// bounds) when drawing this incremental frame. Equivalently, whether to use
// WUFFS_BASE__PIXEL_BLEND__SRC instead of WUFFS_BASE__PIXEL_BLEND__SRC_OVER.
//
// The WebP spec (https://developers.google.com/speed/webp/docs/riff_container)
// calls this the "Blending method" bit. WebP's "Do not blend" corresponds to
// Wuffs' "overwrite_instead_of_blend".
static inline bool //
wuffs_base__frame_config__overwrite_instead_of_blend(
const wuffs_base__frame_config* c) {
return c && c->private_impl.overwrite_instead_of_blend;
}
static inline wuffs_base__color_u32_argb_premul //
wuffs_base__frame_config__background_color(const wuffs_base__frame_config* c) {
return c ? c->private_impl.background_color : 0;
}
#ifdef __cplusplus
inline void //
wuffs_base__frame_config::set(
wuffs_base__rect_ie_u32 bounds,
wuffs_base__flicks duration,
uint64_t index,
uint64_t io_position,
wuffs_base__animation_disposal disposal,
bool opaque_within_bounds,
bool overwrite_instead_of_blend,
wuffs_base__color_u32_argb_premul background_color) {
wuffs_base__frame_config__set(this, bounds, duration, index, io_position,
disposal, opaque_within_bounds,
overwrite_instead_of_blend, background_color);
}
inline wuffs_base__rect_ie_u32 //
wuffs_base__frame_config::bounds() const {
return wuffs_base__frame_config__bounds(this);
}
inline uint32_t //
wuffs_base__frame_config::width() const {
return wuffs_base__frame_config__width(this);
}
inline uint32_t //
wuffs_base__frame_config::height() const {
return wuffs_base__frame_config__height(this);
}
inline wuffs_base__flicks //
wuffs_base__frame_config::duration() const {
return wuffs_base__frame_config__duration(this);
}
inline uint64_t //
wuffs_base__frame_config::index() const {
return wuffs_base__frame_config__index(this);
}
inline uint64_t //
wuffs_base__frame_config::io_position() const {
return wuffs_base__frame_config__io_position(this);
}
inline wuffs_base__animation_disposal //
wuffs_base__frame_config::disposal() const {
return wuffs_base__frame_config__disposal(this);
}
inline bool //
wuffs_base__frame_config::opaque_within_bounds() const {
return wuffs_base__frame_config__opaque_within_bounds(this);
}
inline bool //
wuffs_base__frame_config::overwrite_instead_of_blend() const {
return wuffs_base__frame_config__overwrite_instead_of_blend(this);
}
inline wuffs_base__color_u32_argb_premul //
wuffs_base__frame_config::background_color() const {
return wuffs_base__frame_config__background_color(this);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__pixel_buffer__struct {
wuffs_base__pixel_config pixcfg;
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
wuffs_base__table_u8 planes[WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX];
// TODO: color spaces.
} private_impl;
#ifdef __cplusplus
inline wuffs_base__status set_interleaved(
const wuffs_base__pixel_config* pixcfg,
wuffs_base__table_u8 primary_memory,
wuffs_base__slice_u8 palette_memory);
inline wuffs_base__status set_from_slice(
const wuffs_base__pixel_config* pixcfg,
wuffs_base__slice_u8 pixbuf_memory);
inline wuffs_base__status set_from_table(
const wuffs_base__pixel_config* pixcfg,
wuffs_base__table_u8 primary_memory);
inline wuffs_base__slice_u8 palette();
inline wuffs_base__slice_u8 palette_or_else(wuffs_base__slice_u8 fallback);
inline wuffs_base__pixel_format pixel_format() const;
inline wuffs_base__table_u8 plane(uint32_t p);
inline wuffs_base__color_u32_argb_premul color_u32_at(uint32_t x,
uint32_t y) const;
inline wuffs_base__status set_color_u32_at(
uint32_t x,
uint32_t y,
wuffs_base__color_u32_argb_premul color);
inline wuffs_base__status set_color_u32_fill_rect(
wuffs_base__rect_ie_u32 rect,
wuffs_base__color_u32_argb_premul color);
#endif // __cplusplus
} wuffs_base__pixel_buffer;
static inline wuffs_base__pixel_buffer //
wuffs_base__null_pixel_buffer() {
wuffs_base__pixel_buffer ret;
ret.pixcfg = wuffs_base__null_pixel_config();
ret.private_impl.planes[0] = wuffs_base__empty_table_u8();
ret.private_impl.planes[1] = wuffs_base__empty_table_u8();
ret.private_impl.planes[2] = wuffs_base__empty_table_u8();
ret.private_impl.planes[3] = wuffs_base__empty_table_u8();
return ret;
}
static inline wuffs_base__status //
wuffs_base__pixel_buffer__set_interleaved(
wuffs_base__pixel_buffer* pb,
const wuffs_base__pixel_config* pixcfg,
wuffs_base__table_u8 primary_memory,
wuffs_base__slice_u8 palette_memory) {
if (!pb) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
memset(pb, 0, sizeof(*pb));
if (!pixcfg ||
wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt) &&
(palette_memory.len <
WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH)) {
return wuffs_base__make_status(
wuffs_base__error__bad_argument_length_too_short);
}
uint32_t bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt);
if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) {
// TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel?
return wuffs_base__make_status(wuffs_base__error__unsupported_option);
}
uint64_t bytes_per_pixel = bits_per_pixel / 8;
uint64_t width_in_bytes =
((uint64_t)pixcfg->private_impl.width) * bytes_per_pixel;
if ((width_in_bytes > primary_memory.width) ||
(pixcfg->private_impl.height > primary_memory.height)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
pb->pixcfg = *pixcfg;
pb->private_impl.planes[0] = primary_memory;
if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt)) {
wuffs_base__table_u8* tab =
&pb->private_impl
.planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE];
tab->ptr = palette_memory.ptr;
tab->width = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
tab->height = 1;
tab->stride = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
}
return wuffs_base__make_status(NULL);
}
static inline wuffs_base__status //
wuffs_base__pixel_buffer__set_from_slice(wuffs_base__pixel_buffer* pb,
const wuffs_base__pixel_config* pixcfg,
wuffs_base__slice_u8 pixbuf_memory) {
if (!pb) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
memset(pb, 0, sizeof(*pb));
if (!pixcfg) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
if (wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) {
// TODO: support planar pixel formats, concious of pixel subsampling.
return wuffs_base__make_status(wuffs_base__error__unsupported_option);
}
uint32_t bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt);
if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) {
// TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel?
return wuffs_base__make_status(wuffs_base__error__unsupported_option);
}
uint64_t bytes_per_pixel = bits_per_pixel / 8;
uint8_t* ptr = pixbuf_memory.ptr;
uint64_t len = pixbuf_memory.len;
if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt)) {
// Split a WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH byte
// chunk (1024 bytes = 256 palette entries ร— 4 bytes per entry) from the
// start of pixbuf_memory. We split from the start, not the end, so that
// the both chunks' pointers have the same alignment as the original
// pointer, up to an alignment of 1024.
if (len < WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) {
return wuffs_base__make_status(
wuffs_base__error__bad_argument_length_too_short);
}
wuffs_base__table_u8* tab =
&pb->private_impl
.planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE];
tab->ptr = ptr;
tab->width = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
tab->height = 1;
tab->stride = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
ptr += WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
len -= WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH;
}
uint64_t wh = ((uint64_t)pixcfg->private_impl.width) *
((uint64_t)pixcfg->private_impl.height);
size_t width = (size_t)(pixcfg->private_impl.width);
if ((wh > (UINT64_MAX / bytes_per_pixel)) ||
(width > (SIZE_MAX / bytes_per_pixel))) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
wh *= bytes_per_pixel;
width = ((size_t)(width * bytes_per_pixel));
if (wh > len) {
return wuffs_base__make_status(
wuffs_base__error__bad_argument_length_too_short);
}
pb->pixcfg = *pixcfg;
wuffs_base__table_u8* tab = &pb->private_impl.planes[0];
tab->ptr = ptr;
tab->width = width;
tab->height = pixcfg->private_impl.height;
tab->stride = width;
return wuffs_base__make_status(NULL);
}
// Deprecated: does not handle indexed pixel configurations. Use
// wuffs_base__pixel_buffer__set_interleaved instead.
static inline wuffs_base__status //
wuffs_base__pixel_buffer__set_from_table(wuffs_base__pixel_buffer* pb,
const wuffs_base__pixel_config* pixcfg,
wuffs_base__table_u8 primary_memory) {
if (!pb) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
memset(pb, 0, sizeof(*pb));
if (!pixcfg ||
wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt) ||
wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
uint32_t bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt);
if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) {
// TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel?
return wuffs_base__make_status(wuffs_base__error__unsupported_option);
}
uint64_t bytes_per_pixel = bits_per_pixel / 8;
uint64_t width_in_bytes =
((uint64_t)pixcfg->private_impl.width) * bytes_per_pixel;
if ((width_in_bytes > primary_memory.width) ||
(pixcfg->private_impl.height > primary_memory.height)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
pb->pixcfg = *pixcfg;
pb->private_impl.planes[0] = primary_memory;
return wuffs_base__make_status(NULL);
}
// wuffs_base__pixel_buffer__palette returns the palette color data. If
// non-empty, it will have length
// WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH.
static inline wuffs_base__slice_u8 //
wuffs_base__pixel_buffer__palette(wuffs_base__pixel_buffer* pb) {
if (pb &&
wuffs_base__pixel_format__is_indexed(&pb->pixcfg.private_impl.pixfmt)) {
wuffs_base__table_u8* tab =
&pb->private_impl
.planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE];
if ((tab->width ==
WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) &&
(tab->height == 1)) {
return wuffs_base__make_slice_u8(
tab->ptr, WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH);
}
}
return wuffs_base__make_slice_u8(NULL, 0);
}
static inline wuffs_base__slice_u8 //
wuffs_base__pixel_buffer__palette_or_else(wuffs_base__pixel_buffer* pb,
wuffs_base__slice_u8 fallback) {
if (pb &&
wuffs_base__pixel_format__is_indexed(&pb->pixcfg.private_impl.pixfmt)) {
wuffs_base__table_u8* tab =
&pb->private_impl
.planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE];
if ((tab->width ==
WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) &&
(tab->height == 1)) {
return wuffs_base__make_slice_u8(
tab->ptr, WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH);
}
}
return fallback;
}
static inline wuffs_base__pixel_format //
wuffs_base__pixel_buffer__pixel_format(const wuffs_base__pixel_buffer* pb) {
if (pb) {
return pb->pixcfg.private_impl.pixfmt;
}
return wuffs_base__make_pixel_format(WUFFS_BASE__PIXEL_FORMAT__INVALID);
}
static inline wuffs_base__table_u8 //
wuffs_base__pixel_buffer__plane(wuffs_base__pixel_buffer* pb, uint32_t p) {
if (pb && (p < WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX)) {
return pb->private_impl.planes[p];
}
wuffs_base__table_u8 ret;
ret.ptr = NULL;
ret.width = 0;
ret.height = 0;
ret.stride = 0;
return ret;
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__color_u32_argb_premul //
wuffs_base__pixel_buffer__color_u32_at(const wuffs_base__pixel_buffer* pb,
uint32_t x,
uint32_t y);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status //
wuffs_base__pixel_buffer__set_color_u32_at(
wuffs_base__pixel_buffer* pb,
uint32_t x,
uint32_t y,
wuffs_base__color_u32_argb_premul color);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status //
wuffs_base__pixel_buffer__set_color_u32_fill_rect(
wuffs_base__pixel_buffer* pb,
wuffs_base__rect_ie_u32 rect,
wuffs_base__color_u32_argb_premul color);
#ifdef __cplusplus
inline wuffs_base__status //
wuffs_base__pixel_buffer::set_interleaved(
const wuffs_base__pixel_config* pixcfg_arg,
wuffs_base__table_u8 primary_memory,
wuffs_base__slice_u8 palette_memory) {
return wuffs_base__pixel_buffer__set_interleaved(
this, pixcfg_arg, primary_memory, palette_memory);
}
inline wuffs_base__status //
wuffs_base__pixel_buffer::set_from_slice(
const wuffs_base__pixel_config* pixcfg_arg,
wuffs_base__slice_u8 pixbuf_memory) {
return wuffs_base__pixel_buffer__set_from_slice(this, pixcfg_arg,
pixbuf_memory);
}
inline wuffs_base__status //
wuffs_base__pixel_buffer::set_from_table(
const wuffs_base__pixel_config* pixcfg_arg,
wuffs_base__table_u8 primary_memory) {
return wuffs_base__pixel_buffer__set_from_table(this, pixcfg_arg,
primary_memory);
}
inline wuffs_base__slice_u8 //
wuffs_base__pixel_buffer::palette() {
return wuffs_base__pixel_buffer__palette(this);
}
inline wuffs_base__slice_u8 //
wuffs_base__pixel_buffer::palette_or_else(wuffs_base__slice_u8 fallback) {
return wuffs_base__pixel_buffer__palette_or_else(this, fallback);
}
inline wuffs_base__pixel_format //
wuffs_base__pixel_buffer::pixel_format() const {
return wuffs_base__pixel_buffer__pixel_format(this);
}
inline wuffs_base__table_u8 //
wuffs_base__pixel_buffer::plane(uint32_t p) {
return wuffs_base__pixel_buffer__plane(this, p);
}
inline wuffs_base__color_u32_argb_premul //
wuffs_base__pixel_buffer::color_u32_at(uint32_t x, uint32_t y) const {
return wuffs_base__pixel_buffer__color_u32_at(this, x, y);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status //
wuffs_base__pixel_buffer__set_color_u32_fill_rect(
wuffs_base__pixel_buffer* pb,
wuffs_base__rect_ie_u32 rect,
wuffs_base__color_u32_argb_premul color);
inline wuffs_base__status //
wuffs_base__pixel_buffer::set_color_u32_at(
uint32_t x,
uint32_t y,
wuffs_base__color_u32_argb_premul color) {
return wuffs_base__pixel_buffer__set_color_u32_at(this, x, y, color);
}
inline wuffs_base__status //
wuffs_base__pixel_buffer::set_color_u32_fill_rect(
wuffs_base__rect_ie_u32 rect,
wuffs_base__color_u32_argb_premul color) {
return wuffs_base__pixel_buffer__set_color_u32_fill_rect(this, rect, color);
}
#endif // __cplusplus
// --------
typedef struct wuffs_base__decode_frame_options__struct {
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
uint8_t TODO;
} private_impl;
#ifdef __cplusplus
#endif // __cplusplus
} wuffs_base__decode_frame_options;
#ifdef __cplusplus
#endif // __cplusplus
// --------
// wuffs_base__pixel_palette__closest_element returns the index of the palette
// element that minimizes the sum of squared differences of the four ARGB
// channels, working in premultiplied alpha. Ties favor the smaller index.
//
// The palette_slice.len may equal (N*4), for N less than 256, which means that
// only the first N palette elements are considered. It returns 0 when N is 0.
//
// Applying this function on a per-pixel basis will not produce whole-of-image
// dithering.
WUFFS_BASE__MAYBE_STATIC uint8_t //
wuffs_base__pixel_palette__closest_element(
wuffs_base__slice_u8 palette_slice,
wuffs_base__pixel_format palette_format,
wuffs_base__color_u32_argb_premul c);
// --------
// TODO: should the func type take restrict pointers?
typedef uint64_t (*wuffs_base__pixel_swizzler__func)(uint8_t* dst_ptr,
size_t dst_len,
uint8_t* dst_palette_ptr,
size_t dst_palette_len,
const uint8_t* src_ptr,
size_t src_len);
typedef uint64_t (*wuffs_base__pixel_swizzler__transparent_black_func)(
uint8_t* dst_ptr,
size_t dst_len,
uint8_t* dst_palette_ptr,
size_t dst_palette_len,
uint64_t num_pixels,
uint32_t dst_pixfmt_bytes_per_pixel);
typedef struct wuffs_base__pixel_swizzler__struct {
// Do not access the private_impl's fields directly. There is no API/ABI
// compatibility or safety guarantee if you do so.
struct {
wuffs_base__pixel_swizzler__func func;
wuffs_base__pixel_swizzler__transparent_black_func transparent_black_func;
uint32_t dst_pixfmt_bytes_per_pixel;
uint32_t src_pixfmt_bytes_per_pixel;
} private_impl;
#ifdef __cplusplus
inline wuffs_base__status prepare(wuffs_base__pixel_format dst_pixfmt,
wuffs_base__slice_u8 dst_palette,
wuffs_base__pixel_format src_pixfmt,
wuffs_base__slice_u8 src_palette,
wuffs_base__pixel_blend blend);
inline uint64_t swizzle_interleaved_from_slice(
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
wuffs_base__slice_u8 src) const;
#endif // __cplusplus
} wuffs_base__pixel_swizzler;
// wuffs_base__pixel_swizzler__prepare readies the pixel swizzler so that its
// other methods may be called.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__PIXCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__status //
wuffs_base__pixel_swizzler__prepare(wuffs_base__pixel_swizzler* p,
wuffs_base__pixel_format dst_pixfmt,
wuffs_base__slice_u8 dst_palette,
wuffs_base__pixel_format src_pixfmt,
wuffs_base__slice_u8 src_palette,
wuffs_base__pixel_blend blend);
// wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice converts pixels
// from a source format to a destination format.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__PIXCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC uint64_t //
wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice(
const wuffs_base__pixel_swizzler* p,
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
wuffs_base__slice_u8 src);
#ifdef __cplusplus
inline wuffs_base__status //
wuffs_base__pixel_swizzler::prepare(wuffs_base__pixel_format dst_pixfmt,
wuffs_base__slice_u8 dst_palette,
wuffs_base__pixel_format src_pixfmt,
wuffs_base__slice_u8 src_palette,
wuffs_base__pixel_blend blend) {
return wuffs_base__pixel_swizzler__prepare(this, dst_pixfmt, dst_palette,
src_pixfmt, src_palette, blend);
}
uint64_t //
wuffs_base__pixel_swizzler::swizzle_interleaved_from_slice(
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
wuffs_base__slice_u8 src) const {
return wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice(
this, dst, dst_palette, src);
}
#endif // __cplusplus
// ---------------- String Conversions
// Options (bitwise or'ed together) for wuffs_base__parse_number_xxx
// functions. The XXX options apply to both integer and floating point. The FXX
// options apply only to floating point.
#define WUFFS_BASE__PARSE_NUMBER_XXX__DEFAULT_OPTIONS ((uint32_t)0x00000000)
// WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES means to accept
// inputs like "00", "0644" and "00.7". By default, they are rejected.
#define WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES \
((uint32_t)0x00000001)
// WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES means to accept inputs like
// "1__2" and "_3.141_592". By default, they are rejected.
#define WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES ((uint32_t)0x00000002)
// WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA means to accept
// "1,5" and not "1.5" as one-and-a-half.
//
// If the caller wants to accept either, it is responsible for canonicalizing
// the input before calling wuffs_base__parse_number_fxx. The caller also has
// more context on e.g. exactly how to treat something like "$1,234".
#define WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA \
((uint32_t)0x00000010)
// WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN means to reject inputs that
// would lead to infinite or Not-a-Number floating point values. By default,
// they are accepted.
//
// This affects the literal "inf" as input, but also affects inputs like
// "1e999" that would overflow double-precision floating point.
#define WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN ((uint32_t)0x00000020)
// --------
// Options (bitwise or'ed together) for wuffs_base__render_number_xxx
// functions. The XXX options apply to both integer and floating point. The FXX
// options apply only to floating point.
#define WUFFS_BASE__RENDER_NUMBER_XXX__DEFAULT_OPTIONS ((uint32_t)0x00000000)
// WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT means to render to the right side
// (higher indexes) of the destination slice, leaving any untouched bytes on
// the left side (lower indexes). The default is vice versa: rendering on the
// left with slack on the right.
#define WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT ((uint32_t)0x00000100)
// WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN means to render the leading
// "+" for non-negative numbers: "+0" and "+12.3" instead of "0" and "12.3".
#define WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN ((uint32_t)0x00000200)
// WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA means to render
// one-and-a-half as "1,5" instead of "1.5".
#define WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA \
((uint32_t)0x00001000)
// WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ETC means whether to never
// (EXPONENT_ABSENT, equivalent to printf's "%f") or to always
// (EXPONENT_PRESENT, equivalent to printf's "%e") render a floating point
// number as "1.23e+05" instead of "123000".
//
// Having both bits set is the same has having neither bit set, where the
// notation used depends on whether the exponent is sufficiently large: "0.5"
// is preferred over "5e-01" but "5e-09" is preferred over "0.000000005".
#define WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT ((uint32_t)0x00002000)
#define WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT ((uint32_t)0x00004000)
// WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION means to render the
// smallest number of digits so that parsing the resultant string will recover
// the same double-precision floating point number.
//
// For example, double-precision cannot distinguish between 0.3 and
// 0.299999999999999988897769753748434595763683319091796875, so when this bit
// is set, rendering the latter will produce "0.3" but rendering
// 0.3000000000000000444089209850062616169452667236328125 will produce
// "0.30000000000000004".
#define WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION \
((uint32_t)0x00008000)
// ---------------- IEEE 754 Floating Point
// wuffs_base__ieee_754_bit_representation__etc converts between a double
// precision numerical value and its IEEE 754 representations:
// - 16-bit: 1 sign bit, 5 exponent bits, 10 explicit significand bits.
// - 32-bit: 1 sign bit, 8 exponent bits, 23 explicit significand bits.
// - 64-bit: 1 sign bit, 11 exponent bits, 52 explicit significand bits.
//
// For example, it converts between:
// - +1.0 and 0x3C00, 0x3F80_0000 or 0x3FF0_0000_0000_0000.
// - +5.5 and 0x4580, 0x40B0_0000 or 0x4016_0000_0000_0000.
// - -inf and 0xFC00, 0xFF80_0000 or 0xFFF0_0000_0000_0000.
//
// Converting from f64 to shorter formats (f16 or f32, represented in C as
// uint16_t and uint32_t) may be lossy. Such functions have names that look
// like etc_truncate, as converting finite numbers produce equal or smaller
// (closer-to-zero) finite numbers. For example, 1048576.0 is a perfectly valid
// f64 number, but converting it to a f16 (with truncation) produces 65504.0,
// the largest finite f16 number. Truncating a f64-typed value d to f32 does
// not always produce the same result as the C-style cast ((float)d), as
// casting can convert from finite numbers to infinite ones.
//
// Converting infinities or NaNs produces infinities or NaNs and always report
// no loss, even though there a multiple NaN representations so that round-
// tripping a f64-typed NaN may produce a different 64 bits. Nonetheless, the
// etc_truncate functions preserve a NaN's "quiet vs signaling" bit.
//
// See https://en.wikipedia.org/wiki/Double-precision_floating-point_format
typedef struct wuffs_base__lossy_value_u16__struct {
uint16_t value;
bool lossy;
} wuffs_base__lossy_value_u16;
typedef struct wuffs_base__lossy_value_u32__struct {
uint32_t value;
bool lossy;
} wuffs_base__lossy_value_u32;
WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u16 //
wuffs_base__ieee_754_bit_representation__from_f64_to_u16_truncate(double f);
WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u32 //
wuffs_base__ieee_754_bit_representation__from_f64_to_u32_truncate(double f);
static inline uint64_t //
wuffs_base__ieee_754_bit_representation__from_f64_to_u64(double f) {
uint64_t u = 0;
if (sizeof(uint64_t) == sizeof(double)) {
memcpy(&u, &f, sizeof(uint64_t));
}
return u;
}
static inline double //
wuffs_base__ieee_754_bit_representation__from_u16_to_f64(uint16_t u) {
uint64_t v = ((uint64_t)(u & 0x8000)) << 48;
do {
uint64_t exp = (u >> 10) & 0x1F;
uint64_t man = u & 0x3FF;
if (exp == 0x1F) { // Infinity or NaN.
exp = 2047;
} else if (exp != 0) { // Normal.
exp += 1008; // 1008 = 1023 - 15, the difference in biases.
} else if (man != 0) { // Subnormal but non-zero.
uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);
exp = 1062 - clz; // 1062 = 1008 + 64 - 10.
man = 0x3FF & (man << (clz - 53));
} else { // Zero.
break;
}
v |= (exp << 52) | (man << 42);
} while (0);
double f = 0;
if (sizeof(uint64_t) == sizeof(double)) {
memcpy(&f, &v, sizeof(uint64_t));
}
return f;
}
static inline double //
wuffs_base__ieee_754_bit_representation__from_u32_to_f64(uint32_t u) {
float f = 0;
if (sizeof(uint32_t) == sizeof(float)) {
memcpy(&f, &u, sizeof(uint32_t));
}
return (double)f;
}
static inline double //
wuffs_base__ieee_754_bit_representation__from_u64_to_f64(uint64_t u) {
double f = 0;
if (sizeof(uint64_t) == sizeof(double)) {
memcpy(&f, &u, sizeof(uint64_t));
}
return f;
}
// ---------------- Parsing and Rendering Numbers
// wuffs_base__parse_number_f64 parses the floating point number in s. For
// example, if s contains the bytes "1.5" then it will return the double 1.5.
//
// It returns an error if s does not contain a floating point number.
//
// It does not necessarily return an error if the conversion is lossy, e.g. if
// s is "0.3", which double-precision floating point cannot represent exactly.
//
// Similarly, the returned value may be infinite (and no error returned) even
// if s was not "inf", when the input is nominally finite but sufficiently
// larger than DBL_MAX, about 1.8e+308.
//
// It is similar to the C standard library's strtod function, but:
// - Errors are returned in-band (in a result type), not out-of-band (errno).
// - It takes a slice (a pointer and length), not a NUL-terminated C string.
// - It does not take an optional endptr argument. It does not allow a partial
// parse: it returns an error unless all of s is consumed.
// - It does not allow whitespace, leading or otherwise.
// - It does not allow hexadecimal floating point numbers.
// - It is not affected by i18n / l10n settings such as environment variables.
//
// The options argument can change these, but by default, it:
// - Allows "inf", "+Infinity" and "-NAN", case insensitive. Similarly,
// without an explicit opt-out, it would successfully parse "1e999" as
// infinity, even though it overflows double-precision floating point.
// - Rejects underscores. With an explicit opt-in, "_3.141_592" would
// successfully parse as an approximation to ฯ€.
// - Rejects unnecessary leading zeroes: "00", "0644" and "00.7".
// - Uses a dot '1.5' instead of a comma '1,5' for the decimal separator.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__FLOATCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 //
wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options);
// wuffs_base__parse_number_i64 parses the ASCII integer in s. For example, if
// s contains the bytes "-123" then it will return the int64_t -123.
//
// It returns an error if s does not contain an integer or if the integer
// within would overflow an int64_t.
//
// It is similar to wuffs_base__parse_number_u64 but it returns a signed
// integer, not an unsigned integer. It also allows a leading '+' or '-'.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_i64 //
wuffs_base__parse_number_i64(wuffs_base__slice_u8 s, uint32_t options);
// wuffs_base__parse_number_u64 parses the ASCII integer in s. For example, if
// s contains the bytes "123" then it will return the uint64_t 123.
//
// It returns an error if s does not contain an integer or if the integer
// within would overflow a uint64_t.
//
// It is similar to the C standard library's strtoull function, but:
// - Errors are returned in-band (in a result type), not out-of-band (errno).
// - It takes a slice (a pointer and length), not a NUL-terminated C string.
// - It does not take an optional endptr argument. It does not allow a partial
// parse: it returns an error unless all of s is consumed.
// - It does not allow whitespace, leading or otherwise.
// - It does not allow a leading '+' or '-'.
// - It does not take a base argument (e.g. base 10 vs base 16). Instead, it
// always accepts both decimal (e.g "1234", "0d5678") and hexadecimal (e.g.
// "0x9aBC"). The caller is responsible for prior filtering of e.g. hex
// numbers if they are unwanted. For example, Wuffs' JSON decoder will only
// produce a wuffs_base__token for decimal numbers, not hexadecimal.
// - It is not affected by i18n / l10n settings such as environment variables.
//
// The options argument can change these, but by default, it:
// - Rejects underscores. With an explicit opt-in, "__0D_1_002" would
// successfully parse as "one thousand and two". Underscores are still
// rejected inside the optional 2-byte opening "0d" or "0X" that denotes
// base-10 or base-16.
// - Rejects unnecessary leading zeroes: "00" and "0644".
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_u64 //
wuffs_base__parse_number_u64(wuffs_base__slice_u8 s, uint32_t options);
// --------
// WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL is the string length of
// "-9223372036854775808" and "+9223372036854775807", INT64_MIN and INT64_MAX.
#define WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL 20
// WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL is the string length of
// "+18446744073709551615", UINT64_MAX.
#define WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL 21
// wuffs_base__render_number_f64 writes the decimal encoding of x to dst and
// returns the number of bytes written. If dst is shorter than the entire
// encoding, it returns 0 (and no bytes are written).
//
// For those familiar with C's printf or Go's fmt.Printf functions:
// - "%e" means the WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT option.
// - "%f" means the WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT option.
// - "%g" means neither or both bits are set.
//
// The precision argument controls the number of digits rendered, excluding the
// exponent (the "e+05" in "1.23e+05"):
// - for "%e" and "%f" it is the number of digits after the decimal separator,
// - for "%g" it is the number of significant digits (and trailing zeroes are
// removed).
//
// A precision of 6 gives similar output to printf's defaults.
//
// A precision greater than 4095 is equivalent to 4095.
//
// The precision argument is ignored when the
// WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION option is set. This is
// similar to Go's strconv.FormatFloat with a negative (i.e. non-sensical)
// precision, but there is no corresponding feature in C's printf.
//
// Extreme values of x will be rendered as "NaN", "Inf" (or "+Inf" if the
// WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN option is set) or "-Inf".
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__FLOATCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_f64(wuffs_base__slice_u8 dst,
double x,
uint32_t precision,
uint32_t options);
// wuffs_base__render_number_i64 writes the decimal encoding of x to dst and
// returns the number of bytes written. If dst is shorter than the entire
// encoding, it returns 0 (and no bytes are written).
//
// dst will never be too short if its length is at least 20, also known as
// WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_i64(wuffs_base__slice_u8 dst,
int64_t x,
uint32_t options);
// wuffs_base__render_number_u64 writes the decimal encoding of x to dst and
// returns the number of bytes written. If dst is shorter than the entire
// encoding, it returns 0 (and no bytes are written).
//
// dst will never be too short if its length is at least 21, also known as
// WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_u64(wuffs_base__slice_u8 dst,
uint64_t x,
uint32_t options);
// ---------------- Base-16
// Options (bitwise or'ed together) for wuffs_base__base_16__xxx functions.
#define WUFFS_BASE__BASE_16__DEFAULT_OPTIONS ((uint32_t)0x00000000)
// wuffs_base__base_16__decode2 converts "6A6b" to "jk", where e.g. 'j' is
// U+006A. There are 2 src bytes for every dst byte.
//
// It assumes that the src bytes are two hexadecimal digits (0-9, A-F, a-f),
// repeated. It may write nonsense bytes if not, although it will not read or
// write out of bounds.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__decode2(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// wuffs_base__base_16__decode4 converts both "\\x6A\\x6b" and "??6a??6B" to
// "jk", where e.g. 'j' is U+006A. There are 4 src bytes for every dst byte.
//
// It assumes that the src bytes are two ignored bytes and then two hexadecimal
// digits (0-9, A-F, a-f), repeated. It may write nonsense bytes if not,
// although it will not read or write out of bounds.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__decode4(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// wuffs_base__base_16__encode2 converts "jk" to "6A6B", where e.g. 'j' is
// U+006A. There are 2 dst bytes for every src byte.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// wuffs_base__base_16__encode4 converts "jk" to "\\x6A\\x6B", where e.g. 'j'
// is U+006A. There are 4 dst bytes for every src byte.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// ---------------- Base-64
// Options (bitwise or'ed together) for wuffs_base__base_64__xxx functions.
#define WUFFS_BASE__BASE_64__DEFAULT_OPTIONS ((uint32_t)0x00000000)
// WUFFS_BASE__BASE_64__DECODE_ALLOW_PADDING means that, when decoding base-64,
// the input may (but does not need to) be padded with '=' bytes so that the
// overall encoded length in bytes is a multiple of 4. A successful decoding
// will return a num_src that includes those padding bytes.
//
// Excess padding (e.g. three final '='s) will be rejected as bad data.
#define WUFFS_BASE__BASE_64__DECODE_ALLOW_PADDING ((uint32_t)0x00000001)
// WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING means that, when encoding base-64,
// the output will be padded with '=' bytes so that the overall encoded length
// in bytes is a multiple of 4.
#define WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING ((uint32_t)0x00000002)
// WUFFS_BASE__BASE_64__URL_ALPHABET means that, for base-64, the URL-friendly
// and file-name-friendly alphabet be used, as per RFC 4648 section 5. When
// this option bit is off, the standard alphabet from section 4 is used.
#define WUFFS_BASE__BASE_64__URL_ALPHABET ((uint32_t)0x00000100)
// wuffs_base__base_64__decode transforms base-64 encoded bytes from src to
// arbitrary bytes in dst.
//
// It will not permit line breaks or other whitespace in src. Filtering those
// out is the responsibility of the caller.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_64__decode(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// wuffs_base__base_64__encode transforms arbitrary bytes from src to base-64
// encoded bytes in dst.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_64__encode(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options);
// ---------------- Unicode and UTF-8
#define WUFFS_BASE__UNICODE_CODE_POINT__MIN_INCL 0x00000000
#define WUFFS_BASE__UNICODE_CODE_POINT__MAX_INCL 0x0010FFFF
#define WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER 0x0000FFFD
#define WUFFS_BASE__UNICODE_SURROGATE__MIN_INCL 0x0000D800
#define WUFFS_BASE__UNICODE_SURROGATE__MAX_INCL 0x0000DFFF
#define WUFFS_BASE__ASCII__MIN_INCL 0x00
#define WUFFS_BASE__ASCII__MAX_INCL 0x7F
#define WUFFS_BASE__UTF_8__BYTE_LENGTH__MIN_INCL 1
#define WUFFS_BASE__UTF_8__BYTE_LENGTH__MAX_INCL 4
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_1__CODE_POINT__MIN_INCL 0x00000000
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_1__CODE_POINT__MAX_INCL 0x0000007F
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_2__CODE_POINT__MIN_INCL 0x00000080
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_2__CODE_POINT__MAX_INCL 0x000007FF
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_3__CODE_POINT__MIN_INCL 0x00000800
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_3__CODE_POINT__MAX_INCL 0x0000FFFF
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_4__CODE_POINT__MIN_INCL 0x00010000
#define WUFFS_BASE__UTF_8__BYTE_LENGTH_4__CODE_POINT__MAX_INCL 0x0010FFFF
// --------
// wuffs_base__utf_8__next__output is the type returned by
// wuffs_base__utf_8__next.
typedef struct wuffs_base__utf_8__next__output__struct {
uint32_t code_point;
uint32_t byte_length;
#ifdef __cplusplus
inline bool is_valid() const;
#endif // __cplusplus
} wuffs_base__utf_8__next__output;
static inline wuffs_base__utf_8__next__output //
wuffs_base__make_utf_8__next__output(uint32_t code_point,
uint32_t byte_length) {
wuffs_base__utf_8__next__output ret;
ret.code_point = code_point;
ret.byte_length = byte_length;
return ret;
}
static inline bool //
wuffs_base__utf_8__next__output__is_valid(
const wuffs_base__utf_8__next__output* o) {
if (o) {
uint32_t cp = o->code_point;
switch (o->byte_length) {
case 1:
return (cp <= 0x7F);
case 2:
return (0x080 <= cp) && (cp <= 0x7FF);
case 3:
// Avoid the 0xD800 ..= 0xDFFF surrogate range.
return ((0x0800 <= cp) && (cp <= 0xD7FF)) ||
((0xE000 <= cp) && (cp <= 0xFFFF));
case 4:
return (0x00010000 <= cp) && (cp <= 0x0010FFFF);
}
}
return false;
}
#ifdef __cplusplus
inline bool //
wuffs_base__utf_8__next__output::is_valid() const {
return wuffs_base__utf_8__next__output__is_valid(this);
}
#endif // __cplusplus
// --------
// wuffs_base__utf_8__encode writes the UTF-8 encoding of code_point to s and
// returns the number of bytes written. If code_point is invalid, or if s is
// shorter than the entire encoding, it returns 0 (and no bytes are written).
//
// s will never be too short if its length is at least 4, also known as
// WUFFS_BASE__UTF_8__BYTE_LENGTH__MAX_INCL.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__utf_8__encode(wuffs_base__slice_u8 dst, uint32_t code_point);
// wuffs_base__utf_8__next returns the next UTF-8 code point (and that code
// point's byte length) at the start of the read-only slice (s_ptr, s_len).
//
// There are exactly two cases in which this function returns something where
// wuffs_base__utf_8__next__output__is_valid is false:
// - If s is empty then it returns {.code_point=0, .byte_length=0}.
// - If s is non-empty and starts with invalid UTF-8 then it returns
// {.code_point=WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER, .byte_length=1}.
//
// Otherwise, it returns something where
// wuffs_base__utf_8__next__output__is_valid is true.
//
// In any case, it always returns an output that satisfies both of:
// - (output.code_point <= WUFFS_BASE__UNICODE_CODE_POINT__MAX_INCL).
// - (output.byte_length <= s_len).
//
// If s is a sub-slice of a larger slice of valid UTF-8, but that sub-slice
// boundary occurs in the middle of a multi-byte UTF-8 encoding of a single
// code point, then this function may return something invalid. It is the
// caller's responsibility to split on or otherwise manage UTF-8 boundaries.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output //
wuffs_base__utf_8__next(const uint8_t* s_ptr, size_t s_len);
// wuffs_base__utf_8__next_from_end is like wuffs_base__utf_8__next except that
// it looks at the end of (s_ptr, s_len) instead of the start.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output //
wuffs_base__utf_8__next_from_end(const uint8_t* s_ptr, size_t s_len);
// wuffs_base__utf_8__longest_valid_prefix returns the largest n such that the
// sub-slice s[..n] is valid UTF-8, where s is the read-only slice (s_ptr,
// s_len).
//
// In particular, it returns s_len if and only if all of s is valid UTF-8.
//
// If s is a sub-slice of a larger slice of valid UTF-8, but that sub-slice
// boundary occurs in the middle of a multi-byte UTF-8 encoding of a single
// code point, then this function will return less than s_len. It is the
// caller's responsibility to split on or otherwise manage UTF-8 boundaries.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__utf_8__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len);
// wuffs_base__ascii__longest_valid_prefix returns the largest n such that the
// sub-slice s[..n] is valid ASCII, where s is the read-only slice (s_ptr,
// s_len).
//
// In particular, it returns s_len if and only if all of s is valid ASCII.
// Equivalently, when none of the bytes in s have the 0x80 high bit set.
//
// For modular builds that divide the base module into sub-modules, using this
// function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just
// WUFFS_CONFIG__MODULE__BASE__CORE.
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__ascii__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len);
// ---------------- Interface Declarations.
// For modular builds that divide the base module into sub-modules, using these
// functions require the WUFFS_CONFIG__MODULE__BASE__INTERFACES sub-module, not
// just WUFFS_CONFIG__MODULE__BASE__CORE.
// --------
extern const char wuffs_base__hasher_u32__vtable_name[];
typedef struct wuffs_base__hasher_u32__func_ptrs__struct {
wuffs_base__empty_struct (*set_quirk_enabled)(
void* self,
uint32_t a_quirk,
bool a_enabled);
uint32_t (*update_u32)(
void* self,
wuffs_base__slice_u8 a_x);
} wuffs_base__hasher_u32__func_ptrs;
typedef struct wuffs_base__hasher_u32__struct wuffs_base__hasher_u32;
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__hasher_u32__set_quirk_enabled(
wuffs_base__hasher_u32* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_base__hasher_u32__update_u32(
wuffs_base__hasher_u32* self,
wuffs_base__slice_u8 a_x);
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_base__hasher_u32__struct {
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable first_vtable;
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_base__hasher_u32, decltype(&free)>;
#endif
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_base__hasher_u32__set_quirk_enabled(
this, a_quirk, a_enabled);
}
inline uint32_t
update_u32(
wuffs_base__slice_u8 a_x) {
return wuffs_base__hasher_u32__update_u32(
this, a_x);
}
#endif // __cplusplus
}; // struct wuffs_base__hasher_u32__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// --------
extern const char wuffs_base__image_decoder__vtable_name[];
typedef struct wuffs_base__image_decoder__func_ptrs__struct {
wuffs_base__status (*decode_frame)(
void* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
wuffs_base__status (*decode_frame_config)(
void* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
wuffs_base__status (*decode_image_config)(
void* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
wuffs_base__rect_ie_u32 (*frame_dirty_rect)(
const void* self);
uint32_t (*num_animation_loops)(
const void* self);
uint64_t (*num_decoded_frame_configs)(
const void* self);
uint64_t (*num_decoded_frames)(
const void* self);
wuffs_base__status (*restart_frame)(
void* self,
uint64_t a_index,
uint64_t a_io_position);
wuffs_base__empty_struct (*set_quirk_enabled)(
void* self,
uint32_t a_quirk,
bool a_enabled);
wuffs_base__empty_struct (*set_report_metadata)(
void* self,
uint32_t a_fourcc,
bool a_report);
wuffs_base__status (*tell_me_more)(
void* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
wuffs_base__range_ii_u64 (*workbuf_len)(
const void* self);
} wuffs_base__image_decoder__func_ptrs;
typedef struct wuffs_base__image_decoder__struct wuffs_base__image_decoder;
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_frame(
wuffs_base__image_decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_frame_config(
wuffs_base__image_decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_image_config(
wuffs_base__image_decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_base__image_decoder__frame_dirty_rect(
const wuffs_base__image_decoder* self);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_base__image_decoder__num_animation_loops(
const wuffs_base__image_decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_base__image_decoder__num_decoded_frame_configs(
const wuffs_base__image_decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_base__image_decoder__num_decoded_frames(
const wuffs_base__image_decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__restart_frame(
wuffs_base__image_decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__image_decoder__set_quirk_enabled(
wuffs_base__image_decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__image_decoder__set_report_metadata(
wuffs_base__image_decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__tell_me_more(
wuffs_base__image_decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__image_decoder__workbuf_len(
const wuffs_base__image_decoder* self);
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_base__image_decoder__struct {
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable first_vtable;
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_base__image_decoder, decltype(&free)>;
#endif
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_base__image_decoder__decode_frame(
this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_base__image_decoder__decode_frame_config(
this, a_dst, a_src);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_base__image_decoder__decode_image_config(
this, a_dst, a_src);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_base__image_decoder__frame_dirty_rect(this);
}
inline uint32_t
num_animation_loops() const {
return wuffs_base__image_decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_base__image_decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_base__image_decoder__num_decoded_frames(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_base__image_decoder__restart_frame(
this, a_index, a_io_position);
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_base__image_decoder__set_quirk_enabled(
this, a_quirk, a_enabled);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_base__image_decoder__set_report_metadata(
this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_base__image_decoder__tell_me_more(
this, a_dst, a_minfo, a_src);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_base__image_decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_base__image_decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// --------
extern const char wuffs_base__io_transformer__vtable_name[];
typedef struct wuffs_base__io_transformer__func_ptrs__struct {
wuffs_base__empty_struct (*set_quirk_enabled)(
void* self,
uint32_t a_quirk,
bool a_enabled);
wuffs_base__status (*transform_io)(
void* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
wuffs_base__range_ii_u64 (*workbuf_len)(
const void* self);
} wuffs_base__io_transformer__func_ptrs;
typedef struct wuffs_base__io_transformer__struct wuffs_base__io_transformer;
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__io_transformer__set_quirk_enabled(
wuffs_base__io_transformer* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__io_transformer__transform_io(
wuffs_base__io_transformer* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__io_transformer__workbuf_len(
const wuffs_base__io_transformer* self);
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_base__io_transformer__struct {
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable first_vtable;
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_base__io_transformer, decltype(&free)>;
#endif
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_base__io_transformer__set_quirk_enabled(
this, a_quirk, a_enabled);
}
inline wuffs_base__status
transform_io(
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_base__io_transformer__transform_io(
this, a_dst, a_src, a_workbuf);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_base__io_transformer__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_base__io_transformer__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// --------
extern const char wuffs_base__token_decoder__vtable_name[];
typedef struct wuffs_base__token_decoder__func_ptrs__struct {
wuffs_base__status (*decode_tokens)(
void* self,
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
wuffs_base__empty_struct (*set_quirk_enabled)(
void* self,
uint32_t a_quirk,
bool a_enabled);
wuffs_base__range_ii_u64 (*workbuf_len)(
const void* self);
} wuffs_base__token_decoder__func_ptrs;
typedef struct wuffs_base__token_decoder__struct wuffs_base__token_decoder;
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__token_decoder__decode_tokens(
wuffs_base__token_decoder* self,
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__token_decoder__set_quirk_enabled(
wuffs_base__token_decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__token_decoder__workbuf_len(
const wuffs_base__token_decoder* self);
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_base__token_decoder__struct {
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable first_vtable;
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_base__token_decoder, decltype(&free)>;
#endif
inline wuffs_base__status
decode_tokens(
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_base__token_decoder__decode_tokens(
this, a_dst, a_src, a_workbuf);
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_base__token_decoder__set_quirk_enabled(
this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_base__token_decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_base__token_decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ----------------
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Status Codes
// ---------------- Public Consts
// ---------------- Struct Declarations
typedef struct wuffs_adler32__hasher__struct wuffs_adler32__hasher;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_adler32__hasher__initialize(
wuffs_adler32__hasher* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_adler32__hasher();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_adler32__hasher*
wuffs_adler32__hasher__alloc();
static inline wuffs_base__hasher_u32*
wuffs_adler32__hasher__alloc_as__wuffs_base__hasher_u32() {
return (wuffs_base__hasher_u32*)(wuffs_adler32__hasher__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__hasher_u32*
wuffs_adler32__hasher__upcast_as__wuffs_base__hasher_u32(
wuffs_adler32__hasher* p) {
return (wuffs_base__hasher_u32*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_adler32__hasher__set_quirk_enabled(
wuffs_adler32__hasher* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_adler32__hasher__update_u32(
wuffs_adler32__hasher* self,
wuffs_base__slice_u8 a_x);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_adler32__hasher__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__hasher_u32;
wuffs_base__vtable null_vtable;
uint32_t f_state;
bool f_started;
wuffs_base__empty_struct (*choosy_up)(
wuffs_adler32__hasher* self,
wuffs_base__slice_u8 a_x);
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_adler32__hasher, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_adler32__hasher__alloc(), &free);
}
static inline wuffs_base__hasher_u32::unique_ptr
alloc_as__wuffs_base__hasher_u32() {
return wuffs_base__hasher_u32::unique_ptr(
wuffs_adler32__hasher__alloc_as__wuffs_base__hasher_u32(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_adler32__hasher__struct() = delete;
wuffs_adler32__hasher__struct(const wuffs_adler32__hasher__struct&) = delete;
wuffs_adler32__hasher__struct& operator=(
const wuffs_adler32__hasher__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_adler32__hasher__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__hasher_u32*
upcast_as__wuffs_base__hasher_u32() {
return (wuffs_base__hasher_u32*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_adler32__hasher__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline uint32_t
update_u32(
wuffs_base__slice_u8 a_x) {
return wuffs_adler32__hasher__update_u32(this, a_x);
}
#endif // __cplusplus
}; // struct wuffs_adler32__hasher__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_bmp__error__bad_header[];
extern const char wuffs_bmp__error__bad_rle_compression[];
extern const char wuffs_bmp__error__unsupported_bmp_file[];
// ---------------- Public Consts
#define WUFFS_BMP__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
// ---------------- Struct Declarations
typedef struct wuffs_bmp__decoder__struct wuffs_bmp__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_bmp__decoder__initialize(
wuffs_bmp__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_bmp__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_bmp__decoder*
wuffs_bmp__decoder__alloc();
static inline wuffs_base__image_decoder*
wuffs_bmp__decoder__alloc_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)(wuffs_bmp__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__image_decoder*
wuffs_bmp__decoder__upcast_as__wuffs_base__image_decoder(
wuffs_bmp__decoder* p) {
return (wuffs_base__image_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_bmp__decoder__set_quirk_enabled(
wuffs_bmp__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_bmp__decoder__decode_image_config(
wuffs_bmp__decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_bmp__decoder__decode_frame_config(
wuffs_bmp__decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_bmp__decoder__decode_frame(
wuffs_bmp__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_bmp__decoder__frame_dirty_rect(
const wuffs_bmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_bmp__decoder__num_animation_loops(
const wuffs_bmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_bmp__decoder__num_decoded_frame_configs(
const wuffs_bmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_bmp__decoder__num_decoded_frames(
const wuffs_bmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_bmp__decoder__restart_frame(
wuffs_bmp__decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_bmp__decoder__set_report_metadata(
wuffs_bmp__decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_bmp__decoder__tell_me_more(
wuffs_bmp__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_bmp__decoder__workbuf_len(
const wuffs_bmp__decoder* self);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_bmp__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__image_decoder;
wuffs_base__vtable null_vtable;
uint32_t f_width;
uint32_t f_height;
uint8_t f_call_sequence;
bool f_top_down;
uint32_t f_pad_per_row;
uint32_t f_src_pixfmt;
uint32_t f_io_redirect_fourcc;
uint64_t f_io_redirect_pos;
uint64_t f_frame_config_io_position;
uint32_t f_bitmap_info_len;
uint32_t f_padding;
uint32_t f_bits_per_pixel;
uint32_t f_compression;
uint32_t f_channel_masks[4];
uint8_t f_channel_shifts[4];
uint8_t f_channel_num_bits[4];
uint32_t f_dst_x;
uint32_t f_dst_y;
uint32_t f_dst_y_inc;
uint32_t f_pending_pad;
uint32_t f_rle_state;
uint32_t f_rle_length;
uint8_t f_rle_delta_x;
bool f_rle_padded;
wuffs_base__pixel_swizzler f_swizzler;
uint32_t p_decode_image_config[1];
uint32_t p_decode_frame_config[1];
uint32_t p_decode_frame[1];
uint32_t p_read_palette[1];
} private_impl;
struct {
uint8_t f_scratch[2048];
uint8_t f_src_palette[1024];
struct {
uint64_t scratch;
} s_decode_image_config[1];
struct {
wuffs_base__status v_status;
uint64_t scratch;
} s_decode_frame[1];
struct {
uint32_t v_i;
uint64_t scratch;
} s_read_palette[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_bmp__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_bmp__decoder__alloc(), &free);
}
static inline wuffs_base__image_decoder::unique_ptr
alloc_as__wuffs_base__image_decoder() {
return wuffs_base__image_decoder::unique_ptr(
wuffs_bmp__decoder__alloc_as__wuffs_base__image_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_bmp__decoder__struct() = delete;
wuffs_bmp__decoder__struct(const wuffs_bmp__decoder__struct&) = delete;
wuffs_bmp__decoder__struct& operator=(
const wuffs_bmp__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_bmp__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__image_decoder*
upcast_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_bmp__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_bmp__decoder__decode_image_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_bmp__decoder__decode_frame_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_bmp__decoder__decode_frame(this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_bmp__decoder__frame_dirty_rect(this);
}
inline uint32_t
num_animation_loops() const {
return wuffs_bmp__decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_bmp__decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_bmp__decoder__num_decoded_frames(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_bmp__decoder__restart_frame(this, a_index, a_io_position);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_bmp__decoder__set_report_metadata(this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_bmp__decoder__tell_me_more(this, a_dst, a_minfo, a_src);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_bmp__decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_bmp__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_cbor__error__bad_input[];
extern const char wuffs_cbor__error__unsupported_recursion_depth[];
// ---------------- Public Consts
#define WUFFS_CBOR__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
#define WUFFS_CBOR__DECODER_DEPTH_MAX_INCL 1024
#define WUFFS_CBOR__DECODER_DST_TOKEN_BUFFER_LENGTH_MIN_INCL 2
#define WUFFS_CBOR__DECODER_SRC_IO_BUFFER_LENGTH_MIN_INCL 9
#define WUFFS_CBOR__TOKEN_VALUE_MAJOR 787997
#define WUFFS_CBOR__TOKEN_VALUE_MINOR__DETAIL_MASK 262143
#define WUFFS_CBOR__TOKEN_VALUE_MINOR__MINUS_1_MINUS_X 16777216
#define WUFFS_CBOR__TOKEN_VALUE_MINOR__SIMPLE_VALUE 8388608
#define WUFFS_CBOR__TOKEN_VALUE_MINOR__TAG 4194304
// ---------------- Struct Declarations
typedef struct wuffs_cbor__decoder__struct wuffs_cbor__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_cbor__decoder__initialize(
wuffs_cbor__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_cbor__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_cbor__decoder*
wuffs_cbor__decoder__alloc();
static inline wuffs_base__token_decoder*
wuffs_cbor__decoder__alloc_as__wuffs_base__token_decoder() {
return (wuffs_base__token_decoder*)(wuffs_cbor__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__token_decoder*
wuffs_cbor__decoder__upcast_as__wuffs_base__token_decoder(
wuffs_cbor__decoder* p) {
return (wuffs_base__token_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_cbor__decoder__set_quirk_enabled(
wuffs_cbor__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_cbor__decoder__workbuf_len(
const wuffs_cbor__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_cbor__decoder__decode_tokens(
wuffs_cbor__decoder* self,
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_cbor__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__token_decoder;
wuffs_base__vtable null_vtable;
bool f_end_of_data;
uint32_t p_decode_tokens[1];
} private_impl;
struct {
uint32_t f_stack[64];
uint64_t f_container_num_remaining[1024];
struct {
uint64_t v_string_length;
uint32_t v_depth;
uint32_t v_token_length;
bool v_tagged;
uint8_t v_indefinite_string_major_type;
} s_decode_tokens[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_cbor__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_cbor__decoder__alloc(), &free);
}
static inline wuffs_base__token_decoder::unique_ptr
alloc_as__wuffs_base__token_decoder() {
return wuffs_base__token_decoder::unique_ptr(
wuffs_cbor__decoder__alloc_as__wuffs_base__token_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_cbor__decoder__struct() = delete;
wuffs_cbor__decoder__struct(const wuffs_cbor__decoder__struct&) = delete;
wuffs_cbor__decoder__struct& operator=(
const wuffs_cbor__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_cbor__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__token_decoder*
upcast_as__wuffs_base__token_decoder() {
return (wuffs_base__token_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_cbor__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_cbor__decoder__workbuf_len(this);
}
inline wuffs_base__status
decode_tokens(
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_cbor__decoder__decode_tokens(this, a_dst, a_src, a_workbuf);
}
#endif // __cplusplus
}; // struct wuffs_cbor__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
// ---------------- Public Consts
// ---------------- Struct Declarations
typedef struct wuffs_crc32__ieee_hasher__struct wuffs_crc32__ieee_hasher;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_crc32__ieee_hasher__initialize(
wuffs_crc32__ieee_hasher* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_crc32__ieee_hasher();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_crc32__ieee_hasher*
wuffs_crc32__ieee_hasher__alloc();
static inline wuffs_base__hasher_u32*
wuffs_crc32__ieee_hasher__alloc_as__wuffs_base__hasher_u32() {
return (wuffs_base__hasher_u32*)(wuffs_crc32__ieee_hasher__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__hasher_u32*
wuffs_crc32__ieee_hasher__upcast_as__wuffs_base__hasher_u32(
wuffs_crc32__ieee_hasher* p) {
return (wuffs_base__hasher_u32*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_crc32__ieee_hasher__set_quirk_enabled(
wuffs_crc32__ieee_hasher* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_crc32__ieee_hasher__update_u32(
wuffs_crc32__ieee_hasher* self,
wuffs_base__slice_u8 a_x);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_crc32__ieee_hasher__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__hasher_u32;
wuffs_base__vtable null_vtable;
uint32_t f_state;
wuffs_base__empty_struct (*choosy_up)(
wuffs_crc32__ieee_hasher* self,
wuffs_base__slice_u8 a_x);
} private_impl;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_crc32__ieee_hasher, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_crc32__ieee_hasher__alloc(), &free);
}
static inline wuffs_base__hasher_u32::unique_ptr
alloc_as__wuffs_base__hasher_u32() {
return wuffs_base__hasher_u32::unique_ptr(
wuffs_crc32__ieee_hasher__alloc_as__wuffs_base__hasher_u32(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_crc32__ieee_hasher__struct() = delete;
wuffs_crc32__ieee_hasher__struct(const wuffs_crc32__ieee_hasher__struct&) = delete;
wuffs_crc32__ieee_hasher__struct& operator=(
const wuffs_crc32__ieee_hasher__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_crc32__ieee_hasher__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__hasher_u32*
upcast_as__wuffs_base__hasher_u32() {
return (wuffs_base__hasher_u32*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_crc32__ieee_hasher__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline uint32_t
update_u32(
wuffs_base__slice_u8 a_x) {
return wuffs_crc32__ieee_hasher__update_u32(this, a_x);
}
#endif // __cplusplus
}; // struct wuffs_crc32__ieee_hasher__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_deflate__error__bad_huffman_code_over_subscribed[];
extern const char wuffs_deflate__error__bad_huffman_code_under_subscribed[];
extern const char wuffs_deflate__error__bad_huffman_code_length_count[];
extern const char wuffs_deflate__error__bad_huffman_code_length_repetition[];
extern const char wuffs_deflate__error__bad_huffman_code[];
extern const char wuffs_deflate__error__bad_huffman_minimum_code_length[];
extern const char wuffs_deflate__error__bad_block[];
extern const char wuffs_deflate__error__bad_distance[];
extern const char wuffs_deflate__error__bad_distance_code_count[];
extern const char wuffs_deflate__error__bad_literal_length_code_count[];
extern const char wuffs_deflate__error__inconsistent_stored_block_length[];
extern const char wuffs_deflate__error__missing_end_of_block_code[];
extern const char wuffs_deflate__error__no_huffman_codes[];
// ---------------- Public Consts
#define WUFFS_DEFLATE__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 1
// ---------------- Struct Declarations
typedef struct wuffs_deflate__decoder__struct wuffs_deflate__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_deflate__decoder__initialize(
wuffs_deflate__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_deflate__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_deflate__decoder*
wuffs_deflate__decoder__alloc();
static inline wuffs_base__io_transformer*
wuffs_deflate__decoder__alloc_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)(wuffs_deflate__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__io_transformer*
wuffs_deflate__decoder__upcast_as__wuffs_base__io_transformer(
wuffs_deflate__decoder* p) {
return (wuffs_base__io_transformer*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_deflate__decoder__add_history(
wuffs_deflate__decoder* self,
wuffs_base__slice_u8 a_hist);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_deflate__decoder__set_quirk_enabled(
wuffs_deflate__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_deflate__decoder__workbuf_len(
const wuffs_deflate__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_deflate__decoder__transform_io(
wuffs_deflate__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_deflate__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__io_transformer;
wuffs_base__vtable null_vtable;
uint32_t f_bits;
uint32_t f_n_bits;
uint64_t f_transformed_history_count;
uint32_t f_history_index;
uint32_t f_n_huffs_bits[2];
bool f_end_of_block;
uint32_t p_transform_io[1];
uint32_t p_decode_blocks[1];
uint32_t p_decode_uncompressed[1];
uint32_t p_init_dynamic_huffman[1];
wuffs_base__status (*choosy_decode_huffman_fast64)(
wuffs_deflate__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src);
uint32_t p_decode_huffman_slow[1];
} private_impl;
struct {
uint32_t f_huffs[2][1024];
uint8_t f_history[33025];
uint8_t f_code_lengths[320];
struct {
uint32_t v_final;
} s_decode_blocks[1];
struct {
uint32_t v_length;
uint64_t scratch;
} s_decode_uncompressed[1];
struct {
uint32_t v_bits;
uint32_t v_n_bits;
uint32_t v_n_lit;
uint32_t v_n_dist;
uint32_t v_n_clen;
uint32_t v_i;
uint32_t v_mask;
uint32_t v_table_entry;
uint32_t v_n_extra_bits;
uint8_t v_rep_symbol;
uint32_t v_rep_count;
} s_init_dynamic_huffman[1];
struct {
uint32_t v_bits;
uint32_t v_n_bits;
uint32_t v_table_entry;
uint32_t v_table_entry_n_bits;
uint32_t v_lmask;
uint32_t v_dmask;
uint32_t v_redir_top;
uint32_t v_redir_mask;
uint32_t v_length;
uint32_t v_dist_minus_1;
uint32_t v_hlen;
uint32_t v_hdist;
uint64_t scratch;
} s_decode_huffman_slow[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_deflate__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_deflate__decoder__alloc(), &free);
}
static inline wuffs_base__io_transformer::unique_ptr
alloc_as__wuffs_base__io_transformer() {
return wuffs_base__io_transformer::unique_ptr(
wuffs_deflate__decoder__alloc_as__wuffs_base__io_transformer(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_deflate__decoder__struct() = delete;
wuffs_deflate__decoder__struct(const wuffs_deflate__decoder__struct&) = delete;
wuffs_deflate__decoder__struct& operator=(
const wuffs_deflate__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_deflate__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__io_transformer*
upcast_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)this;
}
inline wuffs_base__empty_struct
add_history(
wuffs_base__slice_u8 a_hist) {
return wuffs_deflate__decoder__add_history(this, a_hist);
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_deflate__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_deflate__decoder__workbuf_len(this);
}
inline wuffs_base__status
transform_io(
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_deflate__decoder__transform_io(this, a_dst, a_src, a_workbuf);
}
#endif // __cplusplus
}; // struct wuffs_deflate__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_lzw__error__bad_code[];
// ---------------- Public Consts
#define WUFFS_LZW__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
// ---------------- Struct Declarations
typedef struct wuffs_lzw__decoder__struct wuffs_lzw__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_lzw__decoder__initialize(
wuffs_lzw__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_lzw__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_lzw__decoder*
wuffs_lzw__decoder__alloc();
static inline wuffs_base__io_transformer*
wuffs_lzw__decoder__alloc_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)(wuffs_lzw__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__io_transformer*
wuffs_lzw__decoder__upcast_as__wuffs_base__io_transformer(
wuffs_lzw__decoder* p) {
return (wuffs_base__io_transformer*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_lzw__decoder__set_quirk_enabled(
wuffs_lzw__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_lzw__decoder__set_literal_width(
wuffs_lzw__decoder* self,
uint32_t a_lw);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_lzw__decoder__workbuf_len(
const wuffs_lzw__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_lzw__decoder__transform_io(
wuffs_lzw__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
WUFFS_BASE__MAYBE_STATIC wuffs_base__slice_u8
wuffs_lzw__decoder__flush(
wuffs_lzw__decoder* self);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_lzw__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__io_transformer;
wuffs_base__vtable null_vtable;
uint32_t f_set_literal_width_arg;
uint32_t f_literal_width;
uint32_t f_clear_code;
uint32_t f_end_code;
uint32_t f_save_code;
uint32_t f_prev_code;
uint32_t f_width;
uint32_t f_bits;
uint32_t f_n_bits;
uint32_t f_output_ri;
uint32_t f_output_wi;
uint32_t f_read_from_return_value;
uint16_t f_prefixes[4096];
uint32_t p_transform_io[1];
uint32_t p_write_to[1];
} private_impl;
struct {
uint8_t f_suffixes[4096][8];
uint16_t f_lm1s[4096];
uint8_t f_output[8199];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_lzw__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_lzw__decoder__alloc(), &free);
}
static inline wuffs_base__io_transformer::unique_ptr
alloc_as__wuffs_base__io_transformer() {
return wuffs_base__io_transformer::unique_ptr(
wuffs_lzw__decoder__alloc_as__wuffs_base__io_transformer(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_lzw__decoder__struct() = delete;
wuffs_lzw__decoder__struct(const wuffs_lzw__decoder__struct&) = delete;
wuffs_lzw__decoder__struct& operator=(
const wuffs_lzw__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_lzw__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__io_transformer*
upcast_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_lzw__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__empty_struct
set_literal_width(
uint32_t a_lw) {
return wuffs_lzw__decoder__set_literal_width(this, a_lw);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_lzw__decoder__workbuf_len(this);
}
inline wuffs_base__status
transform_io(
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_lzw__decoder__transform_io(this, a_dst, a_src, a_workbuf);
}
inline wuffs_base__slice_u8
flush() {
return wuffs_lzw__decoder__flush(this);
}
#endif // __cplusplus
}; // struct wuffs_lzw__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_gif__error__bad_extension_label[];
extern const char wuffs_gif__error__bad_frame_size[];
extern const char wuffs_gif__error__bad_graphic_control[];
extern const char wuffs_gif__error__bad_header[];
extern const char wuffs_gif__error__bad_literal_width[];
extern const char wuffs_gif__error__bad_palette[];
// ---------------- Public Consts
#define WUFFS_GIF__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
#define WUFFS_GIF__QUIRK_DELAY_NUM_DECODED_FRAMES 1041635328
#define WUFFS_GIF__QUIRK_FIRST_FRAME_LOCAL_PALETTE_MEANS_BLACK_BACKGROUND 1041635329
#define WUFFS_GIF__QUIRK_HONOR_BACKGROUND_COLOR 1041635330
#define WUFFS_GIF__QUIRK_IGNORE_TOO_MUCH_PIXEL_DATA 1041635331
#define WUFFS_GIF__QUIRK_IMAGE_BOUNDS_ARE_STRICT 1041635332
#define WUFFS_GIF__QUIRK_REJECT_EMPTY_FRAME 1041635333
#define WUFFS_GIF__QUIRK_REJECT_EMPTY_PALETTE 1041635334
// ---------------- Struct Declarations
typedef struct wuffs_gif__decoder__struct wuffs_gif__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_gif__decoder__initialize(
wuffs_gif__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_gif__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_gif__decoder*
wuffs_gif__decoder__alloc();
static inline wuffs_base__image_decoder*
wuffs_gif__decoder__alloc_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)(wuffs_gif__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__image_decoder*
wuffs_gif__decoder__upcast_as__wuffs_base__image_decoder(
wuffs_gif__decoder* p) {
return (wuffs_base__image_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_gif__decoder__set_quirk_enabled(
wuffs_gif__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gif__decoder__decode_image_config(
wuffs_gif__decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_gif__decoder__set_report_metadata(
wuffs_gif__decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gif__decoder__tell_me_more(
wuffs_gif__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_gif__decoder__num_animation_loops(
const wuffs_gif__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_gif__decoder__num_decoded_frame_configs(
const wuffs_gif__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_gif__decoder__num_decoded_frames(
const wuffs_gif__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_gif__decoder__frame_dirty_rect(
const wuffs_gif__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_gif__decoder__workbuf_len(
const wuffs_gif__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gif__decoder__restart_frame(
wuffs_gif__decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gif__decoder__decode_frame_config(
wuffs_gif__decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gif__decoder__decode_frame(
wuffs_gif__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_gif__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__image_decoder;
wuffs_base__vtable null_vtable;
uint32_t f_width;
uint32_t f_height;
uint8_t f_call_sequence;
bool f_ignore_metadata;
bool f_report_metadata_iccp;
bool f_report_metadata_xmp;
uint32_t f_metadata_fourcc;
uint64_t f_metadata_io_position;
bool f_quirks[7];
bool f_delayed_num_decoded_frames;
bool f_end_of_data;
bool f_restarted;
bool f_previous_lzw_decode_ended_abruptly;
bool f_has_global_palette;
uint8_t f_interlace;
bool f_seen_num_animation_loops_value;
uint32_t f_num_animation_loops_value;
uint32_t f_background_color_u32_argb_premul;
uint32_t f_black_color_u32_argb_premul;
bool f_gc_has_transparent_index;
uint8_t f_gc_transparent_index;
uint8_t f_gc_disposal;
uint64_t f_gc_duration;
uint64_t f_frame_config_io_position;
uint64_t f_num_decoded_frame_configs_value;
uint64_t f_num_decoded_frames_value;
uint32_t f_frame_rect_x0;
uint32_t f_frame_rect_y0;
uint32_t f_frame_rect_x1;
uint32_t f_frame_rect_y1;
uint32_t f_dst_x;
uint32_t f_dst_y;
uint32_t f_dirty_max_excl_y;
uint64_t f_compressed_ri;
uint64_t f_compressed_wi;
wuffs_base__pixel_swizzler f_swizzler;
uint32_t p_decode_image_config[1];
uint32_t p_tell_me_more[1];
uint32_t p_decode_frame_config[1];
uint32_t p_skip_frame[1];
uint32_t p_decode_frame[1];
uint32_t p_decode_up_to_id_part1[1];
uint32_t p_decode_header[1];
uint32_t p_decode_lsd[1];
uint32_t p_decode_extension[1];
uint32_t p_skip_blocks[1];
uint32_t p_decode_ae[1];
uint32_t p_decode_gc[1];
uint32_t p_decode_id_part0[1];
uint32_t p_decode_id_part1[1];
uint32_t p_decode_id_part2[1];
} private_impl;
struct {
uint8_t f_compressed[4096];
uint8_t f_palettes[2][1024];
uint8_t f_dst_palette[1024];
wuffs_lzw__decoder f_lzw;
struct {
uint32_t v_background_color;
} s_decode_frame_config[1];
struct {
uint64_t scratch;
} s_skip_frame[1];
struct {
uint8_t v_c[6];
uint32_t v_i;
} s_decode_header[1];
struct {
uint8_t v_flags;
uint8_t v_background_color_index;
uint32_t v_num_palette_entries;
uint32_t v_i;
uint64_t scratch;
} s_decode_lsd[1];
struct {
uint64_t scratch;
} s_skip_blocks[1];
struct {
uint8_t v_block_size;
bool v_is_animexts;
bool v_is_netscape;
bool v_is_iccp;
bool v_is_xmp;
uint64_t scratch;
} s_decode_ae[1];
struct {
uint64_t scratch;
} s_decode_gc[1];
struct {
uint64_t scratch;
} s_decode_id_part0[1];
struct {
uint8_t v_which_palette;
uint32_t v_num_palette_entries;
uint32_t v_i;
uint64_t scratch;
} s_decode_id_part1[1];
struct {
uint64_t v_block_size;
bool v_need_block_size;
wuffs_base__status v_lzw_status;
uint64_t scratch;
} s_decode_id_part2[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_gif__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_gif__decoder__alloc(), &free);
}
static inline wuffs_base__image_decoder::unique_ptr
alloc_as__wuffs_base__image_decoder() {
return wuffs_base__image_decoder::unique_ptr(
wuffs_gif__decoder__alloc_as__wuffs_base__image_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_gif__decoder__struct() = delete;
wuffs_gif__decoder__struct(const wuffs_gif__decoder__struct&) = delete;
wuffs_gif__decoder__struct& operator=(
const wuffs_gif__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_gif__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__image_decoder*
upcast_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_gif__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_gif__decoder__decode_image_config(this, a_dst, a_src);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_gif__decoder__set_report_metadata(this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_gif__decoder__tell_me_more(this, a_dst, a_minfo, a_src);
}
inline uint32_t
num_animation_loops() const {
return wuffs_gif__decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_gif__decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_gif__decoder__num_decoded_frames(this);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_gif__decoder__frame_dirty_rect(this);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_gif__decoder__workbuf_len(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_gif__decoder__restart_frame(this, a_index, a_io_position);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_gif__decoder__decode_frame_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_gif__decoder__decode_frame(this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
#endif // __cplusplus
}; // struct wuffs_gif__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_gzip__error__bad_checksum[];
extern const char wuffs_gzip__error__bad_compression_method[];
extern const char wuffs_gzip__error__bad_encoding_flags[];
extern const char wuffs_gzip__error__bad_header[];
// ---------------- Public Consts
#define WUFFS_GZIP__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 1
// ---------------- Struct Declarations
typedef struct wuffs_gzip__decoder__struct wuffs_gzip__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_gzip__decoder__initialize(
wuffs_gzip__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_gzip__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_gzip__decoder*
wuffs_gzip__decoder__alloc();
static inline wuffs_base__io_transformer*
wuffs_gzip__decoder__alloc_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)(wuffs_gzip__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__io_transformer*
wuffs_gzip__decoder__upcast_as__wuffs_base__io_transformer(
wuffs_gzip__decoder* p) {
return (wuffs_base__io_transformer*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_gzip__decoder__set_quirk_enabled(
wuffs_gzip__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_gzip__decoder__workbuf_len(
const wuffs_gzip__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_gzip__decoder__transform_io(
wuffs_gzip__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_gzip__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__io_transformer;
wuffs_base__vtable null_vtable;
bool f_ignore_checksum;
uint32_t p_transform_io[1];
} private_impl;
struct {
wuffs_crc32__ieee_hasher f_checksum;
wuffs_deflate__decoder f_flate;
struct {
uint8_t v_flags;
uint32_t v_checksum_got;
uint32_t v_decoded_length_got;
uint32_t v_checksum_want;
uint64_t scratch;
} s_transform_io[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_gzip__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_gzip__decoder__alloc(), &free);
}
static inline wuffs_base__io_transformer::unique_ptr
alloc_as__wuffs_base__io_transformer() {
return wuffs_base__io_transformer::unique_ptr(
wuffs_gzip__decoder__alloc_as__wuffs_base__io_transformer(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_gzip__decoder__struct() = delete;
wuffs_gzip__decoder__struct(const wuffs_gzip__decoder__struct&) = delete;
wuffs_gzip__decoder__struct& operator=(
const wuffs_gzip__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_gzip__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__io_transformer*
upcast_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_gzip__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_gzip__decoder__workbuf_len(this);
}
inline wuffs_base__status
transform_io(
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_gzip__decoder__transform_io(this, a_dst, a_src, a_workbuf);
}
#endif // __cplusplus
}; // struct wuffs_gzip__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_json__error__bad_c0_control_code[];
extern const char wuffs_json__error__bad_utf_8[];
extern const char wuffs_json__error__bad_backslash_escape[];
extern const char wuffs_json__error__bad_input[];
extern const char wuffs_json__error__bad_new_line_in_a_string[];
extern const char wuffs_json__error__bad_quirk_combination[];
extern const char wuffs_json__error__unsupported_number_length[];
extern const char wuffs_json__error__unsupported_recursion_depth[];
// ---------------- Public Consts
#define WUFFS_JSON__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
#define WUFFS_JSON__DECODER_DEPTH_MAX_INCL 1024
#define WUFFS_JSON__DECODER_DST_TOKEN_BUFFER_LENGTH_MIN_INCL 1
#define WUFFS_JSON__DECODER_SRC_IO_BUFFER_LENGTH_MIN_INCL 100
#define WUFFS_JSON__QUIRK_ALLOW_ASCII_CONTROL_CODES 1225364480
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_A 1225364481
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_CAPITAL_U 1225364482
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_E 1225364483
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_NEW_LINE 1225364484
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_QUESTION_MARK 1225364485
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_SINGLE_QUOTE 1225364486
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_V 1225364487
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_X_AS_CODE_POINTS 1225364489
#define WUFFS_JSON__QUIRK_ALLOW_BACKSLASH_ZERO 1225364490
#define WUFFS_JSON__QUIRK_ALLOW_COMMENT_BLOCK 1225364491
#define WUFFS_JSON__QUIRK_ALLOW_COMMENT_LINE 1225364492
#define WUFFS_JSON__QUIRK_ALLOW_EXTRA_COMMA 1225364493
#define WUFFS_JSON__QUIRK_ALLOW_INF_NAN_NUMBERS 1225364494
#define WUFFS_JSON__QUIRK_ALLOW_LEADING_ASCII_RECORD_SEPARATOR 1225364495
#define WUFFS_JSON__QUIRK_ALLOW_LEADING_UNICODE_BYTE_ORDER_MARK 1225364496
#define WUFFS_JSON__QUIRK_ALLOW_TRAILING_FILLER 1225364497
#define WUFFS_JSON__QUIRK_EXPECT_TRAILING_NEW_LINE_OR_EOF 1225364498
#define WUFFS_JSON__QUIRK_JSON_POINTER_ALLOW_TILDE_N_TILDE_R_TILDE_T 1225364499
#define WUFFS_JSON__QUIRK_REPLACE_INVALID_UNICODE 1225364500
// ---------------- Struct Declarations
typedef struct wuffs_json__decoder__struct wuffs_json__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_json__decoder__initialize(
wuffs_json__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_json__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_json__decoder*
wuffs_json__decoder__alloc();
static inline wuffs_base__token_decoder*
wuffs_json__decoder__alloc_as__wuffs_base__token_decoder() {
return (wuffs_base__token_decoder*)(wuffs_json__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__token_decoder*
wuffs_json__decoder__upcast_as__wuffs_base__token_decoder(
wuffs_json__decoder* p) {
return (wuffs_base__token_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_json__decoder__set_quirk_enabled(
wuffs_json__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_json__decoder__workbuf_len(
const wuffs_json__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_json__decoder__decode_tokens(
wuffs_json__decoder* self,
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_json__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__token_decoder;
wuffs_base__vtable null_vtable;
bool f_quirks[21];
bool f_allow_leading_ars;
bool f_allow_leading_ubom;
bool f_end_of_data;
uint8_t f_trailer_stop;
uint8_t f_comment_type;
uint32_t p_decode_tokens[1];
uint32_t p_decode_leading[1];
uint32_t p_decode_comment[1];
uint32_t p_decode_inf_nan[1];
uint32_t p_decode_trailer[1];
} private_impl;
struct {
uint32_t f_stack[32];
struct {
uint32_t v_depth;
uint32_t v_expect;
uint32_t v_expect_after_value;
} s_decode_tokens[1];
struct {
uint32_t v_neg;
} s_decode_inf_nan[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_json__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_json__decoder__alloc(), &free);
}
static inline wuffs_base__token_decoder::unique_ptr
alloc_as__wuffs_base__token_decoder() {
return wuffs_base__token_decoder::unique_ptr(
wuffs_json__decoder__alloc_as__wuffs_base__token_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_json__decoder__struct() = delete;
wuffs_json__decoder__struct(const wuffs_json__decoder__struct&) = delete;
wuffs_json__decoder__struct& operator=(
const wuffs_json__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_json__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__token_decoder*
upcast_as__wuffs_base__token_decoder() {
return (wuffs_base__token_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_json__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_json__decoder__workbuf_len(this);
}
inline wuffs_base__status
decode_tokens(
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_json__decoder__decode_tokens(this, a_dst, a_src, a_workbuf);
}
#endif // __cplusplus
}; // struct wuffs_json__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_nie__error__bad_header[];
extern const char wuffs_nie__error__unsupported_nie_file[];
// ---------------- Public Consts
#define WUFFS_NIE__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
// ---------------- Struct Declarations
typedef struct wuffs_nie__decoder__struct wuffs_nie__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_nie__decoder__initialize(
wuffs_nie__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_nie__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_nie__decoder*
wuffs_nie__decoder__alloc();
static inline wuffs_base__image_decoder*
wuffs_nie__decoder__alloc_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)(wuffs_nie__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__image_decoder*
wuffs_nie__decoder__upcast_as__wuffs_base__image_decoder(
wuffs_nie__decoder* p) {
return (wuffs_base__image_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_nie__decoder__set_quirk_enabled(
wuffs_nie__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_nie__decoder__decode_image_config(
wuffs_nie__decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_nie__decoder__decode_frame_config(
wuffs_nie__decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_nie__decoder__decode_frame(
wuffs_nie__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_nie__decoder__frame_dirty_rect(
const wuffs_nie__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_nie__decoder__num_animation_loops(
const wuffs_nie__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_nie__decoder__num_decoded_frame_configs(
const wuffs_nie__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_nie__decoder__num_decoded_frames(
const wuffs_nie__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_nie__decoder__restart_frame(
wuffs_nie__decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_nie__decoder__set_report_metadata(
wuffs_nie__decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_nie__decoder__tell_me_more(
wuffs_nie__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_nie__decoder__workbuf_len(
const wuffs_nie__decoder* self);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_nie__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__image_decoder;
wuffs_base__vtable null_vtable;
uint32_t f_pixfmt;
uint32_t f_width;
uint32_t f_height;
uint8_t f_call_sequence;
uint32_t f_dst_x;
uint32_t f_dst_y;
wuffs_base__pixel_swizzler f_swizzler;
uint32_t p_decode_image_config[1];
uint32_t p_decode_frame_config[1];
uint32_t p_decode_frame[1];
} private_impl;
struct {
struct {
uint64_t scratch;
} s_decode_image_config[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_nie__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_nie__decoder__alloc(), &free);
}
static inline wuffs_base__image_decoder::unique_ptr
alloc_as__wuffs_base__image_decoder() {
return wuffs_base__image_decoder::unique_ptr(
wuffs_nie__decoder__alloc_as__wuffs_base__image_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_nie__decoder__struct() = delete;
wuffs_nie__decoder__struct(const wuffs_nie__decoder__struct&) = delete;
wuffs_nie__decoder__struct& operator=(
const wuffs_nie__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_nie__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__image_decoder*
upcast_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_nie__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_nie__decoder__decode_image_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_nie__decoder__decode_frame_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_nie__decoder__decode_frame(this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_nie__decoder__frame_dirty_rect(this);
}
inline uint32_t
num_animation_loops() const {
return wuffs_nie__decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_nie__decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_nie__decoder__num_decoded_frames(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_nie__decoder__restart_frame(this, a_index, a_io_position);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_nie__decoder__set_report_metadata(this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_nie__decoder__tell_me_more(this, a_dst, a_minfo, a_src);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_nie__decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_nie__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_zlib__note__dictionary_required[];
extern const char wuffs_zlib__error__bad_checksum[];
extern const char wuffs_zlib__error__bad_compression_method[];
extern const char wuffs_zlib__error__bad_compression_window_size[];
extern const char wuffs_zlib__error__bad_parity_check[];
extern const char wuffs_zlib__error__incorrect_dictionary[];
// ---------------- Public Consts
#define WUFFS_ZLIB__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 1
// ---------------- Struct Declarations
typedef struct wuffs_zlib__decoder__struct wuffs_zlib__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_zlib__decoder__initialize(
wuffs_zlib__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_zlib__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_zlib__decoder*
wuffs_zlib__decoder__alloc();
static inline wuffs_base__io_transformer*
wuffs_zlib__decoder__alloc_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)(wuffs_zlib__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__io_transformer*
wuffs_zlib__decoder__upcast_as__wuffs_base__io_transformer(
wuffs_zlib__decoder* p) {
return (wuffs_base__io_transformer*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_zlib__decoder__dictionary_id(
const wuffs_zlib__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_zlib__decoder__add_dictionary(
wuffs_zlib__decoder* self,
wuffs_base__slice_u8 a_dict);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_zlib__decoder__set_quirk_enabled(
wuffs_zlib__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_zlib__decoder__workbuf_len(
const wuffs_zlib__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_zlib__decoder__transform_io(
wuffs_zlib__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_zlib__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__io_transformer;
wuffs_base__vtable null_vtable;
bool f_bad_call_sequence;
bool f_header_complete;
bool f_got_dictionary;
bool f_want_dictionary;
bool f_ignore_checksum;
uint32_t f_dict_id_got;
uint32_t f_dict_id_want;
uint32_t p_transform_io[1];
} private_impl;
struct {
wuffs_adler32__hasher f_checksum;
wuffs_adler32__hasher f_dict_id_hasher;
wuffs_deflate__decoder f_flate;
struct {
uint32_t v_checksum_got;
uint64_t scratch;
} s_transform_io[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_zlib__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_zlib__decoder__alloc(), &free);
}
static inline wuffs_base__io_transformer::unique_ptr
alloc_as__wuffs_base__io_transformer() {
return wuffs_base__io_transformer::unique_ptr(
wuffs_zlib__decoder__alloc_as__wuffs_base__io_transformer(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_zlib__decoder__struct() = delete;
wuffs_zlib__decoder__struct(const wuffs_zlib__decoder__struct&) = delete;
wuffs_zlib__decoder__struct& operator=(
const wuffs_zlib__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_zlib__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__io_transformer*
upcast_as__wuffs_base__io_transformer() {
return (wuffs_base__io_transformer*)this;
}
inline uint32_t
dictionary_id() const {
return wuffs_zlib__decoder__dictionary_id(this);
}
inline wuffs_base__empty_struct
add_dictionary(
wuffs_base__slice_u8 a_dict) {
return wuffs_zlib__decoder__add_dictionary(this, a_dict);
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_zlib__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_zlib__decoder__workbuf_len(this);
}
inline wuffs_base__status
transform_io(
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
return wuffs_zlib__decoder__transform_io(this, a_dst, a_src, a_workbuf);
}
#endif // __cplusplus
}; // struct wuffs_zlib__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_png__error__bad_animation_sequence_number[];
extern const char wuffs_png__error__bad_checksum[];
extern const char wuffs_png__error__bad_chunk[];
extern const char wuffs_png__error__bad_filter[];
extern const char wuffs_png__error__bad_header[];
extern const char wuffs_png__error__bad_text_chunk_not_latin_1[];
extern const char wuffs_png__error__missing_palette[];
extern const char wuffs_png__error__unsupported_png_compression_method[];
extern const char wuffs_png__error__unsupported_png_file[];
// ---------------- Public Consts
#define WUFFS_PNG__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
#define WUFFS_PNG__DECODER_SRC_IO_BUFFER_LENGTH_MIN_INCL 8
// ---------------- Struct Declarations
typedef struct wuffs_png__decoder__struct wuffs_png__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_png__decoder__initialize(
wuffs_png__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_png__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_png__decoder*
wuffs_png__decoder__alloc();
static inline wuffs_base__image_decoder*
wuffs_png__decoder__alloc_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)(wuffs_png__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__image_decoder*
wuffs_png__decoder__upcast_as__wuffs_base__image_decoder(
wuffs_png__decoder* p) {
return (wuffs_base__image_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_png__decoder__set_quirk_enabled(
wuffs_png__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_png__decoder__decode_image_config(
wuffs_png__decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_png__decoder__decode_frame_config(
wuffs_png__decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_png__decoder__decode_frame(
wuffs_png__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_png__decoder__frame_dirty_rect(
const wuffs_png__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_png__decoder__num_animation_loops(
const wuffs_png__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_png__decoder__num_decoded_frame_configs(
const wuffs_png__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_png__decoder__num_decoded_frames(
const wuffs_png__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_png__decoder__restart_frame(
wuffs_png__decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_png__decoder__set_report_metadata(
wuffs_png__decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_png__decoder__tell_me_more(
wuffs_png__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_png__decoder__workbuf_len(
const wuffs_png__decoder* self);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_png__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__image_decoder;
wuffs_base__vtable null_vtable;
uint32_t f_width;
uint32_t f_height;
uint64_t f_pass_bytes_per_row;
uint64_t f_workbuf_wi;
uint64_t f_workbuf_hist_pos_base;
uint64_t f_overall_workbuf_length;
uint64_t f_pass_workbuf_length;
uint8_t f_call_sequence;
bool f_report_metadata_chrm;
bool f_report_metadata_gama;
bool f_report_metadata_iccp;
bool f_report_metadata_kvp;
bool f_report_metadata_srgb;
bool f_ignore_checksum;
uint8_t f_depth;
uint8_t f_color_type;
uint8_t f_filter_distance;
uint8_t f_interlace_pass;
bool f_seen_actl;
bool f_seen_chrm;
bool f_seen_fctl;
bool f_seen_gama;
bool f_seen_iccp;
bool f_seen_idat;
bool f_seen_plte;
bool f_seen_srgb;
bool f_seen_trns;
bool f_metadata_is_zlib_compressed;
bool f_zlib_is_dirty;
uint32_t f_chunk_type;
uint8_t f_chunk_type_array[4];
uint32_t f_chunk_length;
uint64_t f_remap_transparency;
uint32_t f_dst_pixfmt;
uint32_t f_src_pixfmt;
uint32_t f_num_animation_frames_value;
uint32_t f_num_animation_loops_value;
uint32_t f_num_decoded_frame_configs_value;
uint32_t f_num_decoded_frames_value;
uint32_t f_frame_rect_x0;
uint32_t f_frame_rect_y0;
uint32_t f_frame_rect_x1;
uint32_t f_frame_rect_y1;
uint32_t f_first_rect_x0;
uint32_t f_first_rect_y0;
uint32_t f_first_rect_x1;
uint32_t f_first_rect_y1;
uint64_t f_frame_config_io_position;
uint64_t f_first_config_io_position;
uint64_t f_frame_duration;
uint64_t f_first_duration;
uint8_t f_frame_disposal;
uint8_t f_first_disposal;
bool f_frame_overwrite_instead_of_blend;
bool f_first_overwrite_instead_of_blend;
uint32_t f_next_animation_seq_num;
uint32_t f_metadata_flavor;
uint32_t f_metadata_fourcc;
uint64_t f_metadata_x;
uint64_t f_metadata_y;
uint64_t f_metadata_z;
uint32_t f_ztxt_ri;
uint32_t f_ztxt_wi;
uint64_t f_ztxt_hist_pos;
wuffs_base__pixel_swizzler f_swizzler;
wuffs_base__empty_struct (*choosy_filter_1)(
wuffs_png__decoder* self,
wuffs_base__slice_u8 a_curr);
wuffs_base__empty_struct (*choosy_filter_3)(
wuffs_png__decoder* self,
wuffs_base__slice_u8 a_curr,
wuffs_base__slice_u8 a_prev);
wuffs_base__empty_struct (*choosy_filter_4)(
wuffs_png__decoder* self,
wuffs_base__slice_u8 a_curr,
wuffs_base__slice_u8 a_prev);
uint32_t p_decode_image_config[1];
uint32_t p_decode_ihdr[1];
uint32_t p_decode_other_chunk[1];
uint32_t p_decode_actl[1];
uint32_t p_decode_chrm[1];
uint32_t p_decode_fctl[1];
uint32_t p_decode_gama[1];
uint32_t p_decode_iccp[1];
uint32_t p_decode_plte[1];
uint32_t p_decode_srgb[1];
uint32_t p_decode_trns[1];
uint32_t p_decode_frame_config[1];
uint32_t p_skip_frame[1];
uint32_t p_decode_frame[1];
uint32_t p_decode_pass[1];
uint32_t p_tell_me_more[1];
wuffs_base__status (*choosy_filter_and_swizzle)(
wuffs_png__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__slice_u8 a_workbuf);
} private_impl;
struct {
wuffs_crc32__ieee_hasher f_crc32;
wuffs_zlib__decoder f_zlib;
uint8_t f_dst_palette[1024];
uint8_t f_src_palette[1024];
struct {
uint32_t v_checksum_have;
uint64_t scratch;
} s_decode_image_config[1];
struct {
uint64_t scratch;
} s_decode_ihdr[1];
struct {
uint64_t scratch;
} s_decode_other_chunk[1];
struct {
uint64_t scratch;
} s_decode_actl[1];
struct {
uint64_t scratch;
} s_decode_chrm[1];
struct {
uint32_t v_x0;
uint32_t v_x1;
uint32_t v_y1;
uint64_t scratch;
} s_decode_fctl[1];
struct {
uint64_t scratch;
} s_decode_gama[1];
struct {
uint32_t v_num_entries;
uint32_t v_i;
uint64_t scratch;
} s_decode_plte[1];
struct {
uint32_t v_i;
uint32_t v_n;
uint64_t scratch;
} s_decode_trns[1];
struct {
uint64_t scratch;
} s_decode_frame_config[1];
struct {
uint64_t scratch;
} s_skip_frame[1];
struct {
uint64_t scratch;
} s_decode_frame[1];
struct {
uint64_t scratch;
} s_decode_pass[1];
struct {
wuffs_base__status v_zlib_status;
uint64_t scratch;
} s_tell_me_more[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_png__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_png__decoder__alloc(), &free);
}
static inline wuffs_base__image_decoder::unique_ptr
alloc_as__wuffs_base__image_decoder() {
return wuffs_base__image_decoder::unique_ptr(
wuffs_png__decoder__alloc_as__wuffs_base__image_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_png__decoder__struct() = delete;
wuffs_png__decoder__struct(const wuffs_png__decoder__struct&) = delete;
wuffs_png__decoder__struct& operator=(
const wuffs_png__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_png__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__image_decoder*
upcast_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_png__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_png__decoder__decode_image_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_png__decoder__decode_frame_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_png__decoder__decode_frame(this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_png__decoder__frame_dirty_rect(this);
}
inline uint32_t
num_animation_loops() const {
return wuffs_png__decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_png__decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_png__decoder__num_decoded_frames(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_png__decoder__restart_frame(this, a_index, a_io_position);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_png__decoder__set_report_metadata(this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_png__decoder__tell_me_more(this, a_dst, a_minfo, a_src);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_png__decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_png__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
// ---------------- Status Codes
extern const char wuffs_wbmp__error__bad_header[];
// ---------------- Public Consts
#define WUFFS_WBMP__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 0
// ---------------- Struct Declarations
typedef struct wuffs_wbmp__decoder__struct wuffs_wbmp__decoder;
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Public Initializer Prototypes
// For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self,
// etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)".
//
// Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version.
// Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options.
wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
wuffs_wbmp__decoder__initialize(
wuffs_wbmp__decoder* self,
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options);
size_t
sizeof__wuffs_wbmp__decoder();
// ---------------- Allocs
// These functions allocate and initialize Wuffs structs. They return NULL if
// memory allocation fails. If they return non-NULL, there is no need to call
// wuffs_foo__bar__initialize, but the caller is responsible for eventually
// calling free on the returned pointer. That pointer is effectively a C++
// std::unique_ptr<T, decltype(&free)>.
wuffs_wbmp__decoder*
wuffs_wbmp__decoder__alloc();
static inline wuffs_base__image_decoder*
wuffs_wbmp__decoder__alloc_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)(wuffs_wbmp__decoder__alloc());
}
// ---------------- Upcasts
static inline wuffs_base__image_decoder*
wuffs_wbmp__decoder__upcast_as__wuffs_base__image_decoder(
wuffs_wbmp__decoder* p) {
return (wuffs_base__image_decoder*)p;
}
// ---------------- Public Function Prototypes
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_wbmp__decoder__set_quirk_enabled(
wuffs_wbmp__decoder* self,
uint32_t a_quirk,
bool a_enabled);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_wbmp__decoder__decode_image_config(
wuffs_wbmp__decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_wbmp__decoder__decode_frame_config(
wuffs_wbmp__decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_wbmp__decoder__decode_frame(
wuffs_wbmp__decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts);
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_wbmp__decoder__frame_dirty_rect(
const wuffs_wbmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_wbmp__decoder__num_animation_loops(
const wuffs_wbmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_wbmp__decoder__num_decoded_frame_configs(
const wuffs_wbmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_wbmp__decoder__num_decoded_frames(
const wuffs_wbmp__decoder* self);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_wbmp__decoder__restart_frame(
wuffs_wbmp__decoder* self,
uint64_t a_index,
uint64_t a_io_position);
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_wbmp__decoder__set_report_metadata(
wuffs_wbmp__decoder* self,
uint32_t a_fourcc,
bool a_report);
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_wbmp__decoder__tell_me_more(
wuffs_wbmp__decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src);
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_wbmp__decoder__workbuf_len(
const wuffs_wbmp__decoder* self);
#ifdef __cplusplus
} // extern "C"
#endif
// ---------------- Struct Definitions
// These structs' fields, and the sizeof them, are private implementation
// details that aren't guaranteed to be stable across Wuffs versions.
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
#if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
struct wuffs_wbmp__decoder__struct {
// Do not access the private_impl's or private_data's fields directly. There
// is no API/ABI compatibility or safety guarantee if you do so. Instead, use
// the wuffs_foo__bar__baz functions.
//
// It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct
// can be stack allocated when WUFFS_IMPLEMENTATION is defined.
struct {
uint32_t magic;
uint32_t active_coroutine;
wuffs_base__vtable vtable_for__wuffs_base__image_decoder;
wuffs_base__vtable null_vtable;
uint32_t f_width;
uint32_t f_height;
uint8_t f_call_sequence;
uint64_t f_frame_config_io_position;
wuffs_base__pixel_swizzler f_swizzler;
uint32_t p_decode_image_config[1];
uint32_t p_decode_frame_config[1];
uint32_t p_decode_frame[1];
} private_impl;
struct {
struct {
uint32_t v_i;
uint32_t v_x32;
} s_decode_image_config[1];
struct {
uint64_t v_dst_bytes_per_pixel;
uint32_t v_dst_x;
uint32_t v_dst_y;
uint8_t v_src[1];
uint8_t v_c;
} s_decode_frame[1];
} private_data;
#ifdef __cplusplus
#if defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
using unique_ptr = std::unique_ptr<wuffs_wbmp__decoder, decltype(&free)>;
// On failure, the alloc_etc functions return nullptr. They don't throw.
static inline unique_ptr
alloc() {
return unique_ptr(wuffs_wbmp__decoder__alloc(), &free);
}
static inline wuffs_base__image_decoder::unique_ptr
alloc_as__wuffs_base__image_decoder() {
return wuffs_base__image_decoder::unique_ptr(
wuffs_wbmp__decoder__alloc_as__wuffs_base__image_decoder(), &free);
}
#endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
#if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
// Disallow constructing or copying an object via standard C++ mechanisms,
// e.g. the "new" operator, as this struct is intentionally opaque. Its total
// size and field layout is not part of the public, stable, memory-safe API.
// Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and
// call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as
// their first argument) rather than tweaking bar.private_impl.qux fields.
//
// In C, we can just leave wuffs_foo__bar as an incomplete type (unless
// WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in
// order to provide convenience methods. These forward on "this", so that you
// can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)".
wuffs_wbmp__decoder__struct() = delete;
wuffs_wbmp__decoder__struct(const wuffs_wbmp__decoder__struct&) = delete;
wuffs_wbmp__decoder__struct& operator=(
const wuffs_wbmp__decoder__struct&) = delete;
#endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION)
#if !defined(WUFFS_IMPLEMENTATION)
// As above, the size of the struct is not part of the public API, and unless
// WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap
// allocated, not stack allocated. Its size is not intended to be known at
// compile time, but it is unfortunately divulged as a side effect of
// defining C++ convenience methods. Use "sizeof__T()", calling the function,
// instead of "sizeof T", invoking the operator. To make the two values
// different, so that passing the latter will be rejected by the initialize
// function, we add an arbitrary amount of dead weight.
uint8_t dead_weight[123000000]; // 123 MB.
#endif // !defined(WUFFS_IMPLEMENTATION)
inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT
initialize(
size_t sizeof_star_self,
uint64_t wuffs_version,
uint32_t options) {
return wuffs_wbmp__decoder__initialize(
this, sizeof_star_self, wuffs_version, options);
}
inline wuffs_base__image_decoder*
upcast_as__wuffs_base__image_decoder() {
return (wuffs_base__image_decoder*)this;
}
inline wuffs_base__empty_struct
set_quirk_enabled(
uint32_t a_quirk,
bool a_enabled) {
return wuffs_wbmp__decoder__set_quirk_enabled(this, a_quirk, a_enabled);
}
inline wuffs_base__status
decode_image_config(
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_wbmp__decoder__decode_image_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame_config(
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
return wuffs_wbmp__decoder__decode_frame_config(this, a_dst, a_src);
}
inline wuffs_base__status
decode_frame(
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
return wuffs_wbmp__decoder__decode_frame(this, a_dst, a_src, a_blend, a_workbuf, a_opts);
}
inline wuffs_base__rect_ie_u32
frame_dirty_rect() const {
return wuffs_wbmp__decoder__frame_dirty_rect(this);
}
inline uint32_t
num_animation_loops() const {
return wuffs_wbmp__decoder__num_animation_loops(this);
}
inline uint64_t
num_decoded_frame_configs() const {
return wuffs_wbmp__decoder__num_decoded_frame_configs(this);
}
inline uint64_t
num_decoded_frames() const {
return wuffs_wbmp__decoder__num_decoded_frames(this);
}
inline wuffs_base__status
restart_frame(
uint64_t a_index,
uint64_t a_io_position) {
return wuffs_wbmp__decoder__restart_frame(this, a_index, a_io_position);
}
inline wuffs_base__empty_struct
set_report_metadata(
uint32_t a_fourcc,
bool a_report) {
return wuffs_wbmp__decoder__set_report_metadata(this, a_fourcc, a_report);
}
inline wuffs_base__status
tell_me_more(
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
return wuffs_wbmp__decoder__tell_me_more(this, a_dst, a_minfo, a_src);
}
inline wuffs_base__range_ii_u64
workbuf_len() const {
return wuffs_wbmp__decoder__workbuf_len(this);
}
#endif // __cplusplus
}; // struct wuffs_wbmp__decoder__struct
#endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION)
#if defined(__cplusplus) && defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
// ---------------- Auxiliary - Base
// Auxiliary code is discussed at
// https://github.com/google/wuffs/blob/main/doc/note/auxiliary-code.md
#include <stdio.h>
#include <string>
namespace wuffs_aux {
using IOBuffer = wuffs_base__io_buffer;
// MemOwner represents ownership of some memory. Dynamically allocated memory
// (e.g. from malloc or new) is typically paired with free or delete, invoked
// when the std::unique_ptr is destroyed. Statically allocated memory might use
// MemOwner(nullptr, &free), even if that statically allocated memory is not
// nullptr, since calling free(nullptr) is a no-op.
using MemOwner = std::unique_ptr<void, decltype(&free)>;
namespace sync_io {
// --------
// DynIOBuffer is an IOBuffer that is backed by a dynamically sized byte array.
// It owns that backing array and will free it in its destructor.
//
// The array size can be explicitly extended (by calling the grow method) but,
// unlike a C++ std::vector, there is no implicit extension (e.g. by calling
// std::vector::insert) and its maximum size is capped by the max_incl
// constructor argument.
//
// It contains an IOBuffer-typed field whose reader side provides access to
// previously written bytes and whose writer side provides access to the
// allocated but not-yet-written-to slack space. For Go programmers, this slack
// space is roughly analogous to the s[len(s):cap(s)] space of a slice s.
class DynIOBuffer {
public:
enum GrowResult {
OK = 0,
FailedMaxInclExceeded = 1,
FailedOutOfMemory = 2,
};
// m_buf holds the dynamically sized byte array and its read/write indexes:
// - m_buf.meta.wi is roughly analogous to a Go slice's length.
// - m_buf.data.len is roughly analogous to a Go slice's capacity. It is
// also equal to the m_buf.data.ptr malloc/realloc size.
//
// Users should not modify the m_buf.data.ptr or m_buf.data.len fields (as
// they are conceptually private to this class), but they can modify the
// bytes referenced by that pointer-length pair (e.g. compactions).
IOBuffer m_buf;
// m_max_incl is an inclusive upper bound on the backing array size.
const uint64_t m_max_incl;
// Constructor and destructor.
explicit DynIOBuffer(uint64_t max_incl);
~DynIOBuffer();
// Drop frees the byte array and resets m_buf. The DynIOBuffer can still be
// used after a drop call. It just restarts from zero.
void drop();
// grow ensures that the byte array size is at least min_incl and at most
// max_incl. It returns FailedMaxInclExceeded if that would require
// allocating more than max_incl bytes, including the case where (min_incl >
// max_incl). It returns FailedOutOfMemory if memory allocation failed.
GrowResult grow(uint64_t min_incl);
private:
// Delete the copy and assign constructors.
DynIOBuffer(const DynIOBuffer&) = delete;
DynIOBuffer& operator=(const DynIOBuffer&) = delete;
static uint64_t round_up(uint64_t min_incl, uint64_t max_incl);
};
// --------
class Input {
public:
virtual ~Input();
virtual IOBuffer* BringsItsOwnIOBuffer();
virtual std::string CopyIn(IOBuffer* dst) = 0;
};
// --------
// FileInput is an Input that reads from a file source.
//
// It does not take responsibility for closing the file when done.
class FileInput : public Input {
public:
FileInput(FILE* f);
virtual std::string CopyIn(IOBuffer* dst);
private:
FILE* m_f;
// Delete the copy and assign constructors.
FileInput(const FileInput&) = delete;
FileInput& operator=(const FileInput&) = delete;
};
// --------
// MemoryInput is an Input that reads from an in-memory source.
//
// It does not take responsibility for freeing the memory when done.
class MemoryInput : public Input {
public:
MemoryInput(const char* ptr, size_t len);
MemoryInput(const uint8_t* ptr, size_t len);
virtual IOBuffer* BringsItsOwnIOBuffer();
virtual std::string CopyIn(IOBuffer* dst);
private:
IOBuffer m_io;
// Delete the copy and assign constructors.
MemoryInput(const MemoryInput&) = delete;
MemoryInput& operator=(const MemoryInput&) = delete;
};
// --------
} // namespace sync_io
} // namespace wuffs_aux
// ---------------- Auxiliary - CBOR
namespace wuffs_aux {
struct DecodeCborResult {
DecodeCborResult(std::string&& error_message0, uint64_t cursor_position0);
std::string error_message;
uint64_t cursor_position;
};
class DecodeCborCallbacks {
public:
virtual ~DecodeCborCallbacks();
// AppendXxx are called for leaf nodes: literals, numbers, strings, etc.
virtual std::string AppendNull() = 0;
virtual std::string AppendUndefined() = 0;
virtual std::string AppendBool(bool val) = 0;
virtual std::string AppendF64(double val) = 0;
virtual std::string AppendI64(int64_t val) = 0;
virtual std::string AppendU64(uint64_t val) = 0;
virtual std::string AppendByteString(std::string&& val) = 0;
virtual std::string AppendTextString(std::string&& val) = 0;
virtual std::string AppendMinus1MinusX(uint64_t val) = 0;
virtual std::string AppendCborSimpleValue(uint8_t val) = 0;
virtual std::string AppendCborTag(uint64_t val) = 0;
// Push and Pop are called for container nodes: CBOR arrays (lists) and CBOR
// maps (dictionaries).
//
// The flags bits combine exactly one of:
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_NONE
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_LIST
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_DICT
// and exactly one of:
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_NONE
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_LIST
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_DICT
virtual std::string Push(uint32_t flags) = 0;
virtual std::string Pop(uint32_t flags) = 0;
// Done is always the last Callback method called by DecodeCbor, whether or
// not parsing the input as CBOR encountered an error. Even when successful,
// trailing data may remain in input and buffer.
//
// Do not keep a reference to buffer or buffer.data.ptr after Done returns,
// as DecodeCbor may then de-allocate the backing array.
//
// The default Done implementation is a no-op.
virtual void //
Done(DecodeCborResult& result, sync_io::Input& input, IOBuffer& buffer);
};
// The FooArgBar types add structure to Foo's optional arguments. They wrap
// inner representations for several reasons:
// - It provides a home for the DefaultValue static method, for Foo callers
// that want to override some but not all optional arguments.
// - It provides the "Bar" name at Foo call sites, which can help self-
// document Foo calls with many arguemnts.
// - It provides some type safety against accidentally transposing or omitting
// adjacent fundamentally-numeric-typed optional arguments.
// DecodeCborArgQuirks wraps an optional argument to DecodeCbor.
struct DecodeCborArgQuirks {
explicit DecodeCborArgQuirks(wuffs_base__slice_u32 repr0);
explicit DecodeCborArgQuirks(uint32_t* ptr, size_t len);
// DefaultValue returns an empty slice.
static DecodeCborArgQuirks DefaultValue();
wuffs_base__slice_u32 repr;
};
// DecodeCbor calls callbacks based on the CBOR-formatted data in input.
//
// On success, the returned error_message is empty and cursor_position counts
// the number of bytes consumed. On failure, error_message is non-empty and
// cursor_position is the location of the error. That error may be a content
// error (invalid CBOR) or an input error (e.g. network failure).
DecodeCborResult //
DecodeCbor(DecodeCborCallbacks& callbacks,
sync_io::Input& input,
DecodeCborArgQuirks quirks = DecodeCborArgQuirks::DefaultValue());
} // namespace wuffs_aux
// ---------------- Auxiliary - Image
namespace wuffs_aux {
struct DecodeImageResult {
DecodeImageResult(MemOwner&& pixbuf_mem_owner0,
wuffs_base__pixel_buffer pixbuf0,
std::string&& error_message0);
DecodeImageResult(std::string&& error_message0);
MemOwner pixbuf_mem_owner;
wuffs_base__pixel_buffer pixbuf;
std::string error_message;
};
// DecodeImageCallbacks are the callbacks given to DecodeImage. They are always
// called in this order:
// 1. SelectDecoder
// 2. HandleMetadata
// 3. SelectPixfmt
// 4. AllocPixbuf
// 5. AllocWorkbuf
// 6. Done
//
// It may return early - the third callback might not be invoked if the second
// one fails - but the final callback (Done) is always invoked.
class DecodeImageCallbacks {
public:
// AllocPixbufResult holds a memory allocation (the result of malloc or new,
// a statically allocated pointer, etc), or an error message. The memory is
// de-allocated when mem_owner goes out of scope and is destroyed.
struct AllocPixbufResult {
AllocPixbufResult(MemOwner&& mem_owner0, wuffs_base__pixel_buffer pixbuf0);
AllocPixbufResult(std::string&& error_message0);
MemOwner mem_owner;
wuffs_base__pixel_buffer pixbuf;
std::string error_message;
};
// AllocWorkbufResult holds a memory allocation (the result of malloc or new,
// a statically allocated pointer, etc), or an error message. The memory is
// de-allocated when mem_owner goes out of scope and is destroyed.
struct AllocWorkbufResult {
AllocWorkbufResult(MemOwner&& mem_owner0, wuffs_base__slice_u8 workbuf0);
AllocWorkbufResult(std::string&& error_message0);
MemOwner mem_owner;
wuffs_base__slice_u8 workbuf;
std::string error_message;
};
virtual ~DecodeImageCallbacks();
// SelectDecoder returns the image decoder for the input data's file format.
// Returning a nullptr means failure (DecodeImage_UnsupportedImageFormat).
//
// Common formats will have a FourCC value in the range [1 ..= 0x7FFF_FFFF],
// such as WUFFS_BASE__FOURCC__JPEG. A zero FourCC value means that the
// caller is responsible for examining the opening bytes (a prefix) of the
// input data. SelectDecoder implementations should not modify those bytes.
//
// SelectDecoder might be called more than once, since some image file
// formats can wrap others. For example, a nominal BMP file can actually
// contain a JPEG or a PNG.
//
// The default SelectDecoder accepts the FOURCC codes listed below. For
// modular builds (i.e. when #define'ing WUFFS_CONFIG__MODULES), acceptance
// of the ETC file format is optional (for each value of ETC) and depends on
// the corresponding module to be enabled at compile time (i.e. #define'ing
// WUFFS_CONFIG__MODULE__ETC).
// - WUFFS_BASE__FOURCC__BMP
// - WUFFS_BASE__FOURCC__GIF
// - WUFFS_BASE__FOURCC__NIE
// - WUFFS_BASE__FOURCC__PNG
// - WUFFS_BASE__FOURCC__WBMP
virtual wuffs_base__image_decoder::unique_ptr //
SelectDecoder(uint32_t fourcc, wuffs_base__slice_u8 prefix);
// HandleMetadata acknowledges image metadata. minfo.flavor will be one of:
// - WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_PASSTHROUGH
// - WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_PARSED
// If it is ETC__METADATA_RAW_ETC then raw contains the metadata bytes. Those
// bytes should not be retained beyond the the HandleMetadata call.
//
// minfo.metadata__fourcc() will typically match one of the
// DecodeImageArgFlags bits. For example, if (REPORT_METADATA_CHRM |
// REPORT_METADATA_GAMA) was passed to DecodeImage then the metadata FourCC
// will be either WUFFS_BASE__FOURCC__CHRM or WUFFS_BASE__FOURCC__GAMA.
//
// It returns an error message, or an empty string on success.
virtual std::string //
HandleMetadata(const wuffs_base__more_information& minfo,
wuffs_base__slice_u8 raw);
// SelectPixfmt returns the destination pixel format for AllocPixbuf. It
// should return wuffs_base__make_pixel_format(etc) called with one of:
// - WUFFS_BASE__PIXEL_FORMAT__BGR_565
// - WUFFS_BASE__PIXEL_FORMAT__BGR
// - WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL
// - WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE
// - WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL
// - WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL
// - WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL
// or return image_config.pixcfg.pixel_format(). The latter means to use the
// image file's natural pixel format. For example, GIF images' natural pixel
// format is an indexed one.
//
// Returning otherwise means failure (DecodeImage_UnsupportedPixelFormat).
//
// The default SelectPixfmt implementation returns
// wuffs_base__make_pixel_format(WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL) which
// is 4 bytes per pixel (8 bits per channel ร— 4 channels).
virtual wuffs_base__pixel_format //
SelectPixfmt(const wuffs_base__image_config& image_config);
// AllocPixbuf allocates the pixel buffer.
//
// allow_uninitialized_memory will be true if a valid background_color was
// passed to DecodeImage, since the pixel buffer's contents will be
// overwritten with that color after AllocPixbuf returns.
//
// The default AllocPixbuf implementation allocates either uninitialized or
// zeroed memory. Zeroed memory typically corresponds to filling with opaque
// black or transparent black, depending on the pixel format.
virtual AllocPixbufResult //
AllocPixbuf(const wuffs_base__image_config& image_config,
bool allow_uninitialized_memory);
// AllocWorkbuf allocates the work buffer. The allocated buffer's length
// should be at least len_range.min_incl, but larger allocations (up to
// len_range.max_incl) may have better performance (by using more memory).
//
// The default AllocWorkbuf implementation allocates len_range.max_incl bytes
// of either uninitialized or zeroed memory.
virtual AllocWorkbufResult //
AllocWorkbuf(wuffs_base__range_ii_u64 len_range,
bool allow_uninitialized_memory);
// Done is always the last Callback method called by DecodeImage, whether or
// not parsing the input encountered an error. Even when successful, trailing
// data may remain in input and buffer.
//
// The image_decoder is the one returned by SelectDecoder (if SelectDecoder
// was successful), or a no-op unique_ptr otherwise. Like any unique_ptr,
// ownership moves to the Done implementation.
//
// Do not keep a reference to buffer or buffer.data.ptr after Done returns,
// as DecodeImage may then de-allocate the backing array.
//
// The default Done implementation is a no-op, other than running the
// image_decoder unique_ptr destructor.
virtual void //
Done(DecodeImageResult& result,
sync_io::Input& input,
IOBuffer& buffer,
wuffs_base__image_decoder::unique_ptr image_decoder);
};
extern const char DecodeImage_BufferIsTooShort[];
extern const char DecodeImage_MaxInclDimensionExceeded[];
extern const char DecodeImage_MaxInclMetadataLengthExceeded[];
extern const char DecodeImage_OutOfMemory[];
extern const char DecodeImage_UnexpectedEndOfFile[];
extern const char DecodeImage_UnsupportedImageFormat[];
extern const char DecodeImage_UnsupportedMetadata[];
extern const char DecodeImage_UnsupportedPixelBlend[];
extern const char DecodeImage_UnsupportedPixelConfiguration[];
extern const char DecodeImage_UnsupportedPixelFormat[];
// The FooArgBar types add structure to Foo's optional arguments. They wrap
// inner representations for several reasons:
// - It provides a home for the DefaultValue static method, for Foo callers
// that want to override some but not all optional arguments.
// - It provides the "Bar" name at Foo call sites, which can help self-
// document Foo calls with many arguemnts.
// - It provides some type safety against accidentally transposing or omitting
// adjacent fundamentally-numeric-typed optional arguments.
// DecodeImageArgQuirks wraps an optional argument to DecodeImage.
struct DecodeImageArgQuirks {
explicit DecodeImageArgQuirks(wuffs_base__slice_u32 repr0);
explicit DecodeImageArgQuirks(uint32_t* ptr, size_t len);
// DefaultValue returns an empty slice.
static DecodeImageArgQuirks DefaultValue();
wuffs_base__slice_u32 repr;
};
// DecodeImageArgFlags wraps an optional argument to DecodeImage.
struct DecodeImageArgFlags {
explicit DecodeImageArgFlags(uint64_t repr0);
// DefaultValue returns 0.
static DecodeImageArgFlags DefaultValue();
// TODO: support all of the REPORT_METADATA_ETC flags, not just CHRM, GAMA,
// ICCP, KVP, SRGB and XMP.
// Background Color.
static constexpr uint64_t REPORT_METADATA_BGCL = 0x0001;
// Primary Chromaticities and White Point.
static constexpr uint64_t REPORT_METADATA_CHRM = 0x0002;
// Exchangeable Image File Format.
static constexpr uint64_t REPORT_METADATA_EXIF = 0x0004;
// Gamma Correction.
static constexpr uint64_t REPORT_METADATA_GAMA = 0x0008;
// International Color Consortium Profile.
static constexpr uint64_t REPORT_METADATA_ICCP = 0x0010;
// Key-Value Pair.
//
// For PNG files, this includes iTXt, tEXt and zTXt chunks. In the
// HandleMetadata callback, the raw argument contains UTF-8 strings.
static constexpr uint64_t REPORT_METADATA_KVP = 0x0020;
// Modification Time.
static constexpr uint64_t REPORT_METADATA_MTIM = 0x0040;
// Offset (2-Dimensional).
static constexpr uint64_t REPORT_METADATA_OFS2 = 0x0080;
// Physical Dimensions.
static constexpr uint64_t REPORT_METADATA_PHYD = 0x0100;
// Standard Red Green Blue (Rendering Intent).
static constexpr uint64_t REPORT_METADATA_SRGB = 0x0200;
// Extensible Metadata Platform.
static constexpr uint64_t REPORT_METADATA_XMP = 0x0400;
uint64_t repr;
};
// DecodeImageArgPixelBlend wraps an optional argument to DecodeImage.
struct DecodeImageArgPixelBlend {
explicit DecodeImageArgPixelBlend(wuffs_base__pixel_blend repr0);
// DefaultValue returns WUFFS_BASE__PIXEL_BLEND__SRC.
static DecodeImageArgPixelBlend DefaultValue();
wuffs_base__pixel_blend repr;
};
// DecodeImageArgBackgroundColor wraps an optional argument to DecodeImage.
struct DecodeImageArgBackgroundColor {
explicit DecodeImageArgBackgroundColor(
wuffs_base__color_u32_argb_premul repr0);
// DefaultValue returns 1, an invalid wuffs_base__color_u32_argb_premul.
static DecodeImageArgBackgroundColor DefaultValue();
wuffs_base__color_u32_argb_premul repr;
};
// DecodeImageArgMaxInclDimension wraps an optional argument to DecodeImage.
struct DecodeImageArgMaxInclDimension {
explicit DecodeImageArgMaxInclDimension(uint32_t repr0);
// DefaultValue returns 1048575 = 0x000F_FFFF, more than 1 million pixels.
static DecodeImageArgMaxInclDimension DefaultValue();
uint32_t repr;
};
// DecodeImageArgMaxInclMetadataLength wraps an optional argument to
// DecodeImage.
struct DecodeImageArgMaxInclMetadataLength {
explicit DecodeImageArgMaxInclMetadataLength(uint64_t repr0);
// DefaultValue returns 16777215 = 0x00FF_FFFF, one less than 16 MiB.
static DecodeImageArgMaxInclMetadataLength DefaultValue();
uint64_t repr;
};
// DecodeImage decodes the image data in input. A variety of image file formats
// can be decoded, depending on what callbacks.SelectDecoder returns.
//
// For animated formats, only the first frame is returned, since the API is
// simpler for synchronous I/O and having DecodeImage only return when
// completely done, but rendering animation often involves handling other
// events in between animation frames. To decode multiple frames of animated
// images, or for asynchronous I/O (e.g. when decoding an image streamed over
// the network), use Wuffs' lower level C API instead of its higher level,
// simplified C++ API (the wuffs_aux API).
//
// The DecodeImageResult's fields depend on whether decoding succeeded:
// - On total success, the error_message is empty and pixbuf.pixcfg.is_valid()
// is true.
// - On partial success (e.g. the input file was truncated but we are still
// able to decode some of the pixels), error_message is non-empty but
// pixbuf.pixcfg.is_valid() is still true. It is up to the caller whether to
// accept or reject partial success.
// - On failure, the error_message is non_empty and pixbuf.pixcfg.is_valid()
// is false.
//
// The callbacks allocate the pixel buffer memory and work buffer memory. On
// success, pixel buffer memory ownership is passed to the DecodeImage caller
// as the returned pixbuf_mem_owner. Regardless of success or failure, the work
// buffer memory is deleted.
//
// The pixel_blend (one of the constants listed below) determines how to
// composite the decoded image over the pixel buffer's original pixels (as
// returned by callbacks.AllocPixbuf):
// - WUFFS_BASE__PIXEL_BLEND__SRC
// - WUFFS_BASE__PIXEL_BLEND__SRC_OVER
//
// The background_color is used to fill the pixel buffer after
// callbacks.AllocPixbuf returns, if it is valid in the
// wuffs_base__color_u32_argb_premul__is_valid sense. The default value,
// 0x0000_0001, is not valid since its Blue channel value (0x01) is greater
// than its Alpha channel value (0x00). A valid background_color will typically
// be overwritten when pixel_blend is WUFFS_BASE__PIXEL_BLEND__SRC, but might
// still be visible on partial (not total) success or when pixel_blend is
// WUFFS_BASE__PIXEL_BLEND__SRC_OVER and the decoded image is not fully opaque.
//
// Decoding fails (with DecodeImage_MaxInclDimensionExceeded) if the image's
// width or height is greater than max_incl_dimension or if any opted-in (via
// flags bits) metadata is longer than max_incl_metadata_length.
DecodeImageResult //
DecodeImage(DecodeImageCallbacks& callbacks,
sync_io::Input& input,
DecodeImageArgQuirks quirks = DecodeImageArgQuirks::DefaultValue(),
DecodeImageArgFlags flags = DecodeImageArgFlags::DefaultValue(),
DecodeImageArgPixelBlend pixel_blend =
DecodeImageArgPixelBlend::DefaultValue(),
DecodeImageArgBackgroundColor background_color =
DecodeImageArgBackgroundColor::DefaultValue(),
DecodeImageArgMaxInclDimension max_incl_dimension =
DecodeImageArgMaxInclDimension::DefaultValue(),
DecodeImageArgMaxInclMetadataLength max_incl_metadata_length =
DecodeImageArgMaxInclMetadataLength::DefaultValue());
} // namespace wuffs_aux
// ---------------- Auxiliary - JSON
namespace wuffs_aux {
struct DecodeJsonResult {
DecodeJsonResult(std::string&& error_message0, uint64_t cursor_position0);
std::string error_message;
uint64_t cursor_position;
};
class DecodeJsonCallbacks {
public:
virtual ~DecodeJsonCallbacks();
// AppendXxx are called for leaf nodes: literals, numbers and strings. For
// strings, the Callbacks implementation is responsible for tracking map keys
// versus other values.
virtual std::string AppendNull() = 0;
virtual std::string AppendBool(bool val) = 0;
virtual std::string AppendF64(double val) = 0;
virtual std::string AppendI64(int64_t val) = 0;
virtual std::string AppendTextString(std::string&& val) = 0;
// Push and Pop are called for container nodes: JSON arrays (lists) and JSON
// objects (dictionaries).
//
// The flags bits combine exactly one of:
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_NONE
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_LIST
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_DICT
// and exactly one of:
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_NONE
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_LIST
// - WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_DICT
virtual std::string Push(uint32_t flags) = 0;
virtual std::string Pop(uint32_t flags) = 0;
// Done is always the last Callback method called by DecodeJson, whether or
// not parsing the input as JSON encountered an error. Even when successful,
// trailing data may remain in input and buffer. See "Unintuitive JSON
// Parsing" (https://nullprogram.com/blog/2019/12/28/) which discusses JSON
// parsing and when it stops.
//
// Do not keep a reference to buffer or buffer.data.ptr after Done returns,
// as DecodeJson may then de-allocate the backing array.
//
// The default Done implementation is a no-op.
virtual void //
Done(DecodeJsonResult& result, sync_io::Input& input, IOBuffer& buffer);
};
extern const char DecodeJson_BadJsonPointer[];
extern const char DecodeJson_NoMatch[];
// The FooArgBar types add structure to Foo's optional arguments. They wrap
// inner representations for several reasons:
// - It provides a home for the DefaultValue static method, for Foo callers
// that want to override some but not all optional arguments.
// - It provides the "Bar" name at Foo call sites, which can help self-
// document Foo calls with many arguemnts.
// - It provides some type safety against accidentally transposing or omitting
// adjacent fundamentally-numeric-typed optional arguments.
// DecodeJsonArgQuirks wraps an optional argument to DecodeJson.
struct DecodeJsonArgQuirks {
explicit DecodeJsonArgQuirks(wuffs_base__slice_u32 repr0);
explicit DecodeJsonArgQuirks(uint32_t* ptr, size_t len);
// DefaultValue returns an empty slice.
static DecodeJsonArgQuirks DefaultValue();
wuffs_base__slice_u32 repr;
};
// DecodeJsonArgJsonPointer wraps an optional argument to DecodeJson.
struct DecodeJsonArgJsonPointer {
explicit DecodeJsonArgJsonPointer(std::string repr0);
// DefaultValue returns an empty string.
static DecodeJsonArgJsonPointer DefaultValue();
std::string repr;
};
// DecodeJson calls callbacks based on the JSON-formatted data in input.
//
// On success, the returned error_message is empty and cursor_position counts
// the number of bytes consumed. On failure, error_message is non-empty and
// cursor_position is the location of the error. That error may be a content
// error (invalid JSON) or an input error (e.g. network failure).
//
// json_pointer is a query in the JSON Pointer (RFC 6901) syntax. The callbacks
// run for the input's sub-node that matches the query. DecodeJson_NoMatch is
// returned if no matching sub-node was found. The empty query matches the
// input's root node, consistent with JSON Pointer semantics.
//
// The JSON Pointer implementation is greedy: duplicate keys are not rejected
// but only the first match for each '/'-separated fragment is followed.
DecodeJsonResult //
DecodeJson(DecodeJsonCallbacks& callbacks,
sync_io::Input& input,
DecodeJsonArgQuirks quirks = DecodeJsonArgQuirks::DefaultValue(),
DecodeJsonArgJsonPointer json_pointer =
DecodeJsonArgJsonPointer::DefaultValue());
} // namespace wuffs_aux
#endif // defined(__cplusplus) && defined(WUFFS_BASE__HAVE_UNIQUE_PTR)
// โ€ผ WUFFS C HEADER ENDS HERE.
#ifdef WUFFS_IMPLEMENTATION
#ifdef __cplusplus
extern "C" {
#endif
// ---------------- Fundamentals
// WUFFS_BASE__MAGIC is a magic number to check that initializers are called.
// It's not foolproof, given C doesn't automatically zero memory before use,
// but it should catch 99.99% of cases.
//
// Its (non-zero) value is arbitrary, based on md5sum("wuffs").
#define WUFFS_BASE__MAGIC ((uint32_t)0x3CCB6C71)
// WUFFS_BASE__DISABLED is a magic number to indicate that a non-recoverable
// error was previously encountered.
//
// Its (non-zero) value is arbitrary, based on md5sum("disabled").
#define WUFFS_BASE__DISABLED ((uint32_t)0x075AE3D2)
// Use switch cases for coroutine suspension points, similar to the technique
// in https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
//
// The implicit fallthrough is intentional.
//
// We use trivial macros instead of an explicit assignment and case statement
// so that clang-format doesn't get confused by the unusual "case"s.
#define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0 case 0:;
#define WUFFS_BASE__COROUTINE_SUSPENSION_POINT(n) \
coro_susp_point = n; \
case n:;
#define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(n) \
if (!status.repr) { \
goto ok; \
} else if (*status.repr != '$') { \
goto exit; \
} \
coro_susp_point = n; \
goto suspend; \
case n:;
// The "defined(__clang__)" isn't redundant. While vanilla clang defines
// __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not.
#if defined(__GNUC__) || defined(__clang__)
#define WUFFS_BASE__LIKELY(expr) (__builtin_expect(!!(expr), 1))
#define WUFFS_BASE__UNLIKELY(expr) (__builtin_expect(!!(expr), 0))
#else
#define WUFFS_BASE__LIKELY(expr) (expr)
#define WUFFS_BASE__UNLIKELY(expr) (expr)
#endif
// --------
static inline wuffs_base__empty_struct //
wuffs_base__ignore_status(wuffs_base__status z) {
return wuffs_base__make_empty_struct();
}
static inline wuffs_base__status //
wuffs_base__status__ensure_not_a_suspension(wuffs_base__status z) {
if (z.repr && (*z.repr == '$')) {
z.repr = wuffs_base__error__cannot_return_a_suspension;
}
return z;
}
// --------
// wuffs_base__iterate_total_advance returns the exclusive pointer-offset at
// which iteration should stop. The overall slice has length total_len, each
// iteration's sub-slice has length iter_len and are placed iter_advance apart.
//
// The iter_advance may not be larger than iter_len. The iter_advance may be
// smaller than iter_len, in which case the sub-slices will overlap.
//
// The return value r satisfies ((0 <= r) && (r <= total_len)).
//
// For example, if total_len = 15, iter_len = 5 and iter_advance = 3, there are
// four iterations at offsets 0, 3, 6 and 9. This function returns 12.
//
// 0123456789012345
// [....]
// [....]
// [....]
// [....]
// $
// 0123456789012345
//
// For example, if total_len = 15, iter_len = 5 and iter_advance = 5, there are
// three iterations at offsets 0, 5 and 10. This function returns 15.
//
// 0123456789012345
// [....]
// [....]
// [....]
// $
// 0123456789012345
static inline size_t //
wuffs_base__iterate_total_advance(size_t total_len,
size_t iter_len,
size_t iter_advance) {
if (total_len >= iter_len) {
size_t n = total_len - iter_len;
return ((n / iter_advance) * iter_advance) + iter_advance;
}
return 0;
}
// ---------------- Numeric Types
extern const uint8_t wuffs_base__low_bits_mask__u8[8];
extern const uint16_t wuffs_base__low_bits_mask__u16[16];
extern const uint32_t wuffs_base__low_bits_mask__u32[32];
extern const uint64_t wuffs_base__low_bits_mask__u64[64];
#define WUFFS_BASE__LOW_BITS_MASK__U8(n) (wuffs_base__low_bits_mask__u8[n])
#define WUFFS_BASE__LOW_BITS_MASK__U16(n) (wuffs_base__low_bits_mask__u16[n])
#define WUFFS_BASE__LOW_BITS_MASK__U32(n) (wuffs_base__low_bits_mask__u32[n])
#define WUFFS_BASE__LOW_BITS_MASK__U64(n) (wuffs_base__low_bits_mask__u64[n])
// --------
static inline void //
wuffs_base__u8__sat_add_indirect(uint8_t* x, uint8_t y) {
*x = wuffs_base__u8__sat_add(*x, y);
}
static inline void //
wuffs_base__u8__sat_sub_indirect(uint8_t* x, uint8_t y) {
*x = wuffs_base__u8__sat_sub(*x, y);
}
static inline void //
wuffs_base__u16__sat_add_indirect(uint16_t* x, uint16_t y) {
*x = wuffs_base__u16__sat_add(*x, y);
}
static inline void //
wuffs_base__u16__sat_sub_indirect(uint16_t* x, uint16_t y) {
*x = wuffs_base__u16__sat_sub(*x, y);
}
static inline void //
wuffs_base__u32__sat_add_indirect(uint32_t* x, uint32_t y) {
*x = wuffs_base__u32__sat_add(*x, y);
}
static inline void //
wuffs_base__u32__sat_sub_indirect(uint32_t* x, uint32_t y) {
*x = wuffs_base__u32__sat_sub(*x, y);
}
static inline void //
wuffs_base__u64__sat_add_indirect(uint64_t* x, uint64_t y) {
*x = wuffs_base__u64__sat_add(*x, y);
}
static inline void //
wuffs_base__u64__sat_sub_indirect(uint64_t* x, uint64_t y) {
*x = wuffs_base__u64__sat_sub(*x, y);
}
// ---------------- Slices and Tables
// wuffs_base__slice_u8__prefix returns up to the first up_to bytes of s.
static inline wuffs_base__slice_u8 //
wuffs_base__slice_u8__prefix(wuffs_base__slice_u8 s, uint64_t up_to) {
if (((uint64_t)(s.len)) > up_to) {
s.len = ((size_t)up_to);
}
return s;
}
// wuffs_base__slice_u8__suffix returns up to the last up_to bytes of s.
static inline wuffs_base__slice_u8 //
wuffs_base__slice_u8__suffix(wuffs_base__slice_u8 s, uint64_t up_to) {
if (((uint64_t)(s.len)) > up_to) {
s.ptr += ((uint64_t)(s.len)) - up_to;
s.len = ((size_t)up_to);
}
return s;
}
// wuffs_base__slice_u8__copy_from_slice calls memmove(dst.ptr, src.ptr, len)
// where len is the minimum of dst.len and src.len.
//
// Passing a wuffs_base__slice_u8 with all fields NULL or zero (a valid, empty
// slice) is valid and results in a no-op.
static inline uint64_t //
wuffs_base__slice_u8__copy_from_slice(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src) {
size_t len = dst.len < src.len ? dst.len : src.len;
if (len > 0) {
memmove(dst.ptr, src.ptr, len);
}
return len;
}
// --------
static inline wuffs_base__slice_u8 //
wuffs_base__table_u8__row_u32(wuffs_base__table_u8 t, uint32_t y) {
if (y < t.height) {
return wuffs_base__make_slice_u8(t.ptr + (t.stride * y), t.width);
}
return wuffs_base__make_slice_u8(NULL, 0);
}
// ---------------- Slices and Tables (Utility)
#define wuffs_base__utility__empty_slice_u8 wuffs_base__empty_slice_u8
// ---------------- Ranges and Rects
static inline uint32_t //
wuffs_base__range_ii_u32__get_min_incl(const wuffs_base__range_ii_u32* r) {
return r->min_incl;
}
static inline uint32_t //
wuffs_base__range_ii_u32__get_max_incl(const wuffs_base__range_ii_u32* r) {
return r->max_incl;
}
static inline uint32_t //
wuffs_base__range_ie_u32__get_min_incl(const wuffs_base__range_ie_u32* r) {
return r->min_incl;
}
static inline uint32_t //
wuffs_base__range_ie_u32__get_max_excl(const wuffs_base__range_ie_u32* r) {
return r->max_excl;
}
static inline uint64_t //
wuffs_base__range_ii_u64__get_min_incl(const wuffs_base__range_ii_u64* r) {
return r->min_incl;
}
static inline uint64_t //
wuffs_base__range_ii_u64__get_max_incl(const wuffs_base__range_ii_u64* r) {
return r->max_incl;
}
static inline uint64_t //
wuffs_base__range_ie_u64__get_min_incl(const wuffs_base__range_ie_u64* r) {
return r->min_incl;
}
static inline uint64_t //
wuffs_base__range_ie_u64__get_max_excl(const wuffs_base__range_ie_u64* r) {
return r->max_excl;
}
// ---------------- Ranges and Rects (Utility)
#define wuffs_base__utility__empty_range_ii_u32 wuffs_base__empty_range_ii_u32
#define wuffs_base__utility__empty_range_ie_u32 wuffs_base__empty_range_ie_u32
#define wuffs_base__utility__empty_range_ii_u64 wuffs_base__empty_range_ii_u64
#define wuffs_base__utility__empty_range_ie_u64 wuffs_base__empty_range_ie_u64
#define wuffs_base__utility__empty_rect_ii_u32 wuffs_base__empty_rect_ii_u32
#define wuffs_base__utility__empty_rect_ie_u32 wuffs_base__empty_rect_ie_u32
#define wuffs_base__utility__make_range_ii_u32 wuffs_base__make_range_ii_u32
#define wuffs_base__utility__make_range_ie_u32 wuffs_base__make_range_ie_u32
#define wuffs_base__utility__make_range_ii_u64 wuffs_base__make_range_ii_u64
#define wuffs_base__utility__make_range_ie_u64 wuffs_base__make_range_ie_u64
#define wuffs_base__utility__make_rect_ii_u32 wuffs_base__make_rect_ii_u32
#define wuffs_base__utility__make_rect_ie_u32 wuffs_base__make_rect_ie_u32
// ---------------- I/O
static inline uint64_t //
wuffs_base__io__count_since(uint64_t mark, uint64_t index) {
if (index >= mark) {
return index - mark;
}
return 0;
}
// TODO: drop the "const" in "const uint8_t* ptr". Some though required about
// the base.io_reader.since method returning a mutable "slice base.u8".
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline wuffs_base__slice_u8 //
wuffs_base__io__since(uint64_t mark, uint64_t index, const uint8_t* ptr) {
if (index >= mark) {
return wuffs_base__make_slice_u8(((uint8_t*)ptr) + mark,
((size_t)(index - mark)));
}
return wuffs_base__make_slice_u8(NULL, 0);
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
// --------
static inline void //
wuffs_base__io_reader__limit(const uint8_t** ptr_io2_r,
const uint8_t* iop_r,
uint64_t limit) {
if (((uint64_t)(*ptr_io2_r - iop_r)) > limit) {
*ptr_io2_r = iop_r + limit;
}
}
static inline uint32_t //
wuffs_base__io_reader__limited_copy_u32_to_slice(const uint8_t** ptr_iop_r,
const uint8_t* io2_r,
uint32_t length,
wuffs_base__slice_u8 dst) {
const uint8_t* iop_r = *ptr_iop_r;
size_t n = dst.len;
if (n > length) {
n = length;
}
if (n > ((size_t)(io2_r - iop_r))) {
n = (size_t)(io2_r - iop_r);
}
if (n > 0) {
memmove(dst.ptr, iop_r, n);
*ptr_iop_r += n;
}
return (uint32_t)(n);
}
// wuffs_base__io_reader__match7 returns whether the io_reader's upcoming bytes
// start with the given prefix (up to 7 bytes long). It is peek-like, not
// read-like, in that there are no side-effects.
//
// The low 3 bits of a hold the prefix length, n.
//
// The high 56 bits of a hold the prefix itself, in little-endian order. The
// first prefix byte is in bits 8..=15, the second prefix byte is in bits
// 16..=23, etc. The high (8 * (7 - n)) bits are ignored.
//
// There are three possible return values:
// - 0 means success.
// - 1 means inconclusive, equivalent to "$short read".
// - 2 means failure.
static inline uint32_t //
wuffs_base__io_reader__match7(const uint8_t* iop_r,
const uint8_t* io2_r,
wuffs_base__io_buffer* r,
uint64_t a) {
uint32_t n = a & 7;
a >>= 8;
if ((io2_r - iop_r) >= 8) {
uint64_t x = wuffs_base__peek_u64le__no_bounds_check(iop_r);
uint32_t shift = 8 * (8 - n);
return ((a << shift) == (x << shift)) ? 0 : 2;
}
for (; n > 0; n--) {
if (iop_r >= io2_r) {
return (r && r->meta.closed) ? 2 : 1;
} else if (*iop_r != ((uint8_t)(a))) {
return 2;
}
iop_r++;
a >>= 8;
}
return 0;
}
static inline wuffs_base__io_buffer* //
wuffs_base__io_reader__set(wuffs_base__io_buffer* b,
const uint8_t** ptr_iop_r,
const uint8_t** ptr_io0_r,
const uint8_t** ptr_io1_r,
const uint8_t** ptr_io2_r,
wuffs_base__slice_u8 data,
uint64_t history_position) {
b->data = data;
b->meta.wi = data.len;
b->meta.ri = 0;
b->meta.pos = history_position;
b->meta.closed = false;
*ptr_iop_r = data.ptr;
*ptr_io0_r = data.ptr;
*ptr_io1_r = data.ptr;
*ptr_io2_r = data.ptr + data.len;
return b;
}
// --------
static inline uint64_t //
wuffs_base__io_writer__copy_from_slice(uint8_t** ptr_iop_w,
uint8_t* io2_w,
wuffs_base__slice_u8 src) {
uint8_t* iop_w = *ptr_iop_w;
size_t n = src.len;
if (n > ((size_t)(io2_w - iop_w))) {
n = (size_t)(io2_w - iop_w);
}
if (n > 0) {
memmove(iop_w, src.ptr, n);
*ptr_iop_w += n;
}
return (uint64_t)(n);
}
static inline void //
wuffs_base__io_writer__limit(uint8_t** ptr_io2_w,
uint8_t* iop_w,
uint64_t limit) {
if (((uint64_t)(*ptr_io2_w - iop_w)) > limit) {
*ptr_io2_w = iop_w + limit;
}
}
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_history(uint8_t** ptr_iop_w,
uint8_t* io1_w,
uint8_t* io2_w,
uint32_t length,
uint32_t distance) {
if (!distance) {
return 0;
}
uint8_t* p = *ptr_iop_w;
if ((size_t)(p - io1_w) < (size_t)(distance)) {
return 0;
}
uint8_t* q = p - distance;
size_t n = (size_t)(io2_w - p);
if ((size_t)(length) > n) {
length = (uint32_t)(n);
} else {
n = (size_t)(length);
}
// TODO: unrolling by 3 seems best for the std/deflate benchmarks, but that
// is mostly because 3 is the minimum length for the deflate format. This
// function implementation shouldn't overfit to that one format. Perhaps the
// limited_copy_u32_from_history Wuffs method should also take an unroll hint
// argument, and the cgen can look if that argument is the constant
// expression '3'.
//
// See also wuffs_base__io_writer__limited_copy_u32_from_history_fast below.
for (; n >= 3; n -= 3) {
*p++ = *q++;
*p++ = *q++;
*p++ = *q++;
}
for (; n; n--) {
*p++ = *q++;
}
*ptr_iop_w = p;
return length;
}
// wuffs_base__io_writer__limited_copy_u32_from_history_fast is like the
// wuffs_base__io_writer__limited_copy_u32_from_history function above, but has
// stronger pre-conditions.
//
// The caller needs to prove that:
// - length <= (io2_w - *ptr_iop_w)
// - distance >= 1
// - distance <= (*ptr_iop_w - io1_w)
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_history_fast(uint8_t** ptr_iop_w,
uint8_t* io1_w,
uint8_t* io2_w,
uint32_t length,
uint32_t distance) {
uint8_t* p = *ptr_iop_w;
uint8_t* q = p - distance;
uint32_t n = length;
for (; n >= 3; n -= 3) {
*p++ = *q++;
*p++ = *q++;
*p++ = *q++;
}
for (; n; n--) {
*p++ = *q++;
}
*ptr_iop_w = p;
return length;
}
// wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast
// copies the previous byte (the one immediately before *ptr_iop_w), copying 8
// byte chunks at a time. Each chunk contains 8 repetitions of the same byte.
//
// In terms of number of bytes copied, length is rounded up to a multiple of 8.
// As a special case, a zero length rounds up to 8 (even though 0 is already a
// multiple of 8), since there is always at least one 8 byte chunk copied.
//
// In terms of advancing *ptr_iop_w, length is not rounded up.
//
// The caller needs to prove that:
// - (length + 8) <= (io2_w - *ptr_iop_w)
// - distance == 1
// - distance <= (*ptr_iop_w - io1_w)
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast(
uint8_t** ptr_iop_w,
uint8_t* io1_w,
uint8_t* io2_w,
uint32_t length,
uint32_t distance) {
uint8_t* p = *ptr_iop_w;
uint64_t x = p[-1];
x |= x << 8;
x |= x << 16;
x |= x << 32;
uint32_t n = length;
while (1) {
wuffs_base__poke_u64le__no_bounds_check(p, x);
if (n <= 8) {
p += n;
break;
}
p += 8;
n -= 8;
}
*ptr_iop_w = p;
return length;
}
// wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast is
// like the wuffs_base__io_writer__limited_copy_u32_from_history_fast function
// above, but copies 8 byte chunks at a time.
//
// In terms of number of bytes copied, length is rounded up to a multiple of 8.
// As a special case, a zero length rounds up to 8 (even though 0 is already a
// multiple of 8), since there is always at least one 8 byte chunk copied.
//
// In terms of advancing *ptr_iop_w, length is not rounded up.
//
// The caller needs to prove that:
// - (length + 8) <= (io2_w - *ptr_iop_w)
// - distance >= 8
// - distance <= (*ptr_iop_w - io1_w)
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast(
uint8_t** ptr_iop_w,
uint8_t* io1_w,
uint8_t* io2_w,
uint32_t length,
uint32_t distance) {
uint8_t* p = *ptr_iop_w;
uint8_t* q = p - distance;
uint32_t n = length;
while (1) {
memcpy(p, q, 8);
if (n <= 8) {
p += n;
break;
}
p += 8;
q += 8;
n -= 8;
}
*ptr_iop_w = p;
return length;
}
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_reader(uint8_t** ptr_iop_w,
uint8_t* io2_w,
uint32_t length,
const uint8_t** ptr_iop_r,
const uint8_t* io2_r) {
uint8_t* iop_w = *ptr_iop_w;
size_t n = length;
if (n > ((size_t)(io2_w - iop_w))) {
n = (size_t)(io2_w - iop_w);
}
const uint8_t* iop_r = *ptr_iop_r;
if (n > ((size_t)(io2_r - iop_r))) {
n = (size_t)(io2_r - iop_r);
}
if (n > 0) {
memmove(iop_w, iop_r, n);
*ptr_iop_w += n;
*ptr_iop_r += n;
}
return (uint32_t)(n);
}
static inline uint32_t //
wuffs_base__io_writer__limited_copy_u32_from_slice(uint8_t** ptr_iop_w,
uint8_t* io2_w,
uint32_t length,
wuffs_base__slice_u8 src) {
uint8_t* iop_w = *ptr_iop_w;
size_t n = src.len;
if (n > length) {
n = length;
}
if (n > ((size_t)(io2_w - iop_w))) {
n = (size_t)(io2_w - iop_w);
}
if (n > 0) {
memmove(iop_w, src.ptr, n);
*ptr_iop_w += n;
}
return (uint32_t)(n);
}
static inline wuffs_base__io_buffer* //
wuffs_base__io_writer__set(wuffs_base__io_buffer* b,
uint8_t** ptr_iop_w,
uint8_t** ptr_io0_w,
uint8_t** ptr_io1_w,
uint8_t** ptr_io2_w,
wuffs_base__slice_u8 data,
uint64_t history_position) {
b->data = data;
b->meta.wi = 0;
b->meta.ri = 0;
b->meta.pos = history_position;
b->meta.closed = false;
*ptr_iop_w = data.ptr;
*ptr_io0_w = data.ptr;
*ptr_io1_w = data.ptr;
*ptr_io2_w = data.ptr + data.len;
return b;
}
// ---------------- I/O (Utility)
#define wuffs_base__utility__empty_io_reader wuffs_base__empty_io_reader
#define wuffs_base__utility__empty_io_writer wuffs_base__empty_io_writer
// ---------------- Tokens
// ---------------- Tokens (Utility)
// ---------------- Memory Allocation
// ---------------- Images
WUFFS_BASE__MAYBE_STATIC uint64_t //
wuffs_base__pixel_swizzler__limited_swizzle_u32_interleaved_from_reader(
const wuffs_base__pixel_swizzler* p,
uint32_t up_to_num_pixels,
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
const uint8_t** ptr_iop_r,
const uint8_t* io2_r);
WUFFS_BASE__MAYBE_STATIC uint64_t //
wuffs_base__pixel_swizzler__swizzle_interleaved_from_reader(
const wuffs_base__pixel_swizzler* p,
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
const uint8_t** ptr_iop_r,
const uint8_t* io2_r);
WUFFS_BASE__MAYBE_STATIC uint64_t //
wuffs_base__pixel_swizzler__swizzle_interleaved_transparent_black(
const wuffs_base__pixel_swizzler* p,
wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 dst_palette,
uint64_t num_pixels);
// ---------------- Images (Utility)
#define wuffs_base__utility__make_pixel_format wuffs_base__make_pixel_format
// ---------------- String Conversions
// ---------------- Unicode and UTF-8
// ----------------
#if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \
defined(WUFFS_CONFIG__MODULE__BASE__CORE)
const uint8_t wuffs_base__low_bits_mask__u8[8] = {
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F,
};
const uint16_t wuffs_base__low_bits_mask__u16[16] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F,
0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF,
};
const uint32_t wuffs_base__low_bits_mask__u32[32] = {
0x00000000, 0x00000001, 0x00000003, 0x00000007, 0x0000000F, 0x0000001F,
0x0000003F, 0x0000007F, 0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF, 0x0000FFFF, 0x0001FFFF,
0x0003FFFF, 0x0007FFFF, 0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF, 0x0FFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF,
};
const uint64_t wuffs_base__low_bits_mask__u64[64] = {
0x0000000000000000, 0x0000000000000001, 0x0000000000000003,
0x0000000000000007, 0x000000000000000F, 0x000000000000001F,
0x000000000000003F, 0x000000000000007F, 0x00000000000000FF,
0x00000000000001FF, 0x00000000000003FF, 0x00000000000007FF,
0x0000000000000FFF, 0x0000000000001FFF, 0x0000000000003FFF,
0x0000000000007FFF, 0x000000000000FFFF, 0x000000000001FFFF,
0x000000000003FFFF, 0x000000000007FFFF, 0x00000000000FFFFF,
0x00000000001FFFFF, 0x00000000003FFFFF, 0x00000000007FFFFF,
0x0000000000FFFFFF, 0x0000000001FFFFFF, 0x0000000003FFFFFF,
0x0000000007FFFFFF, 0x000000000FFFFFFF, 0x000000001FFFFFFF,
0x000000003FFFFFFF, 0x000000007FFFFFFF, 0x00000000FFFFFFFF,
0x00000001FFFFFFFF, 0x00000003FFFFFFFF, 0x00000007FFFFFFFF,
0x0000000FFFFFFFFF, 0x0000001FFFFFFFFF, 0x0000003FFFFFFFFF,
0x0000007FFFFFFFFF, 0x000000FFFFFFFFFF, 0x000001FFFFFFFFFF,
0x000003FFFFFFFFFF, 0x000007FFFFFFFFFF, 0x00000FFFFFFFFFFF,
0x00001FFFFFFFFFFF, 0x00003FFFFFFFFFFF, 0x00007FFFFFFFFFFF,
0x0000FFFFFFFFFFFF, 0x0001FFFFFFFFFFFF, 0x0003FFFFFFFFFFFF,
0x0007FFFFFFFFFFFF, 0x000FFFFFFFFFFFFF, 0x001FFFFFFFFFFFFF,
0x003FFFFFFFFFFFFF, 0x007FFFFFFFFFFFFF, 0x00FFFFFFFFFFFFFF,
0x01FFFFFFFFFFFFFF, 0x03FFFFFFFFFFFFFF, 0x07FFFFFFFFFFFFFF,
0x0FFFFFFFFFFFFFFF, 0x1FFFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFFF,
0x7FFFFFFFFFFFFFFF,
};
const uint32_t wuffs_base__pixel_format__bits_per_channel[16] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x0A, 0x0C, 0x10, 0x18, 0x20, 0x30, 0x40,
};
const char wuffs_base__note__i_o_redirect[] = "@base: I/O redirect";
const char wuffs_base__note__end_of_data[] = "@base: end of data";
const char wuffs_base__note__metadata_reported[] = "@base: metadata reported";
const char wuffs_base__suspension__even_more_information[] = "$base: even more information";
const char wuffs_base__suspension__mispositioned_read[] = "$base: mispositioned read";
const char wuffs_base__suspension__mispositioned_write[] = "$base: mispositioned write";
const char wuffs_base__suspension__short_read[] = "$base: short read";
const char wuffs_base__suspension__short_write[] = "$base: short write";
const char wuffs_base__error__bad_i_o_position[] = "#base: bad I/O position";
const char wuffs_base__error__bad_argument_length_too_short[] = "#base: bad argument (length too short)";
const char wuffs_base__error__bad_argument[] = "#base: bad argument";
const char wuffs_base__error__bad_call_sequence[] = "#base: bad call sequence";
const char wuffs_base__error__bad_data[] = "#base: bad data";
const char wuffs_base__error__bad_receiver[] = "#base: bad receiver";
const char wuffs_base__error__bad_restart[] = "#base: bad restart";
const char wuffs_base__error__bad_sizeof_receiver[] = "#base: bad sizeof receiver";
const char wuffs_base__error__bad_vtable[] = "#base: bad vtable";
const char wuffs_base__error__bad_workbuf_length[] = "#base: bad workbuf length";
const char wuffs_base__error__bad_wuffs_version[] = "#base: bad wuffs version";
const char wuffs_base__error__cannot_return_a_suspension[] = "#base: cannot return a suspension";
const char wuffs_base__error__disabled_by_previous_error[] = "#base: disabled by previous error";
const char wuffs_base__error__initialize_falsely_claimed_already_zeroed[] = "#base: initialize falsely claimed already zeroed";
const char wuffs_base__error__initialize_not_called[] = "#base: initialize not called";
const char wuffs_base__error__interleaved_coroutine_calls[] = "#base: interleaved coroutine calls";
const char wuffs_base__error__no_more_information[] = "#base: no more information";
const char wuffs_base__error__not_enough_data[] = "#base: not enough data";
const char wuffs_base__error__out_of_bounds[] = "#base: out of bounds";
const char wuffs_base__error__unsupported_method[] = "#base: unsupported method";
const char wuffs_base__error__unsupported_option[] = "#base: unsupported option";
const char wuffs_base__error__unsupported_pixel_swizzler_option[] = "#base: unsupported pixel swizzler option";
const char wuffs_base__error__too_much_data[] = "#base: too much data";
const char wuffs_base__hasher_u32__vtable_name[] = "{vtable}wuffs_base__hasher_u32";
const char wuffs_base__image_decoder__vtable_name[] = "{vtable}wuffs_base__image_decoder";
const char wuffs_base__io_transformer__vtable_name[] = "{vtable}wuffs_base__io_transformer";
const char wuffs_base__token_decoder__vtable_name[] = "{vtable}wuffs_base__token_decoder";
#endif // !defined(WUFFS_CONFIG__MODULES) ||
// defined(WUFFS_CONFIG__MODULE__BASE) ||
// defined(WUFFS_CONFIG__MODULE__BASE__CORE)
#if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \
defined(WUFFS_CONFIG__MODULE__BASE__INTERFACES)
// ---------------- Interface Definitions.
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__hasher_u32__set_quirk_enabled(
wuffs_base__hasher_u32* self,
uint32_t a_quirk,
bool a_enabled) {
if (!self) {
return wuffs_base__make_empty_struct();
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_empty_struct();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__hasher_u32__vtable_name) {
const wuffs_base__hasher_u32__func_ptrs* func_ptrs =
(const wuffs_base__hasher_u32__func_ptrs*)(v->function_pointers);
return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_empty_struct();
}
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_base__hasher_u32__update_u32(
wuffs_base__hasher_u32* self,
wuffs_base__slice_u8 a_x) {
if (!self) {
return 0;
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return 0;
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__hasher_u32__vtable_name) {
const wuffs_base__hasher_u32__func_ptrs* func_ptrs =
(const wuffs_base__hasher_u32__func_ptrs*)(v->function_pointers);
return (*func_ptrs->update_u32)(self, a_x);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return 0;
}
// --------
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_frame(
wuffs_base__image_decoder* self,
wuffs_base__pixel_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__pixel_blend a_blend,
wuffs_base__slice_u8 a_workbuf,
wuffs_base__decode_frame_options* a_opts) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->decode_frame)(self, a_dst, a_src, a_blend, a_workbuf, a_opts);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_frame_config(
wuffs_base__image_decoder* self,
wuffs_base__frame_config* a_dst,
wuffs_base__io_buffer* a_src) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->decode_frame_config)(self, a_dst, a_src);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__decode_image_config(
wuffs_base__image_decoder* self,
wuffs_base__image_config* a_dst,
wuffs_base__io_buffer* a_src) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->decode_image_config)(self, a_dst, a_src);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32
wuffs_base__image_decoder__frame_dirty_rect(
const wuffs_base__image_decoder* self) {
if (!self) {
return wuffs_base__utility__empty_rect_ie_u32();
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return wuffs_base__utility__empty_rect_ie_u32();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->frame_dirty_rect)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__utility__empty_rect_ie_u32();
}
WUFFS_BASE__MAYBE_STATIC uint32_t
wuffs_base__image_decoder__num_animation_loops(
const wuffs_base__image_decoder* self) {
if (!self) {
return 0;
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return 0;
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->num_animation_loops)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return 0;
}
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_base__image_decoder__num_decoded_frame_configs(
const wuffs_base__image_decoder* self) {
if (!self) {
return 0;
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return 0;
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->num_decoded_frame_configs)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return 0;
}
WUFFS_BASE__MAYBE_STATIC uint64_t
wuffs_base__image_decoder__num_decoded_frames(
const wuffs_base__image_decoder* self) {
if (!self) {
return 0;
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return 0;
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->num_decoded_frames)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return 0;
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__restart_frame(
wuffs_base__image_decoder* self,
uint64_t a_index,
uint64_t a_io_position) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->restart_frame)(self, a_index, a_io_position);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__image_decoder__set_quirk_enabled(
wuffs_base__image_decoder* self,
uint32_t a_quirk,
bool a_enabled) {
if (!self) {
return wuffs_base__make_empty_struct();
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_empty_struct();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_empty_struct();
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__image_decoder__set_report_metadata(
wuffs_base__image_decoder* self,
uint32_t a_fourcc,
bool a_report) {
if (!self) {
return wuffs_base__make_empty_struct();
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_empty_struct();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->set_report_metadata)(self, a_fourcc, a_report);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_empty_struct();
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__image_decoder__tell_me_more(
wuffs_base__image_decoder* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__more_information* a_minfo,
wuffs_base__io_buffer* a_src) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->tell_me_more)(self, a_dst, a_minfo, a_src);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__image_decoder__workbuf_len(
const wuffs_base__image_decoder* self) {
if (!self) {
return wuffs_base__utility__empty_range_ii_u64();
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return wuffs_base__utility__empty_range_ii_u64();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__image_decoder__vtable_name) {
const wuffs_base__image_decoder__func_ptrs* func_ptrs =
(const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->workbuf_len)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__utility__empty_range_ii_u64();
}
// --------
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__io_transformer__set_quirk_enabled(
wuffs_base__io_transformer* self,
uint32_t a_quirk,
bool a_enabled) {
if (!self) {
return wuffs_base__make_empty_struct();
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_empty_struct();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__io_transformer__vtable_name) {
const wuffs_base__io_transformer__func_ptrs* func_ptrs =
(const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers);
return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_empty_struct();
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__io_transformer__transform_io(
wuffs_base__io_transformer* self,
wuffs_base__io_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__io_transformer__vtable_name) {
const wuffs_base__io_transformer__func_ptrs* func_ptrs =
(const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers);
return (*func_ptrs->transform_io)(self, a_dst, a_src, a_workbuf);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__io_transformer__workbuf_len(
const wuffs_base__io_transformer* self) {
if (!self) {
return wuffs_base__utility__empty_range_ii_u64();
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return wuffs_base__utility__empty_range_ii_u64();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__io_transformer__vtable_name) {
const wuffs_base__io_transformer__func_ptrs* func_ptrs =
(const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers);
return (*func_ptrs->workbuf_len)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__utility__empty_range_ii_u64();
}
// --------
WUFFS_BASE__MAYBE_STATIC wuffs_base__status
wuffs_base__token_decoder__decode_tokens(
wuffs_base__token_decoder* self,
wuffs_base__token_buffer* a_dst,
wuffs_base__io_buffer* a_src,
wuffs_base__slice_u8 a_workbuf) {
if (!self) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_status(
(self->private_impl.magic == WUFFS_BASE__DISABLED)
? wuffs_base__error__disabled_by_previous_error
: wuffs_base__error__initialize_not_called);
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__token_decoder__vtable_name) {
const wuffs_base__token_decoder__func_ptrs* func_ptrs =
(const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->decode_tokens)(self, a_dst, a_src, a_workbuf);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_status(wuffs_base__error__bad_vtable);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct
wuffs_base__token_decoder__set_quirk_enabled(
wuffs_base__token_decoder* self,
uint32_t a_quirk,
bool a_enabled) {
if (!self) {
return wuffs_base__make_empty_struct();
}
if (self->private_impl.magic != WUFFS_BASE__MAGIC) {
return wuffs_base__make_empty_struct();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__token_decoder__vtable_name) {
const wuffs_base__token_decoder__func_ptrs* func_ptrs =
(const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__make_empty_struct();
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64
wuffs_base__token_decoder__workbuf_len(
const wuffs_base__token_decoder* self) {
if (!self) {
return wuffs_base__utility__empty_range_ii_u64();
}
if ((self->private_impl.magic != WUFFS_BASE__MAGIC) &&
(self->private_impl.magic != WUFFS_BASE__DISABLED)) {
return wuffs_base__utility__empty_range_ii_u64();
}
const wuffs_base__vtable* v = &self->private_impl.first_vtable;
int i;
for (i = 0; i < 63; i++) {
if (v->vtable_name == wuffs_base__token_decoder__vtable_name) {
const wuffs_base__token_decoder__func_ptrs* func_ptrs =
(const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers);
return (*func_ptrs->workbuf_len)(self);
} else if (v->vtable_name == NULL) {
break;
}
v++;
}
return wuffs_base__utility__empty_range_ii_u64();
}
#endif // !defined(WUFFS_CONFIG__MODULES) ||
// defined(WUFFS_CONFIG__MODULE__BASE) ||
// defined(WUFFS_CONFIG__MODULE__BASE__INTERFACES)
#if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \
defined(WUFFS_CONFIG__MODULE__BASE__FLOATCONV)
// ---------------- IEEE 754 Floating Point
// The etc__hpd_left_shift and etc__powers_of_5 tables were printed by
// script/print-hpd-left-shift.go. That script has an optional -comments flag,
// whose output is not copied here, which prints further detail.
//
// These tables are used in
// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits.
// wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of
// new digits created after multiplying a positive integer by (1 << i): the
// additional length in the decimal representation. For example, shifting "234"
// by 3 (equivalent to multiplying by 8) will produce "1872". Going from a
// 3-length string to a 4-length string means that 1 new digit was added (and
// existing digits may have changed).
//
// Shifting by i can add either N or N-1 new digits, depending on whether the
// original positive integer compares >= or < to the i'th power of 5 (as 10
// equals 2 * 5). Comparison is lexicographic, not numerical.
//
// For example, shifting by 4 (i.e. multiplying by 16) can add 1 or 2 new
// digits, depending on a lexicographic comparison to (5 ** 4), i.e. "625":
// - ("1" << 4) is "16", which adds 1 new digit.
// - ("5678" << 4) is "90848", which adds 1 new digit.
// - ("624" << 4) is "9984", which adds 1 new digit.
// - ("62498" << 4) is "999968", which adds 1 new digit.
// - ("625" << 4) is "10000", which adds 2 new digits.
// - ("625001" << 4) is "10000016", which adds 2 new digits.
// - ("7008" << 4) is "112128", which adds 2 new digits.
// - ("99" << 4) is "1584", which adds 2 new digits.
//
// Thus, when i is 4, N is 2 and (5 ** i) is "625". This etc__hpd_left_shift
// array encodes this as:
// - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006.
// - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009.
// where the ? isn't relevant for i == 4.
//
// The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two
// possible number of new digits. The low 11 bits are an offset into the
// etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i
// is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9]
// is the string "\x06\x02\x05", so the relevant power of 5 is "625".
//
// Thanks to Ken Thompson for the original idea.
static const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = {
0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
0x051C, 0x051C,
};
// wuffs_base__private_implementation__powers_of_5 contains the powers of 5,
// concatenated together: "5", "25", "125", "625", "3125", etc.
static const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = {
5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9,
0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2,
5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5,
1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0,
6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5,
6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,
6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4,
1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7,
8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0,
2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3,
8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1,
2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,
2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5,
7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0,
7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6,
9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8,
1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7,
2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,
1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8,
0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9,
0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2,
9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8,
5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7,
2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3,
7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2,
5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9,
8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8,
6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4,
0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,
8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5,
6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1,
2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5,
0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3,
5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4,
5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,
8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8,
5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2,
5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6,
3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2,
5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2,
5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,
8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5,
6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8,
1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9,
5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3,
9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6,
2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1,
7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4,
8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7,
9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3,
6, 9, 1, 4, 0, 6, 2, 5,
};
// --------
// wuffs_base__private_implementation__powers_of_10 contains truncated
// approximations to the powers of 10, ranging from 1e-307 to 1e+288 inclusive,
// as 596 pairs of uint64_t values (a 128-bit mantissa).
//
// There's also an implicit third column (implied by a linear formula involving
// the base-10 exponent) that is the base-2 exponent, biased by a magic
// constant. That constant (1214 or 0x04BE) equals 1023 + 191. 1023 is the bias
// for IEEE 754 double-precision floating point. 191 is ((3 * 64) - 1) and
// wuffs_base__private_implementation__parse_number_f64_eisel_lemire works with
// multiples-of-64-bit mantissas.
//
// For example, the third row holds the approximation to 1e-305:
// 0xE0B62E29_29ABA83C_331ACDAB_FE94DE87 * (2 ** (0x0049 - 0x04BE))
//
// Similarly, 1e+4 is approximated by:
// 0x9C400000_00000000_00000000_00000000 * (2 ** (0x044C - 0x04BE))
//
// Similarly, 1e+68 is approximated by:
// 0xED63A231_D4C4FB27_4CA7AAA8_63EE4BDD * (2 ** (0x0520 - 0x04BE))
//
// This table was generated by by script/print-mpb-powers-of-10.go
static const uint64_t wuffs_base__private_implementation__powers_of_10[596][2] =
{
{0xA5D3B6D479F8E056, 0x8FD0C16206306BAB}, // 1e-307
{0x8F48A4899877186C, 0xB3C4F1BA87BC8696}, // 1e-306
{0x331ACDABFE94DE87, 0xE0B62E2929ABA83C}, // 1e-305
{0x9FF0C08B7F1D0B14, 0x8C71DCD9BA0B4925}, // 1e-304
{0x07ECF0AE5EE44DD9, 0xAF8E5410288E1B6F}, // 1e-303
{0xC9E82CD9F69D6150, 0xDB71E91432B1A24A}, // 1e-302
{0xBE311C083A225CD2, 0x892731AC9FAF056E}, // 1e-301
{0x6DBD630A48AAF406, 0xAB70FE17C79AC6CA}, // 1e-300
{0x092CBBCCDAD5B108, 0xD64D3D9DB981787D}, // 1e-299
{0x25BBF56008C58EA5, 0x85F0468293F0EB4E}, // 1e-298
{0xAF2AF2B80AF6F24E, 0xA76C582338ED2621}, // 1e-297
{0x1AF5AF660DB4AEE1, 0xD1476E2C07286FAA}, // 1e-296
{0x50D98D9FC890ED4D, 0x82CCA4DB847945CA}, // 1e-295
{0xE50FF107BAB528A0, 0xA37FCE126597973C}, // 1e-294
{0x1E53ED49A96272C8, 0xCC5FC196FEFD7D0C}, // 1e-293
{0x25E8E89C13BB0F7A, 0xFF77B1FCBEBCDC4F}, // 1e-292
{0x77B191618C54E9AC, 0x9FAACF3DF73609B1}, // 1e-291
{0xD59DF5B9EF6A2417, 0xC795830D75038C1D}, // 1e-290
{0x4B0573286B44AD1D, 0xF97AE3D0D2446F25}, // 1e-289
{0x4EE367F9430AEC32, 0x9BECCE62836AC577}, // 1e-288
{0x229C41F793CDA73F, 0xC2E801FB244576D5}, // 1e-287
{0x6B43527578C1110F, 0xF3A20279ED56D48A}, // 1e-286
{0x830A13896B78AAA9, 0x9845418C345644D6}, // 1e-285
{0x23CC986BC656D553, 0xBE5691EF416BD60C}, // 1e-284
{0x2CBFBE86B7EC8AA8, 0xEDEC366B11C6CB8F}, // 1e-283
{0x7BF7D71432F3D6A9, 0x94B3A202EB1C3F39}, // 1e-282
{0xDAF5CCD93FB0CC53, 0xB9E08A83A5E34F07}, // 1e-281
{0xD1B3400F8F9CFF68, 0xE858AD248F5C22C9}, // 1e-280
{0x23100809B9C21FA1, 0x91376C36D99995BE}, // 1e-279
{0xABD40A0C2832A78A, 0xB58547448FFFFB2D}, // 1e-278
{0x16C90C8F323F516C, 0xE2E69915B3FFF9F9}, // 1e-277
{0xAE3DA7D97F6792E3, 0x8DD01FAD907FFC3B}, // 1e-276
{0x99CD11CFDF41779C, 0xB1442798F49FFB4A}, // 1e-275
{0x40405643D711D583, 0xDD95317F31C7FA1D}, // 1e-274
{0x482835EA666B2572, 0x8A7D3EEF7F1CFC52}, // 1e-273
{0xDA3243650005EECF, 0xAD1C8EAB5EE43B66}, // 1e-272
{0x90BED43E40076A82, 0xD863B256369D4A40}, // 1e-271
{0x5A7744A6E804A291, 0x873E4F75E2224E68}, // 1e-270
{0x711515D0A205CB36, 0xA90DE3535AAAE202}, // 1e-269
{0x0D5A5B44CA873E03, 0xD3515C2831559A83}, // 1e-268
{0xE858790AFE9486C2, 0x8412D9991ED58091}, // 1e-267
{0x626E974DBE39A872, 0xA5178FFF668AE0B6}, // 1e-266
{0xFB0A3D212DC8128F, 0xCE5D73FF402D98E3}, // 1e-265
{0x7CE66634BC9D0B99, 0x80FA687F881C7F8E}, // 1e-264
{0x1C1FFFC1EBC44E80, 0xA139029F6A239F72}, // 1e-263
{0xA327FFB266B56220, 0xC987434744AC874E}, // 1e-262
{0x4BF1FF9F0062BAA8, 0xFBE9141915D7A922}, // 1e-261
{0x6F773FC3603DB4A9, 0x9D71AC8FADA6C9B5}, // 1e-260
{0xCB550FB4384D21D3, 0xC4CE17B399107C22}, // 1e-259
{0x7E2A53A146606A48, 0xF6019DA07F549B2B}, // 1e-258
{0x2EDA7444CBFC426D, 0x99C102844F94E0FB}, // 1e-257
{0xFA911155FEFB5308, 0xC0314325637A1939}, // 1e-256
{0x793555AB7EBA27CA, 0xF03D93EEBC589F88}, // 1e-255
{0x4BC1558B2F3458DE, 0x96267C7535B763B5}, // 1e-254
{0x9EB1AAEDFB016F16, 0xBBB01B9283253CA2}, // 1e-253
{0x465E15A979C1CADC, 0xEA9C227723EE8BCB}, // 1e-252
{0x0BFACD89EC191EC9, 0x92A1958A7675175F}, // 1e-251
{0xCEF980EC671F667B, 0xB749FAED14125D36}, // 1e-250
{0x82B7E12780E7401A, 0xE51C79A85916F484}, // 1e-249
{0xD1B2ECB8B0908810, 0x8F31CC0937AE58D2}, // 1e-248
{0x861FA7E6DCB4AA15, 0xB2FE3F0B8599EF07}, // 1e-247
{0x67A791E093E1D49A, 0xDFBDCECE67006AC9}, // 1e-246
{0xE0C8BB2C5C6D24E0, 0x8BD6A141006042BD}, // 1e-245
{0x58FAE9F773886E18, 0xAECC49914078536D}, // 1e-244
{0xAF39A475506A899E, 0xDA7F5BF590966848}, // 1e-243
{0x6D8406C952429603, 0x888F99797A5E012D}, // 1e-242
{0xC8E5087BA6D33B83, 0xAAB37FD7D8F58178}, // 1e-241
{0xFB1E4A9A90880A64, 0xD5605FCDCF32E1D6}, // 1e-240
{0x5CF2EEA09A55067F, 0x855C3BE0A17FCD26}, // 1e-239
{0xF42FAA48C0EA481E, 0xA6B34AD8C9DFC06F}, // 1e-238
{0xF13B94DAF124DA26, 0xD0601D8EFC57B08B}, // 1e-237
{0x76C53D08D6B70858, 0x823C12795DB6CE57}, // 1e-236
{0x54768C4B0C64CA6E, 0xA2CB1717B52481ED}, // 1e-235
{0xA9942F5DCF7DFD09, 0xCB7DDCDDA26DA268}, // 1e-234
{0xD3F93B35435D7C4C, 0xFE5D54150B090B02}, // 1e-233
{0xC47BC5014A1A6DAF, 0x9EFA548D26E5A6E1}, // 1e-232
{0x359AB6419CA1091B, 0xC6B8E9B0709F109A}, // 1e-231
{0xC30163D203C94B62, 0xF867241C8CC6D4C0}, // 1e-230
{0x79E0DE63425DCF1D, 0x9B407691D7FC44F8}, // 1e-229
{0x985915FC12F542E4, 0xC21094364DFB5636}, // 1e-228
{0x3E6F5B7B17B2939D, 0xF294B943E17A2BC4}, // 1e-227
{0xA705992CEECF9C42, 0x979CF3CA6CEC5B5A}, // 1e-226
{0x50C6FF782A838353, 0xBD8430BD08277231}, // 1e-225
{0xA4F8BF5635246428, 0xECE53CEC4A314EBD}, // 1e-224
{0x871B7795E136BE99, 0x940F4613AE5ED136}, // 1e-223
{0x28E2557B59846E3F, 0xB913179899F68584}, // 1e-222
{0x331AEADA2FE589CF, 0xE757DD7EC07426E5}, // 1e-221
{0x3FF0D2C85DEF7621, 0x9096EA6F3848984F}, // 1e-220
{0x0FED077A756B53A9, 0xB4BCA50B065ABE63}, // 1e-219
{0xD3E8495912C62894, 0xE1EBCE4DC7F16DFB}, // 1e-218
{0x64712DD7ABBBD95C, 0x8D3360F09CF6E4BD}, // 1e-217
{0xBD8D794D96AACFB3, 0xB080392CC4349DEC}, // 1e-216
{0xECF0D7A0FC5583A0, 0xDCA04777F541C567}, // 1e-215
{0xF41686C49DB57244, 0x89E42CAAF9491B60}, // 1e-214
{0x311C2875C522CED5, 0xAC5D37D5B79B6239}, // 1e-213
{0x7D633293366B828B, 0xD77485CB25823AC7}, // 1e-212
{0xAE5DFF9C02033197, 0x86A8D39EF77164BC}, // 1e-211
{0xD9F57F830283FDFC, 0xA8530886B54DBDEB}, // 1e-210
{0xD072DF63C324FD7B, 0xD267CAA862A12D66}, // 1e-209
{0x4247CB9E59F71E6D, 0x8380DEA93DA4BC60}, // 1e-208
{0x52D9BE85F074E608, 0xA46116538D0DEB78}, // 1e-207
{0x67902E276C921F8B, 0xCD795BE870516656}, // 1e-206
{0x00BA1CD8A3DB53B6, 0x806BD9714632DFF6}, // 1e-205
{0x80E8A40ECCD228A4, 0xA086CFCD97BF97F3}, // 1e-204
{0x6122CD128006B2CD, 0xC8A883C0FDAF7DF0}, // 1e-203
{0x796B805720085F81, 0xFAD2A4B13D1B5D6C}, // 1e-202
{0xCBE3303674053BB0, 0x9CC3A6EEC6311A63}, // 1e-201
{0xBEDBFC4411068A9C, 0xC3F490AA77BD60FC}, // 1e-200
{0xEE92FB5515482D44, 0xF4F1B4D515ACB93B}, // 1e-199
{0x751BDD152D4D1C4A, 0x991711052D8BF3C5}, // 1e-198
{0xD262D45A78A0635D, 0xBF5CD54678EEF0B6}, // 1e-197
{0x86FB897116C87C34, 0xEF340A98172AACE4}, // 1e-196
{0xD45D35E6AE3D4DA0, 0x9580869F0E7AAC0E}, // 1e-195
{0x8974836059CCA109, 0xBAE0A846D2195712}, // 1e-194
{0x2BD1A438703FC94B, 0xE998D258869FACD7}, // 1e-193
{0x7B6306A34627DDCF, 0x91FF83775423CC06}, // 1e-192
{0x1A3BC84C17B1D542, 0xB67F6455292CBF08}, // 1e-191
{0x20CABA5F1D9E4A93, 0xE41F3D6A7377EECA}, // 1e-190
{0x547EB47B7282EE9C, 0x8E938662882AF53E}, // 1e-189
{0xE99E619A4F23AA43, 0xB23867FB2A35B28D}, // 1e-188
{0x6405FA00E2EC94D4, 0xDEC681F9F4C31F31}, // 1e-187
{0xDE83BC408DD3DD04, 0x8B3C113C38F9F37E}, // 1e-186
{0x9624AB50B148D445, 0xAE0B158B4738705E}, // 1e-185
{0x3BADD624DD9B0957, 0xD98DDAEE19068C76}, // 1e-184
{0xE54CA5D70A80E5D6, 0x87F8A8D4CFA417C9}, // 1e-183
{0x5E9FCF4CCD211F4C, 0xA9F6D30A038D1DBC}, // 1e-182
{0x7647C3200069671F, 0xD47487CC8470652B}, // 1e-181
{0x29ECD9F40041E073, 0x84C8D4DFD2C63F3B}, // 1e-180
{0xF468107100525890, 0xA5FB0A17C777CF09}, // 1e-179
{0x7182148D4066EEB4, 0xCF79CC9DB955C2CC}, // 1e-178
{0xC6F14CD848405530, 0x81AC1FE293D599BF}, // 1e-177
{0xB8ADA00E5A506A7C, 0xA21727DB38CB002F}, // 1e-176
{0xA6D90811F0E4851C, 0xCA9CF1D206FDC03B}, // 1e-175
{0x908F4A166D1DA663, 0xFD442E4688BD304A}, // 1e-174
{0x9A598E4E043287FE, 0x9E4A9CEC15763E2E}, // 1e-173
{0x40EFF1E1853F29FD, 0xC5DD44271AD3CDBA}, // 1e-172
{0xD12BEE59E68EF47C, 0xF7549530E188C128}, // 1e-171
{0x82BB74F8301958CE, 0x9A94DD3E8CF578B9}, // 1e-170
{0xE36A52363C1FAF01, 0xC13A148E3032D6E7}, // 1e-169
{0xDC44E6C3CB279AC1, 0xF18899B1BC3F8CA1}, // 1e-168
{0x29AB103A5EF8C0B9, 0x96F5600F15A7B7E5}, // 1e-167
{0x7415D448F6B6F0E7, 0xBCB2B812DB11A5DE}, // 1e-166
{0x111B495B3464AD21, 0xEBDF661791D60F56}, // 1e-165
{0xCAB10DD900BEEC34, 0x936B9FCEBB25C995}, // 1e-164
{0x3D5D514F40EEA742, 0xB84687C269EF3BFB}, // 1e-163
{0x0CB4A5A3112A5112, 0xE65829B3046B0AFA}, // 1e-162
{0x47F0E785EABA72AB, 0x8FF71A0FE2C2E6DC}, // 1e-161
{0x59ED216765690F56, 0xB3F4E093DB73A093}, // 1e-160
{0x306869C13EC3532C, 0xE0F218B8D25088B8}, // 1e-159
{0x1E414218C73A13FB, 0x8C974F7383725573}, // 1e-158
{0xE5D1929EF90898FA, 0xAFBD2350644EEACF}, // 1e-157
{0xDF45F746B74ABF39, 0xDBAC6C247D62A583}, // 1e-156
{0x6B8BBA8C328EB783, 0x894BC396CE5DA772}, // 1e-155
{0x066EA92F3F326564, 0xAB9EB47C81F5114F}, // 1e-154
{0xC80A537B0EFEFEBD, 0xD686619BA27255A2}, // 1e-153
{0xBD06742CE95F5F36, 0x8613FD0145877585}, // 1e-152
{0x2C48113823B73704, 0xA798FC4196E952E7}, // 1e-151
{0xF75A15862CA504C5, 0xD17F3B51FCA3A7A0}, // 1e-150
{0x9A984D73DBE722FB, 0x82EF85133DE648C4}, // 1e-149
{0xC13E60D0D2E0EBBA, 0xA3AB66580D5FDAF5}, // 1e-148
{0x318DF905079926A8, 0xCC963FEE10B7D1B3}, // 1e-147
{0xFDF17746497F7052, 0xFFBBCFE994E5C61F}, // 1e-146
{0xFEB6EA8BEDEFA633, 0x9FD561F1FD0F9BD3}, // 1e-145
{0xFE64A52EE96B8FC0, 0xC7CABA6E7C5382C8}, // 1e-144
{0x3DFDCE7AA3C673B0, 0xF9BD690A1B68637B}, // 1e-143
{0x06BEA10CA65C084E, 0x9C1661A651213E2D}, // 1e-142
{0x486E494FCFF30A62, 0xC31BFA0FE5698DB8}, // 1e-141
{0x5A89DBA3C3EFCCFA, 0xF3E2F893DEC3F126}, // 1e-140
{0xF89629465A75E01C, 0x986DDB5C6B3A76B7}, // 1e-139
{0xF6BBB397F1135823, 0xBE89523386091465}, // 1e-138
{0x746AA07DED582E2C, 0xEE2BA6C0678B597F}, // 1e-137
{0xA8C2A44EB4571CDC, 0x94DB483840B717EF}, // 1e-136
{0x92F34D62616CE413, 0xBA121A4650E4DDEB}, // 1e-135
{0x77B020BAF9C81D17, 0xE896A0D7E51E1566}, // 1e-134
{0x0ACE1474DC1D122E, 0x915E2486EF32CD60}, // 1e-133
{0x0D819992132456BA, 0xB5B5ADA8AAFF80B8}, // 1e-132
{0x10E1FFF697ED6C69, 0xE3231912D5BF60E6}, // 1e-131
{0xCA8D3FFA1EF463C1, 0x8DF5EFABC5979C8F}, // 1e-130
{0xBD308FF8A6B17CB2, 0xB1736B96B6FD83B3}, // 1e-129
{0xAC7CB3F6D05DDBDE, 0xDDD0467C64BCE4A0}, // 1e-128
{0x6BCDF07A423AA96B, 0x8AA22C0DBEF60EE4}, // 1e-127
{0x86C16C98D2C953C6, 0xAD4AB7112EB3929D}, // 1e-126
{0xE871C7BF077BA8B7, 0xD89D64D57A607744}, // 1e-125
{0x11471CD764AD4972, 0x87625F056C7C4A8B}, // 1e-124
{0xD598E40D3DD89BCF, 0xA93AF6C6C79B5D2D}, // 1e-123
{0x4AFF1D108D4EC2C3, 0xD389B47879823479}, // 1e-122
{0xCEDF722A585139BA, 0x843610CB4BF160CB}, // 1e-121
{0xC2974EB4EE658828, 0xA54394FE1EEDB8FE}, // 1e-120
{0x733D226229FEEA32, 0xCE947A3DA6A9273E}, // 1e-119
{0x0806357D5A3F525F, 0x811CCC668829B887}, // 1e-118
{0xCA07C2DCB0CF26F7, 0xA163FF802A3426A8}, // 1e-117
{0xFC89B393DD02F0B5, 0xC9BCFF6034C13052}, // 1e-116
{0xBBAC2078D443ACE2, 0xFC2C3F3841F17C67}, // 1e-115
{0xD54B944B84AA4C0D, 0x9D9BA7832936EDC0}, // 1e-114
{0x0A9E795E65D4DF11, 0xC5029163F384A931}, // 1e-113
{0x4D4617B5FF4A16D5, 0xF64335BCF065D37D}, // 1e-112
{0x504BCED1BF8E4E45, 0x99EA0196163FA42E}, // 1e-111
{0xE45EC2862F71E1D6, 0xC06481FB9BCF8D39}, // 1e-110
{0x5D767327BB4E5A4C, 0xF07DA27A82C37088}, // 1e-109
{0x3A6A07F8D510F86F, 0x964E858C91BA2655}, // 1e-108
{0x890489F70A55368B, 0xBBE226EFB628AFEA}, // 1e-107
{0x2B45AC74CCEA842E, 0xEADAB0ABA3B2DBE5}, // 1e-106
{0x3B0B8BC90012929D, 0x92C8AE6B464FC96F}, // 1e-105
{0x09CE6EBB40173744, 0xB77ADA0617E3BBCB}, // 1e-104
{0xCC420A6A101D0515, 0xE55990879DDCAABD}, // 1e-103
{0x9FA946824A12232D, 0x8F57FA54C2A9EAB6}, // 1e-102
{0x47939822DC96ABF9, 0xB32DF8E9F3546564}, // 1e-101
{0x59787E2B93BC56F7, 0xDFF9772470297EBD}, // 1e-100
{0x57EB4EDB3C55B65A, 0x8BFBEA76C619EF36}, // 1e-99
{0xEDE622920B6B23F1, 0xAEFAE51477A06B03}, // 1e-98
{0xE95FAB368E45ECED, 0xDAB99E59958885C4}, // 1e-97
{0x11DBCB0218EBB414, 0x88B402F7FD75539B}, // 1e-96
{0xD652BDC29F26A119, 0xAAE103B5FCD2A881}, // 1e-95
{0x4BE76D3346F0495F, 0xD59944A37C0752A2}, // 1e-94
{0x6F70A4400C562DDB, 0x857FCAE62D8493A5}, // 1e-93
{0xCB4CCD500F6BB952, 0xA6DFBD9FB8E5B88E}, // 1e-92
{0x7E2000A41346A7A7, 0xD097AD07A71F26B2}, // 1e-91
{0x8ED400668C0C28C8, 0x825ECC24C873782F}, // 1e-90
{0x728900802F0F32FA, 0xA2F67F2DFA90563B}, // 1e-89
{0x4F2B40A03AD2FFB9, 0xCBB41EF979346BCA}, // 1e-88
{0xE2F610C84987BFA8, 0xFEA126B7D78186BC}, // 1e-87
{0x0DD9CA7D2DF4D7C9, 0x9F24B832E6B0F436}, // 1e-86
{0x91503D1C79720DBB, 0xC6EDE63FA05D3143}, // 1e-85
{0x75A44C6397CE912A, 0xF8A95FCF88747D94}, // 1e-84
{0xC986AFBE3EE11ABA, 0x9B69DBE1B548CE7C}, // 1e-83
{0xFBE85BADCE996168, 0xC24452DA229B021B}, // 1e-82
{0xFAE27299423FB9C3, 0xF2D56790AB41C2A2}, // 1e-81
{0xDCCD879FC967D41A, 0x97C560BA6B0919A5}, // 1e-80
{0x5400E987BBC1C920, 0xBDB6B8E905CB600F}, // 1e-79
{0x290123E9AAB23B68, 0xED246723473E3813}, // 1e-78
{0xF9A0B6720AAF6521, 0x9436C0760C86E30B}, // 1e-77
{0xF808E40E8D5B3E69, 0xB94470938FA89BCE}, // 1e-76
{0xB60B1D1230B20E04, 0xE7958CB87392C2C2}, // 1e-75
{0xB1C6F22B5E6F48C2, 0x90BD77F3483BB9B9}, // 1e-74
{0x1E38AEB6360B1AF3, 0xB4ECD5F01A4AA828}, // 1e-73
{0x25C6DA63C38DE1B0, 0xE2280B6C20DD5232}, // 1e-72
{0x579C487E5A38AD0E, 0x8D590723948A535F}, // 1e-71
{0x2D835A9DF0C6D851, 0xB0AF48EC79ACE837}, // 1e-70
{0xF8E431456CF88E65, 0xDCDB1B2798182244}, // 1e-69
{0x1B8E9ECB641B58FF, 0x8A08F0F8BF0F156B}, // 1e-68
{0xE272467E3D222F3F, 0xAC8B2D36EED2DAC5}, // 1e-67
{0x5B0ED81DCC6ABB0F, 0xD7ADF884AA879177}, // 1e-66
{0x98E947129FC2B4E9, 0x86CCBB52EA94BAEA}, // 1e-65
{0x3F2398D747B36224, 0xA87FEA27A539E9A5}, // 1e-64
{0x8EEC7F0D19A03AAD, 0xD29FE4B18E88640E}, // 1e-63
{0x1953CF68300424AC, 0x83A3EEEEF9153E89}, // 1e-62
{0x5FA8C3423C052DD7, 0xA48CEAAAB75A8E2B}, // 1e-61
{0x3792F412CB06794D, 0xCDB02555653131B6}, // 1e-60
{0xE2BBD88BBEE40BD0, 0x808E17555F3EBF11}, // 1e-59
{0x5B6ACEAEAE9D0EC4, 0xA0B19D2AB70E6ED6}, // 1e-58
{0xF245825A5A445275, 0xC8DE047564D20A8B}, // 1e-57
{0xEED6E2F0F0D56712, 0xFB158592BE068D2E}, // 1e-56
{0x55464DD69685606B, 0x9CED737BB6C4183D}, // 1e-55
{0xAA97E14C3C26B886, 0xC428D05AA4751E4C}, // 1e-54
{0xD53DD99F4B3066A8, 0xF53304714D9265DF}, // 1e-53
{0xE546A8038EFE4029, 0x993FE2C6D07B7FAB}, // 1e-52
{0xDE98520472BDD033, 0xBF8FDB78849A5F96}, // 1e-51
{0x963E66858F6D4440, 0xEF73D256A5C0F77C}, // 1e-50
{0xDDE7001379A44AA8, 0x95A8637627989AAD}, // 1e-49
{0x5560C018580D5D52, 0xBB127C53B17EC159}, // 1e-48
{0xAAB8F01E6E10B4A6, 0xE9D71B689DDE71AF}, // 1e-47
{0xCAB3961304CA70E8, 0x9226712162AB070D}, // 1e-46
{0x3D607B97C5FD0D22, 0xB6B00D69BB55C8D1}, // 1e-45
{0x8CB89A7DB77C506A, 0xE45C10C42A2B3B05}, // 1e-44
{0x77F3608E92ADB242, 0x8EB98A7A9A5B04E3}, // 1e-43
{0x55F038B237591ED3, 0xB267ED1940F1C61C}, // 1e-42
{0x6B6C46DEC52F6688, 0xDF01E85F912E37A3}, // 1e-41
{0x2323AC4B3B3DA015, 0x8B61313BBABCE2C6}, // 1e-40
{0xABEC975E0A0D081A, 0xAE397D8AA96C1B77}, // 1e-39
{0x96E7BD358C904A21, 0xD9C7DCED53C72255}, // 1e-38
{0x7E50D64177DA2E54, 0x881CEA14545C7575}, // 1e-37
{0xDDE50BD1D5D0B9E9, 0xAA242499697392D2}, // 1e-36
{0x955E4EC64B44E864, 0xD4AD2DBFC3D07787}, // 1e-35
{0xBD5AF13BEF0B113E, 0x84EC3C97DA624AB4}, // 1e-34
{0xECB1AD8AEACDD58E, 0xA6274BBDD0FADD61}, // 1e-33
{0x67DE18EDA5814AF2, 0xCFB11EAD453994BA}, // 1e-32
{0x80EACF948770CED7, 0x81CEB32C4B43FCF4}, // 1e-31
{0xA1258379A94D028D, 0xA2425FF75E14FC31}, // 1e-30
{0x096EE45813A04330, 0xCAD2F7F5359A3B3E}, // 1e-29
{0x8BCA9D6E188853FC, 0xFD87B5F28300CA0D}, // 1e-28
{0x775EA264CF55347D, 0x9E74D1B791E07E48}, // 1e-27
{0x95364AFE032A819D, 0xC612062576589DDA}, // 1e-26
{0x3A83DDBD83F52204, 0xF79687AED3EEC551}, // 1e-25
{0xC4926A9672793542, 0x9ABE14CD44753B52}, // 1e-24
{0x75B7053C0F178293, 0xC16D9A0095928A27}, // 1e-23
{0x5324C68B12DD6338, 0xF1C90080BAF72CB1}, // 1e-22
{0xD3F6FC16EBCA5E03, 0x971DA05074DA7BEE}, // 1e-21
{0x88F4BB1CA6BCF584, 0xBCE5086492111AEA}, // 1e-20
{0x2B31E9E3D06C32E5, 0xEC1E4A7DB69561A5}, // 1e-19
{0x3AFF322E62439FCF, 0x9392EE8E921D5D07}, // 1e-18
{0x09BEFEB9FAD487C2, 0xB877AA3236A4B449}, // 1e-17
{0x4C2EBE687989A9B3, 0xE69594BEC44DE15B}, // 1e-16
{0x0F9D37014BF60A10, 0x901D7CF73AB0ACD9}, // 1e-15
{0x538484C19EF38C94, 0xB424DC35095CD80F}, // 1e-14
{0x2865A5F206B06FB9, 0xE12E13424BB40E13}, // 1e-13
{0xF93F87B7442E45D3, 0x8CBCCC096F5088CB}, // 1e-12
{0xF78F69A51539D748, 0xAFEBFF0BCB24AAFE}, // 1e-11
{0xB573440E5A884D1B, 0xDBE6FECEBDEDD5BE}, // 1e-10
{0x31680A88F8953030, 0x89705F4136B4A597}, // 1e-9
{0xFDC20D2B36BA7C3D, 0xABCC77118461CEFC}, // 1e-8
{0x3D32907604691B4C, 0xD6BF94D5E57A42BC}, // 1e-7
{0xA63F9A49C2C1B10F, 0x8637BD05AF6C69B5}, // 1e-6
{0x0FCF80DC33721D53, 0xA7C5AC471B478423}, // 1e-5
{0xD3C36113404EA4A8, 0xD1B71758E219652B}, // 1e-4
{0x645A1CAC083126E9, 0x83126E978D4FDF3B}, // 1e-3
{0x3D70A3D70A3D70A3, 0xA3D70A3D70A3D70A}, // 1e-2
{0xCCCCCCCCCCCCCCCC, 0xCCCCCCCCCCCCCCCC}, // 1e-1
{0x0000000000000000, 0x8000000000000000}, // 1e0
{0x0000000000000000, 0xA000000000000000}, // 1e1
{0x0000000000000000, 0xC800000000000000}, // 1e2
{0x0000000000000000, 0xFA00000000000000}, // 1e3
{0x0000000000000000, 0x9C40000000000000}, // 1e4
{0x0000000000000000, 0xC350000000000000}, // 1e5
{0x0000000000000000, 0xF424000000000000}, // 1e6
{0x0000000000000000, 0x9896800000000000}, // 1e7
{0x0000000000000000, 0xBEBC200000000000}, // 1e8
{0x0000000000000000, 0xEE6B280000000000}, // 1e9
{0x0000000000000000, 0x9502F90000000000}, // 1e10
{0x0000000000000000, 0xBA43B74000000000}, // 1e11
{0x0000000000000000, 0xE8D4A51000000000}, // 1e12
{0x0000000000000000, 0x9184E72A00000000}, // 1e13
{0x0000000000000000, 0xB5E620F480000000}, // 1e14
{0x0000000000000000, 0xE35FA931A0000000}, // 1e15
{0x0000000000000000, 0x8E1BC9BF04000000}, // 1e16
{0x0000000000000000, 0xB1A2BC2EC5000000}, // 1e17
{0x0000000000000000, 0xDE0B6B3A76400000}, // 1e18
{0x0000000000000000, 0x8AC7230489E80000}, // 1e19
{0x0000000000000000, 0xAD78EBC5AC620000}, // 1e20
{0x0000000000000000, 0xD8D726B7177A8000}, // 1e21
{0x0000000000000000, 0x878678326EAC9000}, // 1e22
{0x0000000000000000, 0xA968163F0A57B400}, // 1e23
{0x0000000000000000, 0xD3C21BCECCEDA100}, // 1e24
{0x0000000000000000, 0x84595161401484A0}, // 1e25
{0x0000000000000000, 0xA56FA5B99019A5C8}, // 1e26
{0x0000000000000000, 0xCECB8F27F4200F3A}, // 1e27
{0x4000000000000000, 0x813F3978F8940984}, // 1e28
{0x5000000000000000, 0xA18F07D736B90BE5}, // 1e29
{0xA400000000000000, 0xC9F2C9CD04674EDE}, // 1e30
{0x4D00000000000000, 0xFC6F7C4045812296}, // 1e31
{0xF020000000000000, 0x9DC5ADA82B70B59D}, // 1e32
{0x6C28000000000000, 0xC5371912364CE305}, // 1e33
{0xC732000000000000, 0xF684DF56C3E01BC6}, // 1e34
{0x3C7F400000000000, 0x9A130B963A6C115C}, // 1e35
{0x4B9F100000000000, 0xC097CE7BC90715B3}, // 1e36
{0x1E86D40000000000, 0xF0BDC21ABB48DB20}, // 1e37
{0x1314448000000000, 0x96769950B50D88F4}, // 1e38
{0x17D955A000000000, 0xBC143FA4E250EB31}, // 1e39
{0x5DCFAB0800000000, 0xEB194F8E1AE525FD}, // 1e40
{0x5AA1CAE500000000, 0x92EFD1B8D0CF37BE}, // 1e41
{0xF14A3D9E40000000, 0xB7ABC627050305AD}, // 1e42
{0x6D9CCD05D0000000, 0xE596B7B0C643C719}, // 1e43
{0xE4820023A2000000, 0x8F7E32CE7BEA5C6F}, // 1e44
{0xDDA2802C8A800000, 0xB35DBF821AE4F38B}, // 1e45
{0xD50B2037AD200000, 0xE0352F62A19E306E}, // 1e46
{0x4526F422CC340000, 0x8C213D9DA502DE45}, // 1e47
{0x9670B12B7F410000, 0xAF298D050E4395D6}, // 1e48
{0x3C0CDD765F114000, 0xDAF3F04651D47B4C}, // 1e49
{0xA5880A69FB6AC800, 0x88D8762BF324CD0F}, // 1e50
{0x8EEA0D047A457A00, 0xAB0E93B6EFEE0053}, // 1e51
{0x72A4904598D6D880, 0xD5D238A4ABE98068}, // 1e52
{0x47A6DA2B7F864750, 0x85A36366EB71F041}, // 1e53
{0x999090B65F67D924, 0xA70C3C40A64E6C51}, // 1e54
{0xFFF4B4E3F741CF6D, 0xD0CF4B50CFE20765}, // 1e55
{0xBFF8F10E7A8921A4, 0x82818F1281ED449F}, // 1e56
{0xAFF72D52192B6A0D, 0xA321F2D7226895C7}, // 1e57
{0x9BF4F8A69F764490, 0xCBEA6F8CEB02BB39}, // 1e58
{0x02F236D04753D5B4, 0xFEE50B7025C36A08}, // 1e59
{0x01D762422C946590, 0x9F4F2726179A2245}, // 1e60
{0x424D3AD2B7B97EF5, 0xC722F0EF9D80AAD6}, // 1e61
{0xD2E0898765A7DEB2, 0xF8EBAD2B84E0D58B}, // 1e62
{0x63CC55F49F88EB2F, 0x9B934C3B330C8577}, // 1e63
{0x3CBF6B71C76B25FB, 0xC2781F49FFCFA6D5}, // 1e64
{0x8BEF464E3945EF7A, 0xF316271C7FC3908A}, // 1e65
{0x97758BF0E3CBB5AC, 0x97EDD871CFDA3A56}, // 1e66
{0x3D52EEED1CBEA317, 0xBDE94E8E43D0C8EC}, // 1e67
{0x4CA7AAA863EE4BDD, 0xED63A231D4C4FB27}, // 1e68
{0x8FE8CAA93E74EF6A, 0x945E455F24FB1CF8}, // 1e69
{0xB3E2FD538E122B44, 0xB975D6B6EE39E436}, // 1e70
{0x60DBBCA87196B616, 0xE7D34C64A9C85D44}, // 1e71
{0xBC8955E946FE31CD, 0x90E40FBEEA1D3A4A}, // 1e72
{0x6BABAB6398BDBE41, 0xB51D13AEA4A488DD}, // 1e73
{0xC696963C7EED2DD1, 0xE264589A4DCDAB14}, // 1e74
{0xFC1E1DE5CF543CA2, 0x8D7EB76070A08AEC}, // 1e75
{0x3B25A55F43294BCB, 0xB0DE65388CC8ADA8}, // 1e76
{0x49EF0EB713F39EBE, 0xDD15FE86AFFAD912}, // 1e77
{0x6E3569326C784337, 0x8A2DBF142DFCC7AB}, // 1e78
{0x49C2C37F07965404, 0xACB92ED9397BF996}, // 1e79
{0xDC33745EC97BE906, 0xD7E77A8F87DAF7FB}, // 1e80
{0x69A028BB3DED71A3, 0x86F0AC99B4E8DAFD}, // 1e81
{0xC40832EA0D68CE0C, 0xA8ACD7C0222311BC}, // 1e82
{0xF50A3FA490C30190, 0xD2D80DB02AABD62B}, // 1e83
{0x792667C6DA79E0FA, 0x83C7088E1AAB65DB}, // 1e84
{0x577001B891185938, 0xA4B8CAB1A1563F52}, // 1e85
{0xED4C0226B55E6F86, 0xCDE6FD5E09ABCF26}, // 1e86
{0x544F8158315B05B4, 0x80B05E5AC60B6178}, // 1e87
{0x696361AE3DB1C721, 0xA0DC75F1778E39D6}, // 1e88
{0x03BC3A19CD1E38E9, 0xC913936DD571C84C}, // 1e89
{0x04AB48A04065C723, 0xFB5878494ACE3A5F}, // 1e90
{0x62EB0D64283F9C76, 0x9D174B2DCEC0E47B}, // 1e91
{0x3BA5D0BD324F8394, 0xC45D1DF942711D9A}, // 1e92
{0xCA8F44EC7EE36479, 0xF5746577930D6500}, // 1e93
{0x7E998B13CF4E1ECB, 0x9968BF6ABBE85F20}, // 1e94
{0x9E3FEDD8C321A67E, 0xBFC2EF456AE276E8}, // 1e95
{0xC5CFE94EF3EA101E, 0xEFB3AB16C59B14A2}, // 1e96
{0xBBA1F1D158724A12, 0x95D04AEE3B80ECE5}, // 1e97
{0x2A8A6E45AE8EDC97, 0xBB445DA9CA61281F}, // 1e98
{0xF52D09D71A3293BD, 0xEA1575143CF97226}, // 1e99
{0x593C2626705F9C56, 0x924D692CA61BE758}, // 1e100
{0x6F8B2FB00C77836C, 0xB6E0C377CFA2E12E}, // 1e101
{0x0B6DFB9C0F956447, 0xE498F455C38B997A}, // 1e102
{0x4724BD4189BD5EAC, 0x8EDF98B59A373FEC}, // 1e103
{0x58EDEC91EC2CB657, 0xB2977EE300C50FE7}, // 1e104
{0x2F2967B66737E3ED, 0xDF3D5E9BC0F653E1}, // 1e105
{0xBD79E0D20082EE74, 0x8B865B215899F46C}, // 1e106
{0xECD8590680A3AA11, 0xAE67F1E9AEC07187}, // 1e107
{0xE80E6F4820CC9495, 0xDA01EE641A708DE9}, // 1e108
{0x3109058D147FDCDD, 0x884134FE908658B2}, // 1e109
{0xBD4B46F0599FD415, 0xAA51823E34A7EEDE}, // 1e110
{0x6C9E18AC7007C91A, 0xD4E5E2CDC1D1EA96}, // 1e111
{0x03E2CF6BC604DDB0, 0x850FADC09923329E}, // 1e112
{0x84DB8346B786151C, 0xA6539930BF6BFF45}, // 1e113
{0xE612641865679A63, 0xCFE87F7CEF46FF16}, // 1e114
{0x4FCB7E8F3F60C07E, 0x81F14FAE158C5F6E}, // 1e115
{0xE3BE5E330F38F09D, 0xA26DA3999AEF7749}, // 1e116
{0x5CADF5BFD3072CC5, 0xCB090C8001AB551C}, // 1e117
{0x73D9732FC7C8F7F6, 0xFDCB4FA002162A63}, // 1e118
{0x2867E7FDDCDD9AFA, 0x9E9F11C4014DDA7E}, // 1e119
{0xB281E1FD541501B8, 0xC646D63501A1511D}, // 1e120
{0x1F225A7CA91A4226, 0xF7D88BC24209A565}, // 1e121
{0x3375788DE9B06958, 0x9AE757596946075F}, // 1e122
{0x0052D6B1641C83AE, 0xC1A12D2FC3978937}, // 1e123
{0xC0678C5DBD23A49A, 0xF209787BB47D6B84}, // 1e124
{0xF840B7BA963646E0, 0x9745EB4D50CE6332}, // 1e125
{0xB650E5A93BC3D898, 0xBD176620A501FBFF}, // 1e126
{0xA3E51F138AB4CEBE, 0xEC5D3FA8CE427AFF}, // 1e127
{0xC66F336C36B10137, 0x93BA47C980E98CDF}, // 1e128
{0xB80B0047445D4184, 0xB8A8D9BBE123F017}, // 1e129
{0xA60DC059157491E5, 0xE6D3102AD96CEC1D}, // 1e130
{0x87C89837AD68DB2F, 0x9043EA1AC7E41392}, // 1e131
{0x29BABE4598C311FB, 0xB454E4A179DD1877}, // 1e132
{0xF4296DD6FEF3D67A, 0xE16A1DC9D8545E94}, // 1e133
{0x1899E4A65F58660C, 0x8CE2529E2734BB1D}, // 1e134
{0x5EC05DCFF72E7F8F, 0xB01AE745B101E9E4}, // 1e135
{0x76707543F4FA1F73, 0xDC21A1171D42645D}, // 1e136
{0x6A06494A791C53A8, 0x899504AE72497EBA}, // 1e137
{0x0487DB9D17636892, 0xABFA45DA0EDBDE69}, // 1e138
{0x45A9D2845D3C42B6, 0xD6F8D7509292D603}, // 1e139
{0x0B8A2392BA45A9B2, 0x865B86925B9BC5C2}, // 1e140
{0x8E6CAC7768D7141E, 0xA7F26836F282B732}, // 1e141
{0x3207D795430CD926, 0xD1EF0244AF2364FF}, // 1e142
{0x7F44E6BD49E807B8, 0x8335616AED761F1F}, // 1e143
{0x5F16206C9C6209A6, 0xA402B9C5A8D3A6E7}, // 1e144
{0x36DBA887C37A8C0F, 0xCD036837130890A1}, // 1e145
{0xC2494954DA2C9789, 0x802221226BE55A64}, // 1e146
{0xF2DB9BAA10B7BD6C, 0xA02AA96B06DEB0FD}, // 1e147
{0x6F92829494E5ACC7, 0xC83553C5C8965D3D}, // 1e148
{0xCB772339BA1F17F9, 0xFA42A8B73ABBF48C}, // 1e149
{0xFF2A760414536EFB, 0x9C69A97284B578D7}, // 1e150
{0xFEF5138519684ABA, 0xC38413CF25E2D70D}, // 1e151
{0x7EB258665FC25D69, 0xF46518C2EF5B8CD1}, // 1e152
{0xEF2F773FFBD97A61, 0x98BF2F79D5993802}, // 1e153
{0xAAFB550FFACFD8FA, 0xBEEEFB584AFF8603}, // 1e154
{0x95BA2A53F983CF38, 0xEEAABA2E5DBF6784}, // 1e155
{0xDD945A747BF26183, 0x952AB45CFA97A0B2}, // 1e156
{0x94F971119AEEF9E4, 0xBA756174393D88DF}, // 1e157
{0x7A37CD5601AAB85D, 0xE912B9D1478CEB17}, // 1e158
{0xAC62E055C10AB33A, 0x91ABB422CCB812EE}, // 1e159
{0x577B986B314D6009, 0xB616A12B7FE617AA}, // 1e160
{0xED5A7E85FDA0B80B, 0xE39C49765FDF9D94}, // 1e161
{0x14588F13BE847307, 0x8E41ADE9FBEBC27D}, // 1e162
{0x596EB2D8AE258FC8, 0xB1D219647AE6B31C}, // 1e163
{0x6FCA5F8ED9AEF3BB, 0xDE469FBD99A05FE3}, // 1e164
{0x25DE7BB9480D5854, 0x8AEC23D680043BEE}, // 1e165
{0xAF561AA79A10AE6A, 0xADA72CCC20054AE9}, // 1e166
{0x1B2BA1518094DA04, 0xD910F7FF28069DA4}, // 1e167
{0x90FB44D2F05D0842, 0x87AA9AFF79042286}, // 1e168
{0x353A1607AC744A53, 0xA99541BF57452B28}, // 1e169
{0x42889B8997915CE8, 0xD3FA922F2D1675F2}, // 1e170
{0x69956135FEBADA11, 0x847C9B5D7C2E09B7}, // 1e171
{0x43FAB9837E699095, 0xA59BC234DB398C25}, // 1e172
{0x94F967E45E03F4BB, 0xCF02B2C21207EF2E}, // 1e173
{0x1D1BE0EEBAC278F5, 0x8161AFB94B44F57D}, // 1e174
{0x6462D92A69731732, 0xA1BA1BA79E1632DC}, // 1e175
{0x7D7B8F7503CFDCFE, 0xCA28A291859BBF93}, // 1e176
{0x5CDA735244C3D43E, 0xFCB2CB35E702AF78}, // 1e177
{0x3A0888136AFA64A7, 0x9DEFBF01B061ADAB}, // 1e178
{0x088AAA1845B8FDD0, 0xC56BAEC21C7A1916}, // 1e179
{0x8AAD549E57273D45, 0xF6C69A72A3989F5B}, // 1e180
{0x36AC54E2F678864B, 0x9A3C2087A63F6399}, // 1e181
{0x84576A1BB416A7DD, 0xC0CB28A98FCF3C7F}, // 1e182
{0x656D44A2A11C51D5, 0xF0FDF2D3F3C30B9F}, // 1e183
{0x9F644AE5A4B1B325, 0x969EB7C47859E743}, // 1e184
{0x873D5D9F0DDE1FEE, 0xBC4665B596706114}, // 1e185
{0xA90CB506D155A7EA, 0xEB57FF22FC0C7959}, // 1e186
{0x09A7F12442D588F2, 0x9316FF75DD87CBD8}, // 1e187
{0x0C11ED6D538AEB2F, 0xB7DCBF5354E9BECE}, // 1e188
{0x8F1668C8A86DA5FA, 0xE5D3EF282A242E81}, // 1e189
{0xF96E017D694487BC, 0x8FA475791A569D10}, // 1e190
{0x37C981DCC395A9AC, 0xB38D92D760EC4455}, // 1e191
{0x85BBE253F47B1417, 0xE070F78D3927556A}, // 1e192
{0x93956D7478CCEC8E, 0x8C469AB843B89562}, // 1e193
{0x387AC8D1970027B2, 0xAF58416654A6BABB}, // 1e194
{0x06997B05FCC0319E, 0xDB2E51BFE9D0696A}, // 1e195
{0x441FECE3BDF81F03, 0x88FCF317F22241E2}, // 1e196
{0xD527E81CAD7626C3, 0xAB3C2FDDEEAAD25A}, // 1e197
{0x8A71E223D8D3B074, 0xD60B3BD56A5586F1}, // 1e198
{0xF6872D5667844E49, 0x85C7056562757456}, // 1e199
{0xB428F8AC016561DB, 0xA738C6BEBB12D16C}, // 1e200
{0xE13336D701BEBA52, 0xD106F86E69D785C7}, // 1e201
{0xECC0024661173473, 0x82A45B450226B39C}, // 1e202
{0x27F002D7F95D0190, 0xA34D721642B06084}, // 1e203
{0x31EC038DF7B441F4, 0xCC20CE9BD35C78A5}, // 1e204
{0x7E67047175A15271, 0xFF290242C83396CE}, // 1e205
{0x0F0062C6E984D386, 0x9F79A169BD203E41}, // 1e206
{0x52C07B78A3E60868, 0xC75809C42C684DD1}, // 1e207
{0xA7709A56CCDF8A82, 0xF92E0C3537826145}, // 1e208
{0x88A66076400BB691, 0x9BBCC7A142B17CCB}, // 1e209
{0x6ACFF893D00EA435, 0xC2ABF989935DDBFE}, // 1e210
{0x0583F6B8C4124D43, 0xF356F7EBF83552FE}, // 1e211
{0xC3727A337A8B704A, 0x98165AF37B2153DE}, // 1e212
{0x744F18C0592E4C5C, 0xBE1BF1B059E9A8D6}, // 1e213
{0x1162DEF06F79DF73, 0xEDA2EE1C7064130C}, // 1e214
{0x8ADDCB5645AC2BA8, 0x9485D4D1C63E8BE7}, // 1e215
{0x6D953E2BD7173692, 0xB9A74A0637CE2EE1}, // 1e216
{0xC8FA8DB6CCDD0437, 0xE8111C87C5C1BA99}, // 1e217
{0x1D9C9892400A22A2, 0x910AB1D4DB9914A0}, // 1e218
{0x2503BEB6D00CAB4B, 0xB54D5E4A127F59C8}, // 1e219
{0x2E44AE64840FD61D, 0xE2A0B5DC971F303A}, // 1e220
{0x5CEAECFED289E5D2, 0x8DA471A9DE737E24}, // 1e221
{0x7425A83E872C5F47, 0xB10D8E1456105DAD}, // 1e222
{0xD12F124E28F77719, 0xDD50F1996B947518}, // 1e223
{0x82BD6B70D99AAA6F, 0x8A5296FFE33CC92F}, // 1e224
{0x636CC64D1001550B, 0xACE73CBFDC0BFB7B}, // 1e225
{0x3C47F7E05401AA4E, 0xD8210BEFD30EFA5A}, // 1e226
{0x65ACFAEC34810A71, 0x8714A775E3E95C78}, // 1e227
{0x7F1839A741A14D0D, 0xA8D9D1535CE3B396}, // 1e228
{0x1EDE48111209A050, 0xD31045A8341CA07C}, // 1e229
{0x934AED0AAB460432, 0x83EA2B892091E44D}, // 1e230
{0xF81DA84D5617853F, 0xA4E4B66B68B65D60}, // 1e231
{0x36251260AB9D668E, 0xCE1DE40642E3F4B9}, // 1e232
{0xC1D72B7C6B426019, 0x80D2AE83E9CE78F3}, // 1e233
{0xB24CF65B8612F81F, 0xA1075A24E4421730}, // 1e234
{0xDEE033F26797B627, 0xC94930AE1D529CFC}, // 1e235
{0x169840EF017DA3B1, 0xFB9B7CD9A4A7443C}, // 1e236
{0x8E1F289560EE864E, 0x9D412E0806E88AA5}, // 1e237
{0xF1A6F2BAB92A27E2, 0xC491798A08A2AD4E}, // 1e238
{0xAE10AF696774B1DB, 0xF5B5D7EC8ACB58A2}, // 1e239
{0xACCA6DA1E0A8EF29, 0x9991A6F3D6BF1765}, // 1e240
{0x17FD090A58D32AF3, 0xBFF610B0CC6EDD3F}, // 1e241
{0xDDFC4B4CEF07F5B0, 0xEFF394DCFF8A948E}, // 1e242
{0x4ABDAF101564F98E, 0x95F83D0A1FB69CD9}, // 1e243
{0x9D6D1AD41ABE37F1, 0xBB764C4CA7A4440F}, // 1e244
{0x84C86189216DC5ED, 0xEA53DF5FD18D5513}, // 1e245
{0x32FD3CF5B4E49BB4, 0x92746B9BE2F8552C}, // 1e246
{0x3FBC8C33221DC2A1, 0xB7118682DBB66A77}, // 1e247
{0x0FABAF3FEAA5334A, 0xE4D5E82392A40515}, // 1e248
{0x29CB4D87F2A7400E, 0x8F05B1163BA6832D}, // 1e249
{0x743E20E9EF511012, 0xB2C71D5BCA9023F8}, // 1e250
{0x914DA9246B255416, 0xDF78E4B2BD342CF6}, // 1e251
{0x1AD089B6C2F7548E, 0x8BAB8EEFB6409C1A}, // 1e252
{0xA184AC2473B529B1, 0xAE9672ABA3D0C320}, // 1e253
{0xC9E5D72D90A2741E, 0xDA3C0F568CC4F3E8}, // 1e254
{0x7E2FA67C7A658892, 0x8865899617FB1871}, // 1e255
{0xDDBB901B98FEEAB7, 0xAA7EEBFB9DF9DE8D}, // 1e256
{0x552A74227F3EA565, 0xD51EA6FA85785631}, // 1e257
{0xD53A88958F87275F, 0x8533285C936B35DE}, // 1e258
{0x8A892ABAF368F137, 0xA67FF273B8460356}, // 1e259
{0x2D2B7569B0432D85, 0xD01FEF10A657842C}, // 1e260
{0x9C3B29620E29FC73, 0x8213F56A67F6B29B}, // 1e261
{0x8349F3BA91B47B8F, 0xA298F2C501F45F42}, // 1e262
{0x241C70A936219A73, 0xCB3F2F7642717713}, // 1e263
{0xED238CD383AA0110, 0xFE0EFB53D30DD4D7}, // 1e264
{0xF4363804324A40AA, 0x9EC95D1463E8A506}, // 1e265
{0xB143C6053EDCD0D5, 0xC67BB4597CE2CE48}, // 1e266
{0xDD94B7868E94050A, 0xF81AA16FDC1B81DA}, // 1e267
{0xCA7CF2B4191C8326, 0x9B10A4E5E9913128}, // 1e268
{0xFD1C2F611F63A3F0, 0xC1D4CE1F63F57D72}, // 1e269
{0xBC633B39673C8CEC, 0xF24A01A73CF2DCCF}, // 1e270
{0xD5BE0503E085D813, 0x976E41088617CA01}, // 1e271
{0x4B2D8644D8A74E18, 0xBD49D14AA79DBC82}, // 1e272
{0xDDF8E7D60ED1219E, 0xEC9C459D51852BA2}, // 1e273
{0xCABB90E5C942B503, 0x93E1AB8252F33B45}, // 1e274
{0x3D6A751F3B936243, 0xB8DA1662E7B00A17}, // 1e275
{0x0CC512670A783AD4, 0xE7109BFBA19C0C9D}, // 1e276
{0x27FB2B80668B24C5, 0x906A617D450187E2}, // 1e277
{0xB1F9F660802DEDF6, 0xB484F9DC9641E9DA}, // 1e278
{0x5E7873F8A0396973, 0xE1A63853BBD26451}, // 1e279
{0xDB0B487B6423E1E8, 0x8D07E33455637EB2}, // 1e280
{0x91CE1A9A3D2CDA62, 0xB049DC016ABC5E5F}, // 1e281
{0x7641A140CC7810FB, 0xDC5C5301C56B75F7}, // 1e282
{0xA9E904C87FCB0A9D, 0x89B9B3E11B6329BA}, // 1e283
{0x546345FA9FBDCD44, 0xAC2820D9623BF429}, // 1e284
{0xA97C177947AD4095, 0xD732290FBACAF133}, // 1e285
{0x49ED8EABCCCC485D, 0x867F59A9D4BED6C0}, // 1e286
{0x5C68F256BFFF5A74, 0xA81F301449EE8C70}, // 1e287
{0x73832EEC6FFF3111, 0xD226FC195C6A2F8C}, // 1e288
};
// wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that
// can be exactly represented by a float64 (what C calls a double).
static const double wuffs_base__private_implementation__f64_powers_of_10[23] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22,
};
// ---------------- IEEE 754 Floating Point
WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u16 //
wuffs_base__ieee_754_bit_representation__from_f64_to_u16_truncate(double f) {
uint64_t u = 0;
if (sizeof(uint64_t) == sizeof(double)) {
memcpy(&u, &f, sizeof(uint64_t));
}
uint16_t neg = ((uint16_t)((u >> 63) << 15));
u &= 0x7FFFFFFFFFFFFFFF;
uint64_t exp = u >> 52;
uint64_t man = u & 0x000FFFFFFFFFFFFF;
if (exp == 0x7FF) {
if (man == 0) { // Infinity.
wuffs_base__lossy_value_u16 ret;
ret.value = neg | 0x7C00;
ret.lossy = false;
return ret;
}
// NaN. Shift the 52 mantissa bits to 10 mantissa bits, keeping the most
// significant mantissa bit (quiet vs signaling NaNs). Also set the low 9
// bits of ret.value so that the 10-bit mantissa is non-zero.
wuffs_base__lossy_value_u16 ret;
ret.value = neg | 0x7DFF | ((uint16_t)(man >> 42));
ret.lossy = false;
return ret;
} else if (exp > 0x40E) { // Truncate to the largest finite f16.
wuffs_base__lossy_value_u16 ret;
ret.value = neg | 0x7BFF;
ret.lossy = true;
return ret;
} else if (exp <= 0x3E6) { // Truncate to zero.
wuffs_base__lossy_value_u16 ret;
ret.value = neg;
ret.lossy = (u != 0);
return ret;
} else if (exp <= 0x3F0) { // Normal f64, subnormal f16.
// Convert from a 53-bit mantissa (after realizing the implicit bit) to a
// 10-bit mantissa and then adjust for the exponent.
man |= 0x0010000000000000;
uint32_t shift = ((uint32_t)(1051 - exp)); // 1051 = 0x3F0 + 53 - 10.
uint64_t shifted_man = man >> shift;
wuffs_base__lossy_value_u16 ret;
ret.value = neg | ((uint16_t)shifted_man);
ret.lossy = (shifted_man << shift) != man;
return ret;
}
// Normal f64, normal f16.
// Re-bias from 1023 to 15 and shift above f16's 10 mantissa bits.
exp = (exp - 1008) << 10; // 1008 = 1023 - 15 = 0x3FF - 0xF.
// Convert from a 52-bit mantissa (excluding the implicit bit) to a 10-bit
// mantissa (again excluding the implicit bit). We lose some information if
// any of the bottom 42 bits are non-zero.
wuffs_base__lossy_value_u16 ret;
ret.value = neg | ((uint16_t)exp) | ((uint16_t)(man >> 42));
ret.lossy = (man << 22) != 0;
return ret;
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u32 //
wuffs_base__ieee_754_bit_representation__from_f64_to_u32_truncate(double f) {
uint64_t u = 0;
if (sizeof(uint64_t) == sizeof(double)) {
memcpy(&u, &f, sizeof(uint64_t));
}
uint32_t neg = ((uint32_t)(u >> 63)) << 31;
u &= 0x7FFFFFFFFFFFFFFF;
uint64_t exp = u >> 52;
uint64_t man = u & 0x000FFFFFFFFFFFFF;
if (exp == 0x7FF) {
if (man == 0) { // Infinity.
wuffs_base__lossy_value_u32 ret;
ret.value = neg | 0x7F800000;
ret.lossy = false;
return ret;
}
// NaN. Shift the 52 mantissa bits to 23 mantissa bits, keeping the most
// significant mantissa bit (quiet vs signaling NaNs). Also set the low 22
// bits of ret.value so that the 23-bit mantissa is non-zero.
wuffs_base__lossy_value_u32 ret;
ret.value = neg | 0x7FBFFFFF | ((uint32_t)(man >> 29));
ret.lossy = false;
return ret;
} else if (exp > 0x47E) { // Truncate to the largest finite f32.
wuffs_base__lossy_value_u32 ret;
ret.value = neg | 0x7F7FFFFF;
ret.lossy = true;
return ret;
} else if (exp <= 0x369) { // Truncate to zero.
wuffs_base__lossy_value_u32 ret;
ret.value = neg;
ret.lossy = (u != 0);
return ret;
} else if (exp <= 0x380) { // Normal f64, subnormal f32.
// Convert from a 53-bit mantissa (after realizing the implicit bit) to a
// 23-bit mantissa and then adjust for the exponent.
man |= 0x0010000000000000;
uint32_t shift = ((uint32_t)(926 - exp)); // 926 = 0x380 + 53 - 23.
uint64_t shifted_man = man >> shift;
wuffs_base__lossy_value_u32 ret;
ret.value = neg | ((uint32_t)shifted_man);
ret.lossy = (shifted_man << shift) != man;
return ret;
}
// Normal f64, normal f32.
// Re-bias from 1023 to 127 and shift above f32's 23 mantissa bits.
exp = (exp - 896) << 23; // 896 = 1023 - 127 = 0x3FF - 0x7F.
// Convert from a 52-bit mantissa (excluding the implicit bit) to a 23-bit
// mantissa (again excluding the implicit bit). We lose some information if
// any of the bottom 29 bits are non-zero.
wuffs_base__lossy_value_u32 ret;
ret.value = neg | ((uint32_t)exp) | ((uint32_t)(man >> 29));
ret.lossy = (man << 35) != 0;
return ret;
}
// --------
#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047
#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N
// such that ((10 << N) < (1 << 64)).
#define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60
// wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a
// fixed precision floating point decimal number, augmented with ยฑinfinity
// values, but it cannot represent NaN (Not a Number).
//
// "High precision" means that the mantissa holds 800 decimal digits. 800 is
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION.
//
// An HPD isn't for general purpose arithmetic, only for conversions to and
// from IEEE 754 double-precision floating point, where the largest and
// smallest positive, finite values are approximately 1.8e+308 and 4.9e-324.
// HPD exponents above +2047 mean infinity, below -2047 mean zero. The ยฑ2047
// bounds are further away from zero than ยฑ(324 + 800), where 800 and 2047 is
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
//
// digits[.. num_digits] are the number's digits in big-endian order. The
// uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7'
// is the ASCII value 0x37.
//
// decimal_point is the index (within digits) of the decimal point. It may be
// negative or be larger than num_digits, in which case the explicit digits are
// padded with implicit zeroes.
//
// For example, if num_digits is 3 and digits is "\x07\x08\x09":
// - A decimal_point of -2 means ".00789"
// - A decimal_point of -1 means ".0789"
// - A decimal_point of +0 means ".789"
// - A decimal_point of +1 means "7.89"
// - A decimal_point of +2 means "78.9"
// - A decimal_point of +3 means "789."
// - A decimal_point of +4 means "7890."
// - A decimal_point of +5 means "78900."
//
// As above, a decimal_point higher than +2047 means that the overall value is
// infinity, lower than -2047 means zero.
//
// negative is a sign bit. An HPD can distinguish positive and negative zero.
//
// truncated is whether there are more than
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at
// least one of those extra digits are non-zero. The existence of long-tail
// digits can affect rounding.
//
// The "all fields are zero" value is valid, and represents the number +0.
typedef struct wuffs_base__private_implementation__high_prec_dec__struct {
uint32_t num_digits;
int32_t decimal_point;
bool negative;
bool truncated;
uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION];
} wuffs_base__private_implementation__high_prec_dec;
// wuffs_base__private_implementation__high_prec_dec__trim trims trailing
// zeroes from the h->digits[.. h->num_digits] slice. They have no benefit,
// since we explicitly track h->decimal_point.
//
// Preconditions:
// - h is non-NULL.
static inline void //
wuffs_base__private_implementation__high_prec_dec__trim(
wuffs_base__private_implementation__high_prec_dec* h) {
while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) {
h->num_digits--;
}
}
// wuffs_base__private_implementation__high_prec_dec__assign sets h to
// represent the number x.
//
// Preconditions:
// - h is non-NULL.
static void //
wuffs_base__private_implementation__high_prec_dec__assign(
wuffs_base__private_implementation__high_prec_dec* h,
uint64_t x,
bool negative) {
uint32_t n = 0;
// Set h->digits.
if (x > 0) {
// Calculate the digits, working right-to-left. After we determine n (how
// many digits there are), copy from buf to h->digits.
//
// UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to
// copy a constant number of bytes than a variable number (20 instead of
// n). Make buf large enough (and start writing to it from the middle) so
// that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)].
uint8_t buf[40] = {0};
uint8_t* ptr = &buf[20];
do {
uint64_t remaining = x / 10;
x -= remaining * 10;
ptr--;
*ptr = (uint8_t)x;
n++;
x = remaining;
} while (x > 0);
memcpy(h->digits, ptr, 20);
}
// Set h's other fields.
h->num_digits = n;
h->decimal_point = (int32_t)n;
h->negative = negative;
h->truncated = false;
wuffs_base__private_implementation__high_prec_dec__trim(h);
}
static wuffs_base__status //
wuffs_base__private_implementation__high_prec_dec__parse(
wuffs_base__private_implementation__high_prec_dec* h,
wuffs_base__slice_u8 s,
uint32_t options) {
if (!h) {
return wuffs_base__make_status(wuffs_base__error__bad_receiver);
}
h->num_digits = 0;
h->decimal_point = 0;
h->negative = false;
h->truncated = false;
uint8_t* p = s.ptr;
uint8_t* q = s.ptr + s.len;
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (;; p++) {
if (p >= q) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
} else if (*p != '_') {
break;
}
}
}
// Parse sign.
do {
if (*p == '+') {
p++;
} else if (*p == '-') {
h->negative = true;
p++;
} else {
break;
}
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (;; p++) {
if (p >= q) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
} else if (*p != '_') {
break;
}
}
}
} while (0);
// Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each
// limb in this if-else chain:
// - "0.789"
// - "1002.789"
// - ".789"
// - Other (invalid input).
uint32_t nd = 0;
int32_t dp = 0;
bool no_digits_before_separator = false;
if (('0' == *p) &&
!(options &
WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES)) {
p++;
for (;; p++) {
if (p >= q) {
goto after_all;
} else if (*p ==
((options &
WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.')) {
p++;
goto after_sep;
} else if ((*p == 'E') || (*p == 'e')) {
p++;
goto after_exp;
} else if ((*p != '_') ||
!(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
}
} else if (('0' <= *p) && (*p <= '9')) {
if (*p == '0') {
for (; (p < q) && (*p == '0'); p++) {
}
} else {
h->digits[nd++] = (uint8_t)(*p - '0');
dp = (int32_t)nd;
p++;
}
for (;; p++) {
if (p >= q) {
goto after_all;
} else if (('0' <= *p) && (*p <= '9')) {
if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[nd++] = (uint8_t)(*p - '0');
dp = (int32_t)nd;
} else if ('0' != *p) {
// Long-tail non-zeroes set the truncated bit.
h->truncated = true;
}
} else if (*p ==
((options &
WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.')) {
p++;
goto after_sep;
} else if ((*p == 'E') || (*p == 'e')) {
p++;
goto after_exp;
} else if ((*p != '_') ||
!(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
}
} else if (*p == ((options &
WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.')) {
p++;
no_digits_before_separator = true;
} else {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
after_sep:
for (;; p++) {
if (p >= q) {
goto after_all;
} else if ('0' == *p) {
if (nd == 0) {
// Track leading zeroes implicitly.
dp--;
} else if (nd <
WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[nd++] = (uint8_t)(*p - '0');
}
} else if (('0' < *p) && (*p <= '9')) {
if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[nd++] = (uint8_t)(*p - '0');
} else {
// Long-tail non-zeroes set the truncated bit.
h->truncated = true;
}
} else if ((*p == 'E') || (*p == 'e')) {
p++;
goto after_exp;
} else if ((*p != '_') ||
!(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
}
after_exp:
do {
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (;; p++) {
if (p >= q) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
} else if (*p != '_') {
break;
}
}
}
int32_t exp_sign = +1;
if (*p == '+') {
p++;
} else if (*p == '-') {
exp_sign = -1;
p++;
}
int32_t exp = 0;
const int32_t exp_large =
WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE +
WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
bool saw_exp_digits = false;
for (; p < q; p++) {
if ((*p == '_') &&
(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
// No-op.
} else if (('0' <= *p) && (*p <= '9')) {
saw_exp_digits = true;
if (exp < exp_large) {
exp = (10 * exp) + ((int32_t)(*p - '0'));
}
} else {
break;
}
}
if (!saw_exp_digits) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
dp += exp_sign * exp;
} while (0);
after_all:
if (p != q) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
h->num_digits = nd;
if (nd == 0) {
if (no_digits_before_separator) {
return wuffs_base__make_status(wuffs_base__error__bad_argument);
}
h->decimal_point = 0;
} else if (dp <
-WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
h->decimal_point =
-WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1;
} else if (dp >
+WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
h->decimal_point =
+WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1;
} else {
h->decimal_point = dp;
}
wuffs_base__private_implementation__high_prec_dec__trim(h);
return wuffs_base__make_status(NULL);
}
// --------
// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
// returns the number of additional decimal digits when left-shifting by shift.
//
// See below for preconditions.
static uint32_t //
wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t shift) {
// Masking with 0x3F should be unnecessary (assuming the preconditions) but
// it's cheap and ensures that we don't overflow the
// wuffs_base__private_implementation__hpd_left_shift array.
shift &= 63;
uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift];
uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1];
uint32_t num_new_digits = x_a >> 11;
uint32_t pow5_a = 0x7FF & x_a;
uint32_t pow5_b = 0x7FF & x_b;
const uint8_t* pow5 =
&wuffs_base__private_implementation__powers_of_5[pow5_a];
uint32_t i = 0;
uint32_t n = pow5_b - pow5_a;
for (; i < n; i++) {
if (i >= h->num_digits) {
return num_new_digits - 1;
} else if (h->digits[i] == pow5[i]) {
continue;
} else if (h->digits[i] < pow5[i]) {
return num_new_digits - 1;
} else {
return num_new_digits;
}
}
return num_new_digits;
}
// --------
// wuffs_base__private_implementation__high_prec_dec__rounded_integer returns
// the integral (non-fractional) part of h, provided that it is 18 or fewer
// decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that:
// - (1 << 53) is 9007199254740992, which has 16 decimal digits.
// - (1 << 56) is 72057594037927936, which has 17 decimal digits.
// - (1 << 59) is 576460752303423488, which has 18 decimal digits.
// - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
// and that IEEE 754 double precision has 52 mantissa bits.
//
// That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8.
//
// h's negative bit is ignored: rounding -8.6 returns 9.
//
// See below for preconditions.
static uint64_t //
wuffs_base__private_implementation__high_prec_dec__rounded_integer(
wuffs_base__private_implementation__high_prec_dec* h) {
if ((h->num_digits == 0) || (h->decimal_point < 0)) {
return 0;
} else if (h->decimal_point > 18) {
return UINT64_MAX;
}
uint32_t dp = (uint32_t)(h->decimal_point);
uint64_t n = 0;
uint32_t i = 0;
for (; i < dp; i++) {
n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0);
}
bool round_up = false;
if (dp < h->num_digits) {
round_up = h->digits[dp] >= 5;
if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) {
// We are exactly halfway. If we're truncated, round up, otherwise round
// to even.
round_up = h->truncated || //
((dp > 0) && (1 & h->digits[dp - 1]));
}
}
if (round_up) {
n++;
}
return n;
}
// wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's
// number (where 'x' is 'l' or 'r' for left or right) by a small shift value.
//
// Preconditions:
// - h is non-NULL.
// - h->decimal_point is "not extreme".
// - shift is non-zero.
// - shift is "a small shift".
//
// "Not extreme" means within
// ยฑWUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
//
// "A small shift" means not more than
// WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
//
// wuffs_base__private_implementation__high_prec_dec__rounded_integer and
// wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits
// have the same preconditions.
//
// wuffs_base__private_implementation__high_prec_dec__lshift keeps the first
// two preconditions but not the last two. Its shift argument is signed and
// does not need to be "small": zero is a no-op, positive means left shift and
// negative means right shift.
static void //
wuffs_base__private_implementation__high_prec_dec__small_lshift(
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t shift) {
if (h->num_digits == 0) {
return;
}
uint32_t num_new_digits =
wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits(
h, shift);
uint32_t rx = h->num_digits - 1; // Read index.
uint32_t wx = h->num_digits - 1 + num_new_digits; // Write index.
uint64_t n = 0;
// Repeat: pick up a digit, put down a digit, right to left.
while (((int32_t)rx) >= 0) {
n += ((uint64_t)(h->digits[rx])) << shift;
uint64_t quo = n / 10;
uint64_t rem = n - (10 * quo);
if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[wx] = (uint8_t)rem;
} else if (rem > 0) {
h->truncated = true;
}
n = quo;
wx--;
rx--;
}
// Put down leading digits, right to left.
while (n > 0) {
uint64_t quo = n / 10;
uint64_t rem = n - (10 * quo);
if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[wx] = (uint8_t)rem;
} else if (rem > 0) {
h->truncated = true;
}
n = quo;
wx--;
}
// Finish.
h->num_digits += num_new_digits;
if (h->num_digits >
WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION;
}
h->decimal_point += (int32_t)num_new_digits;
wuffs_base__private_implementation__high_prec_dec__trim(h);
}
static void //
wuffs_base__private_implementation__high_prec_dec__small_rshift(
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t shift) {
uint32_t rx = 0; // Read index.
uint32_t wx = 0; // Write index.
uint64_t n = 0;
// Pick up enough leading digits to cover the first shift.
while ((n >> shift) == 0) {
if (rx < h->num_digits) {
// Read a digit.
n = (10 * n) + h->digits[rx++];
} else if (n == 0) {
// h's number used to be zero and remains zero.
return;
} else {
// Read sufficient implicit trailing zeroes.
while ((n >> shift) == 0) {
n = 10 * n;
rx++;
}
break;
}
}
h->decimal_point -= ((int32_t)(rx - 1));
if (h->decimal_point <
-WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
// After the shift, h's number is effectively zero.
h->num_digits = 0;
h->decimal_point = 0;
h->truncated = false;
return;
}
// Repeat: pick up a digit, put down a digit, left to right.
uint64_t mask = (((uint64_t)(1)) << shift) - 1;
while (rx < h->num_digits) {
uint8_t new_digit = ((uint8_t)(n >> shift));
n = (10 * (n & mask)) + h->digits[rx++];
h->digits[wx++] = new_digit;
}
// Put down trailing digits, left to right.
while (n > 0) {
uint8_t new_digit = ((uint8_t)(n >> shift));
n = 10 * (n & mask);
if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) {
h->digits[wx++] = new_digit;
} else if (new_digit > 0) {
h->truncated = true;
}
}
// Finish.
h->num_digits = wx;
wuffs_base__private_implementation__high_prec_dec__trim(h);
}
static void //
wuffs_base__private_implementation__high_prec_dec__lshift(
wuffs_base__private_implementation__high_prec_dec* h,
int32_t shift) {
if (shift > 0) {
while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
wuffs_base__private_implementation__high_prec_dec__small_lshift(
h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
}
wuffs_base__private_implementation__high_prec_dec__small_lshift(
h, ((uint32_t)(+shift)));
} else if (shift < 0) {
while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
wuffs_base__private_implementation__high_prec_dec__small_rshift(
h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL);
shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
}
wuffs_base__private_implementation__high_prec_dec__small_rshift(
h, ((uint32_t)(-shift)));
}
}
// --------
// wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's
// number. For those functions that take an n argument, rounding produces at
// most n digits (which is not necessarily at most n decimal places). Negative
// n values are ignored, as well as any n greater than or equal to h's number
// of digits. The etc__round_just_enough function implicitly chooses an n to
// implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION.
//
// Preconditions:
// - h is non-NULL.
// - h->decimal_point is "not extreme".
//
// "Not extreme" means within
// ยฑWUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE.
static void //
wuffs_base__private_implementation__high_prec_dec__round_down(
wuffs_base__private_implementation__high_prec_dec* h,
int32_t n) {
if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
return;
}
h->num_digits = (uint32_t)(n);
wuffs_base__private_implementation__high_prec_dec__trim(h);
}
static void //
wuffs_base__private_implementation__high_prec_dec__round_up(
wuffs_base__private_implementation__high_prec_dec* h,
int32_t n) {
if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
return;
}
for (n--; n >= 0; n--) {
if (h->digits[n] < 9) {
h->digits[n]++;
h->num_digits = (uint32_t)(n + 1);
return;
}
}
// The number is all 9s. Change to a single 1 and adjust the decimal point.
h->digits[0] = 1;
h->num_digits = 1;
h->decimal_point++;
}
static void //
wuffs_base__private_implementation__high_prec_dec__round_nearest(
wuffs_base__private_implementation__high_prec_dec* h,
int32_t n) {
if ((n < 0) || (h->num_digits <= (uint32_t)n)) {
return;
}
bool up = h->digits[n] >= 5;
if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) {
up = h->truncated || //
((n > 0) && ((h->digits[n - 1] & 1) != 0));
}
if (up) {
wuffs_base__private_implementation__high_prec_dec__round_up(h, n);
} else {
wuffs_base__private_implementation__high_prec_dec__round_down(h, n);
}
}
static void //
wuffs_base__private_implementation__high_prec_dec__round_just_enough(
wuffs_base__private_implementation__high_prec_dec* h,
int32_t exp2,
uint64_t mantissa) {
// The magic numbers 52 and 53 in this function are because IEEE 754 double
// precision has 52 mantissa bits.
//
// Let f be the floating point number represented by exp2 and mantissa (and
// also the number in h): the number (mantissa * (2 ** (exp2 - 52))).
//
// If f is zero or a small integer, we can return early.
if ((mantissa == 0) ||
((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) {
return;
}
// The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52).
// Subnormal numbers have the same exp2 but a smaller mantissa.
static const int32_t min_incl_normal_exp2 = -1022;
static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul;
// Compute lower and upper bounds such that any number between them (possibly
// inclusive) will round to f. First, the lower bound. Our number f is:
// ((mantissa + 0) * (2 ** ( exp2 - 52)))
//
// The next lowest floating point number is:
// ((mantissa - 1) * (2 ** ( exp2 - 52)))
// unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the
// min_incl_normal_exp2. Either way, call it:
// ((l_mantissa) * (2 ** (l_exp2 - 52)))
//
// The lower bound is halfway between them (noting that 52 became 53):
// (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53)))
int32_t l_exp2 = exp2;
uint64_t l_mantissa = mantissa - 1;
if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) {
l_exp2 = exp2 - 1;
l_mantissa = (2 * mantissa) - 1;
}
wuffs_base__private_implementation__high_prec_dec lower;
wuffs_base__private_implementation__high_prec_dec__assign(
&lower, (2 * l_mantissa) + 1, false);
wuffs_base__private_implementation__high_prec_dec__lshift(&lower,
l_exp2 - 53);
// Next, the upper bound. Our number f is:
// ((mantissa + 0) * (2 ** (exp2 - 52)))
//
// The next highest floating point number is:
// ((mantissa + 1) * (2 ** (exp2 - 52)))
//
// The upper bound is halfway between them (noting that 52 became 53):
// (((2 * mantissa) + 1) * (2 ** (exp2 - 53)))
wuffs_base__private_implementation__high_prec_dec upper;
wuffs_base__private_implementation__high_prec_dec__assign(
&upper, (2 * mantissa) + 1, false);
wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53);
// The lower and upper bounds are possible outputs only if the original
// mantissa is even, so that IEEE round-to-even would round to the original
// mantissa and not its neighbors.
bool inclusive = (mantissa & 1) == 0;
// As we walk the digits, we want to know whether rounding up would fall
// within the upper bound. This is tracked by upper_delta:
// - When -1, the digits of h and upper are the same so far.
// - When +0, we saw a difference of 1 between h and upper on a previous
// digit and subsequently only 9s for h and 0s for upper. Thus, rounding
// up may fall outside of the bound if !inclusive.
// - When +1, the difference is greater than 1 and we know that rounding up
// falls within the bound.
//
// This is a state machine with three states. The numerical value for each
// state (-1, +0 or +1) isn't important, other than their order.
int upper_delta = -1;
// We can now figure out the shortest number of digits required. Walk the
// digits until h has distinguished itself from lower or upper.
//
// The zi and zd variables are indexes and digits, for z in l (lower), h (the
// number) and u (upper).
//
// The lower, h and upper numbers may have their decimal points at different
// places. In this case, upper is the longest, so we iterate ui starting from
// 0 and iterate li and hi starting from either 0 or -1.
int32_t ui = 0;
for (;; ui++) {
// Calculate hd, the middle number's digit.
int32_t hi = ui - upper.decimal_point + h->decimal_point;
if (hi >= ((int32_t)(h->num_digits))) {
break;
}
uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0;
// Calculate ld, the lower bound's digit.
int32_t li = ui - upper.decimal_point + lower.decimal_point;
uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0;
// We can round down (truncate) if lower has a different digit than h or if
// lower is inclusive and is exactly the result of rounding down (i.e. we
// have reached the final digit of lower).
bool can_round_down =
(ld != hd) || //
(inclusive && ((li + 1) == ((int32_t)(lower.num_digits))));
// Calculate ud, the upper bound's digit, and update upper_delta.
uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0;
if (upper_delta < 0) {
if ((hd + 1) < ud) {
// For example:
// h = 12345???
// upper = 12347???
upper_delta = +1;
} else if (hd != ud) {
// For example:
// h = 12345???
// upper = 12346???
upper_delta = +0;
}
} else if (upper_delta == 0) {
if ((hd != 9) || (ud != 0)) {
// For example:
// h = 1234598?
// upper = 1234600?
upper_delta = +1;
}
}
// We can round up if upper has a different digit than h and either upper
// is inclusive or upper is bigger than the result of rounding up.
bool can_round_up =
(upper_delta > 0) || //
((upper_delta == 0) && //
(inclusive || ((ui + 1) < ((int32_t)(upper.num_digits)))));
// If we can round either way, round to nearest. If we can round only one
// way, do it. If we can't round, continue the loop.
if (can_round_down) {
if (can_round_up) {
wuffs_base__private_implementation__high_prec_dec__round_nearest(
h, hi + 1);
return;
} else {
wuffs_base__private_implementation__high_prec_dec__round_down(h,
hi + 1);
return;
}
} else {
if (can_round_up) {
wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1);
return;
}
}
}
}
// --------
// wuffs_base__private_implementation__parse_number_f64_eisel_lemire produces
// the IEEE 754 double-precision value for an exact mantissa and base-10
// exponent. For example:
// - when parsing "12345.678e+02", man is 12345678 and exp10 is -1.
// - when parsing "-12", man is 12 and exp10 is 0. Processing the leading
// minus sign is the responsibility of the caller, not this function.
//
// On success, it returns a non-negative int64_t such that the low 63 bits hold
// the 11-bit exponent and 52-bit mantissa.
//
// On failure, it returns a negative value.
//
// The algorithm is based on an original idea by Michael Eisel that was refined
// by Daniel Lemire. See
// https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/
// and
// https://nigeltao.github.io/blog/2020/eisel-lemire.html
//
// Preconditions:
// - man is non-zero.
// - exp10 is in the range [-307 ..= 288], the same range of the
// wuffs_base__private_implementation__powers_of_10 array.
//
// The exp10 range (and the fact that man is in the range [1 ..= UINT64_MAX],
// approximately [1 ..= 1.85e+19]) means that (man * (10 ** exp10)) is in the
// range [1e-307 ..= 1.85e+307]. This is entirely within the range of normal
// (neither subnormal nor non-finite) f64 values: DBL_MIN and DBL_MAX are
// approximately 2.23eโ€“308 and 1.80e+308.
static int64_t //
wuffs_base__private_implementation__parse_number_f64_eisel_lemire(
uint64_t man,
int32_t exp10) {
// Look up the (possibly truncated) base-2 representation of (10 ** exp10).
// The look-up table was constructed so that it is already normalized: the
// table entry's mantissa's MSB (most significant bit) is on.
const uint64_t* po10 =
&wuffs_base__private_implementation__powers_of_10[exp10 + 307][0];
// Normalize the man argument. The (man != 0) precondition means that a
// non-zero bit exists.
uint32_t clz = wuffs_base__count_leading_zeroes_u64(man);
man <<= clz;
// Calculate the return value's base-2 exponent. We might tweak it by ยฑ1
// later, but its initial value comes from a linear scaling of exp10,
// converting from power-of-10 to power-of-2, and adjusting by clz.
//
// The magic constants are:
// - 1087 = 1023 + 64. The 1023 is the f64 exponent bias. The 64 is because
// the look-up table uses 64-bit mantissas.
// - 217706 is such that the ratio 217706 / 65536 โ‰ˆ 3.321930 is close enough
// (over the practical range of exp10) to log(10) / log(2) โ‰ˆ 3.321928.
// - 65536 = 1<<16 is arbitrary but a power of 2, so division is a shift.
//
// Equality of the linearly-scaled value and the actual power-of-2, over the
// range of exp10 arguments that this function accepts, is confirmed by
// script/print-mpb-powers-of-10.go
uint64_t ret_exp2 =
((uint64_t)(((217706 * exp10) >> 16) + 1087)) - ((uint64_t)clz);
// Multiply the two mantissas. Normalization means that both mantissas are at
// least (1<<63), so the 128-bit product must be at least (1<<126). The high
// 64 bits of the product, x_hi, must therefore be at least (1<<62).
//
// As a consequence, x_hi has either 0 or 1 leading zeroes. Shifting x_hi
// right by either 9 or 10 bits (depending on x_hi's MSB) will therefore
// leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on.
wuffs_base__multiply_u64__output x = wuffs_base__multiply_u64(man, po10[1]);
uint64_t x_hi = x.hi;
uint64_t x_lo = x.lo;
// Before we shift right by at least 9 bits, recall that the look-up table
// entry was possibly truncated. We have so far only calculated a lower bound
// for the product (man * e), where e is (10 ** exp10). The upper bound would
// add a further (man * 1) to the 128-bit product, which overflows the lower
// 64-bit limb if ((x_lo + man) < man).
//
// If overflow occurs, that adds 1 to x_hi. Since we're about to shift right
// by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit
// limb's low 9 bits are all on.
//
// For example, parsing "9999999999999999999" will take the if-true branch
// here, since:
// - x_hi = 0x4563918244F3FFFF
// - x_lo = 0x8000000000000000
// - man = 0x8AC7230489E7FFFF
if (((x_hi & 0x1FF) == 0x1FF) && ((x_lo + man) < man)) {
// Refine our calculation of (man * e). Before, our approximation of e used
// a "low resolution" 64-bit mantissa. Now use a "high resolution" 128-bit
// mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e).
// Now calculate y = (man * bits_64_to_127_incl_of_e).
wuffs_base__multiply_u64__output y = wuffs_base__multiply_u64(man, po10[0]);
uint64_t y_hi = y.hi;
uint64_t y_lo = y.lo;
// Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to
// calculate the 192-bit product of the 64-bit man by the 128-bit e.
// As we exit this if-block, we only care about the high 128 bits
// (merged_hi and merged_lo) of that 192-bit product.
//
// For example, parsing "1.234e-45" will take the if-true branch here,
// since:
// - x_hi = 0x70B7E3696DB29FFF
// - x_lo = 0xE040000000000000
// - y_hi = 0x33718BBEAB0E0D7A
// - y_lo = 0xA880000000000000
uint64_t merged_hi = x_hi;
uint64_t merged_lo = x_lo + y_hi;
if (merged_lo < x_lo) {
merged_hi++; // Carry the overflow bit.
}
// The "high resolution" approximation of e is still a lower bound. Once
// again, see if the upper bound is large enough to produce a different
// result. This time, if it does, give up instead of reaching for an even
// more precise approximation to e.
//
// This three-part check is similar to the two-part check that guarded the
// if block that we're now in, but it has an extra term for the middle 64
// bits (checking that adding 1 to merged_lo would overflow).
//
// For example, parsing "5.9604644775390625e-8" will take the if-true
// branch here, since:
// - merged_hi = 0x7FFFFFFFFFFFFFFF
// - merged_lo = 0xFFFFFFFFFFFFFFFF
// - y_lo = 0x4DB3FFC120988200
// - man = 0xD3C21BCECCEDA100
if (((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) &&
(y_lo + man < man)) {
return -1;
}
// Replace the 128-bit x with merged.
x_hi = merged_hi;
x_lo = merged_lo;
}
// As mentioned above, shifting x_hi right by either 9 or 10 bits will leave
// the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the
// MSB (before shifting) was on, adjust ret_exp2 for the larger shift.
//
// Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit
// number.
uint64_t msb = x_hi >> 63;
uint64_t ret_mantissa = x_hi >> (msb + 9);
ret_exp2 -= 1 ^ msb;
// IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can
// be tricky. If we're half-way between two exactly representable numbers
// (x's low 73 bits are zero and the next 2 bits that matter are "01"), give
// up instead of trying to pick the winner.
//
// Technically, we could tighten the condition by changing "73" to "73 or 74,
// depending on msb", but a flat "73" is simpler.
//
// For example, parsing "1e+23" will take the if-true branch here, since:
// - x_hi = 0x54B40B1F852BDA00
// - ret_mantissa = 0x002A5A058FC295ED
if ((x_lo == 0) && ((x_hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {
return -1;
}
// If we're not halfway then it's rounding to-nearest. Starting with a 54-bit
// number, carry the lowest bit (bit 0) up if it's on. Regardless of whether
// it was on or off, shifting right by one then produces a 53-bit number. If
// carrying up overflowed, shift again.
ret_mantissa += ret_mantissa & 1;
ret_mantissa >>= 1;
// This if block is equivalent to (but benchmarks slightly faster than) the
// following branchless form:
// uint64_t overflow_adjustment = ret_mantissa >> 53;
// ret_mantissa >>= overflow_adjustment;
// ret_exp2 += overflow_adjustment;
//
// For example, parsing "7.2057594037927933e+16" will take the if-true
// branch here, since:
// - x_hi = 0x7FFFFFFFFFFFFE80
// - ret_mantissa = 0x0020000000000000
if ((ret_mantissa >> 53) > 0) {
ret_mantissa >>= 1;
ret_exp2++;
}
// Starting with a 53-bit number, IEEE 754 double-precision normal numbers
// have an implicit mantissa bit. Mask that away and keep the low 52 bits.
ret_mantissa &= 0x000FFFFFFFFFFFFF;
// Pack the bits and return.
return ((int64_t)(ret_mantissa | (ret_exp2 << 52)));
}
// --------
static wuffs_base__result_f64 //
wuffs_base__private_implementation__parse_number_f64_special(
wuffs_base__slice_u8 s,
uint32_t options) {
do {
if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
goto fail;
}
uint8_t* p = s.ptr;
uint8_t* q = s.ptr + s.len;
for (; (p < q) && (*p == '_'); p++) {
}
if (p >= q) {
goto fail;
}
// Parse sign.
bool negative = false;
do {
if (*p == '+') {
p++;
} else if (*p == '-') {
negative = true;
p++;
} else {
break;
}
for (; (p < q) && (*p == '_'); p++) {
}
} while (0);
if (p >= q) {
goto fail;
}
bool nan = false;
switch (p[0]) {
case 'I':
case 'i':
if (((q - p) < 3) || //
((p[1] != 'N') && (p[1] != 'n')) || //
((p[2] != 'F') && (p[2] != 'f'))) {
goto fail;
}
p += 3;
if ((p >= q) || (*p == '_')) {
break;
} else if (((q - p) < 5) || //
((p[0] != 'I') && (p[0] != 'i')) || //
((p[1] != 'N') && (p[1] != 'n')) || //
((p[2] != 'I') && (p[2] != 'i')) || //
((p[3] != 'T') && (p[3] != 't')) || //
((p[4] != 'Y') && (p[4] != 'y'))) {
goto fail;
}
p += 5;
if ((p >= q) || (*p == '_')) {
break;
}
goto fail;
case 'N':
case 'n':
if (((q - p) < 3) || //
((p[1] != 'A') && (p[1] != 'a')) || //
((p[2] != 'N') && (p[2] != 'n'))) {
goto fail;
}
p += 3;
if ((p >= q) || (*p == '_')) {
nan = true;
break;
}
goto fail;
default:
goto fail;
}
// Finish.
for (; (p < q) && (*p == '_'); p++) {
}
if (p != q) {
goto fail;
}
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(
(nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |
(negative ? 0x8000000000000000 : 0));
return ret;
} while (0);
fail:
do {
wuffs_base__result_f64 ret;
ret.status.repr = wuffs_base__error__bad_argument;
ret.value = 0;
return ret;
} while (0);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 //
wuffs_base__private_implementation__high_prec_dec__to_f64(
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t options) {
do {
// powers converts decimal powers of 10 to binary powers of 2. For example,
// (10000 >> 13) is 1. It stops before the elements exceed 60, also known
// as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.
static const uint32_t num_powers = 19;
static const uint8_t powers[19] = {
0, 3, 6, 9, 13, 16, 19, 23, 26, 29, //
33, 36, 39, 43, 46, 49, 53, 56, 59, //
};
// Handle zero and obvious extremes. The largest and smallest positive
// finite f64 values are approximately 1.8e+308 and 4.9e-324.
if ((h->num_digits == 0) || (h->decimal_point < -326)) {
goto zero;
} else if (h->decimal_point > 310) {
goto infinity;
}
// Try the fast Eisel-Lemire algorithm again. Calculating the (man, exp10)
// pair from the high_prec_dec h is more correct but slower than the
// approach taken in wuffs_base__parse_number_f64. The latter is optimized
// for the common cases (e.g. assuming no underscores or a leading '+'
// sign) rather than the full set of cases allowed by the Wuffs API.
if (h->num_digits <= 19) {
uint64_t man = 0;
uint32_t i;
for (i = 0; i < h->num_digits; i++) {
man = (10 * man) + h->digits[i];
}
int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));
if ((man != 0) && (-307 <= exp10) && (exp10 <= 288)) {
int64_t r =
wuffs_base__private_implementation__parse_number_f64_eisel_lemire(
man, exp10);
if (r >= 0) {
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(
((uint64_t)r) | (((uint64_t)(h->negative)) << 63));
return ret;
}
}
}
// When Eisel-Lemire fails, fall back to Simple Decimal Conversion. See
// https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html
//
// Scale by powers of 2 until we're in the range [ยฝ .. 1], which gives us
// our exponent (in base-2). First we shift right, possibly a little too
// far, ending with a value certainly below 1 and possibly below ยฝ...
const int32_t f64_bias = -1023;
int32_t exp2 = 0;
while (h->decimal_point > 0) {
uint32_t n = (uint32_t)(+h->decimal_point);
uint32_t shift =
(n < num_powers)
? powers[n]
: WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);
if (h->decimal_point <
-WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
goto zero;
}
exp2 += (int32_t)shift;
}
// ...then we shift left, putting us in [ยฝ .. 1].
while (h->decimal_point <= 0) {
uint32_t shift;
if (h->decimal_point == 0) {
if (h->digits[0] >= 5) {
break;
}
shift = (h->digits[0] < 2) ? 2 : 1;
} else {
uint32_t n = (uint32_t)(-h->decimal_point);
shift = (n < num_powers)
? powers[n]
: WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
}
wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);
if (h->decimal_point >
+WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {
goto infinity;
}
exp2 -= (int32_t)shift;
}
// We're in the range [ยฝ .. 1] but f64 uses [1 .. 2].
exp2--;
// The minimum normal exponent is (f64_bias + 1).
while ((f64_bias + 1) > exp2) {
uint32_t n = (uint32_t)((f64_bias + 1) - exp2);
if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {
n = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;
}
wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);
exp2 += (int32_t)n;
}
// Check for overflow.
if ((exp2 - f64_bias) >= 0x07FF) { // (1 << 11) - 1.
goto infinity;
}
// Extract 53 bits for the mantissa (in base-2).
wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);
uint64_t man2 =
wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);
// Rounding might have added one bit. If so, shift and re-check overflow.
if ((man2 >> 53) != 0) {
man2 >>= 1;
exp2++;
if ((exp2 - f64_bias) >= 0x07FF) { // (1 << 11) - 1.
goto infinity;
}
}
// Handle subnormal numbers.
if ((man2 >> 52) == 0) {
exp2 = f64_bias;
}
// Pack the bits and return.
uint64_t exp2_bits =
(uint64_t)((exp2 - f64_bias) & 0x07FF); // (1 << 11) - 1.
uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) | // (1 << 52) - 1.
(exp2_bits << 52) | //
(h->negative ? 0x8000000000000000 : 0); // (1 << 63).
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits);
return ret;
} while (0);
zero:
do {
uint64_t bits = h->negative ? 0x8000000000000000 : 0;
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits);
return ret;
} while (0);
infinity:
do {
if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
wuffs_base__result_f64 ret;
ret.status.repr = wuffs_base__error__bad_argument;
ret.value = 0;
return ret;
}
uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits);
return ret;
} while (0);
}
static inline bool //
wuffs_base__private_implementation__is_decimal_digit(uint8_t c) {
return ('0' <= c) && (c <= '9');
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 //
wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options) {
// In practice, almost all "dd.ddddEยฑxxx" numbers can be represented
// losslessly by a uint64_t mantissa "dddddd" and an int32_t base-10
// exponent, adjusting "xxx" for the position (if present) of the decimal
// separator '.' or ','.
//
// This (u64 man, i32 exp10) data structure is superficially similar to the
// "Do It Yourself Floating Point" type from Loitsch (โ€ ), but the exponent
// here is base-10, not base-2.
//
// If s's number fits in a (man, exp10), parse that pair with the
// Eisel-Lemire algorithm. If not, or if Eisel-Lemire fails, parsing s with
// the fallback algorithm is slower but comprehensive.
//
// โ€  "Printing Floating-Point Numbers Quickly and Accurately with Integers"
// (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).
// Florian Loitsch is also the primary contributor to
// https://github.com/google/double-conversion
do {
// Calculating that (man, exp10) pair needs to stay within s's bounds.
// Provided that s isn't extremely long, work on a NUL-terminated copy of
// s's contents. The NUL byte isn't a valid part of "ยฑdd.ddddEยฑxxx".
//
// As the pointer p walks the contents, it's faster to repeatedly check "is
// *p a valid digit" than "is p within bounds and *p a valid digit".
if (s.len >= 256) {
goto fallback;
}
uint8_t z[256];
memcpy(&z[0], s.ptr, s.len);
z[s.len] = 0;
const uint8_t* p = &z[0];
// Look for a leading minus sign. Technically, we could also look for an
// optional plus sign, but the "script/process-json-numbers.c with -p"
// benchmark is noticably slower if we do. It's optional and, in practice,
// usually absent. Let the fallback catch it.
bool negative = (*p == '-');
if (negative) {
p++;
}
// After walking "dd.dddd", comparing p later with p now will produce the
// number of "d"s and "."s.
const uint8_t* const start_of_digits_ptr = p;
// Walk the "d"s before a '.', 'E', NUL byte, etc. If it starts with '0',
// it must be a single '0'. If it starts with a non-zero decimal digit, it
// can be a sequence of decimal digits.
//
// Update the man variable during the walk. It's OK if man overflows now.
// We'll detect that later.
uint64_t man;
if (*p == '0') {
man = 0;
p++;
if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
goto fallback;
}
} else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
man = ((uint8_t)(*p - '0'));
p++;
for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
man = (10 * man) + ((uint8_t)(*p - '0'));
}
} else {
goto fallback;
}
// Walk the "d"s after the optional decimal separator ('.' or ','),
// updating the man and exp10 variables.
int32_t exp10 = 0;
if (*p ==
((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.')) {
p++;
const uint8_t* first_after_separator_ptr = p;
if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
goto fallback;
}
man = (10 * man) + ((uint8_t)(*p - '0'));
p++;
for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {
man = (10 * man) + ((uint8_t)(*p - '0'));
}
exp10 = ((int32_t)(first_after_separator_ptr - p));
}
// Count the number of digits:
// - for an input of "314159", digit_count is 6.
// - for an input of "3.14159", digit_count is 7.
//
// This is off-by-one if there is a decimal separator. That's OK for now.
// We'll correct for that later. The "script/process-json-numbers.c with
// -p" benchmark is noticably slower if we try to correct for that now.
uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);
// Update exp10 for the optional exponent, starting with 'E' or 'e'.
if ((*p | 0x20) == 'e') {
p++;
int32_t exp_sign = +1;
if (*p == '-') {
p++;
exp_sign = -1;
} else if (*p == '+') {
p++;
}
if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {
goto fallback;
}
int32_t exp_num = ((uint8_t)(*p - '0'));
p++;
// The rest of the exp_num walking has a peculiar control flow but, once
// again, the "script/process-json-numbers.c with -p" benchmark is
// sensitive to alternative formulations.
if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
p++;
}
if (wuffs_base__private_implementation__is_decimal_digit(*p)) {
exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
p++;
}
while (wuffs_base__private_implementation__is_decimal_digit(*p)) {
if (exp_num > 0x1000000) {
goto fallback;
}
exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));
p++;
}
exp10 += exp_sign * exp_num;
}
// The Wuffs API is that the original slice has no trailing data. It also
// allows underscores, which we don't catch here but the fallback should.
if (p != &z[s.len]) {
goto fallback;
}
// Check that the uint64_t typed man variable has not overflowed, based on
// digit_count.
//
// For reference:
// - (1 << 63) is 9223372036854775808, which has 19 decimal digits.
// - (1 << 64) is 18446744073709551616, which has 20 decimal digits.
// - 19 nines, 9999999999999999999, is 0x8AC7230489E7FFFF, which has 64
// bits and 16 hexadecimal digits.
// - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67
// bits and 17 hexadecimal digits.
if (digit_count > 19) {
// Even if we have more than 19 pseudo-digits, it's not yet definitely an
// overflow. Recall that digit_count might be off-by-one (too large) if
// there's a decimal separator. It will also over-report the number of
// meaningful digits if the input looks something like "0.000dddExxx".
//
// We adjust by the number of leading '0's and '.'s and re-compare to 19.
// Once again, technically, we could skip ','s too, but that perturbs the
// "script/process-json-numbers.c with -p" benchmark.
const uint8_t* q = start_of_digits_ptr;
for (; (*q == '0') || (*q == '.'); q++) {
}
digit_count -= (uint32_t)(q - start_of_digits_ptr);
if (digit_count > 19) {
goto fallback;
}
}
// The wuffs_base__private_implementation__parse_number_f64_eisel_lemire
// preconditions include that exp10 is in the range [-307 ..= 288].
if ((exp10 < -307) || (288 < exp10)) {
goto fallback;
}
// If both man and (10 ** exp10) are exactly representable by a double, we
// don't need to run the Eisel-Lemire algorithm.
if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {
double d = (double)man;
if (exp10 >= 0) {
d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];
} else {
d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];
}
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = negative ? -d : +d;
return ret;
}
// The wuffs_base__private_implementation__parse_number_f64_eisel_lemire
// preconditions include that man is non-zero. Parsing "0" should be caught
// by the "If both man and (10 ** exp10)" above, but "0e99" might not.
if (man == 0) {
goto fallback;
}
// Our man and exp10 are in range. Run the Eisel-Lemire algorithm.
int64_t r =
wuffs_base__private_implementation__parse_number_f64_eisel_lemire(
man, exp10);
if (r < 0) {
goto fallback;
}
wuffs_base__result_f64 ret;
ret.status.repr = NULL;
ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(
((uint64_t)r) | (((uint64_t)negative) << 63));
return ret;
} while (0);
fallback:
do {
wuffs_base__private_implementation__high_prec_dec h;
wuffs_base__status status =
wuffs_base__private_implementation__high_prec_dec__parse(&h, s,
options);
if (status.repr) {
return wuffs_base__private_implementation__parse_number_f64_special(
s, options);
}
return wuffs_base__private_implementation__high_prec_dec__to_f64(&h,
options);
} while (0);
}
// --------
static inline size_t //
wuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,
bool neg,
uint32_t options) {
if (neg) {
if (dst.len < 4) {
return 0;
}
wuffs_base__poke_u32le__no_bounds_check(dst.ptr, 0x666E492D); // '-Inf'le.
return 4;
}
if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
if (dst.len < 4) {
return 0;
}
wuffs_base__poke_u32le__no_bounds_check(dst.ptr, 0x666E492B); // '+Inf'le.
return 4;
}
if (dst.len < 3) {
return 0;
}
wuffs_base__poke_u24le__no_bounds_check(dst.ptr, 0x666E49); // 'Inf'le.
return 3;
}
static inline size_t //
wuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {
if (dst.len < 3) {
return 0;
}
wuffs_base__poke_u24le__no_bounds_check(dst.ptr, 0x4E614E); // 'NaN'le.
return 3;
}
static size_t //
wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
wuffs_base__slice_u8 dst,
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t precision,
uint32_t options) {
size_t n = (h->negative ||
(options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
? 1
: 0;
if (h->decimal_point <= 0) {
n += 1;
} else {
n += (size_t)(h->decimal_point);
}
if (precision > 0) {
n += precision + 1; // +1 for the '.'.
}
// Don't modify dst if the formatted number won't fit.
if (n > dst.len) {
return 0;
}
// Align-left or align-right.
uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
? &dst.ptr[dst.len - n]
: &dst.ptr[0];
// Leading "ยฑ".
if (h->negative) {
*ptr++ = '-';
} else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
*ptr++ = '+';
}
// Integral digits.
if (h->decimal_point <= 0) {
*ptr++ = '0';
} else {
uint32_t m =
wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point));
uint32_t i = 0;
for (; i < m; i++) {
*ptr++ = (uint8_t)('0' | h->digits[i]);
}
for (; i < (uint32_t)(h->decimal_point); i++) {
*ptr++ = '0';
}
}
// Separator and then fractional digits.
if (precision > 0) {
*ptr++ =
(options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.';
uint32_t i = 0;
for (; i < precision; i++) {
uint32_t j = ((uint32_t)(h->decimal_point)) + i;
*ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0));
}
}
return n;
}
static size_t //
wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
wuffs_base__slice_u8 dst,
wuffs_base__private_implementation__high_prec_dec* h,
uint32_t precision,
uint32_t options) {
int32_t exp = 0;
if (h->num_digits > 0) {
exp = h->decimal_point - 1;
}
bool negative_exp = exp < 0;
if (negative_exp) {
exp = -exp;
}
size_t n = (h->negative ||
(options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))
? 4
: 3; // Mininum 3 bytes: first digit and then "eยฑ".
if (precision > 0) {
n += precision + 1; // +1 for the '.'.
}
n += (exp < 100) ? 2 : 3;
// Don't modify dst if the formatted number won't fit.
if (n > dst.len) {
return 0;
}
// Align-left or align-right.
uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
? &dst.ptr[dst.len - n]
: &dst.ptr[0];
// Leading "ยฑ".
if (h->negative) {
*ptr++ = '-';
} else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
*ptr++ = '+';
}
// Integral digit.
if (h->num_digits > 0) {
*ptr++ = (uint8_t)('0' | h->digits[0]);
} else {
*ptr++ = '0';
}
// Separator and then fractional digits.
if (precision > 0) {
*ptr++ =
(options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)
? ','
: '.';
uint32_t i = 1;
uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1);
for (; i < j; i++) {
*ptr++ = (uint8_t)('0' | h->digits[i]);
}
for (; i <= precision; i++) {
*ptr++ = '0';
}
}
// Exponent: "eยฑ" and then 2 or 3 digits.
*ptr++ = 'e';
*ptr++ = negative_exp ? '-' : '+';
if (exp < 10) {
*ptr++ = '0';
*ptr++ = (uint8_t)('0' | exp);
} else if (exp < 100) {
*ptr++ = (uint8_t)('0' | (exp / 10));
*ptr++ = (uint8_t)('0' | (exp % 10));
} else {
int32_t e = exp / 100;
exp -= e * 100;
*ptr++ = (uint8_t)('0' | e);
*ptr++ = (uint8_t)('0' | (exp / 10));
*ptr++ = (uint8_t)('0' | (exp % 10));
}
return n;
}
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_f64(wuffs_base__slice_u8 dst,
double x,
uint32_t precision,
uint32_t options) {
// Decompose x (64 bits) into negativity (1 bit), base-2 exponent (11 bits
// with a -1023 bias) and mantissa (52 bits).
uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64_to_u64(x);
bool neg = (bits >> 63) != 0;
int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF;
uint64_t man = bits & 0x000FFFFFFFFFFFFFul;
// Apply the exponent bias and set the implicit top bit of the mantissa,
// unless x is subnormal. Also take care of Inf and NaN.
if (exp2 == 0x7FF) {
if (man != 0) {
return wuffs_base__private_implementation__render_nan(dst);
}
return wuffs_base__private_implementation__render_inf(dst, neg, options);
} else if (exp2 == 0) {
exp2 = -1022;
} else {
exp2 -= 1023;
man |= 0x0010000000000000ul;
}
// Ensure that precision isn't too large.
if (precision > 4095) {
precision = 4095;
}
// Convert from the (neg, exp2, man) tuple to an HPD.
wuffs_base__private_implementation__high_prec_dec h;
wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg);
if (h.num_digits > 0) {
wuffs_base__private_implementation__high_prec_dec__lshift(
&h, exp2 - 52); // 52 mantissa bits.
}
// Handle the "%e" and "%f" formats.
switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT |
WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) {
case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT: // The "%"f" format.
if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
wuffs_base__private_implementation__high_prec_dec__round_just_enough(
&h, exp2, man);
int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point;
precision = ((uint32_t)(wuffs_base__i32__max(0, p)));
} else {
wuffs_base__private_implementation__high_prec_dec__round_nearest(
&h, ((int32_t)precision) + h.decimal_point);
}
return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
dst, &h, precision, options);
case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT: // The "%e" format.
if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
wuffs_base__private_implementation__high_prec_dec__round_just_enough(
&h, exp2, man);
precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0;
} else {
wuffs_base__private_implementation__high_prec_dec__round_nearest(
&h, ((int32_t)precision) + 1);
}
return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
dst, &h, precision, options);
}
// We have the "%g" format and so precision means the number of significant
// digits, not the number of digits after the decimal separator. Perform
// rounding and determine whether to use "%e" or "%f".
int32_t e_threshold = 0;
if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) {
wuffs_base__private_implementation__high_prec_dec__round_just_enough(
&h, exp2, man);
precision = h.num_digits;
e_threshold = 6;
} else {
if (precision == 0) {
precision = 1;
}
wuffs_base__private_implementation__high_prec_dec__round_nearest(
&h, ((int32_t)precision));
e_threshold = ((int32_t)precision);
int32_t nd = ((int32_t)(h.num_digits));
if ((e_threshold > nd) && (nd >= h.decimal_point)) {
e_threshold = nd;
}
}
// Use the "%e" format if the exponent is large.
int32_t e = h.decimal_point - 1;
if ((e < -4) || (e_threshold <= e)) {
uint32_t p = wuffs_base__u32__min(precision, h.num_digits);
return wuffs_base__private_implementation__high_prec_dec__render_exponent_present(
dst, &h, (p > 0) ? (p - 1) : 0, options);
}
// Use the "%f" format otherwise.
int32_t p = ((int32_t)precision);
if (p > h.decimal_point) {
p = ((int32_t)(h.num_digits));
}
precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point)));
return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent(
dst, &h, precision, options);
}
#endif // !defined(WUFFS_CONFIG__MODULES) ||
// defined(WUFFS_CONFIG__MODULE__BASE) ||
// defined(WUFFS_CONFIG__MODULE__BASE__FLOATCONV)
#if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \
defined(WUFFS_CONFIG__MODULE__BASE__INTCONV)
// ---------------- Integer
// wuffs_base__parse_number__foo_digits entries are 0x00 for invalid digits,
// and (0x80 | v) for valid digits, where v is the 4 bit value.
static const uint8_t wuffs_base__parse_number__decimal_digits[256] = {
// 0 1 2 3 4 5 6 7
// 8 9 A B C D E F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 ..= 0x07.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x08 ..= 0x0F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x10 ..= 0x17.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x18 ..= 0x1F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20 ..= 0x27.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x28 ..= 0x2F.
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, // 0x30 ..= 0x37. '0'-'7'.
0x88, 0x89, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x38 ..= 0x3F. '8'-'9'.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x40 ..= 0x47.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x48 ..= 0x4F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x50 ..= 0x57.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x58 ..= 0x5F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x60 ..= 0x67.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x68 ..= 0x6F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x70 ..= 0x77.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x78 ..= 0x7F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x80 ..= 0x87.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x88 ..= 0x8F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x90 ..= 0x97.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x98 ..= 0x9F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA0 ..= 0xA7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA8 ..= 0xAF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB0 ..= 0xB7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB8 ..= 0xBF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC0 ..= 0xC7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC8 ..= 0xCF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD0 ..= 0xD7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD8 ..= 0xDF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE0 ..= 0xE7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE8 ..= 0xEF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF0 ..= 0xF7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF8 ..= 0xFF.
// 0 1 2 3 4 5 6 7
// 8 9 A B C D E F
};
static const uint8_t wuffs_base__parse_number__hexadecimal_digits[256] = {
// 0 1 2 3 4 5 6 7
// 8 9 A B C D E F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 ..= 0x07.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x08 ..= 0x0F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x10 ..= 0x17.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x18 ..= 0x1F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20 ..= 0x27.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x28 ..= 0x2F.
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, // 0x30 ..= 0x37. '0'-'7'.
0x88, 0x89, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x38 ..= 0x3F. '8'-'9'.
0x00, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x00, // 0x40 ..= 0x47. 'A'-'F'.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x48 ..= 0x4F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x50 ..= 0x57.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x58 ..= 0x5F.
0x00, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x00, // 0x60 ..= 0x67. 'a'-'f'.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x68 ..= 0x6F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x70 ..= 0x77.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x78 ..= 0x7F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x80 ..= 0x87.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x88 ..= 0x8F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x90 ..= 0x97.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x98 ..= 0x9F.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA0 ..= 0xA7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA8 ..= 0xAF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB0 ..= 0xB7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB8 ..= 0xBF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC0 ..= 0xC7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC8 ..= 0xCF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD0 ..= 0xD7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD8 ..= 0xDF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE0 ..= 0xE7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE8 ..= 0xEF.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF0 ..= 0xF7.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF8 ..= 0xFF.
// 0 1 2 3 4 5 6 7
// 8 9 A B C D E F
};
static const uint8_t wuffs_base__private_implementation__encode_base16[16] = {
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, // 0x00 ..= 0x07.
0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, // 0x08 ..= 0x0F.
};
// --------
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_i64 //
wuffs_base__parse_number_i64(wuffs_base__slice_u8 s, uint32_t options) {
uint8_t* p = s.ptr;
uint8_t* q = s.ptr + s.len;
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (; (p < q) && (*p == '_'); p++) {
}
}
bool negative = false;
if (p >= q) {
goto fail_bad_argument;
} else if (*p == '-') {
p++;
negative = true;
} else if (*p == '+') {
p++;
}
do {
wuffs_base__result_u64 r = wuffs_base__parse_number_u64(
wuffs_base__make_slice_u8(p, (size_t)(q - p)), options);
if (r.status.repr != NULL) {
wuffs_base__result_i64 ret;
ret.status.repr = r.status.repr;
ret.value = 0;
return ret;
} else if (negative) {
if (r.value < 0x8000000000000000) {
wuffs_base__result_i64 ret;
ret.status.repr = NULL;
ret.value = -(int64_t)(r.value);
return ret;
} else if (r.value == 0x8000000000000000) {
wuffs_base__result_i64 ret;
ret.status.repr = NULL;
ret.value = INT64_MIN;
return ret;
}
goto fail_out_of_bounds;
} else if (r.value > 0x7FFFFFFFFFFFFFFF) {
goto fail_out_of_bounds;
} else {
wuffs_base__result_i64 ret;
ret.status.repr = NULL;
ret.value = +(int64_t)(r.value);
return ret;
}
} while (0);
fail_bad_argument:
do {
wuffs_base__result_i64 ret;
ret.status.repr = wuffs_base__error__bad_argument;
ret.value = 0;
return ret;
} while (0);
fail_out_of_bounds:
do {
wuffs_base__result_i64 ret;
ret.status.repr = wuffs_base__error__out_of_bounds;
ret.value = 0;
return ret;
} while (0);
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__result_u64 //
wuffs_base__parse_number_u64(wuffs_base__slice_u8 s, uint32_t options) {
uint8_t* p = s.ptr;
uint8_t* q = s.ptr + s.len;
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (; (p < q) && (*p == '_'); p++) {
}
}
if (p >= q) {
goto fail_bad_argument;
} else if (*p == '0') {
p++;
if (p >= q) {
goto ok_zero;
}
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
if (*p == '_') {
p++;
for (; p < q; p++) {
if (*p != '_') {
if (options &
WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES) {
goto decimal;
}
goto fail_bad_argument;
}
}
goto ok_zero;
}
}
if ((*p == 'x') || (*p == 'X')) {
p++;
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (; (p < q) && (*p == '_'); p++) {
}
}
if (p < q) {
goto hexadecimal;
}
} else if ((*p == 'd') || (*p == 'D')) {
p++;
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) {
for (; (p < q) && (*p == '_'); p++) {
}
}
if (p < q) {
goto decimal;
}
}
if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES) {
goto decimal;
}
goto fail_bad_argument;
}
decimal:
do {
uint64_t v = wuffs_base__parse_number__decimal_digits[*p++];
if (v == 0) {
goto fail_bad_argument;
}
v &= 0x0F;
// UINT64_MAX is 18446744073709551615, which is ((10 * max10) + max1).
const uint64_t max10 = 1844674407370955161u;
const uint8_t max1 = 5;
for (; p < q; p++) {
if ((*p == '_') &&
(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
continue;
}
uint8_t digit = wuffs_base__parse_number__decimal_digits[*p];
if (digit == 0) {
goto fail_bad_argument;
}
digit &= 0x0F;
if ((v > max10) || ((v == max10) && (digit > max1))) {
goto fail_out_of_bounds;
}
v = (10 * v) + ((uint64_t)(digit));
}
wuffs_base__result_u64 ret;
ret.status.repr = NULL;
ret.value = v;
return ret;
} while (0);
hexadecimal:
do {
uint64_t v = wuffs_base__parse_number__hexadecimal_digits[*p++];
if (v == 0) {
goto fail_bad_argument;
}
v &= 0x0F;
for (; p < q; p++) {
if ((*p == '_') &&
(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) {
continue;
}
uint8_t digit = wuffs_base__parse_number__hexadecimal_digits[*p];
if (digit == 0) {
goto fail_bad_argument;
}
digit &= 0x0F;
if ((v >> 60) != 0) {
goto fail_out_of_bounds;
}
v = (v << 4) | ((uint64_t)(digit));
}
wuffs_base__result_u64 ret;
ret.status.repr = NULL;
ret.value = v;
return ret;
} while (0);
ok_zero:
do {
wuffs_base__result_u64 ret;
ret.status.repr = NULL;
ret.value = 0;
return ret;
} while (0);
fail_bad_argument:
do {
wuffs_base__result_u64 ret;
ret.status.repr = wuffs_base__error__bad_argument;
ret.value = 0;
return ret;
} while (0);
fail_out_of_bounds:
do {
wuffs_base__result_u64 ret;
ret.status.repr = wuffs_base__error__out_of_bounds;
ret.value = 0;
return ret;
} while (0);
}
// --------
// wuffs_base__render_number__first_hundred contains the decimal encodings of
// the first one hundred numbers [0 ..= 99].
static const uint8_t wuffs_base__render_number__first_hundred[200] = {
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', //
'0', '5', '0', '6', '0', '7', '0', '8', '0', '9', //
'1', '0', '1', '1', '1', '2', '1', '3', '1', '4', //
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9', //
'2', '0', '2', '1', '2', '2', '2', '3', '2', '4', //
'2', '5', '2', '6', '2', '7', '2', '8', '2', '9', //
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4', //
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9', //
'4', '0', '4', '1', '4', '2', '4', '3', '4', '4', //
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9', //
'5', '0', '5', '1', '5', '2', '5', '3', '5', '4', //
'5', '5', '5', '6', '5', '7', '5', '8', '5', '9', //
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4', //
'6', '5', '6', '6', '6', '7', '6', '8', '6', '9', //
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4', //
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9', //
'8', '0', '8', '1', '8', '2', '8', '3', '8', '4', //
'8', '5', '8', '6', '8', '7', '8', '8', '8', '9', //
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4', //
'9', '5', '9', '6', '9', '7', '9', '8', '9', '9', //
};
static size_t //
wuffs_base__private_implementation__render_number_u64(wuffs_base__slice_u8 dst,
uint64_t x,
uint32_t options,
bool neg) {
uint8_t buf[WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL];
uint8_t* ptr = &buf[0] + sizeof(buf);
while (x >= 100) {
size_t index = ((size_t)((x % 100) * 2));
x /= 100;
uint8_t s0 = wuffs_base__render_number__first_hundred[index + 0];
uint8_t s1 = wuffs_base__render_number__first_hundred[index + 1];
ptr -= 2;
ptr[0] = s0;
ptr[1] = s1;
}
if (x < 10) {
ptr -= 1;
ptr[0] = (uint8_t)('0' + x);
} else {
size_t index = ((size_t)(x * 2));
uint8_t s0 = wuffs_base__render_number__first_hundred[index + 0];
uint8_t s1 = wuffs_base__render_number__first_hundred[index + 1];
ptr -= 2;
ptr[0] = s0;
ptr[1] = s1;
}
if (neg) {
ptr -= 1;
ptr[0] = '-';
} else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {
ptr -= 1;
ptr[0] = '+';
}
size_t n = sizeof(buf) - ((size_t)(ptr - &buf[0]));
if (n > dst.len) {
return 0;
}
memcpy(dst.ptr + ((options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)
? (dst.len - n)
: 0),
ptr, n);
return n;
}
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_i64(wuffs_base__slice_u8 dst,
int64_t x,
uint32_t options) {
uint64_t u = (uint64_t)x;
bool neg = x < 0;
if (neg) {
u = 1 + ~u;
}
return wuffs_base__private_implementation__render_number_u64(dst, u, options,
neg);
}
WUFFS_BASE__MAYBE_STATIC size_t //
wuffs_base__render_number_u64(wuffs_base__slice_u8 dst,
uint64_t x,
uint32_t options) {
return wuffs_base__private_implementation__render_number_u64(dst, x, options,
false);
}
// ---------------- Base-16
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__decode2(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options) {
wuffs_base__transform__output o;
size_t src_len2 = src.len / 2;
size_t len;
if (dst.len < src_len2) {
len = dst.len;
o.status.repr = wuffs_base__suspension__short_write;
} else {
len = src_len2;
if (!src_closed) {
o.status.repr = wuffs_base__suspension__short_read;
} else if (src.len & 1) {
o.status.repr = wuffs_base__error__bad_data;
} else {
o.status.repr = NULL;
}
}
uint8_t* d = dst.ptr;
uint8_t* s = src.ptr;
size_t n = len;
while (n--) {
*d = (uint8_t)((wuffs_base__parse_number__hexadecimal_digits[s[0]] << 4) |
(wuffs_base__parse_number__hexadecimal_digits[s[1]] & 0x0F));
d += 1;
s += 2;
}
o.num_dst = len;
o.num_src = len * 2;
return o;
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__decode4(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options) {
wuffs_base__transform__output o;
size_t src_len4 = src.len / 4;
size_t len = dst.len < src_len4 ? dst.len : src_len4;
if (dst.len < src_len4) {
len = dst.len;
o.status.repr = wuffs_base__suspension__short_write;
} else {
len = src_len4;
if (!src_closed) {
o.status.repr = wuffs_base__suspension__short_read;
} else if (src.len & 1) {
o.status.repr = wuffs_base__error__bad_data;
} else {
o.status.repr = NULL;
}
}
uint8_t* d = dst.ptr;
uint8_t* s = src.ptr;
size_t n = len;
while (n--) {
*d = (uint8_t)((wuffs_base__parse_number__hexadecimal_digits[s[2]] << 4) |
(wuffs_base__parse_number__hexadecimal_digits[s[3]] & 0x0F));
d += 1;
s += 4;
}
o.num_dst = len;
o.num_src = len * 4;
return o;
}
WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output //
wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst,
wuffs_base__slice_u8 src,
bool src_closed,
uint32_t options) {
wuffs_base__transform__output o;
size_t dst_len2 = dst.len / 2;
size_t