blob: 30c427270958f35626183073907264aac8a77d66 [file] [log] [blame]
/*
* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Tony Barbour <tony@LunarG.com>
*/
#include "test_common.h" // NOEXCEPT macro (must precede vktestbinding.h)
#include "vktestbinding.h" // Left for clarity, no harm, already included via test_common.h
#include <algorithm>
#include <assert.h>
#include <iostream>
#include <stdarg.h>
#include <string.h> // memset(), memcmp()
namespace {
#define NON_DISPATCHABLE_HANDLE_INIT(create_func, dev, ...) \
do { \
handle_type handle; \
if (EXPECT(create_func(dev.handle(), __VA_ARGS__, NULL, &handle) == VK_SUCCESS)) \
NonDispHandle::init(dev.handle(), handle); \
} while (0)
#define NON_DISPATCHABLE_HANDLE_DTOR(cls, destroy_func) \
cls::~cls() { \
if (initialized()) destroy_func(device(), handle(), NULL); \
}
#define STRINGIFY(x) #x
#define EXPECT(expr) ((expr) ? true : expect_failure(STRINGIFY(expr), __FILE__, __LINE__, __FUNCTION__))
vk_testing::ErrorCallback error_callback;
bool expect_failure(const char *expr, const char *file, unsigned int line, const char *function) {
if (error_callback) {
error_callback(expr, file, line, function);
} else {
std::cerr << file << ":" << line << ": " << function << ": Expectation `" << expr << "' failed.\n";
}
return false;
}
} // namespace
namespace vk_testing {
void set_error_callback(ErrorCallback callback) { error_callback = callback; }
VkPhysicalDeviceProperties PhysicalDevice::properties() const {
VkPhysicalDeviceProperties info;
vkGetPhysicalDeviceProperties(handle(), &info);
return info;
}
std::vector<VkQueueFamilyProperties> PhysicalDevice::queue_properties() const {
std::vector<VkQueueFamilyProperties> info;
uint32_t count;
// Call once with NULL data to receive count
vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, NULL);
info.resize(count);
vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, info.data());
return info;
}
VkPhysicalDeviceMemoryProperties PhysicalDevice::memory_properties() const {
VkPhysicalDeviceMemoryProperties info;
vkGetPhysicalDeviceMemoryProperties(handle(), &info);
return info;
}
VkPhysicalDeviceFeatures PhysicalDevice::features() const {
VkPhysicalDeviceFeatures features;
vkGetPhysicalDeviceFeatures(handle(), &features);
return features;
}
/*
* Return list of Global layers available
*/
std::vector<VkLayerProperties> GetGlobalLayers() {
VkResult err;
std::vector<VkLayerProperties> layers;
uint32_t layer_count;
do {
layer_count = 0;
err = vkEnumerateInstanceLayerProperties(&layer_count, NULL);
if (err == VK_SUCCESS) {
layers.reserve(layer_count);
err = vkEnumerateInstanceLayerProperties(&layer_count, layers.data());
}
} while (err == VK_INCOMPLETE);
assert(err == VK_SUCCESS);
return layers;
}
/*
* Return list of Global extensions provided by the ICD / Loader
*/
std::vector<VkExtensionProperties> GetGlobalExtensions() { return GetGlobalExtensions(NULL); }
/*
* Return list of Global extensions provided by the specified layer
* If pLayerName is NULL, will return extensions implemented by the loader /
* ICDs
*/
std::vector<VkExtensionProperties> GetGlobalExtensions(const char *pLayerName) {
std::vector<VkExtensionProperties> exts;
uint32_t ext_count;
VkResult err;
do {
ext_count = 0;
err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, NULL);
if (err == VK_SUCCESS) {
exts.resize(ext_count);
err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, exts.data());
}
} while (err == VK_INCOMPLETE);
assert(err == VK_SUCCESS);
return exts;
}
/*
* Return list of PhysicalDevice extensions provided by the ICD / Loader
*/
std::vector<VkExtensionProperties> PhysicalDevice::extensions() const { return extensions(NULL); }
/*
* Return list of PhysicalDevice extensions provided by the specified layer
* If pLayerName is NULL, will return extensions for ICD / loader.
*/
std::vector<VkExtensionProperties> PhysicalDevice::extensions(const char *pLayerName) const {
std::vector<VkExtensionProperties> exts;
VkResult err;
do {
uint32_t extCount = 0;
err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, NULL);
if (err == VK_SUCCESS) {
exts.resize(extCount);
err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, exts.data());
}
} while (err == VK_INCOMPLETE);
assert(err == VK_SUCCESS);
return exts;
}
bool PhysicalDevice::set_memory_type(const uint32_t type_bits, VkMemoryAllocateInfo *info, const VkFlags properties,
const VkFlags forbid) const {
uint32_t type_mask = type_bits;
// Search memtypes to find first index with those properties
for (uint32_t i = 0; i < memory_properties_.memoryTypeCount; i++) {
if ((type_mask & 1) == 1) {
// Type is available, does it match user properties?
if ((memory_properties_.memoryTypes[i].propertyFlags & properties) == properties &&
(memory_properties_.memoryTypes[i].propertyFlags & forbid) == 0) {
info->memoryTypeIndex = i;
return true;
}
}
type_mask >>= 1;
}
// No memory types matched, return failure
return false;
}
/*
* Return list of PhysicalDevice layers
*/
std::vector<VkLayerProperties> PhysicalDevice::layers() const {
std::vector<VkLayerProperties> layer_props;
VkResult err;
do {
uint32_t layer_count = 0;
err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, NULL);
if (err == VK_SUCCESS) {
layer_props.reserve(layer_count);
err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, layer_props.data());
}
} while (err == VK_INCOMPLETE);
assert(err == VK_SUCCESS);
return layer_props;
}
QueueCreateInfoArray::QueueCreateInfoArray(const std::vector<VkQueueFamilyProperties> &queue_props)
: queue_info_(), queue_priorities_() {
queue_info_.reserve(queue_props.size());
for (uint32_t i = 0; i < (uint32_t)queue_props.size(); ++i) {
if (queue_props[i].queueCount > 0) {
VkDeviceQueueCreateInfo qi = {};
qi.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
qi.pNext = NULL;
qi.queueFamilyIndex = i;
qi.queueCount = queue_props[i].queueCount;
queue_priorities_.emplace_back(qi.queueCount, 0.0f);
qi.pQueuePriorities = queue_priorities_[i].data();
queue_info_.push_back(qi);
}
}
}
Device::~Device() {
if (!initialized()) return;
vkDestroyDevice(handle(), NULL);
}
void Device::init(std::vector<const char *> &extensions, VkPhysicalDeviceFeatures *features, VkPhysicalDeviceFeatures2 *features2) {
// request all queues
const std::vector<VkQueueFamilyProperties> queue_props = phy_.queue_properties();
QueueCreateInfoArray queue_info(phy_.queue_properties());
for (uint32_t i = 0; i < (uint32_t)queue_props.size(); i++) {
if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphics_queue_node_index_ = i;
}
}
// Only request creation with queuefamilies that have at least one queue
std::vector<VkDeviceQueueCreateInfo> create_queue_infos;
auto qci = queue_info.data();
for (uint32_t j = 0; j < queue_info.size(); ++j) {
if (qci[j].queueCount) {
create_queue_infos.push_back(qci[j]);
}
}
enabled_extensions_ = extensions;
VkDeviceCreateInfo dev_info = {};
dev_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
dev_info.pNext = NULL;
dev_info.queueCreateInfoCount = create_queue_infos.size();
dev_info.pQueueCreateInfos = create_queue_infos.data();
dev_info.enabledLayerCount = 0;
dev_info.ppEnabledLayerNames = NULL;
dev_info.enabledExtensionCount = extensions.size();
dev_info.ppEnabledExtensionNames = extensions.data();
VkPhysicalDeviceFeatures all_features;
// Let VkPhysicalDeviceFeatures2 take priority over VkPhysicalDeviceFeatures,
// since it supports extensions
if (features2) {
dev_info.pNext = features2;
} else if (features) {
dev_info.pEnabledFeatures = features;
} else {
// request all supportable features enabled
all_features = phy().features();
dev_info.pEnabledFeatures = &all_features;
}
init(dev_info);
}
void Device::init(const VkDeviceCreateInfo &info) {
VkDevice dev;
if (EXPECT(vkCreateDevice(phy_.handle(), &info, NULL, &dev) == VK_SUCCESS)) Handle::init(dev);
init_queues();
init_formats();
}
void Device::init_queues() {
uint32_t queue_node_count;
// Call with NULL data to get count
vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, NULL);
EXPECT(queue_node_count >= 1);
VkQueueFamilyProperties *queue_props = new VkQueueFamilyProperties[queue_node_count];
vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, queue_props);
queue_families_.resize(queue_node_count);
for (uint32_t i = 0; i < queue_node_count; i++) {
VkQueue queue;
QueueFamilyQueues &queue_storage = queue_families_[i];
queue_storage.reserve(queue_props[i].queueCount);
for (uint32_t j = 0; j < queue_props[i].queueCount; j++) {
// TODO: Need to add support for separate MEMMGR and work queues,
// including synchronization
vkGetDeviceQueue(handle(), i, j, &queue);
// Store single copy of the queue object that will self destruct
queue_storage.emplace_back(new Queue(queue, i));
if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
queues_[GRAPHICS].push_back(queue_storage.back().get());
}
if (queue_props[i].queueFlags & VK_QUEUE_COMPUTE_BIT) {
queues_[COMPUTE].push_back(queue_storage.back().get());
}
if (queue_props[i].queueFlags & VK_QUEUE_TRANSFER_BIT) {
queues_[DMA].push_back(queue_storage.back().get());
}
}
}
delete[] queue_props;
EXPECT(!queues_[GRAPHICS].empty() || !queues_[COMPUTE].empty());
}
const Device::QueueFamilyQueues &Device::queue_family_queues(uint32_t queue_family) const {
assert(queue_family < queue_families_.size());
return queue_families_[queue_family];
}
void Device::init_formats() {
for (int f = VK_FORMAT_BEGIN_RANGE; f <= VK_FORMAT_END_RANGE; f++) {
const VkFormat fmt = static_cast<VkFormat>(f);
const VkFormatProperties props = format_properties(fmt);
if (props.linearTilingFeatures) {
const Format tmp = {fmt, VK_IMAGE_TILING_LINEAR, props.linearTilingFeatures};
formats_.push_back(tmp);
}
if (props.optimalTilingFeatures) {
const Format tmp = {fmt, VK_IMAGE_TILING_OPTIMAL, props.optimalTilingFeatures};
formats_.push_back(tmp);
}
}
EXPECT(!formats_.empty());
}
bool Device::IsEnbledExtension(const char *extension) {
const auto is_x = [&extension](const char *enabled_extension) { return strcmp(extension, enabled_extension) == 0; };
return std::any_of(enabled_extensions_.begin(), enabled_extensions_.end(), is_x);
}
VkFormatProperties Device::format_properties(VkFormat format) {
VkFormatProperties data;
vkGetPhysicalDeviceFormatProperties(phy().handle(), format, &data);
return data;
}
void Device::wait() { EXPECT(vkDeviceWaitIdle(handle()) == VK_SUCCESS); }
VkResult Device::wait(const std::vector<const Fence *> &fences, bool wait_all, uint64_t timeout) {
const std::vector<VkFence> fence_handles = MakeVkHandles<VkFence>(fences);
VkResult err = vkWaitForFences(handle(), fence_handles.size(), fence_handles.data(), wait_all, timeout);
EXPECT(err == VK_SUCCESS || err == VK_TIMEOUT);
return err;
}
void Device::update_descriptor_sets(const std::vector<VkWriteDescriptorSet> &writes,
const std::vector<VkCopyDescriptorSet> &copies) {
vkUpdateDescriptorSets(handle(), writes.size(), writes.data(), copies.size(), copies.data());
}
VkResult Queue::submit(const std::vector<const CommandBuffer *> &cmds, const Fence &fence, bool expect_success) {
const std::vector<VkCommandBuffer> cmd_handles = MakeVkHandles<VkCommandBuffer>(cmds);
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = NULL;
submit_info.waitSemaphoreCount = 0;
submit_info.pWaitSemaphores = NULL;
submit_info.pWaitDstStageMask = NULL;
submit_info.commandBufferCount = (uint32_t)cmd_handles.size();
submit_info.pCommandBuffers = cmd_handles.data();
submit_info.signalSemaphoreCount = 0;
submit_info.pSignalSemaphores = NULL;
VkResult result = vkQueueSubmit(handle(), 1, &submit_info, fence.handle());
if (expect_success) EXPECT(result == VK_SUCCESS);
return result;
}
VkResult Queue::submit(const CommandBuffer &cmd, const Fence &fence, bool expect_success) {
return submit(std::vector<const CommandBuffer *>(1, &cmd), fence, expect_success);
}
VkResult Queue::submit(const CommandBuffer &cmd, bool expect_success) {
Fence fence;
return submit(cmd, fence);
}
VkResult Queue::wait() {
VkResult result = vkQueueWaitIdle(handle());
EXPECT(result == VK_SUCCESS);
return result;
}
DeviceMemory::~DeviceMemory() {
if (initialized()) vkFreeMemory(device(), handle(), NULL);
}
void DeviceMemory::init(const Device &dev, const VkMemoryAllocateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkAllocateMemory, dev, &info);
}
const void *DeviceMemory::map(VkFlags flags) const {
void *data;
if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL;
return data;
}
void *DeviceMemory::map(VkFlags flags) {
void *data;
if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL;
return data;
}
void DeviceMemory::unmap() const { vkUnmapMemory(device(), handle()); }
VkMemoryAllocateInfo DeviceMemory::get_resource_alloc_info(const Device &dev, const VkMemoryRequirements &reqs,
VkMemoryPropertyFlags mem_props) {
// Find appropriate memory type for given reqs
VkPhysicalDeviceMemoryProperties dev_mem_props = dev.phy().memory_properties();
uint32_t mem_type_index = 0;
for (mem_type_index = 0; mem_type_index < dev_mem_props.memoryTypeCount; ++mem_type_index) {
if (mem_props == (mem_props & dev_mem_props.memoryTypes[mem_type_index].propertyFlags)) break;
}
// If we exceeded types, then this device doesn't have the memory we need
assert(mem_type_index < dev_mem_props.memoryTypeCount);
VkMemoryAllocateInfo info = alloc_info(reqs.size, mem_type_index);
EXPECT(dev.phy().set_memory_type(reqs.memoryTypeBits, &info, mem_props));
return info;
}
NON_DISPATCHABLE_HANDLE_DTOR(Fence, vkDestroyFence)
void Fence::init(const Device &dev, const VkFenceCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateFence, dev, &info); }
VkResult Fence::wait(VkBool32 wait_all, uint64_t timeout) const {
VkFence fence = handle();
return vkWaitForFences(device(), 1, &fence, wait_all, timeout);
}
NON_DISPATCHABLE_HANDLE_DTOR(Semaphore, vkDestroySemaphore)
void Semaphore::init(const Device &dev, const VkSemaphoreCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateSemaphore, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(Event, vkDestroyEvent)
void Event::init(const Device &dev, const VkEventCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateEvent, dev, &info); }
void Event::set() { EXPECT(vkSetEvent(device(), handle()) == VK_SUCCESS); }
void Event::reset() { EXPECT(vkResetEvent(device(), handle()) == VK_SUCCESS); }
NON_DISPATCHABLE_HANDLE_DTOR(QueryPool, vkDestroyQueryPool)
void QueryPool::init(const Device &dev, const VkQueryPoolCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateQueryPool, dev, &info);
}
VkResult QueryPool::results(uint32_t first, uint32_t count, size_t size, void *data, size_t stride) {
VkResult err = vkGetQueryPoolResults(device(), handle(), first, count, size, data, stride, 0);
EXPECT(err == VK_SUCCESS || err == VK_NOT_READY);
return err;
}
NON_DISPATCHABLE_HANDLE_DTOR(Buffer, vkDestroyBuffer)
void Buffer::init(const Device &dev, const VkBufferCreateInfo &info, VkMemoryPropertyFlags mem_props) {
init_no_mem(dev, info);
internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props));
bind_memory(internal_mem_, 0);
}
void Buffer::init_no_mem(const Device &dev, const VkBufferCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateBuffer, dev, &info);
create_info_ = info;
}
VkMemoryRequirements Buffer::memory_requirements() const {
VkMemoryRequirements reqs;
vkGetBufferMemoryRequirements(device(), handle(), &reqs);
return reqs;
}
void Buffer::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) {
EXPECT(vkBindBufferMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS);
}
NON_DISPATCHABLE_HANDLE_DTOR(BufferView, vkDestroyBufferView)
void BufferView::init(const Device &dev, const VkBufferViewCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateBufferView, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(Image, vkDestroyImage)
void Image::init(const Device &dev, const VkImageCreateInfo &info, VkMemoryPropertyFlags mem_props) {
init_no_mem(dev, info);
if (initialized()) {
internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props));
bind_memory(internal_mem_, 0);
}
}
void Image::init_no_mem(const Device &dev, const VkImageCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateImage, dev, &info);
if (initialized()) {
init_info(dev, info);
}
}
void Image::init_info(const Device &dev, const VkImageCreateInfo &info) {
create_info_ = info;
for (std::vector<Device::Format>::const_iterator it = dev.formats().begin(); it != dev.formats().end(); it++) {
if (memcmp(&it->format, &create_info_.format, sizeof(it->format)) == 0 && it->tiling == create_info_.tiling) {
format_features_ = it->features;
break;
}
}
}
VkMemoryRequirements Image::memory_requirements() const {
VkMemoryRequirements reqs;
vkGetImageMemoryRequirements(device(), handle(), &reqs);
return reqs;
}
void Image::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) {
EXPECT(vkBindImageMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS);
}
VkSubresourceLayout Image::subresource_layout(const VkImageSubresource &subres) const {
VkSubresourceLayout data;
size_t size = sizeof(data);
vkGetImageSubresourceLayout(device(), handle(), &subres, &data);
if (size != sizeof(data)) memset(&data, 0, sizeof(data));
return data;
}
VkSubresourceLayout Image::subresource_layout(const VkImageSubresourceLayers &subrescopy) const {
VkSubresourceLayout data;
VkImageSubresource subres = subresource(subrescopy.aspectMask, subrescopy.mipLevel, subrescopy.baseArrayLayer);
size_t size = sizeof(data);
vkGetImageSubresourceLayout(device(), handle(), &subres, &data);
if (size != sizeof(data)) memset(&data, 0, sizeof(data));
return data;
}
bool Image::transparent() const {
return (create_info_.tiling == VK_IMAGE_TILING_LINEAR && create_info_.samples == VK_SAMPLE_COUNT_1_BIT &&
!(create_info_.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)));
}
NON_DISPATCHABLE_HANDLE_DTOR(ImageView, vkDestroyImageView)
void ImageView::init(const Device &dev, const VkImageViewCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateImageView, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(ShaderModule, vkDestroyShaderModule)
void ShaderModule::init(const Device &dev, const VkShaderModuleCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateShaderModule, dev, &info);
}
VkResult ShaderModule::init_try(const Device &dev, const VkShaderModuleCreateInfo &info) {
VkShaderModule mod;
VkResult err = vkCreateShaderModule(dev.handle(), &info, NULL, &mod);
if (err == VK_SUCCESS) NonDispHandle::init(dev.handle(), mod);
return err;
}
NON_DISPATCHABLE_HANDLE_DTOR(Pipeline, vkDestroyPipeline)
void Pipeline::init(const Device &dev, const VkGraphicsPipelineCreateInfo &info) {
VkPipelineCache cache;
VkPipelineCacheCreateInfo ci;
memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
if (err == VK_SUCCESS) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateGraphicsPipelines, dev, cache, 1, &info);
vkDestroyPipelineCache(dev.handle(), cache, NULL);
}
}
VkResult Pipeline::init_try(const Device &dev, const VkGraphicsPipelineCreateInfo &info) {
VkPipeline pipe;
VkPipelineCache cache;
VkPipelineCacheCreateInfo ci;
memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
EXPECT(err == VK_SUCCESS);
if (err == VK_SUCCESS) {
err = vkCreateGraphicsPipelines(dev.handle(), cache, 1, &info, NULL, &pipe);
if (err == VK_SUCCESS) {
NonDispHandle::init(dev.handle(), pipe);
}
vkDestroyPipelineCache(dev.handle(), cache, NULL);
}
return err;
}
void Pipeline::init(const Device &dev, const VkComputePipelineCreateInfo &info) {
VkPipelineCache cache;
VkPipelineCacheCreateInfo ci;
memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
if (err == VK_SUCCESS) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateComputePipelines, dev, cache, 1, &info);
vkDestroyPipelineCache(dev.handle(), cache, NULL);
}
}
NON_DISPATCHABLE_HANDLE_DTOR(PipelineLayout, vkDestroyPipelineLayout)
void PipelineLayout::init(const Device &dev, VkPipelineLayoutCreateInfo &info,
const std::vector<const DescriptorSetLayout *> &layouts) {
const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts);
info.setLayoutCount = layout_handles.size();
info.pSetLayouts = layout_handles.data();
NON_DISPATCHABLE_HANDLE_INIT(vkCreatePipelineLayout, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(Sampler, vkDestroySampler)
void Sampler::init(const Device &dev, const VkSamplerCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateSampler, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(DescriptorSetLayout, vkDestroyDescriptorSetLayout)
void DescriptorSetLayout::init(const Device &dev, const VkDescriptorSetLayoutCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorSetLayout, dev, &info);
}
NON_DISPATCHABLE_HANDLE_DTOR(DescriptorPool, vkDestroyDescriptorPool)
void DescriptorPool::init(const Device &dev, const VkDescriptorPoolCreateInfo &info) {
setDynamicUsage(info.flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT);
NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorPool, dev, &info);
}
void DescriptorPool::reset() { EXPECT(vkResetDescriptorPool(device(), handle(), 0) == VK_SUCCESS); }
std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev,
const std::vector<const DescriptorSetLayout *> &layouts) {
const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts);
std::vector<VkDescriptorSet> set_handles;
set_handles.resize(layout_handles.size());
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorSetCount = layout_handles.size();
alloc_info.descriptorPool = handle();
alloc_info.pSetLayouts = layout_handles.data();
VkResult err = vkAllocateDescriptorSets(device(), &alloc_info, set_handles.data());
EXPECT(err == VK_SUCCESS);
std::vector<DescriptorSet *> sets;
for (std::vector<VkDescriptorSet>::const_iterator it = set_handles.begin(); it != set_handles.end(); it++) {
// do descriptor sets need memories bound?
DescriptorSet *descriptorSet = new DescriptorSet(dev, this, *it);
sets.push_back(descriptorSet);
}
return sets;
}
std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout, uint32_t count) {
return alloc_sets(dev, std::vector<const DescriptorSetLayout *>(count, &layout));
}
DescriptorSet *DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout) {
std::vector<DescriptorSet *> set = alloc_sets(dev, layout, 1);
return (set.empty()) ? NULL : set[0];
}
DescriptorSet::~DescriptorSet() {
if (initialized()) {
// Only call vkFree* on sets allocated from pool with usage *_DYNAMIC
if (containing_pool_->getDynamicUsage()) {
VkDescriptorSet sets[1] = {handle()};
EXPECT(vkFreeDescriptorSets(device(), containing_pool_->GetObj(), 1, sets) == VK_SUCCESS);
}
}
}
NON_DISPATCHABLE_HANDLE_DTOR(CommandPool, vkDestroyCommandPool)
void CommandPool::init(const Device &dev, const VkCommandPoolCreateInfo &info) {
NON_DISPATCHABLE_HANDLE_INIT(vkCreateCommandPool, dev, &info);
}
CommandBuffer::~CommandBuffer() {
if (initialized()) {
VkCommandBuffer cmds[] = {handle()};
vkFreeCommandBuffers(dev_handle_, cmd_pool_, 1, cmds);
}
}
void CommandBuffer::init(const Device &dev, const VkCommandBufferAllocateInfo &info) {
VkCommandBuffer cmd;
// Make sure commandPool is set
assert(info.commandPool);
if (EXPECT(vkAllocateCommandBuffers(dev.handle(), &info, &cmd) == VK_SUCCESS)) {
Handle::init(cmd);
dev_handle_ = dev.handle();
cmd_pool_ = info.commandPool;
}
}
void CommandBuffer::begin(const VkCommandBufferBeginInfo *info) { EXPECT(vkBeginCommandBuffer(handle(), info) == VK_SUCCESS); }
void CommandBuffer::begin() {
VkCommandBufferBeginInfo info = {};
VkCommandBufferInheritanceInfo hinfo = {};
info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.pInheritanceInfo = &hinfo;
hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
hinfo.pNext = NULL;
hinfo.renderPass = VK_NULL_HANDLE;
hinfo.subpass = 0;
hinfo.framebuffer = VK_NULL_HANDLE;
hinfo.occlusionQueryEnable = VK_FALSE;
hinfo.queryFlags = 0;
hinfo.pipelineStatistics = 0;
begin(&info);
}
void CommandBuffer::end() { EXPECT(vkEndCommandBuffer(handle()) == VK_SUCCESS); }
void CommandBuffer::reset(VkCommandBufferResetFlags flags) { EXPECT(vkResetCommandBuffer(handle(), flags) == VK_SUCCESS); }
} // namespace vk_testing