blob: 23e7b4ed58840bedf8b7bf67b606a37b1266f4fd [file] [log] [blame]
/* Copyright (c) 2015-2017 The Khronos Group Inc.
* Copyright (c) 2015-2017 Valve Corporation
* Copyright (c) 2015-2017 LunarG, Inc.
* Copyright (C) 2015-2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Dave Houlton <daveh@lunarg.com>
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
#include <inttypes.h>
#include <sstream>
#include <string>
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "vk_layer_logging.h"
#include "buffer_validation.h"
// TODO: remove on NDK update (r15 will probably have proper STL impl)
#ifdef __ANDROID__
namespace std {
template <typename T>
std::string to_string(T var) {
std::ostringstream ss;
ss << var;
return ss.str();
}
} // namespace std
#endif
void SetLayout(layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
if (pCB->imageLayoutMap.find(imgpair) != pCB->imageLayoutMap.end()) {
pCB->imageLayoutMap[imgpair].layout = layout;
} else {
assert(imgpair.hasSubresource);
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, imgpair.image, imgpair.subresource, node)) {
node.initialLayout = layout;
}
SetLayout(device_data, pCB, imgpair, {node.initialLayout, layout});
}
}
template <class OBJECT, class LAYOUT>
void SetLayout(layer_data *device_data, OBJECT *pObject, VkImage image, VkImageSubresource range, const LAYOUT &layout) {
ImageSubresourcePair imgpair = {image, true, range};
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
}
template <class OBJECT, class LAYOUT>
void SetLayout(layer_data *device_data, OBJECT *pObject, ImageSubresourcePair imgpair, const LAYOUT &layout,
VkImageAspectFlags aspectMask) {
if (imgpair.subresource.aspectMask & aspectMask) {
imgpair.subresource.aspectMask = aspectMask;
SetLayout(device_data, pObject, imgpair, layout);
}
}
// Set the layout in supplied map
void SetLayout(std::unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> &imageLayoutMap, ImageSubresourcePair imgpair,
VkImageLayout layout) {
imageLayoutMap[imgpair].layout = layout;
}
bool FindLayoutVerifyNode(layer_data const *device_data, GLOBAL_CB_NODE const *pCB, ImageSubresourcePair imgpair,
IMAGE_CMD_BUF_LAYOUT_NODE &node, const VkImageAspectFlags aspectMask) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) {
return false;
}
if (node.layout != VK_IMAGE_LAYOUT_MAX_ENUM && node.layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(imgpair.image),
__LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
HandleToUint64(imgpair.image), oldAspectMask, string_VkImageLayout(node.layout),
string_VkImageLayout(imgsubIt->second.layout));
}
if (node.initialLayout != VK_IMAGE_LAYOUT_MAX_ENUM && node.initialLayout != imgsubIt->second.initialLayout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(imgpair.image),
__LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64
" layout when combined aspect mask %d has multiple initial layout types: %s and %s",
HandleToUint64(imgpair.image), oldAspectMask, string_VkImageLayout(node.initialLayout),
string_VkImageLayout(imgsubIt->second.initialLayout));
}
node = imgsubIt->second;
return true;
}
bool FindLayoutVerifyLayout(layer_data const *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout,
const VkImageAspectFlags aspectMask) {
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) {
return false;
}
if (layout != VK_IMAGE_LAYOUT_MAX_ENUM && layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(imgpair.image),
__LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
HandleToUint64(imgpair.image), oldAspectMask, string_VkImageLayout(layout),
string_VkImageLayout(imgsubIt->second.layout));
}
layout = imgsubIt->second.layout;
return true;
}
// Find layout(s) on the command buffer level
bool FindCmdBufLayout(layer_data const *device_data, GLOBAL_CB_NODE const *pCB, VkImage image, VkImageSubresource range,
IMAGE_CMD_BUF_LAYOUT_NODE &node) {
ImageSubresourcePair imgpair = {image, true, range};
node = IMAGE_CMD_BUF_LAYOUT_NODE(VK_IMAGE_LAYOUT_MAX_ENUM, VK_IMAGE_LAYOUT_MAX_ENUM);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_METADATA_BIT);
if (node.layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {image, false, VkImageSubresource()};
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) return false;
// TODO: This is ostensibly a find function but it changes state here
node = imgsubIt->second;
}
return true;
}
// Find layout(s) on the global level
bool FindGlobalLayout(layer_data *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout) {
layout = VK_IMAGE_LAYOUT_MAX_ENUM;
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
if (layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {imgpair.image, false, VkImageSubresource()};
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) return false;
layout = imgsubIt->second.layout;
}
return true;
}
bool FindLayouts(layer_data *device_data, VkImage image, std::vector<VkImageLayout> &layouts) {
auto sub_data = (*core_validation::GetImageSubresourceMap(device_data)).find(image);
if (sub_data == (*core_validation::GetImageSubresourceMap(device_data)).end()) return false;
auto image_state = GetImageState(device_data, image);
if (!image_state) return false;
bool ignoreGlobal = false;
// TODO: Make this robust for >1 aspect mask. Now it will just say ignore potential errors in this case.
if (sub_data->second.size() >= (image_state->createInfo.arrayLayers * image_state->createInfo.mipLevels + 1)) {
ignoreGlobal = true;
}
for (auto imgsubpair : sub_data->second) {
if (ignoreGlobal && !imgsubpair.hasSubresource) continue;
auto img_data = (*core_validation::GetImageLayoutMap(device_data)).find(imgsubpair);
if (img_data != (*core_validation::GetImageLayoutMap(device_data)).end()) {
layouts.push_back(img_data->second.layout);
}
}
return true;
}
bool FindLayout(const std::unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> &imageLayoutMap, ImageSubresourcePair imgpair,
VkImageLayout &layout, const VkImageAspectFlags aspectMask) {
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = imageLayoutMap.find(imgpair);
if (imgsubIt == imageLayoutMap.end()) {
return false;
}
layout = imgsubIt->second.layout;
return true;
}
// find layout in supplied map
bool FindLayout(const std::unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> &imageLayoutMap, ImageSubresourcePair imgpair,
VkImageLayout &layout) {
layout = VK_IMAGE_LAYOUT_MAX_ENUM;
FindLayout(imageLayoutMap, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayout(imageLayoutMap, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayout(imageLayoutMap, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayout(imageLayoutMap, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
if (layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {imgpair.image, false, VkImageSubresource()};
auto imgsubIt = imageLayoutMap.find(imgpair);
if (imgsubIt == imageLayoutMap.end()) return false;
layout = imgsubIt->second.layout;
}
return true;
}
// Set the layout on the global level
void SetGlobalLayout(layer_data *device_data, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
VkImage &image = imgpair.image;
(*core_validation::GetImageLayoutMap(device_data))[imgpair].layout = layout;
auto &image_subresources = (*core_validation::GetImageSubresourceMap(device_data))[image];
auto subresource = std::find(image_subresources.begin(), image_subresources.end(), imgpair);
if (subresource == image_subresources.end()) {
image_subresources.push_back(imgpair);
}
}
// Set the layout on the cmdbuf level
void SetLayout(layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair, const IMAGE_CMD_BUF_LAYOUT_NODE &node) {
pCB->imageLayoutMap[imgpair] = node;
}
// Set image layout for given VkImageSubresourceRange struct
void SetImageLayout(layer_data *device_data, GLOBAL_CB_NODE *cb_node, const IMAGE_STATE *image_state,
VkImageSubresourceRange image_subresource_range, const VkImageLayout &layout) {
assert(image_state);
for (uint32_t level_index = 0; level_index < image_subresource_range.levelCount; ++level_index) {
uint32_t level = image_subresource_range.baseMipLevel + level_index;
for (uint32_t layer_index = 0; layer_index < image_subresource_range.layerCount; layer_index++) {
uint32_t layer = image_subresource_range.baseArrayLayer + layer_index;
VkImageSubresource sub = {image_subresource_range.aspectMask, level, layer};
// TODO: If ImageView was created with depth or stencil, transition both layouts as the aspectMask is ignored and both
// are used. Verify that the extra implicit layout is OK for descriptor set layout validation
if (image_subresource_range.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (FormatIsDepthAndStencil(image_state->createInfo.format)) {
sub.aspectMask |= (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
SetLayout(device_data, cb_node, image_state->image, sub, layout);
}
}
}
// Set image layout for given VkImageSubresourceLayers struct
void SetImageLayout(layer_data *device_data, GLOBAL_CB_NODE *cb_node, const IMAGE_STATE *image_state,
VkImageSubresourceLayers image_subresource_layers, const VkImageLayout &layout) {
// Transfer VkImageSubresourceLayers into VkImageSubresourceRange struct
VkImageSubresourceRange image_subresource_range;
image_subresource_range.aspectMask = image_subresource_layers.aspectMask;
image_subresource_range.baseArrayLayer = image_subresource_layers.baseArrayLayer;
image_subresource_range.layerCount = image_subresource_layers.layerCount;
image_subresource_range.baseMipLevel = image_subresource_layers.mipLevel;
image_subresource_range.levelCount = 1;
SetImageLayout(device_data, cb_node, image_state, image_subresource_range, layout);
}
// Set image layout for all slices of an image view
void SetImageViewLayout(layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImageView imageView, const VkImageLayout &layout) {
auto view_state = GetImageViewState(device_data, imageView);
assert(view_state);
SetImageLayout(device_data, cb_node, GetImageState(device_data, view_state->create_info.image),
view_state->create_info.subresourceRange, layout);
}
bool VerifyFramebufferAndRenderPassLayouts(layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin,
const FRAMEBUFFER_STATE *framebuffer_state) {
bool skip = false;
auto const pRenderPassInfo = GetRenderPassState(device_data, pRenderPassBegin->renderPass)->createInfo.ptr();
auto const &framebufferInfo = framebuffer_state->createInfo;
const auto report_data = core_validation::GetReportData(device_data);
if (pRenderPassInfo->attachmentCount != framebufferInfo.attachmentCount) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using a framebuffer "
"with a different number of attachments.");
}
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView &image_view = framebufferInfo.pAttachments[i];
auto view_state = GetImageViewState(device_data, image_view);
assert(view_state);
const VkImage &image = view_state->create_info.image;
const VkImageSubresourceRange &subRange = view_state->create_info.subresourceRange;
auto initial_layout = pRenderPassInfo->pAttachments[i].initialLayout;
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, image, sub, node)) {
// Missing layouts will be added during state update
continue;
}
if (initial_layout != VK_IMAGE_LAYOUT_UNDEFINED && initial_layout != node.layout) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using attachment %u "
"where the render pass initial layout is %s and the previous "
"known layout of the attachment is %s. The layouts must match, or "
"the render pass initial layout for the attachment must be "
"VK_IMAGE_LAYOUT_UNDEFINED",
i, string_VkImageLayout(initial_layout), string_VkImageLayout(node.layout));
}
}
}
}
return skip;
}
void TransitionAttachmentRefLayout(layer_data *device_data, GLOBAL_CB_NODE *pCB, FRAMEBUFFER_STATE *pFramebuffer,
VkAttachmentReference ref) {
if (ref.attachment != VK_ATTACHMENT_UNUSED) {
auto image_view = pFramebuffer->createInfo.pAttachments[ref.attachment];
SetImageViewLayout(device_data, pCB, image_view, ref.layout);
}
}
void TransitionSubpassLayouts(layer_data *device_data, GLOBAL_CB_NODE *pCB, const RENDER_PASS_STATE *render_pass_state,
const int subpass_index, FRAMEBUFFER_STATE *framebuffer_state) {
assert(render_pass_state);
if (framebuffer_state) {
auto const &subpass = render_pass_state->createInfo.pSubpasses[subpass_index];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pInputAttachments[j]);
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pColorAttachments[j]);
}
if (subpass.pDepthStencilAttachment) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, *subpass.pDepthStencilAttachment);
}
}
}
bool ValidateImageAspectLayout(layer_data *device_data, GLOBAL_CB_NODE const *pCB, const VkImageMemoryBarrier *mem_barrier,
uint32_t level, uint32_t layer, VkImageAspectFlags aspect) {
if (!(mem_barrier->subresourceRange.aspectMask & aspect)) {
return false;
}
VkImageSubresource sub = {aspect, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, mem_barrier->image, sub, node)) {
return false;
}
bool skip = false;
if (mem_barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (node.layout != mem_barrier->oldLayout) {
skip |=
log_msg(core_validation::GetReportData(device_data), VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, HandleToUint64(pCB->commandBuffer), __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"For image 0x%" PRIxLEAST64 " you cannot transition the layout of aspect %d from %s when current layout is %s.",
HandleToUint64(mem_barrier->image), aspect, string_VkImageLayout(mem_barrier->oldLayout),
string_VkImageLayout(node.layout));
}
return skip;
}
// Transition the layout state for renderpass attachments based on the BeginRenderPass() call. This includes:
// 1. Transition into initialLayout state
// 2. Transition from initialLayout to layout used in subpass 0
void TransitionBeginRenderPassLayouts(layer_data *device_data, GLOBAL_CB_NODE *cb_state, const RENDER_PASS_STATE *render_pass_state,
FRAMEBUFFER_STATE *framebuffer_state) {
// First transition into initialLayout
auto const rpci = render_pass_state->createInfo.ptr();
for (uint32_t i = 0; i < rpci->attachmentCount; ++i) {
VkImageView image_view = framebuffer_state->createInfo.pAttachments[i];
SetImageViewLayout(device_data, cb_state, image_view, rpci->pAttachments[i].initialLayout);
}
// Now transition for first subpass (index 0)
TransitionSubpassLayouts(device_data, cb_state, render_pass_state, 0, framebuffer_state);
}
void TransitionImageAspectLayout(layer_data *device_data, GLOBAL_CB_NODE *pCB, const VkImageMemoryBarrier *mem_barrier,
uint32_t level, uint32_t layer, VkImageAspectFlags aspect) {
if (!(mem_barrier->subresourceRange.aspectMask & aspect)) {
return;
}
VkImageSubresource sub = {aspect, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, mem_barrier->image, sub, node)) {
SetLayout(device_data, pCB, mem_barrier->image, sub,
IMAGE_CMD_BUF_LAYOUT_NODE(mem_barrier->oldLayout, mem_barrier->newLayout));
return;
}
if (mem_barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid
}
SetLayout(device_data, pCB, mem_barrier->image, sub, mem_barrier->newLayout);
}
bool VerifyAspectsPresent(VkImageAspectFlags aspect_mask, VkFormat format) {
if ((aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) != 0) {
if (!FormatIsColor(format)) return false;
}
if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0) {
if (!FormatHasDepth(format)) return false;
}
if ((aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0) {
if (!FormatHasStencil(format)) return false;
}
return true;
}
// Verify an ImageMemoryBarrier's old/new ImageLayouts are compatible with the Image's ImageUsageFlags.
bool ValidateBarrierLayoutToImageUsage(layer_data *device_data, const VkImageMemoryBarrier *img_barrier, bool new_not_old,
VkImageUsageFlags usage_flags, const char *func_name) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip = false;
const VkImageLayout layout = (new_not_old) ? img_barrier->newLayout : img_barrier->oldLayout;
UNIQUE_VALIDATION_ERROR_CODE msg_code = VALIDATION_ERROR_UNDEFINED; // sentinel value meaning "no error"
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
if ((usage_flags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) == 0) {
msg_code = VALIDATION_ERROR_0a000970;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
if ((usage_flags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0) {
msg_code = VALIDATION_ERROR_0a000972;
}
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
if ((usage_flags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0) {
msg_code = VALIDATION_ERROR_0a000974;
}
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
if ((usage_flags & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) == 0) {
msg_code = VALIDATION_ERROR_0a000976;
}
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
if ((usage_flags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) == 0) {
msg_code = VALIDATION_ERROR_0a000978;
}
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
if ((usage_flags & VK_IMAGE_USAGE_TRANSFER_DST_BIT) == 0) {
msg_code = VALIDATION_ERROR_0a00097a;
}
break;
default:
// Other VkImageLayout values do not have VUs defined in this context.
break;
}
if (msg_code != VALIDATION_ERROR_UNDEFINED) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(img_barrier->image), __LINE__, msg_code, "DS",
"%s: Image barrier 0x%p %sLayout=%s is not compatible with image 0x%" PRIx64 " usage flags 0x%" PRIx32 ". %s",
func_name, img_barrier, ((new_not_old) ? "new" : "old"), string_VkImageLayout(layout),
HandleToUint64(img_barrier->image), usage_flags, validation_error_map[msg_code]);
}
return skip;
}
// Verify image barriers are compatible with the images they reference.
bool ValidateBarriersToImages(layer_data *device_data, GLOBAL_CB_NODE const *cb_state, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers, const char *func_name) {
bool skip = false;
for (uint32_t i = 0; i < imageMemoryBarrierCount; ++i) {
auto img_barrier = &pImageMemoryBarriers[i];
if (!img_barrier) continue;
auto image_state = GetImageState(device_data, img_barrier->image);
if (image_state) {
VkImageUsageFlags usage_flags = image_state->createInfo.usage;
skip |= ValidateBarrierLayoutToImageUsage(device_data, img_barrier, false, usage_flags, func_name);
skip |= ValidateBarrierLayoutToImageUsage(device_data, img_barrier, true, usage_flags, func_name);
// Make sure layout is able to be transitioned, currently only presented shared presentable images are locked
if (image_state->layout_locked) {
// TODO: Add unique id for error when available
skip |= log_msg(
core_validation::GetReportData(device_data), VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, 0, "DS",
"Attempting to transition shared presentable image 0x%" PRIxLEAST64
" from layout %s to layout %s, but image has already been presented and cannot have its layout transitioned.",
reinterpret_cast<const uint64_t &>(img_barrier->image), string_VkImageLayout(img_barrier->oldLayout),
string_VkImageLayout(img_barrier->newLayout));
}
}
VkImageCreateInfo *image_create_info = &(GetImageState(device_data, img_barrier->image)->createInfo);
// For a Depth/Stencil image both aspects MUST be set
if (FormatIsDepthAndStencil(image_create_info->format)) {
auto const aspect_mask = img_barrier->subresourceRange.aspectMask;
auto const ds_mask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if ((aspect_mask & ds_mask) != (ds_mask)) {
skip |=
log_msg(core_validation::GetReportData(device_data), VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(img_barrier->image), __LINE__,
VALIDATION_ERROR_0a00096e, "DS",
"%s: Image barrier 0x%p references image 0x%" PRIx64
" of format %s that must have the depth and stencil aspects set, but its "
"aspectMask is 0x%" PRIx32 ". %s",
func_name, img_barrier, HandleToUint64(img_barrier->image), string_VkFormat(image_create_info->format),
aspect_mask, validation_error_map[VALIDATION_ERROR_0a00096e]);
}
}
uint32_t level_count = ResolveRemainingLevels(&img_barrier->subresourceRange, image_create_info->mipLevels);
uint32_t layer_count = ResolveRemainingLayers(&img_barrier->subresourceRange, image_create_info->arrayLayers);
for (uint32_t j = 0; j < level_count; j++) {
uint32_t level = img_barrier->subresourceRange.baseMipLevel + j;
for (uint32_t k = 0; k < layer_count; k++) {
uint32_t layer = img_barrier->subresourceRange.baseArrayLayer + k;
skip |= ValidateImageAspectLayout(device_data, cb_state, img_barrier, level, layer, VK_IMAGE_ASPECT_COLOR_BIT);
skip |= ValidateImageAspectLayout(device_data, cb_state, img_barrier, level, layer, VK_IMAGE_ASPECT_DEPTH_BIT);
skip |= ValidateImageAspectLayout(device_data, cb_state, img_barrier, level, layer, VK_IMAGE_ASPECT_STENCIL_BIT);
skip |= ValidateImageAspectLayout(device_data, cb_state, img_barrier, level, layer, VK_IMAGE_ASPECT_METADATA_BIT);
}
}
}
return skip;
}
void TransitionImageLayouts(layer_data *device_data, VkCommandBuffer cmdBuffer, uint32_t memBarrierCount,
const VkImageMemoryBarrier *pImgMemBarriers) {
GLOBAL_CB_NODE *pCB = GetCBNode(device_data, cmdBuffer);
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = &pImgMemBarriers[i];
if (!mem_barrier) continue;
VkImageCreateInfo *image_create_info = &(GetImageState(device_data, mem_barrier->image)->createInfo);
uint32_t level_count = ResolveRemainingLevels(&mem_barrier->subresourceRange, image_create_info->mipLevels);
uint32_t layer_count = ResolveRemainingLayers(&mem_barrier->subresourceRange, image_create_info->arrayLayers);
for (uint32_t j = 0; j < level_count; j++) {
uint32_t level = mem_barrier->subresourceRange.baseMipLevel + j;
for (uint32_t k = 0; k < layer_count; k++) {
uint32_t layer = mem_barrier->subresourceRange.baseArrayLayer + k;
TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_COLOR_BIT);
TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_DEPTH_BIT);
TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_STENCIL_BIT);
TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_METADATA_BIT);
}
}
}
}
bool VerifyImageLayout(layer_data const *device_data, GLOBAL_CB_NODE const *cb_node, IMAGE_STATE *image_state,
VkImageSubresourceLayers subLayers, VkImageLayout explicit_layout, VkImageLayout optimal_layout,
const char *caller, UNIQUE_VALIDATION_ERROR_CODE msg_code, bool *error) {
const auto report_data = core_validation::GetReportData(device_data);
const auto image = image_state->image;
bool skip = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (FindCmdBufLayout(device_data, cb_node, image, sub, node)) {
if (node.layout != explicit_layout) {
*error = true;
// TODO: Improve log message in the next pass
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"%s: Cannot use image 0x%" PRIxLEAST64
" with specific layout %s that doesn't match the actual current layout %s.",
caller, HandleToUint64(image), string_VkImageLayout(explicit_layout),
string_VkImageLayout(node.layout));
}
}
}
// If optimal_layout is not UNDEFINED, check that layout matches optimal for this case
if ((VK_IMAGE_LAYOUT_UNDEFINED != optimal_layout) && (explicit_layout != optimal_layout)) {
if (VK_IMAGE_LAYOUT_GENERAL == explicit_layout) {
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, HandleToUint64(cb_node->commandBuffer), __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"%s: For optimal performance image 0x%" PRIxLEAST64 " layout should be %s instead of GENERAL.",
caller, HandleToUint64(image), string_VkImageLayout(optimal_layout));
}
} else if (GetDeviceExtensions(device_data)->vk_khr_shared_presentable_image) {
if (image_state->shared_presentable) {
if (VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR != explicit_layout) {
// TODO: Add unique error id when available.
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, msg_code, "DS",
"Layout for shared presentable image is %s but must be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR.",
string_VkImageLayout(optimal_layout));
}
}
} else {
*error = true;
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, msg_code, "DS",
"%s: Layout for image 0x%" PRIxLEAST64 " is %s but can only be %s or VK_IMAGE_LAYOUT_GENERAL. %s",
caller, HandleToUint64(image), string_VkImageLayout(explicit_layout),
string_VkImageLayout(optimal_layout), validation_error_map[msg_code]);
}
}
return skip;
}
void TransitionFinalSubpassLayouts(layer_data *device_data, GLOBAL_CB_NODE *pCB, const VkRenderPassBeginInfo *pRenderPassBegin,
FRAMEBUFFER_STATE *framebuffer_state) {
auto renderPass = GetRenderPassState(device_data, pRenderPassBegin->renderPass);
if (!renderPass) return;
const VkRenderPassCreateInfo *pRenderPassInfo = renderPass->createInfo.ptr();
if (framebuffer_state) {
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
auto image_view = framebuffer_state->createInfo.pAttachments[i];
SetImageViewLayout(device_data, pCB, image_view, pRenderPassInfo->pAttachments[i].finalLayout);
}
}
}
bool PreCallValidateCreateImage(layer_data *device_data, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (pCreateInfo->format == VK_FORMAT_UNDEFINED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e0075e, "IMAGE", "vkCreateImage: VkFormat for image must not be VK_FORMAT_UNDEFINED. %s",
validation_error_map[VALIDATION_ERROR_09e0075e]);
return skip;
}
VkFormatProperties properties = GetFormatProperties(device_data, pCreateInfo->format);
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) && (properties.linearTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007a2, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007a2]);
return skip;
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) && (properties.optimalTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007ac, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007ac]);
return skip;
}
// TODO: Add checks for EXTENDED_USAGE images to validate images are compatible
// For EXTENDED_USAGE images, format can match any image COMPATIBLE with original image
if (!GetDeviceExtensions(device_data)->vk_khr_maintenance2 || !(pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR)) {
// Validate that format supports usage as color attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007b2, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007b2]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007a8, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007a8]);
}
}
// Validate that format supports usage as depth/stencil attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007b4, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007b4]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007aa, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_09e007aa]);
}
}
}
VkImageFormatProperties ImageFormatProperties = GetImageFormatProperties(
device_data, pCreateInfo->format, pCreateInfo->imageType, pCreateInfo->tiling, pCreateInfo->usage, pCreateInfo->flags);
VkDeviceSize imageGranularity = GetPhysicalDeviceProperties(device_data)->limits.bufferImageGranularity;
imageGranularity = imageGranularity == 1 ? 0 : imageGranularity;
// TODO : This is also covering 2918 & 2919. Break out into separate checks
if ((pCreateInfo->extent.width <= 0) || (pCreateInfo->extent.height <= 0) || (pCreateInfo->extent.depth <= 0)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_09e007b8, "Image",
"CreateImage extent is 0 for at least one required dimension for image: "
"Width = %d Height = %d Depth = %d. %s",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
validation_error_map[VALIDATION_ERROR_09e007b8]);
}
// TODO: VALIDATION_ERROR_09e00770 VALIDATION_ERROR_09e00772 VALIDATION_ERROR_09e00776 VALIDATION_ERROR_09e0076e
// All these extent-related VUs should be checked here
if ((pCreateInfo->extent.depth > ImageFormatProperties.maxExtent.depth) ||
(pCreateInfo->extent.width > ImageFormatProperties.maxExtent.width) ||
(pCreateInfo->extent.height > ImageFormatProperties.maxExtent.height)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage extents exceed allowable limits for format: "
"Width = %d Height = %d Depth = %d: Limits for Width = %d Height = %d Depth = %d for format %s.",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
ImageFormatProperties.maxExtent.width, ImageFormatProperties.maxExtent.height,
ImageFormatProperties.maxExtent.depth, string_VkFormat(pCreateInfo->format));
}
uint64_t totalSize =
((uint64_t)pCreateInfo->extent.width * (uint64_t)pCreateInfo->extent.height * (uint64_t)pCreateInfo->extent.depth *
(uint64_t)pCreateInfo->arrayLayers * (uint64_t)pCreateInfo->samples * (uint64_t)FormatSize(pCreateInfo->format) +
(uint64_t)imageGranularity) &
~(uint64_t)imageGranularity;
if (totalSize > ImageFormatProperties.maxResourceSize) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage resource size exceeds allowable maximum "
"Image resource size = 0x%" PRIxLEAST64 ", maximum resource size = 0x%" PRIxLEAST64 " ",
totalSize, ImageFormatProperties.maxResourceSize);
}
// TODO: VALIDATION_ERROR_09e0077e
if (pCreateInfo->mipLevels > ImageFormatProperties.maxMipLevels) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage mipLevels=%d exceeds allowable maximum supported by format of %d", pCreateInfo->mipLevels,
ImageFormatProperties.maxMipLevels);
}
if (pCreateInfo->arrayLayers > ImageFormatProperties.maxArrayLayers) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_09e00780, "Image",
"CreateImage arrayLayers=%d exceeds allowable maximum supported by format of %d. %s", pCreateInfo->arrayLayers,
ImageFormatProperties.maxArrayLayers, validation_error_map[VALIDATION_ERROR_09e00780]);
}
if ((pCreateInfo->samples & ImageFormatProperties.sampleCounts) == 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_09e0078e, "Image", "CreateImage samples %s is not supported by format 0x%.8X. %s",
string_VkSampleCountFlagBits(pCreateInfo->samples), ImageFormatProperties.sampleCounts,
validation_error_map[VALIDATION_ERROR_09e0078e]);
}
if (pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_UNDEFINED && pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_PREINITIALIZED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_09e0b801, "Image",
"vkCreateImage parameter, pCreateInfo->initialLayout, must be VK_IMAGE_LAYOUT_UNDEFINED or "
"VK_IMAGE_LAYOUT_PREINITIALIZED. %s",
validation_error_map[VALIDATION_ERROR_09e0b801]);
}
if ((pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) && (!GetEnabledFeatures(device_data)->sparseBinding)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_09e00792, "DS",
"vkCreateImage(): the sparseBinding device feature is disabled: Images cannot be created with the "
"VK_IMAGE_CREATE_SPARSE_BINDING_BIT set. %s",
validation_error_map[VALIDATION_ERROR_09e00792]);
}
if ((pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_ALIASED_BIT) && (!GetEnabledFeatures(device_data)->sparseResidencyAliased)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_FEATURE, "DS",
"vkCreateImage(): the sparseResidencyAliased device feature is disabled: Images cannot be created with the "
"VK_IMAGE_CREATE_SPARSE_ALIASED_BIT set.");
}
if (GetDeviceExtensions(device_data)->vk_khr_maintenance2) {
if (pCreateInfo->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) {
if (!(FormatIsCompressed_BC(pCreateInfo->format) || FormatIsCompressed_ASTC_LDR(pCreateInfo->format) ||
FormatIsCompressed_ETC2_EAC(pCreateInfo->format))) {
// TODO: Add Maintenance2 VUID
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_UNDEFINED, "DS",
"vkCreateImage(): If pCreateInfo->flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR, "
"format must be block, ETC or ASTC compressed, but is %s",
string_VkFormat(pCreateInfo->format));
}
if (!(pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) {
// TODO: Add Maintenance2 VUID
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_UNDEFINED, "DS",
"vkCreateImage(): If pCreateInfo->flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR, "
"flags must also contain VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT.");
}
}
}
return skip;
}
void PostCallRecordCreateImage(layer_data *device_data, const VkImageCreateInfo *pCreateInfo, VkImage *pImage) {
IMAGE_LAYOUT_NODE image_state;
image_state.layout = pCreateInfo->initialLayout;
image_state.format = pCreateInfo->format;
GetImageMap(device_data)->insert(std::make_pair(*pImage, std::unique_ptr<IMAGE_STATE>(new IMAGE_STATE(*pImage, pCreateInfo))));
ImageSubresourcePair subpair{*pImage, false, VkImageSubresource()};
(*core_validation::GetImageSubresourceMap(device_data))[*pImage].push_back(subpair);
(*core_validation::GetImageLayoutMap(device_data))[subpair] = image_state;
}
bool PreCallValidateDestroyImage(layer_data *device_data, VkImage image, IMAGE_STATE **image_state, VK_OBJECT *obj_struct) {
const CHECK_DISABLED *disabled = core_validation::GetDisables(device_data);
*image_state = core_validation::GetImageState(device_data, image);
*obj_struct = {HandleToUint64(image), kVulkanObjectTypeImage};
if (disabled->destroy_image) return false;
bool skip = false;
if (*image_state) {
skip |= core_validation::ValidateObjectNotInUse(device_data, *image_state, *obj_struct, VALIDATION_ERROR_252007d0);
}
return skip;
}
void PostCallRecordDestroyImage(layer_data *device_data, VkImage image, IMAGE_STATE *image_state, VK_OBJECT obj_struct) {
core_validation::invalidateCommandBuffers(device_data, image_state->cb_bindings, obj_struct);
// Clean up memory mapping, bindings and range references for image
for (auto mem_binding : image_state->GetBoundMemory()) {
auto mem_info = core_validation::GetMemObjInfo(device_data, mem_binding);
if (mem_info) {
core_validation::RemoveImageMemoryRange(obj_struct.handle, mem_info);
}
}
core_validation::ClearMemoryObjectBindings(device_data, obj_struct.handle, kVulkanObjectTypeImage);
// Remove image from imageMap
core_validation::GetImageMap(device_data)->erase(image);
std::unordered_map<VkImage, std::vector<ImageSubresourcePair>> *imageSubresourceMap =
core_validation::GetImageSubresourceMap(device_data);
const auto &sub_entry = imageSubresourceMap->find(image);
if (sub_entry != imageSubresourceMap->end()) {
for (const auto &pair : sub_entry->second) {
core_validation::GetImageLayoutMap(device_data)->erase(pair);
}
imageSubresourceMap->erase(sub_entry);
}
}
bool ValidateImageAttributes(layer_data *device_data, IMAGE_STATE *image_state, VkImageSubresourceRange range) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (range.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT) {
char const str[] = "vkCmdClearColorImage aspectMasks for all subresource ranges must be set to VK_IMAGE_ASPECT_COLOR_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
if (FormatIsDepthOrStencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_1880000e, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_1880000e]);
} else if (FormatIsCompressed(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with compressed image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_1880000e, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_1880000e]);
}
if (!(image_state->createInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
char const str[] = "vkCmdClearColorImage called with image created without VK_IMAGE_USAGE_TRANSFER_DST_BIT.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_18800004, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_18800004]);
}
return skip;
}
uint32_t ResolveRemainingLevels(const VkImageSubresourceRange *range, uint32_t mip_levels) {
// Return correct number of mip levels taking into account VK_REMAINING_MIP_LEVELS
uint32_t mip_level_count = range->levelCount;
if (range->levelCount == VK_REMAINING_MIP_LEVELS) {
mip_level_count = mip_levels - range->baseMipLevel;
}
return mip_level_count;
}
uint32_t ResolveRemainingLayers(const VkImageSubresourceRange *range, uint32_t layers) {
// Return correct number of layers taking into account VK_REMAINING_ARRAY_LAYERS
uint32_t array_layer_count = range->layerCount;
if (range->layerCount == VK_REMAINING_ARRAY_LAYERS) {
array_layer_count = layers - range->baseArrayLayer;
}
return array_layer_count;
}
bool VerifyClearImageLayout(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *image_state,
VkImageSubresourceRange range, VkImageLayout dest_image_layout, const char *func_name) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
uint32_t level_count = ResolveRemainingLevels(&range, image_state->createInfo.mipLevels);
uint32_t layer_count = ResolveRemainingLayers(&range, image_state->createInfo.arrayLayers);
if (dest_image_layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (dest_image_layout == VK_IMAGE_LAYOUT_GENERAL) {
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"%s: Layout for cleared image should be TRANSFER_DST_OPTIMAL instead of GENERAL.", func_name);
}
} else if (VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR == dest_image_layout) {
if (!GetDeviceExtensions(device_data)->vk_khr_shared_presentable_image) {
// TODO: Add unique error id when available.
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, 0, "DS",
"Must enable VK_KHR_shared_presentable_image extension before creating images with a layout type "
"of VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR.");
} else {
if (image_state->shared_presentable) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, 0, "DS",
"Layout for shared presentable cleared image is %s but can only be VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR.",
string_VkImageLayout(dest_image_layout));
}
}
} else {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_1880000a;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_18a00018;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, error_code, "DS",
"%s: Layout for cleared image is %s but can only be "
"TRANSFER_DST_OPTIMAL or GENERAL. %s",
func_name, string_VkImageLayout(dest_image_layout), validation_error_map[error_code]);
}
}
for (uint32_t level_index = 0; level_index < level_count; ++level_index) {
uint32_t level = level_index + range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < layer_count; ++layer_index) {
uint32_t layer = layer_index + range.baseArrayLayer;
VkImageSubresource sub = {range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (FindCmdBufLayout(device_data, cb_node, image_state->image, sub, node)) {
if (node.layout != dest_image_layout) {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_18800008;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_18a00016;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, error_code, "DS",
"%s: Cannot clear an image whose layout is %s and "
"doesn't match the current layout %s. %s",
func_name, string_VkImageLayout(dest_image_layout), string_VkImageLayout(node.layout),
validation_error_map[error_code]);
}
}
}
}
return skip;
}
void RecordClearImageLayout(layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage image, VkImageSubresourceRange range,
VkImageLayout dest_image_layout) {
VkImageCreateInfo *image_create_info = &(GetImageState(device_data, image)->createInfo);
uint32_t level_count = ResolveRemainingLevels(&range, image_create_info->mipLevels);
uint32_t layer_count = ResolveRemainingLayers(&range, image_create_info->arrayLayers);
for (uint32_t level_index = 0; level_index < level_count; ++level_index) {
uint32_t level = level_index + range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < layer_count; ++layer_index) {
uint32_t layer = layer_index + range.baseArrayLayer;
VkImageSubresource sub = {range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, image, sub, node)) {
SetLayout(device_data, cb_node, image, sub, IMAGE_CMD_BUF_LAYOUT_NODE(dest_image_layout, dest_image_layout));
}
}
}
}
bool PreCallValidateCmdClearColorImage(layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
bool skip = false;
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = GetCBNode(dev_data, commandBuffer);
auto image_state = GetImageState(dev_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(dev_data, image_state, "vkCmdClearColorImage()", VALIDATION_ERROR_18800006);
skip |= ValidateCmdQueueFlags(dev_data, cb_node, "vkCmdClearColorImage()", VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT,
VALIDATION_ERROR_18802415);
skip |= ValidateCmd(dev_data, cb_node, CMD_CLEARCOLORIMAGE, "vkCmdClearColorImage()");
skip |= insideRenderPass(dev_data, cb_node, "vkCmdClearColorImage()", VALIDATION_ERROR_18800017);
for (uint32_t i = 0; i < rangeCount; ++i) {
std::string param_name = "pRanges[" + std::to_string(i) + "]";
skip |= ValidateCmdClearColorSubresourceRange(dev_data, image_state, pRanges[i], param_name.c_str());
skip |= ValidateImageAttributes(dev_data, image_state, pRanges[i]);
skip |= VerifyClearImageLayout(dev_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearColorImage()");
}
}
return skip;
}
// This state recording routine is shared between ClearColorImage and ClearDepthStencilImage
void PreCallRecordCmdClearImage(layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
auto cb_node = GetCBNode(dev_data, commandBuffer);
auto image_state = GetImageState(dev_data, image);
if (cb_node && image_state) {
AddCommandBufferBindingImage(dev_data, cb_node, image_state);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, image_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
for (uint32_t i = 0; i < rangeCount; ++i) {
RecordClearImageLayout(dev_data, cb_node, image, pRanges[i], imageLayout);
}
}
}
bool PreCallValidateCmdClearDepthStencilImage(layer_data *device_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = GetCBNode(device_data, commandBuffer);
auto image_state = GetImageState(device_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(device_data, image_state, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_18a00014);
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdClearDepthStencilImage()", VK_QUEUE_GRAPHICS_BIT,
VALIDATION_ERROR_18a02415);
skip |= ValidateCmd(device_data, cb_node, CMD_CLEARDEPTHSTENCILIMAGE, "vkCmdClearDepthStencilImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_18a00017);
for (uint32_t i = 0; i < rangeCount; ++i) {
std::string param_name = "pRanges[" + std::to_string(i) + "]";
skip |= ValidateCmdClearDepthSubresourceRange(device_data, image_state, pRanges[i], param_name.c_str());
skip |=
VerifyClearImageLayout(device_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearDepthStencilImage()");
// Image aspect must be depth or stencil or both
if (((pRanges[i].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) &&
((pRanges[i].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] =
"vkCmdClearDepthStencilImage aspectMasks for all subresource ranges must be "
"set to VK_IMAGE_ASPECT_DEPTH_BIT and/or VK_IMAGE_ASPECT_STENCIL_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
}
if (image_state && !FormatIsDepthOrStencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearDepthStencilImage called without a depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_18a0001c, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_18a0001c]);
}
}
return skip;
}
// Returns true if [x, xoffset] and [y, yoffset] overlap
static bool RangesIntersect(int32_t start, uint32_t start_offset, int32_t end, uint32_t end_offset) {
bool result = false;
uint32_t intersection_min = std::max(static_cast<uint32_t>(start), static_cast<uint32_t>(end));
uint32_t intersection_max = std::min(static_cast<uint32_t>(start) + start_offset, static_cast<uint32_t>(end) + end_offset);
if (intersection_max > intersection_min) {
result = true;
}
return result;
}
// Returns true if two VkImageCopy structures overlap
static bool RegionIntersects(const VkImageCopy *src, const VkImageCopy *dst, VkImageType type) {
bool result = false;
if ((src->srcSubresource.mipLevel == dst->dstSubresource.mipLevel) &&
(RangesIntersect(src->srcSubresource.baseArrayLayer, src->srcSubresource.layerCount, dst->dstSubresource.baseArrayLayer,
dst->dstSubresource.layerCount))) {
result = true;
switch (type) {
case VK_IMAGE_TYPE_3D:
result &= RangesIntersect(src->srcOffset.z, src->extent.depth, dst->dstOffset.z, dst->extent.depth);
// Intentionally fall through to 2D case
case VK_IMAGE_TYPE_2D:
result &= RangesIntersect(src->srcOffset.y, src->extent.height, dst->dstOffset.y, dst->extent.height);
// Intentionally fall through to 1D case
case VK_IMAGE_TYPE_1D:
result &= RangesIntersect(src->srcOffset.x, src->extent.width, dst->dstOffset.x, dst->extent.width);
break;
default:
// Unrecognized or new IMAGE_TYPE enums will be caught in parameter_validation
assert(false);
}
}
return result;
}
// Returns non-zero if offset and extent exceed image extents
static const uint32_t x_bit = 1;
static const uint32_t y_bit = 2;
static const uint32_t z_bit = 4;
static uint32_t ExceedsBounds(const VkOffset3D *offset, const VkExtent3D *extent, const VkExtent3D *image_extent) {
uint32_t result = 0;
// Extents/depths cannot be negative but checks left in for clarity
if ((offset->z + extent->depth > image_extent->depth) || (offset->z < 0) ||
((offset->z + static_cast<int32_t>(extent->depth)) < 0)) {
result |= z_bit;
}
if ((offset->y + extent->height > image_extent->height) || (offset->y < 0) ||
((offset->y + static_cast<int32_t>(extent->height)) < 0)) {
result |= y_bit;
}
if ((offset->x + extent->width > image_extent->width) || (offset->x < 0) ||
((offset->x + static_cast<int32_t>(extent->width)) < 0)) {
result |= x_bit;
}
return result;
}
// Test if two VkExtent3D structs are equivalent
static inline bool IsExtentEqual(const VkExtent3D *extent, const VkExtent3D *other_extent) {
bool result = true;
if ((extent->width != other_extent->width) || (extent->height != other_extent->height) ||
(extent->depth != other_extent->depth)) {
result = false;
}
return result;
}
// Returns the effective extent of an image subresource, adjusted for mip level and array depth.
static inline VkExtent3D GetImageSubresourceExtent(const IMAGE_STATE *img, const VkImageSubresourceLayers *subresource) {
const uint32_t mip = subresource->mipLevel;
// Return zero extent if mip level doesn't exist
if (mip >= img->createInfo.mipLevels) {
return VkExtent3D{0, 0, 0};
}
// Don't allow mip adjustment to create 0 dim, but pass along a 0 if that's what subresource specified
VkExtent3D extent = img->createInfo.extent;
extent.width = (0 == extent.width ? 0 : std::max(1U, extent.width >> mip));
extent.height = (0 == extent.height ? 0 : std::max(1U, extent.height >> mip));
extent.depth = (0 == extent.depth ? 0 : std::max(1U, extent.depth >> mip));
// Image arrays have an effective z extent that isn't diminished by mip level
if (VK_IMAGE_TYPE_3D != img->createInfo.imageType) {
extent.depth = img->createInfo.arrayLayers;
}
return extent;
}
// Test if the extent argument has all dimensions set to 0.
static inline bool IsExtentAllZeroes(const VkExtent3D *extent) {
return ((extent->width == 0) && (extent->height == 0) && (extent->depth == 0));
}
// Test if the extent argument has any dimensions set to 0.
static inline bool IsExtentSizeZero(const VkExtent3D *extent) {
return ((extent->width == 0) || (extent->height == 0) || (extent->depth == 0));
}
// Returns the image transfer granularity for a specific image scaled by compressed block size if necessary.
static inline VkExtent3D GetScaledItg(layer_data *device_data, const GLOBAL_CB_NODE *cb_node, const IMAGE_STATE *img) {
// Default to (0, 0, 0) granularity in case we can't find the real granularity for the physical device.
VkExtent3D granularity = {0, 0, 0};
auto pPool = GetCommandPoolNode(device_data, cb_node->createInfo.commandPool);
if (pPool) {
granularity =
GetPhysDevProperties(device_data)->queue_family_properties[pPool->queueFamilyIndex].minImageTransferGranularity;
if (FormatIsCompressed(img->createInfo.format)) {
auto block_size = FormatCompressedTexelBlockExtent(img->createInfo.format);
granularity.width *= block_size.width;
granularity.height *= block_size.height;
}
}
return granularity;
}
// Test elements of a VkExtent3D structure against alignment constraints contained in another VkExtent3D structure
static inline bool IsExtentAligned(const VkExtent3D *extent, const VkExtent3D *granularity) {
bool valid = true;
if ((SafeModulo(extent->depth, granularity->depth) != 0) || (SafeModulo(extent->width, granularity->width) != 0) ||
(SafeModulo(extent->height, granularity->height) != 0)) {
valid = false;
}
return valid;
}
// Check elements of a VkOffset3D structure against a queue family's Image Transfer Granularity values
static inline bool CheckItgOffset(layer_data *device_data, const GLOBAL_CB_NODE *cb_node, const VkOffset3D *offset,
const VkExtent3D *granularity, const uint32_t i, const char *function, const char *member) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
VkExtent3D offset_extent = {};
offset_extent.width = static_cast<uint32_t>(abs(offset->x));
offset_extent.height = static_cast<uint32_t>(abs(offset->y));
offset_extent.depth = static_cast<uint32_t>(abs(offset->z));
if (IsExtentAllZeroes(granularity)) {
// If the queue family image transfer granularity is (0, 0, 0), then the offset must always be (0, 0, 0)
if (IsExtentAllZeroes(&offset_extent) == false) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (x=%d, y=%d, z=%d) must be (x=0, y=0, z=0) "
"when the command buffer's queue family image transfer granularity is (w=0, h=0, d=0).",
function, i, member, offset->x, offset->y, offset->z);
}
} else {
// If the queue family image transfer granularity is not (0, 0, 0), then the offset dimensions must always be even
// integer multiples of the image transfer granularity.
if (IsExtentAligned(&offset_extent, granularity) == false) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (x=%d, y=%d, z=%d) dimensions must be even integer "
"multiples of this command buffer's queue family image transfer granularity (w=%d, h=%d, d=%d).",
function, i, member, offset->x, offset->y, offset->z, granularity->width, granularity->height,
granularity->depth);
}
}
return skip;
}
// Check elements of a VkExtent3D structure against a queue family's Image Transfer Granularity values
static inline bool CheckItgExtent(layer_data *device_data, const GLOBAL_CB_NODE *cb_node, const VkExtent3D *extent,
const VkOffset3D *offset, const VkExtent3D *granularity, const VkExtent3D *subresource_extent,
const uint32_t i, const char *function, const char *member) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (IsExtentAllZeroes(granularity)) {
// If the queue family image transfer granularity is (0, 0, 0), then the extent must always match the image
// subresource extent.
if (IsExtentEqual(extent, subresource_extent) == false) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (w=%d, h=%d, d=%d) must match the image subresource extents (w=%d, h=%d, d=%d) "
"when the command buffer's queue family image transfer granularity is (w=0, h=0, d=0).",
function, i, member, extent->width, extent->height, extent->depth, subresource_extent->width,
subresource_extent->height, subresource_extent->depth);
}
} else {
// If the queue family image transfer granularity is not (0, 0, 0), then the extent dimensions must always be even
// integer multiples of the image transfer granularity or the offset + extent dimensions must always match the image
// subresource extent dimensions.
VkExtent3D offset_extent_sum = {};
offset_extent_sum.width = static_cast<uint32_t>(abs(offset->x)) + extent->width;
offset_extent_sum.height = static_cast<uint32_t>(abs(offset->y)) + extent->height;
offset_extent_sum.depth = static_cast<uint32_t>(abs(offset->z)) + extent->depth;
bool x_ok =
((0 == SafeModulo(extent->width, granularity->width)) || (subresource_extent->width == offset_extent_sum.width));
bool y_ok =
((0 == SafeModulo(extent->height, granularity->height)) || (subresource_extent->height == offset_extent_sum.height));
bool z_ok =
((0 == SafeModulo(extent->depth, granularity->depth)) || (subresource_extent->depth == offset_extent_sum.depth));
if (!(x_ok && y_ok && z_ok)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (w=%d, h=%d, d=%d) dimensions must be even integer multiples of this command buffer's "
"queue family image transfer granularity (w=%d, h=%d, d=%d) or offset (x=%d, y=%d, z=%d) + "
"extent (w=%d, h=%d, d=%d) must match the image subresource extents (w=%d, h=%d, d=%d).",
function, i, member, extent->width, extent->height, extent->depth, granularity->width, granularity->height,
granularity->depth, offset->x, offset->y, offset->z, extent->width, extent->height, extent->depth,
subresource_extent->width, subresource_extent->height, subresource_extent->depth);
}
}
return skip;
}
// Check a uint32_t width or stride value against a queue family's Image Transfer Granularity width value
static inline bool CheckItgInt(layer_data *device_data, const GLOBAL_CB_NODE *cb_node, const uint32_t value,
const uint32_t granularity, const uint32_t i, const char *function, const char *member) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (SafeModulo(value, granularity) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (%d) must be an even integer multiple of this command buffer's queue family image "
"transfer granularity width (%d).",
function, i, member, value, granularity);
}
return skip;
}
// Check a VkDeviceSize value against a queue family's Image Transfer Granularity width value
static inline bool CheckItgSize(layer_data *device_data, const GLOBAL_CB_NODE *cb_node, const VkDeviceSize value,
const uint32_t granularity, const uint32_t i, const char *function, const char *member) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (SafeModulo(value, granularity) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (%" PRIdLEAST64
") must be an even integer multiple of this command buffer's queue family image transfer "
"granularity width (%d).",
function, i, member, value, granularity);
}
return skip;
}
// Check valid usage Image Tranfer Granularity requirements for elements of a VkBufferImageCopy structure
bool ValidateCopyBufferImageTransferGranularityRequirements(layer_data *device_data, const GLOBAL_CB_NODE *cb_node,
const IMAGE_STATE *img, const VkBufferImageCopy *region,
const uint32_t i, const char *function) {
bool skip = false;
if (FormatIsCompressed(img->createInfo.format) == true) {
// TODO: Add granularity checking for compressed formats
// bufferRowLength must be a multiple of the compressed texel block width
// bufferImageHeight must be a multiple of the compressed texel block height
// all members of imageOffset must be a multiple of the corresponding dimensions of the compressed texel block
// bufferOffset must be a multiple of the compressed texel block size in bytes
// imageExtent.width must be a multiple of the compressed texel block width or (imageExtent.width + imageOffset.x)
// must equal the image subresource width
// imageExtent.height must be a multiple of the compressed texel block height or (imageExtent.height + imageOffset.y)
// must equal the image subresource height
// imageExtent.depth must be a multiple of the compressed texel block depth or (imageExtent.depth + imageOffset.z)
// must equal the image subresource depth
} else {
VkExtent3D granularity = GetScaledItg(device_data, cb_node, img);
skip |= CheckItgSize(device_data, cb_node, region->bufferOffset, granularity.width, i, function, "bufferOffset");
skip |= CheckItgInt(device_data, cb_node, region->bufferRowLength, granularity.width, i, function, "bufferRowLength");
skip |= CheckItgInt(device_data, cb_node, region->bufferImageHeight, granularity.width, i, function, "bufferImageHeight");
skip |= CheckItgOffset(device_data, cb_node, &region->imageOffset, &granularity, i, function, "imageOffset");
VkExtent3D subresource_extent = GetImageSubresourceExtent(img, &region->imageSubresource);
skip |= CheckItgExtent(device_data, cb_node, &region->imageExtent, &region->imageOffset, &granularity, &subresource_extent,
i, function, "imageExtent");
}
return skip;
}
// Check valid usage Image Tranfer Granularity requirements for elements of a VkImageCopy structure
bool ValidateCopyImageTransferGranularityRequirements(layer_data *device_data, const GLOBAL_CB_NODE *cb_node,
const IMAGE_STATE *src_img, const IMAGE_STATE *dst_img,
const VkImageCopy *region, const uint32_t i, const char *function) {
bool skip = false;
VkExtent3D granularity = GetScaledItg(device_data, cb_node, src_img);
skip |= CheckItgOffset(device_data, cb_node, &region->srcOffset, &granularity, i, function, "srcOffset");
VkExtent3D subresource_extent = GetImageSubresourceExtent(src_img, &region->srcSubresource);
skip |= CheckItgExtent(device_data, cb_node, &region->extent, &region->srcOffset, &granularity, &subresource_extent, i,
function, "extent");
granularity = GetScaledItg(device_data, cb_node, dst_img);
skip |= CheckItgOffset(device_data, cb_node, &region->dstOffset, &granularity, i, function, "dstOffset");
subresource_extent = GetImageSubresourceExtent(dst_img, &region->dstSubresource);
skip |= CheckItgExtent(device_data, cb_node, &region->extent, &region->dstOffset, &granularity, &subresource_extent, i,
function, "extent");
return skip;
}
// Validate contents of a VkImageCopy struct
bool ValidateImageCopyData(const layer_data *device_data, const debug_report_data *report_data, const uint32_t regionCount,
const VkImageCopy *ic_regions, const IMAGE_STATE *src_state, const IMAGE_STATE *dst_state) {
bool skip = false;
for (uint32_t i = 0; i < regionCount; i++) {
VkImageCopy image_copy = ic_regions[i];
bool slice_override = false;
uint32_t depth_slices = 0;
// Special case for copying between a 1D/2D array and a 3D image
// TBD: This seems like the only way to reconcile 3 mutually-exclusive VU checks for 2D/3D copies. Heads up.
if ((VK_IMAGE_TYPE_3D == src_state->createInfo.imageType) && (VK_IMAGE_TYPE_3D != dst_state->createInfo.imageType)) {
depth_slices = image_copy.dstSubresource.layerCount; // Slice count from 2D subresource
slice_override = (depth_slices != 1);
} else if ((VK_IMAGE_TYPE_3D == dst_state->createInfo.imageType) && (VK_IMAGE_TYPE_3D != src_state->createInfo.imageType)) {
depth_slices = image_copy.srcSubresource.layerCount; // Slice count from 2D subresource
slice_override = (depth_slices != 1);
}
// Do all checks on source image
//
if (src_state->createInfo.imageType == VK_IMAGE_TYPE_1D) {
if ((0 != image_copy.srcOffset.y) || (1 != image_copy.extent.height)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c00124, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcOffset.y is %d and extent.height is %d. For 1D images these must "
"be 0 and 1, respectively. %s",
i, image_copy.srcOffset.y, image_copy.extent.height, validation_error_map[VALIDATION_ERROR_09c00124]);
}
}
if ((src_state->createInfo.imageType == VK_IMAGE_TYPE_1D) || (src_state->createInfo.imageType == VK_IMAGE_TYPE_2D)) {
if ((0 != image_copy.srcOffset.z) || (1 != image_copy.extent.depth)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c00128, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcOffset.z is %d and extent.depth is %d. For 1D and 2D images "
"these must be 0 and 1, respectively. %s",
i, image_copy.srcOffset.z, image_copy.extent.depth, validation_error_map[VALIDATION_ERROR_09c00128]);
}
}
// VU01199 changed with mnt1
if (GetDeviceExtensions(device_data)->vk_khr_maintenance1) {
if (src_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != image_copy.srcSubresource.baseArrayLayer) || (1 != image_copy.srcSubresource.layerCount)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0011a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcSubresource.baseArrayLayer is %d and srcSubresource.layerCount "
"is %d. For VK_IMAGE_TYPE_3D images these must be 0 and 1, respectively. %s",
i, image_copy.srcSubresource.baseArrayLayer, image_copy.srcSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_09c0011a]);
}
}
} else { // Pre maint 1
if (src_state->createInfo.imageType == VK_IMAGE_TYPE_3D || dst_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != image_copy.srcSubresource.baseArrayLayer) || (1 != image_copy.srcSubresource.layerCount)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0011a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcSubresource.baseArrayLayer is %d and "
"srcSubresource.layerCount is %d. For copies with either source or dest of type "
"VK_IMAGE_TYPE_3D, these must be 0 and 1, respectively. %s",
i, image_copy.srcSubresource.baseArrayLayer, image_copy.srcSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_09c0011a]);
}
}
}
// TODO: this VU is redundant with VU01224. Gitlab issue 812 submitted to get it removed from the spec.
if ((image_copy.srcSubresource.baseArrayLayer >= src_state->createInfo.arrayLayers) ||
(image_copy.srcSubresource.baseArrayLayer + image_copy.srcSubresource.layerCount > src_state->createInfo.arrayLayers)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0012a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcSubresource.baseArrayLayer (%d) must be less than the source image's "
"arrayLayers (%d), and the sum of baseArrayLayer and srcSubresource.layerCount (%d) must be less than "
"or equal to the source image's arrayLayers. %s",
i, image_copy.srcSubresource.baseArrayLayer, src_state->createInfo.arrayLayers,
image_copy.srcSubresource.layerCount, validation_error_map[VALIDATION_ERROR_09c0012a]);
}
// Checks that apply only to compressed images
if (FormatIsCompressed(src_state->createInfo.format)) {
VkExtent3D block_size = FormatCompressedTexelBlockExtent(src_state->createInfo.format);
// image offsets must be multiples of block dimensions
if ((SafeModulo(image_copy.srcOffset.x, block_size.width) != 0) ||
(SafeModulo(image_copy.srcOffset.y, block_size.height) != 0) ||
(SafeModulo(image_copy.srcOffset.z, block_size.depth) != 0)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0013a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] srcOffset (%d, %d) must be multiples of the compressed image's "
"texel width & height (%d, %d). %s.",
i, image_copy.srcOffset.x, image_copy.srcOffset.y, block_size.width, block_size.height,
validation_error_map[VALIDATION_ERROR_09c0013a]);
}
// extent width must be a multiple of block width, or extent+offset width must equal subresource width
VkExtent3D mip_extent = GetImageSubresourceExtent(src_state, &(image_copy.srcSubresource));
if ((SafeModulo(image_copy.extent.width, block_size.width) != 0) &&
(image_copy.extent.width + image_copy.srcOffset.x != mip_extent.width)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0013c, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block "
"width (%d), or when added to srcOffset.x (%d) must equal the image subresource width (%d). %s.",
i, image_copy.extent.width, block_size.width, image_copy.srcOffset.x, mip_extent.width,
validation_error_map[VALIDATION_ERROR_09c0013c]);
}
// extent height must be a multiple of block height, or extent+offset height must equal subresource height
if ((SafeModulo(image_copy.extent.height, block_size.height) != 0) &&
(image_copy.extent.height + image_copy.srcOffset.y != mip_extent.height)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c0013e, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent height (%d) must be a multiple of the compressed texture block "
"height (%d), or when added to srcOffset.y (%d) must equal the image subresource height (%d). %s.",
i, image_copy.extent.height, block_size.height, image_copy.srcOffset.y, mip_extent.height,
validation_error_map[VALIDATION_ERROR_09c0013e]);
}
// extent depth must be a multiple of block depth, or extent+offset depth must equal subresource depth
uint32_t copy_depth = (slice_override ? depth_slices : image_copy.extent.depth);
if ((SafeModulo(copy_depth, block_size.depth) != 0) && (copy_depth + image_copy.srcOffset.z != mip_extent.depth)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(src_state->image), __LINE__, VALIDATION_ERROR_09c00140, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block "
"depth (%d), or when added to srcOffset.z (%d) must equal the image subresource depth (%d). %s.",
i, image_copy.extent.depth, block_size.depth, image_copy.srcOffset.z, mip_extent.depth,
validation_error_map[VALIDATION_ERROR_09c00140]);
}
} // Compressed
// Do all checks on dest image
//
if (dst_state->createInfo.imageType == VK_IMAGE_TYPE_1D) {
if ((0 != image_copy.dstOffset.y) || (1 != image_copy.extent.height)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00130, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstOffset.y is %d and extent.height is %d. For 1D images these must "
"be 0 and 1, respectively. %s",
i, image_copy.dstOffset.y, image_copy.extent.height, validation_error_map[VALIDATION_ERROR_09c00130]);
}
}
if ((dst_state->createInfo.imageType == VK_IMAGE_TYPE_1D) || (dst_state->createInfo.imageType == VK_IMAGE_TYPE_2D)) {
if ((0 != image_copy.dstOffset.z) || (1 != image_copy.extent.depth)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00134, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstOffset.z is %d and extent.depth is %d. For 1D and 2D images "
"these must be 0 and 1, respectively. %s",
i, image_copy.dstOffset.z, image_copy.extent.depth, validation_error_map[VALIDATION_ERROR_09c00134]);
}
}
if (dst_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != image_copy.dstSubresource.baseArrayLayer) || (1 != image_copy.dstSubresource.layerCount)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c0011a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstSubresource.baseArrayLayer is %d and dstSubresource.layerCount "
"is %d. For VK_IMAGE_TYPE_3D images these must be 0 and 1, respectively. %s",
i, image_copy.dstSubresource.baseArrayLayer, image_copy.dstSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_09c0011a]);
}
}
// VU01199 changed with mnt1
if (GetDeviceExtensions(device_data)->vk_khr_maintenance1) {
if (dst_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != image_copy.dstSubresource.baseArrayLayer) || (1 != image_copy.dstSubresource.layerCount)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c0011a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstSubresource.baseArrayLayer is %d and dstSubresource.layerCount "
"is %d. For VK_IMAGE_TYPE_3D images these must be 0 and 1, respectively. %s",
i, image_copy.dstSubresource.baseArrayLayer, image_copy.dstSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_09c0011a]);
}
}
} else { // Pre maint 1
if (src_state->createInfo.imageType == VK_IMAGE_TYPE_3D || dst_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != image_copy.dstSubresource.baseArrayLayer) || (1 != image_copy.dstSubresource.layerCount)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c0011a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstSubresource.baseArrayLayer is %d and "
"dstSubresource.layerCount is %d. For copies with either source or dest of type "
"VK_IMAGE_TYPE_3D, these must be 0 and 1, respectively. %s",
i, image_copy.dstSubresource.baseArrayLayer, image_copy.dstSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_09c0011a]);
}
}
}
// TODO: this VU is redundant with VU01224. Gitlab issue 812 submitted to get it removed from the spec.
if ((image_copy.dstSubresource.baseArrayLayer >= dst_state->createInfo.arrayLayers) ||
(image_copy.dstSubresource.baseArrayLayer + image_copy.dstSubresource.layerCount > dst_state->createInfo.arrayLayers)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00136, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstSubresource.baseArrayLayer (%d) must be less than the dest image's "
"arrayLayers (%d), and the sum of baseArrayLayer and dstSubresource.layerCount (%d) must be less than "
"or equal to the dest image's arrayLayers. %s",
i, image_copy.dstSubresource.baseArrayLayer, dst_state->createInfo.arrayLayers,
image_copy.dstSubresource.layerCount, validation_error_map[VALIDATION_ERROR_09c00136]);
}
// Checks that apply only to compressed images
if (FormatIsCompressed(dst_state->createInfo.format)) {
VkExtent3D block_size = FormatCompressedTexelBlockExtent(dst_state->createInfo.format);
// image offsets must be multiples of block dimensions
if ((SafeModulo(image_copy.dstOffset.x, block_size.width) != 0) ||
(SafeModulo(image_copy.dstOffset.y, block_size.height) != 0) ||
(SafeModulo(image_copy.dstOffset.z, block_size.depth) != 0)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00144, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] dstOffset (%d, %d) must be multiples of the compressed image's "
"texel width & height (%d, %d). %s.",
i, image_copy.dstOffset.x, image_copy.dstOffset.y, block_size.width, block_size.height,
validation_error_map[VALIDATION_ERROR_09c00144]);
}
// extent width must be a multiple of block width, or extent+offset width must equal subresource width
VkExtent3D mip_extent = GetImageSubresourceExtent(dst_state, &(image_copy.dstSubresource));
if ((SafeModulo(image_copy.extent.width, block_size.width) != 0) &&
(image_copy.extent.width + image_copy.dstOffset.x != mip_extent.width)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00146, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block "
"width (%d), or when added to dstOffset.x (%d) must equal the image subresource width (%d). %s.",
i, image_copy.extent.width, block_size.width, image_copy.dstOffset.x, mip_extent.width,
validation_error_map[VALIDATION_ERROR_09c00146]);
}
// extent height must be a multiple of block height, or extent+offset height must equal subresource height
if ((SafeModulo(image_copy.extent.height, block_size.height) != 0) &&
(image_copy.extent.height + image_copy.dstOffset.y != mip_extent.height)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c00148, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent height (%d) must be a multiple of the compressed texture block "
"height (%d), or when added to dstOffset.y (%d) must equal the image subresource height (%d). %s.",
i, image_copy.extent.height, block_size.height, image_copy.dstOffset.y, mip_extent.height,
validation_error_map[VALIDATION_ERROR_09c00148]);
}
// extent depth must be a multiple of block depth, or extent+offset depth must equal subresource depth
uint32_t copy_depth = (slice_override ? depth_slices : image_copy.extent.depth);
if ((SafeModulo(copy_depth, block_size.depth) != 0) && (copy_depth + image_copy.dstOffset.z != mip_extent.depth)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(dst_state->image), __LINE__, VALIDATION_ERROR_09c0014a, "IMAGE",
"vkCmdCopyImage(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block "
"depth (%d), or when added to dstOffset.z (%d) must equal the image subresource depth (%d). %s.",
i, image_copy.extent.depth, block_size.depth, image_copy.dstOffset.z, mip_extent.depth,
validation_error_map[VALIDATION_ERROR_09c0014a]);
}
} // Compressed
}
return skip;
}
bool PreCallValidateCmdCopyImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t region_count, const VkImageCopy *regions,
VkImageLayout src_image_layout, VkImageLayout dst_image_layout) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
skip = ValidateImageCopyData(device_data, report_data, region_count, regions, src_image_state, dst_image_state);
VkCommandBuffer command_buffer = cb_node->commandBuffer;
for (uint32_t i = 0; i < region_count; i++) {
bool slice_override = false;
uint32_t depth_slices = 0;
// Special case for copying between a 1D/2D array and a 3D image
// TBD: This seems like the only way to reconcile 3 mutually-exclusive VU checks for 2D/3D copies. Heads up.
if ((VK_IMAGE_TYPE_3D == src_image_state->createInfo.imageType) &&
(VK_IMAGE_TYPE_3D != dst_image_state->createInfo.imageType)) {
depth_slices = regions[i].dstSubresource.layerCount; // Slice count from 2D subresource
slice_override = (depth_slices != 1);
} else if ((VK_IMAGE_TYPE_3D == dst_image_state->createInfo.imageType) &&
(VK_IMAGE_TYPE_3D != src_image_state->createInfo.imageType)) {
depth_slices = regions[i].srcSubresource.layerCount; // Slice count from 2D subresource
slice_override = (depth_slices != 1);
}
if (regions[i].srcSubresource.layerCount == 0) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in pRegions[" << i << "] srcSubresource is zero";
skip |=
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", "%s", ss.str().c_str());
}
if (regions[i].dstSubresource.layerCount == 0) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in pRegions[" << i << "] dstSubresource is zero";
skip |=
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", "%s", ss.str().c_str());
}
if (GetDeviceExtensions(device_data)->vk_khr_maintenance1) {
// No chance of mismatch if we're overriding depth slice count
if (!slice_override) {
// The number of depth slices in srcSubresource and dstSubresource must match
// Depth comes from layerCount for 1D,2D resources, from extent.depth for 3D
uint32_t src_slices =
(VK_IMAGE_TYPE_3D == src_image_state->createInfo.imageType ? regions[i].extent.depth
: regions[i].srcSubresource.layerCount);
uint32_t dst_slices =
(VK_IMAGE_TYPE_3D == dst_image_state->createInfo.imageType ? regions[i].extent.depth
: regions[i].dstSubresource.layerCount);
if (src_slices != dst_slices) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of depth slices in source and destination subresources for pRegions[" << i
<< "] do not match";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_09c00118, "IMAGE",
"%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_09c00118]);
}
}
} else {
// For each region the layerCount member of srcSubresource and dstSubresource must match
if (regions[i].srcSubresource.layerCount != regions[i].dstSubresource.layerCount) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in source and destination subresources for pRegions[" << i
<< "] do not match";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00118, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_09c00118]);
}
}
// For each region, the aspectMask member of srcSubresource and dstSubresource must match
if (regions[i].srcSubresource.aspectMask != regions[i].dstSubresource.aspectMask) {
char const str[] = "vkCmdCopyImage: Src and dest aspectMasks for each region must match";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00112, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_09c00112]);
}
// For each region, the aspectMask member of srcSubresource must be present in the source image
if (!VerifyAspectsPresent(regions[i].srcSubresource.aspectMask, src_image_state->createInfo.format)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegion[" << i
<< "] srcSubresource.aspectMask cannot specify aspects not present in source image";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c0011c, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_09c0011c]);
}
// For each region, the aspectMask member of dstSubresource must be present in the destination image
if (!VerifyAspectsPresent(regions[i].dstSubresource.aspectMask, dst_image_state->createInfo.format)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegion[" << i << "] dstSubresource.aspectMask cannot specify aspects not present in dest image";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c0011e, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_09c0011e]);
}
// AspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT
if ((regions[i].srcSubresource.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) ||
(regions[i].dstSubresource.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i << "] may not specify aspectMask containing VK_IMAGE_ASPECT_METADATA_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a600150, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_0a600150]);
}
// For each region, if aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of
// VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT
if ((regions[i].srcSubresource.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) &&
(regions[i].srcSubresource.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
char const str[] = "vkCmdCopyImage aspectMask cannot specify both COLOR and DEPTH/STENCIL aspects";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a60014e, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_0a60014e]);
}
// MipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created
if (regions[i].srcSubresource.mipLevel >= src_image_state->createInfo.mipLevels) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i
<< "] specifies a src mipLevel greater than the number specified when the srcImage was created.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a600152, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_0a600152]);
}
if (regions[i].dstSubresource.mipLevel >= dst_image_state->createInfo.mipLevels) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i
<< "] specifies a dst mipLevel greater than the number specified when the dstImage was created.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a600152, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_0a600152]);
}
// (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in VkImageCreateInfo when the
// image was created
if ((regions[i].srcSubresource.baseArrayLayer + regions[i].srcSubresource.layerCount) >
src_image_state->createInfo.arrayLayers) {
std::stringstream ss;
ss << "vkCmdCopyImage: srcImage arrayLayers was " << src_image_state->createInfo.arrayLayers << " but subRegion[" << i
<< "] baseArrayLayer + layerCount is "
<< (regions[i].srcSubresource.baseArrayLayer + regions[i].srcSubresource.layerCount);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a600154, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_0a600154]);
}
if ((regions[i].dstSubresource.baseArrayLayer + regions[i].dstSubresource.layerCount) >
dst_image_state->createInfo.arrayLayers) {
std::stringstream ss;
ss << "vkCmdCopyImage: dstImage arrayLayers was " << dst_image_state->createInfo.arrayLayers << " but subRegion[" << i
<< "] baseArrayLayer + layerCount is "
<< (regions[i].dstSubresource.baseArrayLayer + regions[i].dstSubresource.layerCount);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_0a600154, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_0a600154]);
}
// Check region extents for 1D-1D, 2D-2D, and 3D-3D copies
if (src_image_state->createInfo.imageType == dst_image_state->createInfo.imageType) {
// The source region specified by a given element of regions must be a region that is contained within srcImage
VkExtent3D img_extent = GetImageSubresourceExtent(src_image_state, &(regions[i].srcSubresource));
if (0 != ExceedsBounds(&regions[i].srcOffset, &regions[i].extent, &img_extent)) {
std::stringstream ss;
ss << "vkCmdCopyImage: Source pRegion[" << i << "] with mipLevel [ " << regions[i].srcSubresource.mipLevel
<< " ], offset [ " << regions[i].srcOffset.x << ", " << regions[i].srcOffset.y << ", " << regions[i].srcOffset.z
<< " ], extent [ " << regions[i].extent.width << ", " << regions[i].extent.height << ", "
<< regions[i].extent.depth << " ] exceeds the source image dimensions";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_190000f4, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_190000f4]);
}
// The destination region specified by a given element of regions must be a region that is contained within dst_image
img_extent = GetImageSubresourceExtent(dst_image_state, &(regions[i].dstSubresource));
if (0 != ExceedsBounds(&regions[i].dstOffset, &regions[i].extent, &img_extent)) {
std::stringstream ss;
ss << "vkCmdCopyImage: Dest pRegion[" << i << "] with mipLevel [ " << regions[i].dstSubresource.mipLevel
<< " ], offset [ " << regions[i].dstOffset.x << ", " << regions[i].dstOffset.y << ", " << regions[i].dstOffset.z
<< " ], extent [ " << regions[i].extent.width << ", " << regions[i].extent.height << ", "
<< regions[i].extent.depth << " ] exceeds the destination image dimensions";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_190000f6, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_190000f6]);
}
}
// Each dimension offset + extent limits must fall with image subresource extent
VkExtent3D subresource_extent = GetImageSubresourceExtent(src_image_state, &(regions[i].srcSubresource));
VkExtent3D copy_extent = regions[i].extent;
if (slice_override) copy_extent.depth = depth_slices;
uint32_t extent_check = ExceedsBounds(&(regions[i].srcOffset), &copy_extent, &subresource_extent);
if (extent_check & x_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00120, "IMAGE",
"vkCmdCopyImage: Source image pRegion %1d x-dimension offset [%1d] + extent [%1d] exceeds subResource "
"width [%1d]. %s",
i, regions[i].srcOffset.x, regions[i].extent.width, subresource_extent.width,
validation_error_map[VALIDATION_ERROR_09c00120]);
}
if (extent_check & y_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00122, "IMAGE",
"vkCmdCopyImage: Source image pRegion %1d y-dimension offset [%1d] + extent [%1d] exceeds subResource "
"height [%1d]. %s",
i, regions[i].srcOffset.y, regions[i].extent.height, subresource_extent.height,
validation_error_map[VALIDATION_ERROR_09c00122]);
}
if (extent_check & z_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00126, "IMAGE",
"vkCmdCopyImage: Source image pRegion %1d z-dimension offset [%1d] + extent [%1d] exceeds subResource "
"depth [%1d]. %s",
i, regions[i].srcOffset.z, copy_extent.depth, subresource_extent.depth,
validation_error_map[VALIDATION_ERROR_09c00126]);
}
subresource_extent = GetImageSubresourceExtent(dst_image_state, &(regions[i].dstSubresource));
copy_extent = regions[i].extent;
if (slice_override) copy_extent.depth = depth_slices;
extent_check = ExceedsBounds(&(regions[i].dstOffset), &copy_extent, &subresource_extent);
if (extent_check & x_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c0012c, "IMAGE",
"vkCmdCopyImage: Dest image pRegion %1d x-dimension offset [%1d] + extent [%1d] exceeds subResource "
"width [%1d]. %s",
i, regions[i].dstOffset.x, regions[i].extent.width, subresource_extent.width,
validation_error_map[VALIDATION_ERROR_09c0012c]);
}
if (extent_check & y_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c0012e, "IMAGE",
"vkCmdCopyImage: Dest image pRegion %1d y-dimension offset [%1d] + extent [%1d] exceeds subResource "
"height [%1d]. %s",
i, regions[i].dstOffset.y, regions[i].extent.height, subresource_extent.height,
validation_error_map[VALIDATION_ERROR_09c0012e]);
}
if (extent_check & z_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_09c00132, "IMAGE",
"vkCmdCopyImage: Dest image pRegion %1d z-dimension offset [%1d] + extent [%1d] exceeds subResource "
"depth [%1d]. %s",
i, regions[i].dstOffset.z, copy_extent.depth, subresource_extent.depth,
validation_error_map[VALIDATION_ERROR_09c00132]);
}
// The union of all source regions, and the union of all destination regions, specified by the elements of regions,
// must not overlap in memory
if (src_image_state->image == dst_image_state->image) {
for (uint32_t j = 0; j < region_count; j++) {
if (RegionIntersects(&regions[i], &regions[j], src_image_state->createInfo.imageType)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i << "] src overlaps with pRegions[" << j << "].";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_190000f8, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_190000f8]);
}
}
}
}
// The formats of src_image and dst_image must be compatible. Formats are considered compatible if their texel size in bytes
// is the same between both formats. For example, VK_FORMAT_R8G8B8A8_UNORM is compatible with VK_FORMAT_R32_UINT because
// because both texels are 4 bytes in size. Depth/stencil formats must match exactly.
if (FormatIsDepthOrStencil(src_image_state->createInfo.format) || FormatIsDepthOrStencil(dst_image_state->createInfo.format)) {
if (src_image_state->createInfo.format != dst_image_state->createInfo.format) {
char const str[] = "vkCmdCopyImage called with unmatched source and dest image depth/stencil formats.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_FORMAT, "IMAGE", str);
}
} else {
size_t srcSize = FormatSize(src_image_state->createInfo.format);
size_t destSize = FormatSize(dst_image_state->createInfo.format);
if (srcSize != destSize) {
char const str[] = "vkCmdCopyImage called with unmatched source and dest image format sizes.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_1900010e, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_1900010e]);
}
}
// Source and dest image sample counts must match
if (src_image_state->createInfo.samples != dst_image_state->createInfo.samples) {
char const str[] = "vkCmdCopyImage() called on image pair with non-identical sample counts.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(command_buffer), __LINE__, VALIDATION_ERROR_19000110, "IMAGE", "%s %s", str,
validation_error_map[VALIDATION_ERROR_19000110]);
}
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdCopyImage()", VALIDATION_ERROR_190000fe);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdCopyImage()", VALIDATION_ERROR_19000108);
// Validate that SRC & DST images have correct usage flags set
skip |= ValidateImageUsageFlags(device_data, src_image_state, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true, VALIDATION_ERROR_190000fc,
"vkCmdCopyImage()", "VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateImageUsageFlags(device_data, dst_image_state, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true, VALIDATION_ERROR_19000106,
"vkCmdCopyImage()", "VK_IMAGE_USAGE_TRANSFER_DST_BIT");
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdCopyImage()",
VK_QUEUE_TRANSFER_BIT | VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT, VALIDATION_ERROR_19002415);
skip |= ValidateCmd(device_data, cb_node, CMD_COPYIMAGE, "vkCmdCopyImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdCopyImage()", VALIDATION_ERROR_19000017);
bool hit_error = false;
for (uint32_t i = 0; i < region_count; ++i) {
skip |= VerifyImageLayout(device_data, cb_node, src_image_state, regions[i].srcSubresource, src_image_layout,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "vkCmdCopyImage()", VALIDATION_ERROR_19000102, &hit_error);
skip |= VerifyImageLayout(device_data, cb_node, dst_image_state, regions[i].dstSubresource, dst_image_layout,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "vkCmdCopyImage()", VALIDATION_ERROR_1900010c, &hit_error);
skip |= ValidateCopyImageTransferGranularityRequirements(device_data, cb_node, src_image_state, dst_image_state,
&regions[i], i, "vkCmdCopyImage()");
}
return skip;
}
void PreCallRecordCmdCopyImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t region_count, const VkImageCopy *regions,
VkImageLayout src_image_layout, VkImageLayout dst_image_layout) {
// Make sure that all image slices are updated to correct layout
for (uint32_t i = 0; i < region_count; ++i) {
SetImageLayout(device_data, cb_node, src_image_state, regions[i].srcSubresource, src_image_layout);
SetImageLayout(device_data, cb_node, dst_image_state, regions[i].dstSubresource, dst_image_layout);
}
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() { return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdCopyImage()"); };
cb_node->queue_submit_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
}
// Returns true if sub_rect is entirely contained within rect
static inline bool ContainsRect(VkRect2D rect, VkRect2D sub_rect) {
if ((sub_rect.offset.x < rect.offset.x) || (sub_rect.offset.x + sub_rect.extent.width > rect.offset.x + rect.extent.width) ||
(sub_rect.offset.y < rect.offset.y) || (sub_rect.offset.y + sub_rect.extent.height > rect.offset.y + rect.extent.height))
return false;
return true;
}
bool PreCallValidateCmdClearAttachments(layer_data *device_data, VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkClearAttachment *pAttachments, uint32_t rectCount, const VkClearRect *pRects) {
GLOBAL_CB_NODE *cb_node = GetCBNode(device_data, commandBuffer);
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node) {
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdClearAttachments()", VK_QUEUE_GRAPHICS_BIT,
VALIDATION_ERROR_18602415);
skip |= ValidateCmd(device_data, cb_node, CMD_CLEARATTACHMENTS, "vkCmdClearAttachments()");
// Warn if this is issued prior to Draw Cmd and clearing the entire attachment
if (!cb_node->hasDrawCmd && (cb_node->activeRenderPassBeginInfo.renderArea.extent.width == pRects[0].rect.extent.width) &&
(cb_node->activeRenderPassBeginInfo.renderArea.extent.height == pRects[0].rect.extent.height)) {
// There are times where app needs to use ClearAttachments (generally when reusing a buffer inside of a render pass)
// This warning should be made more specific. It'd be best to avoid triggering this test if it's a use that must call
// CmdClearAttachments.
skip |=
log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), 0, DRAWSTATE_CLEAR_CMD_BEFORE_DRAW, "DS",
"vkCmdClearAttachments() issued on command buffer object 0x%p prior to any Draw Cmds."
" It is recommended you use RenderPass LOAD_OP_CLEAR on Attachments prior to any Draw.",
commandBuffer);
}
skip |= outsideRenderPass(device_data, cb_node, "vkCmdClearAttachments()", VALIDATION_ERROR_18600017);
}
// Validate that attachment is in reference list of active subpass
if (cb_node->activeRenderPass) {
const VkRenderPassCreateInfo *renderpass_create_info = cb_node->activeRenderPass->createInfo.ptr();
const VkSubpassDescription *subpass_desc = &renderpass_create_info->pSubpasses[cb_node->activeSubpass];
auto framebuffer = GetFramebufferState(device_data, cb_node->activeFramebuffer);
for (uint32_t i = 0; i < attachmentCount; i++) {
auto clear_desc = &pAttachments[i];
VkImageView image_view = VK_NULL_HANDLE;
if (0 == clear_desc->aspectMask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_01c00c03, "IMAGE", "%s",
validation_error_map[VALIDATION_ERROR_01c00c03]);
} else if (clear_desc->aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_01c00028, "IMAGE", "%s",
validation_error_map[VALIDATION_ERROR_01c00028]);
} else if (clear_desc->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (clear_desc->colorAttachment >= subpass_desc->colorAttachmentCount) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_1860001e, "DS",
"vkCmdClearAttachments() color attachment index %d out of range for active subpass %d. %s",
clear_desc->colorAttachment, cb_node->activeSubpass,
validation_error_map[VALIDATION_ERROR_1860001e]);
} else if (subpass_desc->pColorAttachments[clear_desc->colorAttachment].attachment == VK_ATTACHMENT_UNUSED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, HandleToUint64(commandBuffer), __LINE__,
DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() color attachment index %d is VK_ATTACHMENT_UNUSED; ignored.",
clear_desc->colorAttachment);
} else {
image_view = framebuffer->createInfo
.pAttachments[subpass_desc->pColorAttachments[clear_desc->colorAttachment].attachment];
}
if ((clear_desc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) ||
(clear_desc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] =
"vkCmdClearAttachments aspectMask [%d] must set only VK_IMAGE_ASPECT_COLOR_BIT of a color attachment. %s";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_01c00026, "IMAGE", str, i,
validation_error_map[VALIDATION_ERROR_01c00026]);
}
} else { // Must be depth and/or stencil
if (((clear_desc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) &&
((clear_desc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] = "vkCmdClearAttachments aspectMask [%d] is not a valid combination of bits. %s";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_01c00c01, "IMAGE", str, i,
validation_error_map[VALIDATION_ERROR_01c00c01]);
}
if (!subpass_desc->pDepthStencilAttachment ||
(subpass_desc->pDepthStencilAttachment->attachment == VK_ATTACHMENT_UNUSED)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() depth/stencil clear with no depth/stencil attachment in subpass; ignored");
} else {
image_view = framebuffer->createInfo.pAttachments[subpass_desc->pDepthStencilAttachment->attachment];
}
}
if (image_view) {
auto image_view_state = GetImageViewState(device_data, image_view);
for (uint32_t j = 0; j < rectCount; j++) {
// The rectangular region specified by a given element of pRects must be contained within the render area of
// the current render pass instance
// TODO: This check should be moved to CmdExecuteCommands or QueueSubmit to cover secondary CB cases
if ((cb_node->createInfo.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) &&
(false == ContainsRect(cb_node->activeRenderPassBeginInfo.renderArea, pRects[j].rect))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_18600020, "DS",
"vkCmdClearAttachments(): The area defined by pRects[%d] is not contained in the area of "
"the current render pass instance. %s",
j, validation_error_map[VALIDATION_ERROR_18600020]);
}
// The layers specified by a given element of pRects must be contained within every attachment that
// pAttachments refers to
auto attachment_layer_count = image_view_state->create_info.subresourceRange.layerCount;
if ((pRects[j].baseArrayLayer >= attachment_layer_count) ||
(pRects[j].baseArrayLayer + pRects[j].layerCount > attachment_layer_count)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(commandBuffer), __LINE__, VALIDATION_ERROR_18600022, "DS",
"vkCmdClearAttachments(): The layers defined in pRects[%d] are not contained in the layers of "
"pAttachment[%d]. %s",
j, i, validation_error_map[VALIDATION_ERROR_18600022]);
}
}
}
}
}
return skip;
}
bool PreCallValidateCmdResolveImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t regionCount, const VkImageResolve *pRegions) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node && src_image_state && dst_image_state) {
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdResolveImage()", VALIDATION_ERROR_1c800200);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdResolveImage()", VALIDATION_ERROR_1c800204);
skip |=
ValidateCmdQueueFlags(device_data, cb_node, "vkCmdResolveImage()", VK_QUEUE_GRAPHICS_BIT, VALIDATION_ERROR_1c802415);
skip |= ValidateCmd(device_data, cb_node, CMD_RESOLVEIMAGE, "vkCmdResolveImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdResolveImage()", VALIDATION_ERROR_1c800017);
// For each region, the number of layers in the image subresource should not be zero
// For each region, src and dest image aspect must be color only
for (uint32_t i = 0; i < regionCount; i++) {
if (pRegions[i].srcSubresource.layerCount == 0) {
char const str[] = "vkCmdResolveImage: number of layers in source subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT, "IMAGE", str);
}
if (pRegions[i].dstSubresource.layerCount == 0) {
char const str[] = "vkCmdResolveImage: number of layers in destination subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT, "IMAGE", str);
}
if (pRegions[i].srcSubresource.layerCount != pRegions[i].dstSubresource.layerCount) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_0a200216, "IMAGE",
"vkCmdResolveImage: layerCount in source and destination subresource of pRegions[%d] does not match. %s", i,
validation_error_map[VALIDATION_ERROR_0a200216]);
}
if ((pRegions[i].srcSubresource.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT) ||
(pRegions[i].dstSubresource.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT)) {
char const str[] =
"vkCmdResolveImage: src and dest aspectMasks for each region must specify only VK_IMAGE_ASPECT_COLOR_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_0a200214, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_0a200214]);
}
}
if (src_image_state->createInfo.format != dst_image_state->createInfo.format) {
char const str[] = "vkCmdResolveImage called with unmatched source and dest formats.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_FORMAT, "IMAGE", str);
}
if (src_image_state->createInfo.imageType != dst_image_state->createInfo.imageType) {
char const str[] = "vkCmdResolveImage called with unmatched source and dest image types.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_TYPE, "IMAGE", str);
}
if (src_image_state->createInfo.samples == VK_SAMPLE_COUNT_1_BIT) {
char const str[] = "vkCmdResolveImage called with source sample count less than 2.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_1c800202, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_1c800202]);
}
if (dst_image_state->createInfo.samples != VK_SAMPLE_COUNT_1_BIT) {
char const str[] = "vkCmdResolveImage called with dest sample count greater than 1.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_1c800206, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_1c800206]);
}
// TODO: Need to validate image layouts, which will include layout validation for shared presentable images
} else {
assert(0);
}
return skip;
}
void PreCallRecordCmdResolveImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state) {
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdResolveImage()");
};
cb_node->queue_submit_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
}
bool PreCallValidateCmdBlitImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t regionCount, const VkImageBlit *pRegions, VkFilter filter) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node && src_image_state && dst_image_state) {
skip |= ValidateImageSampleCount(device_data, src_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): srcImage",
VALIDATION_ERROR_184001d2);
skip |= ValidateImageSampleCount(device_data, dst_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): dstImage",
VALIDATION_ERROR_184001d4);
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdBlitImage()", VALIDATION_ERROR_184001b8);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdBlitImage()", VALIDATION_ERROR_184001c2);
skip |= ValidateImageUsageFlags(device_data, src_image_state, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true,
VALIDATION_ERROR_184001b6, "vkCmdBlitImage()", "VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateImageUsageFlags(device_data, dst_image_state, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true,
VALIDATION_ERROR_184001c0, "vkCmdBlitImage()", "VK_IMAGE_USAGE_TRANSFER_DST_BIT");
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdBlitImage()", VK_QUEUE_GRAPHICS_BIT, VALIDATION_ERROR_18402415);
skip |= ValidateCmd(device_data, cb_node, CMD_BLITIMAGE, "vkCmdBlitImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdBlitImage()", VALIDATION_ERROR_18400017);
// TODO: Need to validate image layouts, which will include layout validation for shared presentable images
VkFormat src_format = src_image_state->createInfo.format;
VkFormat dst_format = dst_image_state->createInfo.format;
VkImageType src_type = src_image_state->createInfo.imageType;
VkImageType dst_type = dst_image_state->createInfo.imageType;
VkFormatProperties props = GetFormatProperties(device_data, src_format);
VkImageTiling tiling = src_image_state->createInfo.tiling;
VkFormatFeatureFlags flags =
(tiling == VK_IMAGE_TILING_LINEAR ? props.linearTilingFeatures : props.optimalTilingFeatures);
if (VK_FORMAT_FEATURE_BLIT_SRC_BIT != (flags & VK_FORMAT_FEATURE_BLIT_SRC_BIT)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001b4, "IMAGE",
"vkCmdBlitImage: source image format %s does not support VK_FORMAT_FEATURE_BLIT_SRC_BIT feature. %s",
string_VkFormat(src_format), validation_error_map[VALIDATION_ERROR_184001b4]);
}
if ((VK_FILTER_LINEAR == filter) &&
(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT != (flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001d6, "IMAGE",
"vkCmdBlitImage: source image format %s does not support linear filtering. %s",
string_VkFormat(src_format), validation_error_map[VALIDATION_ERROR_184001d6]);
}
if ((VK_FILTER_CUBIC_IMG == filter) && (VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG !=
(flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001d8, "IMAGE",
"vkCmdBlitImage: source image format %s does not support cubic filtering. %s",
string_VkFormat(src_format), validation_error_map[VALIDATION_ERROR_184001d8]);
}
if ((VK_FILTER_CUBIC_IMG == filter) && (VK_IMAGE_TYPE_3D != src_type)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001da, "IMAGE",
"vkCmdBlitImage: source image type must be VK_IMAGE_TYPE_3D when cubic filtering is specified. %s",
validation_error_map[VALIDATION_ERROR_184001da]);
}
props = GetFormatProperties(device_data, dst_format);
tiling = dst_image_state->createInfo.tiling;
flags = (tiling == VK_IMAGE_TILING_LINEAR ? props.linearTilingFeatures : props.optimalTilingFeatures);
if (VK_FORMAT_FEATURE_BLIT_DST_BIT != (flags & VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001be, "IMAGE",
"vkCmdBlitImage: destination image format %s does not support VK_FORMAT_FEATURE_BLIT_DST_BIT feature. %s",
string_VkFormat(dst_format), validation_error_map[VALIDATION_ERROR_184001be]);
}
if ((VK_SAMPLE_COUNT_1_BIT != src_image_state->createInfo.samples) ||
(VK_SAMPLE_COUNT_1_BIT != dst_image_state->createInfo.samples)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001c8, "IMAGE",
"vkCmdBlitImage: source or dest image has sample count other than VK_SAMPLE_COUNT_1_BIT. %s",
validation_error_map[VALIDATION_ERROR_184001c8]);
}
// Validate consistency for unsigned formats
if (FormatIsUInt(src_format) != FormatIsUInt(dst_format)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has unsigned integer format, "
<< "the other one must also have unsigned integer format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is " << string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001cc, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_184001cc]);
}
// Validate consistency for signed formats
if (FormatIsSInt(src_format) != FormatIsSInt(dst_format)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has signed integer format, "
<< "the other one must also have signed integer format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is " << string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001ca, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_184001ca]);
}
// Validate filter for Depth/Stencil formats
if (FormatIsDepthOrStencil(src_format) && (filter != VK_FILTER_NEAREST)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If the format of srcImage is a depth, stencil, or depth stencil "
<< "then filter must be VK_FILTER_NEAREST.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001d0, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_184001d0]);
}
// Validate aspect bits and formats for depth/stencil images
if (FormatIsDepthOrStencil(src_format) || FormatIsDepthOrStencil(dst_format)) {
if (src_format != dst_format) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has a format of depth, stencil or depth "
<< "stencil, the other one must have exactly the same format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is "
<< string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001ce, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_184001ce]);
}
#if 0 // TODO: Cannot find VU statements or spec language for these in CmdBlitImage. Verify or remove.
for (uint32_t i = 0; i < regionCount; i++) {
VkImageAspectFlags srcAspect = pRegions[i].srcSubresource.aspectMask;
if (FormatIsDepthAndStencil(src_format)) {
if ((srcAspect != VK_IMAGE_ASPECT_DEPTH_BIT) && (srcAspect != VK_IMAGE_ASPECT_STENCIL_BIT)) {
std::stringstream ss;
ss << "vkCmdBlitImage: Combination depth/stencil image formats must have only one of "
"VK_IMAGE_ASPECT_DEPTH_BIT "
<< "and VK_IMAGE_ASPECT_STENCIL_BIT set in srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE",
"%s", ss.str().c_str());
}
}
else if (FormatIsStencilOnly(src_format)) {
if (srcAspect != VK_IMAGE_ASPECT_STENCIL_BIT) {
std::stringstream ss;
ss << "vkCmdBlitImage: Stencil-only image formats must have only the VK_IMAGE_ASPECT_STENCIL_BIT "
<< "set in both the srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE",
"%s", ss.str().c_str());
}
}
else if (FormatIsDepthOnly(src_format)) {
if (srcAspect != VK_IMAGE_ASPECT_DEPTH_BIT) {
std::stringstream ss;
ss << "vkCmdBlitImage: Depth-only image formats must have only the VK_IMAGE_ASPECT_DEPTH "
<< "set in both the srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE",
"%s", ss.str().c_str());
}
}
}
#endif
} // Depth or Stencil
// Do per-region checks
for (uint32_t i = 0; i < regionCount; i++) {
VkImageBlit rgn = pRegions[i];
// Warn for zero-sized regions
if ((rgn.srcOffsets[0].x == rgn.srcOffsets[1].x) || (rgn.srcOffsets[0].y == rgn.srcOffsets[1].y) ||
(rgn.srcOffsets[0].z == rgn.srcOffsets[1].z)) {
std::stringstream ss;
ss << "vkCmdBlitImage: pRegions[" << i << "].srcOffsets specify a zero-volume area.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_EXTENTS, "IMAGE", "%s",
ss.str().c_str());
}
if ((rgn.dstOffsets[0].x == rgn.dstOffsets[1].x) || (rgn.dstOffsets[0].y == rgn.dstOffsets[1].y) ||
(rgn.dstOffsets[0].z == rgn.dstOffsets[1].z)) {
std::stringstream ss;
ss << "vkCmdBlitImage: pRegions[" << i << "].dstOffsets specify a zero-volume area.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_EXTENTS, "IMAGE", "%s",
ss.str().c_str());
}
if (rgn.srcSubresource.layerCount == 0) {
char const str[] = "vkCmdBlitImage: number of layers in source subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT, "IMAGE", str);
}
if (rgn.dstSubresource.layerCount == 0) {
char const str[] = "vkCmdBlitImage: number of layers in destination subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT, "IMAGE", str);
}
// Check that src/dst layercounts match
if (rgn.srcSubresource.layerCount != rgn.dstSubresource.layerCount) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001de, "IMAGE",
"vkCmdBlitImage: layerCount in source and destination subresource of pRegions[%d] does not match. %s",
i, validation_error_map[VALIDATION_ERROR_09a001de]);
}
if (rgn.srcSubresource.aspectMask != rgn.dstSubresource.aspectMask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001dc, "IMAGE",
"vkCmdBlitImage: aspectMask members for pRegion[%d] do not match. %s", i,
validation_error_map[VALIDATION_ERROR_09a001dc]);
}
if (!VerifyAspectsPresent(rgn.srcSubresource.aspectMask, src_format)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001e2, "IMAGE",
"vkCmdBlitImage: region [%d] source aspectMask (0x%x) specifies aspects not present in source "
"image format %s. %s",
i, rgn.srcSubresource.aspectMask, string_VkFormat(src_format),
validation_error_map[VALIDATION_ERROR_09a001e2]);
}
if (!VerifyAspectsPresent(rgn.dstSubresource.aspectMask, dst_format)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001e4, "IMAGE",
"vkCmdBlitImage: region [%d] dest aspectMask (0x%x) specifies aspects not present in dest image format %s. %s",
i, rgn.dstSubresource.aspectMask, string_VkFormat(dst_format), validation_error_map[VALIDATION_ERROR_09a001e4]);
}
// Validate source image offsets
VkExtent3D src_extent = GetImageSubresourceExtent(src_image_state, &(rgn.srcSubresource));
if (VK_IMAGE_TYPE_1D == src_type) {
if ((0 != rgn.srcOffsets[0].y) || (1 != rgn.srcOffsets[1].y)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001ea, "IMAGE",
"vkCmdBlitImage: region [%d], source image of type VK_IMAGE_TYPE_1D with srcOffset[].y values "
"of (%1d, %1d). These must be (0, 1). %s",
i, rgn.srcOffsets[0].y, rgn.srcOffsets[1].y, validation_error_map[VALIDATION_ERROR_09a001ea]);
}
}
if ((VK_IMAGE_TYPE_1D == src_type) || (VK_IMAGE_TYPE_2D == src_type)) {
if ((0 != rgn.srcOffsets[0].z) || (1 != rgn.srcOffsets[1].z)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001ee, "IMAGE",
"vkCmdBlitImage: region [%d], source image of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D with "
"srcOffset[].z values of (%1d, %1d). These must be (0, 1). %s",
i, rgn.srcOffsets[0].z, rgn.srcOffsets[1].z, validation_error_map[VALIDATION_ERROR_09a001ee]);
}
}
bool oob = false;
if ((rgn.srcOffsets[0].x < 0) || (rgn.srcOffsets[0].x > static_cast<int32_t>(src_extent.width)) ||
(rgn.srcOffsets[1].x < 0) || (rgn.srcOffsets[1].x > static_cast<int32_t>(src_extent.width))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001e6, "IMAGE",
"vkCmdBlitImage: region [%d] srcOffset[].x values (%1d, %1d) exceed srcSubresource width extent (%1d). %s", i,
rgn.srcOffsets[0].x, rgn.srcOffsets[1].x, src_extent.width, validation_error_map[VALIDATION_ERROR_09a001e6]);
}
if ((rgn.srcOffsets[0].y < 0) || (rgn.srcOffsets[0].y > static_cast<int32_t>(src_extent.height)) ||
(rgn.srcOffsets[1].y < 0) || (rgn.srcOffsets[1].y > static_cast<int32_t>(src_extent.height))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001e8, "IMAGE",
"vkCmdBlitImage: region [%d] srcOffset[].y values (%1d, %1d) exceed srcSubresource height extent (%1d). %s", i,
rgn.srcOffsets[0].y, rgn.srcOffsets[1].y, src_extent.height, validation_error_map[VALIDATION_ERROR_09a001e8]);
}
if ((rgn.srcOffsets[0].z < 0) || (rgn.srcOffsets[0].z > static_cast<int32_t>(src_extent.depth)) ||
(rgn.srcOffsets[1].z < 0) || (rgn.srcOffsets[1].z > static_cast<int32_t>(src_extent.depth))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001ec, "IMAGE",
"vkCmdBlitImage: region [%d] srcOffset[].z values (%1d, %1d) exceed srcSubresource depth extent (%1d). %s", i,
rgn.srcOffsets[0].z, rgn.srcOffsets[1].z, src_extent.depth, validation_error_map[VALIDATION_ERROR_09a001ec]);
}
if (rgn.srcSubresource.mipLevel >= src_image_state->createInfo.mipLevels) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001ae, "IMAGE",
"vkCmdBlitImage: region [%d] source image, attempt to access a non-existant mip level %1d. %s", i,
rgn.srcSubresource.mipLevel, validation_error_map[VALIDATION_ERROR_184001ae]);
} else if (oob) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001ae, "IMAGE",
"vkCmdBlitImage: region [%d] source image blit region exceeds image dimensions. %s", i,
validation_error_map[VALIDATION_ERROR_184001ae]);
}
// Validate dest image offsets
VkExtent3D dst_extent = GetImageSubresourceExtent(dst_image_state, &(rgn.dstSubresource));
if (VK_IMAGE_TYPE_1D == dst_type) {
if ((0 != rgn.dstOffsets[0].y) || (1 != rgn.dstOffsets[1].y)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001f4, "IMAGE",
"vkCmdBlitImage: region [%d], dest image of type VK_IMAGE_TYPE_1D with dstOffset[].y values of "
"(%1d, %1d). These must be (0, 1). %s",
i, rgn.dstOffsets[0].y, rgn.dstOffsets[1].y, validation_error_map[VALIDATION_ERROR_09a001f4]);
}
}
if ((VK_IMAGE_TYPE_1D == dst_type) || (VK_IMAGE_TYPE_2D == dst_type)) {
if ((0 != rgn.dstOffsets[0].z) || (1 != rgn.dstOffsets[1].z)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001f8, "IMAGE",
"vkCmdBlitImage: region [%d], dest image of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D with "
"dstOffset[].z values of (%1d, %1d). These must be (0, 1). %s",
i, rgn.dstOffsets[0].z, rgn.dstOffsets[1].z, validation_error_map[VALIDATION_ERROR_09a001f8]);
}
}
oob = false;
if ((rgn.dstOffsets[0].x < 0) || (rgn.dstOffsets[0].x > static_cast<int32_t>(dst_extent.width)) ||
(rgn.dstOffsets[1].x < 0) || (rgn.dstOffsets[1].x > static_cast<int32_t>(dst_extent.width))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001f0, "IMAGE",
"vkCmdBlitImage: region [%d] dstOffset[].x values (%1d, %1d) exceed dstSubresource width extent (%1d). %s", i,
rgn.dstOffsets[0].x, rgn.dstOffsets[1].x, dst_extent.width, validation_error_map[VALIDATION_ERROR_09a001f0]);
}
if ((rgn.dstOffsets[0].y < 0) || (rgn.dstOffsets[0].y > static_cast<int32_t>(dst_extent.height)) ||
(rgn.dstOffsets[1].y < 0) || (rgn.dstOffsets[1].y > static_cast<int32_t>(dst_extent.height))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001f2, "IMAGE",
"vkCmdBlitImage: region [%d] dstOffset[].y values (%1d, %1d) exceed dstSubresource height extent (%1d). %s", i,
rgn.dstOffsets[0].y, rgn.dstOffsets[1].y, dst_extent.height, validation_error_map[VALIDATION_ERROR_09a001f2]);
}
if ((rgn.dstOffsets[0].z < 0) || (rgn.dstOffsets[0].z > static_cast<int32_t>(dst_extent.depth)) ||
(rgn.dstOffsets[1].z < 0) || (rgn.dstOffsets[1].z > static_cast<int32_t>(dst_extent.depth))) {
oob = true;
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001f6, "IMAGE",
"vkCmdBlitImage: region [%d] dstOffset[].z values (%1d, %1d) exceed dstSubresource depth extent (%1d). %s", i,
rgn.dstOffsets[0].z, rgn.dstOffsets[1].z, dst_extent.depth, validation_error_map[VALIDATION_ERROR_09a001f6]);
}
if (rgn.dstSubresource.mipLevel >= dst_image_state->createInfo.mipLevels) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001b0, "IMAGE",
"vkCmdBlitImage: region [%d] destination image, attempt to access a non-existant mip level %1d. %s",
i, rgn.dstSubresource.mipLevel, validation_error_map[VALIDATION_ERROR_184001b0]);
} else if (oob) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_184001b0, "IMAGE",
"vkCmdBlitImage: region [%d] destination image blit region exceeds image dimensions. %s", i,
validation_error_map[VALIDATION_ERROR_184001b0]);
}
if ((VK_IMAGE_TYPE_3D == src_type) || (VK_IMAGE_TYPE_3D == dst_type)) {
if ((0 != rgn.srcSubresource.baseArrayLayer) || (1 != rgn.srcSubresource.layerCount) ||
(0 != rgn.dstSubresource.baseArrayLayer) || (1 != rgn.dstSubresource.layerCount)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_09a001e0, "IMAGE",
"vkCmdBlitImage: region [%d] blit to/from a 3D image type with a non-zero baseArrayLayer, or a "
"layerCount other than 1. %s",
i, validation_error_map[VALIDATION_ERROR_09a001e0]);
}
}
} // per-region checks
} else {
assert(0);
}
return skip;
}
void PreCallRecordCmdBlitImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state) {
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() { return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdBlitImage()"); };
cb_node->queue_submit_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
}
// This validates that the initial layout specified in the command buffer for
// the IMAGE is the same
// as the global IMAGE layout
bool ValidateCmdBufImageLayouts(layer_data *device_data, GLOBAL_CB_NODE *pCB,
std::unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> const & globalImageLayoutMap,
std::unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> & overlayLayoutMap) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
for (auto cb_image_data : pCB->imageLayoutMap) {
VkImageLayout imageLayout;
if (FindLayout(overlayLayoutMap, cb_image_data.first, imageLayout) ||
FindLayout(globalImageLayoutMap, cb_image_data.first, imageLayout)) {
if (cb_image_data.second.initialLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (imageLayout != cb_image_data.second.initialLayout) {
if (cb_image_data.first.hasSubresource) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using image (0x%" PRIx64
") [sub-resource: aspectMask 0x%X array layer %u, mip level %u], "
"with layout %s when first use is %s.",
HandleToUint64(cb_image_data.first.image), cb_image_data.first.subresource.aspectMask,
cb_image_data.first.subresource.arrayLayer, cb_image_data.first.subresource.mipLevel,
string_VkImageLayout(imageLayout), string_VkImageLayout(cb_image_data.second.initialLayout));
} else {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using image (0x%" PRIx64
") with layout %s when "
"first use is %s.",
HandleToUint64(cb_image_data.first.image), string_VkImageLayout(imageLayout),
string_VkImageLayout(cb_image_data.second.initialLayout));
}
}
SetLayout(overlayLayoutMap, cb_image_data.first, cb_image_data.second.layout);
}
}
return skip;
}
void UpdateCmdBufImageLayouts(layer_data *device_data, GLOBAL_CB_NODE *pCB) {
for (auto cb_image_data : pCB->imageLayoutMap) {
VkImageLayout imageLayout;
FindGlobalLayout(device_data, cb_image_data.first, imageLayout);
SetGlobalLayout(device_data, cb_image_data.first, cb_image_data.second.layout);
}
}
// Print readable FlagBits in FlagMask
static std::string string_VkAccessFlags(VkAccessFlags accessMask) {
std::string result;
std::string separator;
if (accessMask == 0) {
result = "[None]";
} else {
result = "[";
for (auto i = 0; i < 32; i++) {
if (accessMask & (1 << i)) {
result = result + separator + string_VkAccessFlagBits((VkAccessFlagBits)(1 << i));
separator = " | ";
}
}
result = result + "]";
}
return result;
}
// AccessFlags MUST have 'required_bit' set, and may have one or more of 'optional_bits' set. If required_bit is zero, accessMask
// must have at least one of 'optional_bits' set
// TODO: Add tracking to ensure that at least one barrier has been set for these layout transitions
static bool ValidateMaskBits(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer, const VkAccessFlags &accessMask,
const VkImageLayout &layout, VkAccessFlags required_bit, VkAccessFlags optional_bits,
const char *type) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if ((accessMask & required_bit) || (!required_bit && (accessMask & optional_bits))) {
if (accessMask & ~(required_bit | optional_bits)) {
// TODO: Verify against Valid Use
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cmdBuffer), __LINE__, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in %s accessMask 0x%X %s are specified when layout is %s.", type, accessMask,
string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
} else {
if (!required_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cmdBuffer), __LINE__, DRAWSTATE_INVALID_BARRIER, "DS",
"%s AccessMask %d %s must contain at least one of access bits %d "
"%s when layout is %s, unless the app has previously added a "
"barrier for this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), optional_bits,
string_VkAccessFlags(optional_bits).c_str(), string_VkImageLayout(layout));
} else {
std::string opt_bits;
if (optional_bits != 0) {
std::stringstream ss;
ss << optional_bits;
opt_bits = "and may have optional bits " + ss.str() + ' ' + string_VkAccessFlags(optional_bits);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cmdBuffer), __LINE__, DRAWSTATE_INVALID_BARRIER, "DS",
"%s AccessMask %d %s must have required access bit %d %s %s when "
"layout is %s, unless the app has previously added a barrier for "
"this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), required_bit,
string_VkAccessFlags(required_bit).c_str(), opt_bits.c_str(), string_VkImageLayout(layout));
}
}
return skip;
}
bool ValidateMaskBitsFromLayouts(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer,
const VkAccessFlags &accessMask, const VkImageLayout &layout, const char *type) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_WRITE_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: {
skip |= ValidateMaskBits(
device_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT,
type);
break;
}
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_READ_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_UNDEFINED: {
if (accessMask != 0) {
// TODO: Verify against Valid Use section spec
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cmdBuffer), __LINE__, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in %s accessMask 0x%X %s are specified when layout is %s.", type, accessMask,
string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
break;
}
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
// Notes: QueuePresentKHR performs automatic visibility operations,
// so the app is /NOT/ required to include VK_ACCESS_MEMORY_READ_BIT
// when transitioning to this layout.
//
// When transitioning /from/ this layout, the application needs to
// avoid only a WAR hazard -- any writes need to be ordered after
// the PE's reads. There is no need for a memory dependency for this
// case.
// Intentionally fall through
case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
// Todo -- shouldn't be valid unless extension is enabled
// Intentionally fall through
case VK_IMAGE_LAYOUT_GENERAL:
default: { break; }
}
return skip;
}
// ValidateLayoutVsAttachmentDescription is a general function where we can validate various state associated with the
// VkAttachmentDescription structs that are used by the sub-passes of a renderpass. Initial check is to make sure that READ_ONLY
// layout attachments don't have CLEAR as their loadOp.
bool ValidateLayoutVsAttachmentDescription(const debug_report_data *report_data, const VkImageLayout first_layout,
const uint32_t attachment, const VkAttachmentDescription &attachment_description) {
bool skip = false;
// Verify that initial loadOp on READ_ONLY attachments is not CLEAR
if (attachment_description.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
if ((first_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL) ||
(first_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_12200688, "DS", "Cannot clear attachment %d with invalid first layout %s. %s",
attachment, string_VkImageLayout(first_layout), validation_error_map[VALIDATION_ERROR_12200688]);
}
}
return skip;
}
bool ValidateLayouts(core_validation::layer_data *device_data, VkDevice device, const VkRenderPassCreateInfo *pCreateInfo) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
// Track when we're observing the first use of an attachment
std::vector<bool> attach_first_use(pCreateInfo->attachmentCount, true);
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
// Check input attachments first, so we can detect first-use-as-input for VU #00349
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
auto attach_index = subpass.pInputAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED) continue;
switch (subpass.pInputAttachments[j].layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// These are ideal.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal. TODO: reconsider this warning based on other constraints.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is GENERAL but should be READ_ONLY_OPTIMAL.");
break;
default:
// No other layouts are acceptable
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is %s but can only be READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pInputAttachments[j].layout));
}
VkImageLayout layout = subpass.pInputAttachments[j].layout;
bool found_layout_mismatch = subpass.pDepthStencilAttachment &&
subpass.pDepthStencilAttachment->attachment == attach_index &&
subpass.pDepthStencilAttachment->layout != layout;
for (uint32_t c = 0; !found_layout_mismatch && c < subpass.colorAttachmentCount; ++c) {
found_layout_mismatch =
(subpass.pColorAttachments[c].attachment == attach_index && subpass.pColorAttachments[c].layout != layout);
}
if (found_layout_mismatch) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_140006ae, "DS",
"CreateRenderPass: Subpass %u pInputAttachments[%u] (%u) has layout %u, but is also used as a depth/color "
"attachment with a different layout. %s",
i, j, attach_index, layout, validation_error_map[VALIDATION_ERROR_140006ae]);
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pInputAttachments[j].layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
bool used_as_depth =
(subpass.pDepthStencilAttachment != NULL && subpass.pDepthStencilAttachment->attachment == attach_index);
bool used_as_color = false;
for (uint32_t k = 0; !used_as_depth && !used_as_color && k < subpass.colorAttachmentCount; ++k) {
used_as_color = (subpass.pColorAttachments[k].attachment == attach_index);
}
if (!used_as_depth && !used_as_color &&
pCreateInfo->pAttachments[attach_index].loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_1400069c, "DS",
"CreateRenderPass: attachment %u is first used as an input attachment in subpass %u with loadOp=CLEAR. %s",
attach_index, attach_index, validation_error_map[VALIDATION_ERROR_1400069c]);
}
}
attach_first_use[attach_index] = false;
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
auto attach_index = subpass.pColorAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED) continue;
// TODO: Need a way to validate shared presentable images here, currently just allowing
// VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR
// as an acceptable layout, but need to make sure shared presentable images ONLY use that layout
switch (subpass.pColorAttachments[j].layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// This is ideal.
case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
// TODO: See note above, just assuming that attachment is shared presentable and allowing this for now.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal; TODO: reconsider this warning based on other constraints?
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is GENERAL but should be COLOR_ATTACHMENT_OPTIMAL.");
break;
default:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is %s but can only be COLOR_ATTACHMENT_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pColorAttachments[j].layout));
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pColorAttachments[j].layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
switch (subpass.pDepthStencilAttachment->layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
// These are ideal.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal; TODO: reconsider this warning based on other constraints? GENERAL can be better than
// doing a bunch of transitions.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"GENERAL layout for depth attachment may not give optimal performance.");
break;
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
if (GetDeviceExtensions(device_data)->vk_khr_maintenance2) {
break;
} else {
// Intentionally fall through to generic error message
}
default:
// No other layouts are acceptable
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for depth attachment is %s but can only be DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "
"DEPTH_STENCIL_READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pDepthStencilAttachment->layout));
}
auto attach_index = subpass.pDepthStencilAttachment->attachment;
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pDepthStencilAttachment->layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
}
return skip;
}
// For any image objects that overlap mapped memory, verify that their layouts are PREINIT or GENERAL
bool ValidateMapImageLayouts(core_validation::layer_data *device_data, VkDevice device, DEVICE_MEM_INFO const *mem_info,
VkDeviceSize offset, VkDeviceSize end_offset) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
// Iterate over all bound image ranges and verify that for any that overlap the map ranges, the layouts are
// VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_LAYOUT_GENERAL
// TODO : This can be optimized if we store ranges based on starting address and early exit when we pass our range
for (auto image_handle : mem_info->bound_images) {
auto img_it = mem_info->bound_ranges.find(image_handle);
if (img_it != mem_info->bound_ranges.end()) {
if (rangesIntersect(device_data, &img_it->second, offset, end_offset)) {
std::vector<VkImageLayout> layouts;
if (FindLayouts(device_data, VkImage(image_handle), layouts)) {
for (auto layout : layouts) {
if (layout != VK_IMAGE_LAYOUT_PREINITIALIZED && layout != VK_IMAGE_LAYOUT_GENERAL) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
HandleToUint64(mem_info->mem), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Mapping an image with layout %s can result in undefined behavior if this memory is "
"used by the device. Only GENERAL or PREINITIALIZED should be used.",
string_VkImageLayout(layout));
}
}
}
}
}
}
return skip;
}
// Helper function to validate correct usage bits set for buffers or images. Verify that (actual & desired) flags != 0 or, if strict
// is true, verify that (actual & desired) flags == desired
static bool validate_usage_flags(layer_data *device_data, VkFlags actual, VkFlags desired, VkBool32 strict, uint64_t obj_handle,
VulkanObjectType obj_type, int32_t const msgCode, char const *func_name, char const *usage_str) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool correct_usage = false;
bool skip = false;
const char *type_str = object_string[obj_type];
if (strict) {
correct_usage = ((actual & desired) == desired);
} else {
correct_usage = ((actual & desired) != 0);
}
if (!correct_usage) {
if (msgCode == -1) {
// TODO: Fix callers with msgCode == -1 to use correct validation checks.
skip = log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, get_debug_report_enum[obj_type], obj_handle, __LINE__,
MEMTRACK_INVALID_USAGE_FLAG, "MEM",
"Invalid usage flag for %s 0x%" PRIxLEAST64
" used by %s. In this case, %s should have %s set during creation.",
type_str, obj_handle, func_name, type_str, usage_str);
} else {
const char *valid_usage = (msgCode == -1) ? "" : validation_error_map[msgCode];
skip = log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, get_debug_report_enum[obj_type], obj_handle, __LINE__, msgCode, "MEM",
"Invalid usage flag for %s 0x%" PRIxLEAST64 " used by %s. In this case, %s should have %s set during creation. %s",
type_str, obj_handle, func_name, type_str, usage_str, valid_usage);
}
}
return skip;
}
// Helper function to validate usage flags for buffers. For given buffer_state send actual vs. desired usage off to helper above
// where an error will be flagged if usage is not correct
bool ValidateImageUsageFlags(layer_data *device_data, IMAGE_STATE const *image_state, VkFlags desired, bool strict,
int32_t const msgCode, char const *func_name, char const *usage_string) {
return validate_usage_flags(device_data, image_state->createInfo.usage, desired, strict, HandleToUint64(image_state->image),
kVulkanObjectTypeImage, msgCode, func_name, usage_string);
}
// Helper function to validate usage flags for buffers. For given buffer_state send actual vs. desired usage off to helper above
// where an error will be flagged if usage is not correct
bool ValidateBufferUsageFlags(layer_data *device_data, BUFFER_STATE const *buffer_state, VkFlags desired, bool strict,
int32_t const msgCode, char const *func_name, char const *usage_string) {
return validate_usage_flags(device_data, buffer_state->createInfo.usage, desired, strict, HandleToUint64(buffer_state->buffer),
kVulkanObjectTypeBuffer, msgCode, func_name, usage_string);
}
bool PreCallValidateCreateBuffer(layer_data *device_data, const VkBufferCreateInfo *pCreateInfo) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
// TODO: Add check for VALIDATION_ERROR_1ec0071e (sparse address space accounting)
if ((pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && (!GetEnabledFeatures(device_data)->sparseBinding)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_01400726, "DS",
"vkCreateBuffer(): the sparseBinding device feature is disabled: Buffers cannot be created with the "
"VK_BUFFER_CREATE_SPARSE_BINDING_BIT set. %s",
validation_error_map[VALIDATION_ERROR_01400726]);
}
if ((pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT) && (!GetEnabledFeatures(device_data)->sparseResidencyBuffer)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_01400728, "DS",
"vkCreateBuffer(): the sparseResidencyBuffer device feature is disabled: Buffers cannot be created with the "
"VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT set. %s",
validation_error_map[VALIDATION_ERROR_01400728]);
}
if ((pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT) && (!GetEnabledFeatures(device_data)->sparseResidencyAliased)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_0140072a, "DS",
"vkCreateBuffer(): the sparseResidencyAliased device feature is disabled: Buffers cannot be created with the "
"VK_BUFFER_CREATE_SPARSE_ALIASED_BIT set. %s",
validation_error_map[VALIDATION_ERROR_0140072a]);
}
return skip;
}
void PostCallRecordCreateBuffer(layer_data *device_data, const VkBufferCreateInfo *pCreateInfo, VkBuffer *pBuffer) {
// TODO : This doesn't create deep copy of pQueueFamilyIndices so need to fix that if/when we want that data to be valid
GetBufferMap(device_data)
->insert(std::make_pair(*pBuffer, std::unique_ptr<BUFFER_STATE>(new BUFFER_STATE(*pBuffer, pCreateInfo))));
}
bool PreCallValidateCreateBufferView(layer_data *device_data, const VkBufferViewCreateInfo *pCreateInfo) {
bool skip = false;
BUFFER_STATE *buffer_state = GetBufferState(device_data, pCreateInfo->buffer);
// If this isn't a sparse buffer, it needs to have memory backing it at CreateBufferView time
if (buffer_state) {
skip |= ValidateMemoryIsBoundToBuffer(device_data, buffer_state, "vkCreateBufferView()", VALIDATION_ERROR_01a0074e);
// In order to create a valid buffer view, the buffer must have been created with at least one of the following flags:
// UNIFORM_TEXEL_BUFFER_BIT or STORAGE_TEXEL_BUFFER_BIT
skip |= ValidateBufferUsageFlags(
device_data, buffer_state, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, false,
VALIDATION_ERROR_01a00748, "vkCreateBufferView()", "VK_BUFFER_USAGE_[STORAGE|UNIFORM]_TEXEL_BUFFER_BIT");
}
return skip;
}
void PostCallRecordCreateBufferView(layer_data *device_data, const VkBufferViewCreateInfo *pCreateInfo, VkBufferView *pView) {
(*GetBufferViewMap(device_data))[*pView] = std::unique_ptr<BUFFER_VIEW_STATE>(new BUFFER_VIEW_STATE(*pView, pCreateInfo));
}
// For the given format verify that the aspect masks make sense
bool ValidateImageAspectMask(layer_data *device_data, VkImage image, VkFormat format, VkImageAspectFlags aspect_mask,
const char *func_name) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (FormatIsColor(format)) {
if ((aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) != VK_IMAGE_ASPECT_COLOR_BIT) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Color image formats must have the VK_IMAGE_ASPECT_COLOR_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
} else if ((aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) != aspect_mask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Color image formats must have ONLY the VK_IMAGE_ASPECT_COLOR_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
}
} else if (FormatIsDepthAndStencil(format)) {
if ((aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) == 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Depth/stencil image formats must have "
"at least one of VK_IMAGE_ASPECT_DEPTH_BIT "
"and VK_IMAGE_ASPECT_STENCIL_BIT set. %s",
func_name, validation_error_map[VALIDATION_ERROR_0a400c01]);
} else if ((aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != aspect_mask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Combination depth/stencil image formats can have only the VK_IMAGE_ASPECT_DEPTH_BIT and "
"VK_IMAGE_ASPECT_STENCIL_BIT set. %s",
func_name, validation_error_map[VALIDATION_ERROR_0a400c01]);
}
} else if (FormatIsDepthOnly(format)) {
if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Depth-only image formats must have the VK_IMAGE_ASPECT_DEPTH_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
} else if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != aspect_mask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Depth-only image formats can have only the VK_IMAGE_ASPECT_DEPTH_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
}
} else if (FormatIsStencilOnly(format)) {
if ((aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Stencil-only image formats must have the VK_IMAGE_ASPECT_STENCIL_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
} else if ((aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != aspect_mask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"%s: Stencil-only image formats can have only the VK_IMAGE_ASPECT_STENCIL_BIT set. %s", func_name,
validation_error_map[VALIDATION_ERROR_0a400c01]);
}
}
return skip;
}
struct SubresourceRangeErrorCodes {
UNIQUE_VALIDATION_ERROR_CODE base_mip_err, mip_count_err, base_layer_err, layer_count_err;
};
bool ValidateImageSubresourceRange(const layer_data *device_data, const uint32_t image_mip_count, const uint32_t image_layer_count,
const VkImageSubresourceRange &subresourceRange, const char *cmd_name, const char *param_name,
const char *image_layer_count_var_name, const uint64_t image_handle,
SubresourceRangeErrorCodes errorCodes) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
// Validate mip levels
if (subresourceRange.baseMipLevel >= image_mip_count) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle, __LINE__,
errorCodes.base_mip_err, "IMAGE",
"%s: %s.baseMipLevel (= %" PRIu32
") is greater or equal to the mip level count of the image (i.e. greater or equal to %" PRIu32 "). %s",
cmd_name, param_name, subresourceRange.baseMipLevel, image_mip_count,
validation_error_map[errorCodes.base_mip_err]);
}
if (subresourceRange.levelCount != VK_REMAINING_MIP_LEVELS) {
if (subresourceRange.levelCount == 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle,
__LINE__, errorCodes.mip_count_err, "IMAGE", "%s: %s.levelCount is 0. %s", cmd_name, param_name,
validation_error_map[errorCodes.mip_count_err]);
} else {
const uint64_t necessary_mip_count = uint64_t{subresourceRange.baseMipLevel} + uint64_t{subresourceRange.levelCount};
if (necessary_mip_count > image_mip_count) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle,
__LINE__, errorCodes.mip_count_err, "IMAGE",
"%s: %s.baseMipLevel + .levelCount (= %" PRIu32 " + %" PRIu32 " = %" PRIu64
") is greater than the mip level count of the image (i.e. greater than %" PRIu32 "). %s",
cmd_name, param_name, subresourceRange.baseMipLevel, subresourceRange.levelCount,
necessary_mip_count, image_mip_count, validation_error_map[errorCodes.mip_count_err]);
}
}
}
// Validate array layers
if (subresourceRange.baseArrayLayer >= image_layer_count) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle, __LINE__,
errorCodes.base_layer_err, "IMAGE",
"%s: %s.baseArrayLayer (= %" PRIu32
") is greater or equal to the %s of the image when it was created (i.e. greater or equal to %" PRIu32 "). %s",
cmd_name, param_name, subresourceRange.baseArrayLayer, image_layer_count_var_name, image_layer_count,
validation_error_map[errorCodes.base_layer_err]);
}
if (subresourceRange.layerCount != VK_REMAINING_ARRAY_LAYERS) {
if (subresourceRange.layerCount == 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle,
__LINE__, errorCodes.layer_count_err, "IMAGE", "%s: %s.layerCount is 0. %s", cmd_name, param_name,
validation_error_map[errorCodes.layer_count_err]);
} else {
const uint64_t necessary_layer_count =
uint64_t{subresourceRange.baseArrayLayer} + uint64_t{subresourceRange.layerCount};
if (necessary_layer_count > image_layer_count) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, image_handle,
__LINE__, errorCodes.layer_count_err, "IMAGE",
"%s: %s.baseArrayLayer + .layerCount (= %" PRIu32 " + %" PRIu32 " = %" PRIu64
") is greater than the %s of the image when it was created (i.e. greater than %" PRIu32 "). %s",
cmd_name, param_name, subresourceRange.baseArrayLayer, subresourceRange.layerCount,
necessary_layer_count, image_layer_count_var_name, image_layer_count,
validation_error_map[errorCodes.layer_count_err]);
}
}
}
return skip;
}
bool ValidateCreateImageViewSubresourceRange(const layer_data *device_data, const IMAGE_STATE *image_state,
bool is_imageview_2d_type, const VkImageSubresourceRange &subresourceRange) {
bool is_khr_maintenance1 = GetDeviceExtensions(device_data)->vk_khr_maintenance1;
bool is_image_slicable = image_state->createInfo.imageType == VK_IMAGE_TYPE_3D &&
(image_state->createInfo.flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR);
bool is_3D_to_2D_map = is_khr_maintenance1 && is_image_slicable && is_imageview_2d_type;
const auto image_layer_count = is_3D_to_2D_map ? image_state->createInfo.extent.depth : image_state->createInfo.arrayLayers;
const auto image_layer_count_var_name = is_3D_to_2D_map ? "extent.depth" : "arrayLayers";
SubresourceRangeErrorCodes subresourceRangeErrorCodes = {};
subresourceRangeErrorCodes.base_mip_err = VALIDATION_ERROR_0ac00b8c;
subresourceRangeErrorCodes.mip_count_err = VALIDATION_ERROR_0ac00b8e;
subresourceRangeErrorCodes.base_layer_err =
is_khr_maintenance1 ? (is_3D_to_2D_map ? VALIDATION_ERROR_0ac00b98 : VALIDATION_ERROR_0ac00b94) : VALIDATION_ERROR_0ac00b90;
subresourceRangeErrorCodes.layer_count_err =
is_khr_maintenance1 ? (is_3D_to_2D_map ? VALIDATION_ERROR_0ac00b9a : VALIDATION_ERROR_0ac00b96) : VALIDATION_ERROR_0ac00b92;
return ValidateImageSubresourceRange(device_data, image_state->createInfo.mipLevels, image_layer_count, subresourceRange,
"vkCreateImageView", "pCreateInfo->subresourceRange", image_layer_count_var_name,
HandleToUint64(image_state->image), subresourceRangeErrorCodes);
}
bool ValidateCmdClearColorSubresourceRange(const layer_data *device_data, const IMAGE_STATE *image_state,
const VkImageSubresourceRange &subresourceRange, const char *param_name) {
SubresourceRangeErrorCodes subresourceRangeErrorCodes = {};
subresourceRangeErrorCodes.base_mip_err = VALIDATION_ERROR_18800b7c;
subresourceRangeErrorCodes.mip_count_err = VALIDATION_ERROR_18800b7e;
subresourceRangeErrorCodes.base_layer_err = VALIDATION_ERROR_18800b80;
subresourceRangeErrorCodes.layer_count_err = VALIDATION_ERROR_18800b82;
return ValidateImageSubresourceRange(device_data, image_state->createInfo.mipLevels, image_state->createInfo.arrayLayers,
subresourceRange, "vkCmdClearColorImage", param_name, "arrayLayers",
HandleToUint64(image_state->image), subresourceRangeErrorCodes);
}
bool ValidateCmdClearDepthSubresourceRange(const layer_data *device_data, const IMAGE_STATE *image_state,
const VkImageSubresourceRange &subresourceRange, const char *param_name) {
SubresourceRangeErrorCodes subresourceRangeErrorCodes = {};
subresourceRangeErrorCodes.base_mip_err = VALIDATION_ERROR_18a00b84;
subresourceRangeErrorCodes.mip_count_err = VALIDATION_ERROR_18a00b86;
subresourceRangeErrorCodes.base_layer_err = VALIDATION_ERROR_18a00b88;
subresourceRangeErrorCodes.layer_count_err = VALIDATION_ERROR_18a00b8a;
return ValidateImageSubresourceRange(device_data, image_state->createInfo.mipLevels, image_state->createInfo.arrayLayers,
subresourceRange, "vkCmdClearDepthStencilImage", param_name, "arrayLayers",
HandleToUint64(image_state->image), subresourceRangeErrorCodes);
}
bool ValidateImageBarrierSubresourceRange(const layer_data *device_data, const IMAGE_STATE *image_state,
const VkImageSubresourceRange &subresourceRange, const char *cmd_name,
const char *param_name) {
SubresourceRangeErrorCodes subresourceRangeErrorCodes = {};
subresourceRangeErrorCodes.base_mip_err = VALIDATION_ERROR_0a000b9c;
subresourceRangeErrorCodes.mip_count_err = VALIDATION_ERROR_0a000b9e;
subresourceRangeErrorCodes.base_layer_err = VALIDATION_ERROR_0a000ba0;
subresourceRangeErrorCodes.layer_count_err = VALIDATION_ERROR_0a000ba2;
return ValidateImageSubresourceRange(device_data, image_state->createInfo.mipLevels, image_state->createInfo.arrayLayers,
subresourceRange, cmd_name, param_name, "arrayLayers", HandleToUint64(image_state->image),
subresourceRangeErrorCodes);
}
bool PreCallValidateCreateImageView(layer_data *device_data, const VkImageViewCreateInfo *create_info) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
IMAGE_STATE *image_state = GetImageState(device_data, create_info->image);
if (image_state) {
skip |= ValidateImageUsageFlags(
device_data, image_state,
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
false, -1, "vkCreateImageView()",
"VK_IMAGE_USAGE_[SAMPLED|STORAGE|COLOR_ATTACHMENT|DEPTH_STENCIL_ATTACHMENT|INPUT_ATTACHMENT]_BIT");
// If this isn't a sparse image, it needs to have memory backing it at CreateImageView time
skip |= ValidateMemoryIsBoundToImage(device_data, image_state, "vkCreateImageView()", VALIDATION_ERROR_0ac007f8);
// Checks imported from image layer
skip |= ValidateCreateImageViewSubresourceRange(
device_data, image_state,
create_info->viewType == VK_IMAGE_VIEW_TYPE_2D || create_info->viewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY,
create_info->subresourceRange);
VkImageCreateFlags image_flags = image_state->createInfo.flags;
VkFormat image_format = image_state->createInfo.format;
VkImageUsageFlags image_usage = image_state->createInfo.usage;
VkImageTiling image_tiling = image_state->createInfo.tiling;
VkFormat view_format = create_info->format;
VkImageAspectFlags aspect_mask = create_info->subresourceRange.aspectMask;
VkImageType image_type = image_state->createInfo.imageType;
VkImageViewType view_type = create_info->viewType;
// Validate VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT state
if (image_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
if ((!GetDeviceExtensions(device_data)->vk_khr_maintenance2 ||
!(image_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR))) {
// Format MUST be compatible (in the same format compatibility class) as the format the image was created with
if (FormatCompatibilityClass(image_format) != FormatCompatibilityClass(view_format)) {
std::stringstream ss;
ss << "vkCreateImageView(): ImageView format " << string_VkFormat(view_format)
<< " is not in the same format compatibility class as image (" << HandleToUint64(create_info->image)
<< ") format " << string_VkFormat(image_format)
<< ". Images created with the VK_IMAGE_CREATE_MUTABLE_FORMAT BIT "
<< "can support ImageViews with differing formats but they must be in the same compatibility class.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007f4, "IMAGE", "%s %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_0ac007f4]);
}
}
} else {
// Format MUST be IDENTICAL to the format the image was created with
if (image_format != view_format) {
std::stringstream ss;
ss << "vkCreateImageView() format " << string_VkFormat(view_format) << " differs from image "
<< HandleToUint64(create_info->image) << " format " << string_VkFormat(image_format)
<< ". Formats MUST be IDENTICAL unless VK_IMAGE_CREATE_MUTABLE_FORMAT BIT was set on image creation.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_0ac007f6, "IMAGE", "%s %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_0ac007f6]);
}
}
// Validate correct image aspect bits for desired formats and format consistency
skip |= ValidateImageAspectMask(device_data, image_state->image, image_format, aspect_mask, "vkCreateImageView()");
switch (image_type) {
case VK_IMAGE_TYPE_1D:
if (view_type != VK_IMAGE_VIEW_TYPE_1D && view_type != VK_IMAGE_VIEW_TYPE_1D_ARRAY) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007fa, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007fa]);
}
break;
case VK_IMAGE_TYPE_2D:
if (view_type != VK_IMAGE_VIEW_TYPE_2D && view_type != VK_IMAGE_VIEW_TYPE_2D_ARRAY) {
if ((view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) &&
!(image_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007d6, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007d6]);
} else if (view_type != VK_IMAGE_VIEW_TYPE_CUBE && view_type != VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007fa, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007fa]);
}
}
break;
case VK_IMAGE_TYPE_3D:
if (GetDeviceExtensions(device_data)->vk_khr_maintenance1) {
if (view_type != VK_IMAGE_VIEW_TYPE_3D) {
if ((view_type == VK_IMAGE_VIEW_TYPE_2D || view_type == VK_IMAGE_VIEW_TYPE_2D_ARRAY)) {
if (!(image_flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007da, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007da]);
} else if ((image_flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT |
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT))) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007fa, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s when the "
"VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or "
"VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags are enabled. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007fa]);
}
} else {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007fa, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007fa]);
}
}
} else {
if (view_type != VK_IMAGE_VIEW_TYPE_3D) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_0ac007fa, "IMAGE",
"vkCreateImageView(): pCreateInfo->viewType %s is not compatible with image type %s. %s",
string_VkImageViewType(view_type), string_VkImageType(image_type),
validation_error_map[VALIDATION_ERROR_0ac007fa]);
}
}
break;
default:
break;
}
VkFormatProperties format_properties = GetFormatProperties(device_data, view_format);
bool check_tiling_features = false;
VkFormatFeatureFlags tiling_features = 0;
UNIQUE_VALIDATION_ERROR_CODE linear_error_codes[] = {
VALIDATION_ERROR_0ac007dc, VALIDATION_ERROR_0ac007e0, VALIDATION_ERROR_0ac007e2,
VALIDATION_ERROR_0ac007e4, VALIDATION_ERROR_0ac007e6,
};
UNIQUE_VALIDATION_ERROR_CODE optimal_error_codes[] = {
VALIDATION_ERROR_0ac007e8, VALIDATION_ERROR_0ac007ea, VALIDATION_ERROR_0ac007ec,
VALIDATION_ERROR_0ac007ee, VALIDATION_ERROR_0ac007f0,
};
UNIQUE_VALIDATION_ERROR_CODE *error_codes = nullptr;
if (image_tiling == VK_IMAGE_TILING_LINEAR) {
tiling_features = format_properties.linearTilingFeatures;
error_codes = linear_error_codes;
check_tiling_features = true;
} else if (image_tiling == VK_IMAGE_TILING_OPTIMAL) {
tiling_features = format_properties.optimalTilingFeatures;
error_codes = optimal_error_codes;
check_tiling_features = true;
}
if (check_tiling_features) {
if (tiling_features == 0) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
error_codes[0], "IMAGE",
"vkCreateImageView() pCreateInfo->format %s cannot be used with an image having the "
"%s flag set. %s",
string_VkFormat(view_format), string_VkImageTiling(image_tiling), validation_error_map[error_codes[0]]);
} else if ((image_usage & VK_IMAGE_USAGE_SAMPLED_BIT) && !(tiling_features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
error_codes[1], "IMAGE",
"vkCreateImageView() pCreateInfo->format %s cannot be used with an image having the "
"%s and VK_IMAGE_USAGE_SAMPLED_BIT flags set. %s",
string_VkFormat(view_format), string_VkImageTiling(image_tiling), validation_error_map[error_codes[1]]);
} else if ((image_usage & VK_IMAGE_USAGE_STORAGE_BIT) && !(tiling_features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
error_codes[2], "IMAGE",
"vkCreateImageView() pCreateInfo->format %s cannot be used with an image having the "
"%s and VK_IMAGE_USAGE_STORAGE_BIT flags set. %s",
string_VkFormat(view_format), string_VkImageTiling(image_tiling), validation_error_map[error_codes[2]]);
} else if ((image_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) &&
!(tiling_features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
error_codes[3], "IMAGE",
"vkCreateImageView() pCreateInfo->format %s cannot be used with an image having the "
"%s and VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT flags set. %s",
string_VkFormat(view_format), string_VkImageTiling(image_tiling), validation_error_map[error_codes[3]]);
} else if ((image_usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) &&
!(tiling_features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
error_codes[4], "IMAGE",
"vkCreateImageView() pCreateInfo->format %s cannot be used with an image having the "
"%s and VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT flags set. %s",
string_VkFormat(view_format), string_VkImageTiling(image_tiling), validation_error_map[error_codes[4]]);
}
}
}
return skip;
}
void PostCallRecordCreateImageView(layer_data *device_data, const VkImageViewCreateInfo *create_info, VkImageView view) {
auto image_view_map = GetImageViewMap(device_data);
(*image_view_map)[view] = std::unique_ptr<IMAGE_VIEW_STATE>(new IMAGE_VIEW_STATE(view, create_info));
auto image_state = GetImageState(device_data, create_info->image);
auto &sub_res_range = (*image_view_map)[view].get()->create_info.subresourceRange;
sub_res_range.levelCount = ResolveRemainingLevels(&sub_res_range, image_state->createInfo.mipLevels);
sub_res_range.layerCount = ResolveRemainingLayers(&sub_res_range, image_state->createInfo.arrayLayers);
}
bool PreCallValidateCmdCopyBuffer(layer_data *device_data, GLOBAL_CB_NODE *cb_node, BUFFER_STATE *src_buffer_state,
BUFFER_STATE *dst_buffer_state) {
bool skip = false;
skip |= ValidateMemoryIsBoundToBuffer(device_data, src_buffer_state, "vkCmdCopyBuffer()", VALIDATION_ERROR_18c000ee);
skip |= ValidateMemoryIsBoundToBuffer(device_data, dst_buffer_state, "vkCmdCopyBuffer()", VALIDATION_ERROR_18c000f2);
// Validate that SRC & DST buffers have correct usage flags set
skip |= ValidateBufferUsageFlags(device_data, src_buffer_state, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, true,
VALIDATION_ERROR_18c000ec, "vkCmdCopyBuffer()", "VK_BUFFER_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateBufferUsageFlags(device_data, dst_buffer_state, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true,
VALIDATION_ERROR_18c000f0, "vkCmdCopyBuffer()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdCopyBuffer()",
VK_QUEUE_TRANSFER_BIT | VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT, VALIDATION_ERROR_18c02415);
skip |= ValidateCmd(device_data, cb_node, CMD_COPYBUFFER, "vkCmdCopyBuffer()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdCopyBuffer()", VALIDATION_ERROR_18c00017);
return skip;
}
void PreCallRecordCmdCopyBuffer(layer_data *device_data, GLOBAL_CB_NODE *cb_node, BUFFER_STATE *src_buffer_state,
BUFFER_STATE *dst_buffer_state) {
// Update bindings between buffers and cmd buffer
AddCommandBufferBindingBuffer(device_data, cb_node, src_buffer_state);
AddCommandBufferBindingBuffer(device_data, cb_node, dst_buffer_state);
std::function<bool()> function = [=]() {
return ValidateBufferMemoryIsValid(device_data, src_buffer_state, "vkCmdCopyBuffer()");
};
cb_node->queue_submit_functions.push_back(function);
function = [=]() {
SetBufferMemoryValid(device_data, dst_buffer_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
}
static bool validateIdleBuffer(layer_data *device_data, VkBuffer buffer) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
auto buffer_state = GetBufferState(device_data, buffer);
if (!buffer_state) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, HandleToUint64(buffer),
__LINE__, DRAWSTATE_DOUBLE_DESTROY, "DS",
"Cannot free buffer 0x%" PRIxLEAST64 " that has not been allocated.", HandleToUint64(buffer));
} else {
if (buffer_state->in_use.load()) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
HandleToUint64(buffer), __LINE__, VALIDATION_ERROR_23c00734, "DS",
"Cannot free buffer 0x%" PRIxLEAST64 " that is in use by a command buffer. %s", HandleToUint64(buffer),
validation_error_map[VALIDATION_ERROR_23c00734]);
}
}
return skip;
}
bool PreCallValidateDestroyImageView(layer_data *device_data, VkImageView image_view, IMAGE_VIEW_STATE **image_view_state,
VK_OBJECT *obj_struct) {
*image_view_state = GetImageViewState(device_data, image_view);
*obj_struct = {HandleToUint64(image_view), kVulkanObjectTypeImageView};
if (GetDisables(device_data)->destroy_image_view) return false;
bool skip = false;
if (*image_view_state) {
skip |= ValidateObjectNotInUse(device_data, *image_view_state, *obj_struct, VALIDATION_ERROR_25400804);
}
return skip;
}
void PostCallRecordDestroyImageView(layer_data *device_data, VkImageView image_view, IMAGE_VIEW_STATE *image_view_state,
VK_OBJECT obj_struct) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(device_data, image_view_state->cb_bindings, obj_struct);
(*GetImageViewMap(device_data)).erase(image_view);
}
bool PreCallValidateDestroyBuffer(layer_data *device_data, VkBuffer buffer, BUFFER_STATE **buffer_state, VK_OBJECT *obj_struct) {
*buffer_state = GetBufferState(device_data, buffer);
*obj_struct = {HandleToUint64(buffer), kVulkanObjectTypeBuffer};
if (GetDisables(device_data)->destroy_buffer) return false;
bool skip = false;
if (*buffer_state) {
skip |= validateIdleBuffer(device_data, buffer);
}
return skip;
}
void PostCallRecordDestroyBuffer(layer_data *device_data, VkBuffer buffer, BUFFER_STATE *buffer_state, VK_OBJECT obj_struct) {
invalidateCommandBuffers(device_data, buffer_state->cb_bindings, obj_struct);
for (auto mem_binding : buffer_state->GetBoundMemory()) {
auto mem_info = GetMemObjInfo(device_data, mem_binding);
if (mem_info) {
core_validation::RemoveBufferMemoryRange(HandleToUint64(buffer), mem_info);
}
}
ClearMemoryObjectBindings(device_data, HandleToUint64(buffer), kVulkanObjectTypeBuffer);
GetBufferMap(device_data)->erase(buffer_state->buffer);
}
bool PreCallValidateDestroyBufferView(layer_data *device_data, VkBufferView buffer_view, BUFFER_VIEW_STATE **buffer_view_state,
VK_OBJECT *obj_struct) {
*buffer_view_state = GetBufferViewState(device_data, buffer_view);
*obj_struct = {HandleToUint64(buffer_view), kVulkanObjectTypeBufferView};
if (GetDisables(device_data)->destroy_buffer_view) return false;
bool skip = false;
if (*buffer_view_state) {
skip |= ValidateObjectNotInUse(device_data, *buffer_view_state, *obj_struct, VALIDATION_ERROR_23e00750);
}
return skip;
}
void PostCallRecordDestroyBufferView(layer_data *device_data, VkBufferView buffer_view, BUFFER_VIEW_STATE *buffer_view_state,
VK_OBJECT obj_struct) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(device_data, buffer_view_state->cb_bindings, obj_struct);
GetBufferViewMap(device_data)->erase(buffer_view);
}
bool PreCallValidateCmdFillBuffer(layer_data *device_data, GLOBAL_CB_NODE *cb_node, BUFFER_STATE *buffer_state) {
bool skip = false;
skip |= ValidateMemoryIsBoundToBuffer(device_data, buffer_state, "vkCmdFillBuffer()", VALIDATION_ERROR_1b40003e);
skip |= ValidateCmdQueueFlags(device_data, cb_node, "vkCmdFillBuffer()",
VK_QUEUE_TRANSFER_BIT | VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT, VALIDATION_ERROR_1b402415);
skip |= ValidateCmd(device_data, cb_node, CMD_FILLBUFFER, "vkCmdFillBuffer()");
// Validate that DST buffer has correct usage flags set
skip |= ValidateBufferUsageFlags(device_data, buffer_state, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true, VALIDATION_ERROR_1b40003a,
"vkCmdFillBuffer()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
skip |= insideRenderPass(device_data, cb_node, "vkCmdFillBuffer()", VALIDATION_ERROR_1b400017);
return skip;
}
void PreCallRecordCmdFillBuffer(layer_data *device_data, GLOBAL_CB_NODE *cb_node, BUFFER_STATE *buffer_state) {
std::function<bool()> function = [=]() {
SetBufferMemoryValid(device_data, buffer_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
// Update bindings between buffer and cmd buffer
AddCommandBufferBindingBuffer(device_data, cb_node, buffer_state);
}
bool ValidateBufferImageCopyData(const debug_report_data *report_data, uint32_t regionCount, const VkBufferImageCopy *pRegions,
IMAGE_STATE *image_state, const char *function) {
bool skip = false;
for (uint32_t i = 0; i < regionCount; i++) {
if (image_state->createInfo.imageType == VK_IMAGE_TYPE_1D) {
if ((pRegions[i].imageOffset.y != 0) || (pRegions[i].imageExtent.height != 1)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_0160018e, "IMAGE",
"%s(): pRegion[%d] imageOffset.y is %d and imageExtent.height is %d. For 1D images these "
"must be 0 and 1, respectively. %s",
function, i, pRegions[i].imageOffset.y, pRegions[i].imageExtent.height,
validation_error_map[VALIDATION_ERROR_0160018e]);
}
}
if ((image_state->createInfo.imageType == VK_IMAGE_TYPE_1D) || (image_state->createInfo.imageType == VK_IMAGE_TYPE_2D)) {
if ((pRegions[i].imageOffset.z != 0) || (pRegions[i].imageExtent.depth != 1)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600192, "IMAGE",
"%s(): pRegion[%d] imageOffset.z is %d and imageExtent.depth is %d. For 1D and 2D images these "
"must be 0 and 1, respectively. %s",
function, i, pRegions[i].imageOffset.z, pRegions[i].imageExtent.depth,
validation_error_map[VALIDATION_ERROR_01600192]);
}
}
if (image_state->createInfo.imageType == VK_IMAGE_TYPE_3D) {
if ((0 != pRegions[i].imageSubresource.baseArrayLayer) || (1 != pRegions[i].imageSubresource.layerCount)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_016001aa, "IMAGE",
"%s(): pRegion[%d] imageSubresource.baseArrayLayer is %d and imageSubresource.layerCount is "
"%d. For 3D images these must be 0 and 1, respectively. %s",
function, i, pRegions[i].imageSubresource.baseArrayLayer, pRegions[i].imageSubresource.layerCount,
validation_error_map[VALIDATION_ERROR_016001aa]);
}
}
// If the the calling command's VkImage parameter's format is not a depth/stencil format,
// then bufferOffset must be a multiple of the calling command's VkImage parameter's texel size
auto texel_size = FormatSize(image_state->createInfo.format);
if (!FormatIsDepthAndStencil(image_state->createInfo.format) && SafeModulo(pRegions[i].bufferOffset, texel_size) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600182, "IMAGE",
"%s(): pRegion[%d] bufferOffset 0x%" PRIxLEAST64
" must be a multiple of this format's texel size (" PRINTF_SIZE_T_SPECIFIER "). %s",
function, i, pRegions[i].bufferOffset, texel_size, validation_error_map[VALIDATION_ERROR_01600182]);
}
// BufferOffset must be a multiple of 4
if (SafeModulo(pRegions[i].bufferOffset, 4) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600184, "IMAGE",
"%s(): pRegion[%d] bufferOffset 0x%" PRIxLEAST64 " must be a multiple of 4. %s", function, i,
pRegions[i].bufferOffset, validation_error_map[VALIDATION_ERROR_01600184]);
}
// BufferRowLength must be 0, or greater than or equal to the width member of imageExtent
if ((pRegions[i].bufferRowLength != 0) && (pRegions[i].bufferRowLength < pRegions[i].imageExtent.width)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600186, "IMAGE",
"%s(): pRegion[%d] bufferRowLength (%d) must be zero or greater-than-or-equal-to imageExtent.width (%d). %s",
function, i, pRegions[i].bufferRowLength, pRegions[i].imageExtent.width,
validation_error_map[VALIDATION_ERROR_01600186]);
}
// BufferImageHeight must be 0, or greater than or equal to the height member of imageExtent
if ((pRegions[i].bufferImageHeight != 0) && (pRegions[i].bufferImageHeight < pRegions[i].imageExtent.height)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600188, "IMAGE",
"%s(): pRegion[%d] bufferImageHeight (%d) must be zero or greater-than-or-equal-to imageExtent.height (%d). %s",
function, i, pRegions[i].bufferImageHeight, pRegions[i].imageExtent.height,
validation_error_map[VALIDATION_ERROR_01600188]);
}
// subresource aspectMask must have exactly 1 bit set
const int num_bits = sizeof(VkFlags) * CHAR_BIT;
std::bitset<num_bits> aspect_mask_bits(pRegions[i].imageSubresource.aspectMask);
if (aspect_mask_bits.count() != 1) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_016001a8, "IMAGE",
"%s: aspectMasks for imageSubresource in each region must have only a single bit set. %s", function,
validation_error_map[VALIDATION_ERROR_016001a8]);
}
// image subresource aspect bit must match format
if (!VerifyAspectsPresent(pRegions[i].imageSubresource.aspectMask, image_state->createInfo.format)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_016001a6, "IMAGE",
"%s(): pRegion[%d] subresource aspectMask 0x%x specifies aspects that are not present in image format 0x%x. %s",
function, i, pRegions[i].imageSubresource.aspectMask, image_state->createInfo.format,
validation_error_map[VALIDATION_ERROR_016001a6]);
}
// Checks that apply only to compressed images
// TODO: there is a comment in ValidateCopyBufferImageTransferGranularityRequirements() in core_validation.cpp that
// reserves a place for these compressed image checks. This block of code could move there once the image
// stuff is moved into core validation.
if (FormatIsCompressed(image_state->createInfo.format)) {
auto block_size = FormatCompressedTexelBlockExtent(image_state->createInfo.format);
// BufferRowLength must be a multiple of block width
if (SafeModulo(pRegions[i].bufferRowLength, block_size.width) != 0) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600196, "IMAGE",
"%s(): pRegion[%d] bufferRowLength (%d) must be a multiple of the compressed image's texel width (%d). %s.",
function, i, pRegions[i].bufferRowLength, block_size.width, validation_error_map[VALIDATION_ERROR_01600196]);
}
// BufferRowHeight must be a multiple of block height
if (SafeModulo(pRegions[i].bufferImageHeight, block_size.height) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_01600198, "IMAGE",
"%s(): pRegion[%d] bufferImageHeight (%d) must be a multiple of the compressed image's texel "
"height (%d). %s.",
function, i, pRegions[i].bufferImageHeight, block_size.height,
validation_error_map[VALIDATION_ERROR_01600198]);
}
// image offsets must be multiples of block dimensions
if ((SafeModulo(pRegions[i].imageOffset.x, block_size.width) != 0) ||
(SafeModulo(pRegions[i].imageOffset.y, block_size.height) != 0) ||
(SafeModulo(pRegions[i].imageOffset.z, block_size.depth) != 0)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_0160019a, "IMAGE",
"%s(): pRegion[%d] imageOffset(x,y) (%d, %d) must be multiples of the compressed image's texel "
"width & height (%d, %d). %s.",
function, i, pRegions[i].imageOffset.x, pRegions[i].imageOffset.y, block_size.width,
block_size.height, validation_error_map[VALIDATION_ERROR_0160019a]);
}
// bufferOffset must be a multiple of block size (linear bytes)
size_t block_size_in_bytes = FormatSize(image_state->createInfo.format);
if (SafeModulo(pRegions[i].bufferOffset, block_size_in_bytes) != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_0160019c, "IMAGE",
"%s(): pRegion[%d] bufferOffset (0x%" PRIxLEAST64
") must be a multiple of the compressed image's texel block "
"size (" PRINTF_SIZE_T_SPECIFIER "). %s.",
function, i, pRegions[i].bufferOffset, block_size_in_bytes,
validation_error_map[VALIDATION_ERROR_0160019c]);
}
// imageExtent width must be a multiple of block width, or extent+offset width must equal subresource width
VkExtent3D mip_extent = GetImageSubresourceExtent(image_state, &(pRegions[i].imageSubresource));
if ((SafeModulo(pRegions[i].imageExtent.width, block_size.width) != 0) &&
(pRegions[i].imageExtent.width + pRegions[i].imageOffset.x != mip_extent.width)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_0160019e, "IMAGE",
"%s(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block width "
"(%d), or when added to offset.x (%d) must equal the image subresource width (%d). %s.",
function, i, pRegions[i].imageExtent.width, block_size.width, pRegions[i].imageOffset.x,
mip_extent.width, validation_error_map[VALIDATION_ERROR_0160019e]);
}
// imageExtent height must be a multiple of block height, or extent+offset height must equal subresource height
if ((SafeModulo(pRegions[i].imageExtent.height, block_size.height) != 0) &&
(pRegions[i].imageExtent.height + pRegions[i].imageOffset.y != mip_extent.height)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_016001a0, "IMAGE",
"%s(): pRegion[%d] extent height (%d) must be a multiple of the compressed texture block height "
"(%d), or when added to offset.y (%d) must equal the image subresource height (%d). %s.",
function, i, pRegions[i].imageExtent.height, block_size.height, pRegions[i].imageOffset.y,
mip_extent.height, validation_error_map[VALIDATION_ERROR_016001a0]);
}
// imageExtent depth must be a multiple of block depth, or extent+offset depth must equal subresource depth
if ((SafeModulo(pRegions[i].imageExtent.depth, block_size.depth) != 0) &&
(pRegions[i].imageExtent.depth + pRegions[i].imageOffset.z != mip_extent.depth)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image_state->image), __LINE__, VALIDATION_ERROR_016001a2, "IMAGE",
"%s(): pRegion[%d] extent width (%d) must be a multiple of the compressed texture block depth "
"(%d), or when added to offset.z (%d) must equal the image subresource depth (%d). %s.",
function, i, pRegions[i].imageExtent.depth, block_size.depth, pRegions[i].imageOffset.z,
mip_extent.depth, validation_error_map[VALIDATION_ERROR_016001a2]);
}
}
}
return skip;
}
static bool ValidateImageBounds(const debug_report_data *report_data, const IMAGE_STATE *image_state, const uint32_t regionCount,
const VkBufferImageCopy *pRegions, const char *func_name, UNIQUE_VALIDATION_ERROR_CODE msg_code) {
bool skip = false;
const VkImageCreateInfo *image_info = &(image_state->createInfo);
for (uint32_t i = 0; i < regionCount; i++) {
VkExtent3D extent = pRegions[i].imageExtent;
VkOffset3D offset = pRegions[i].imageOffset;
if (IsExtentSizeZero(&extent)) // Warn on zero area subresource
{
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)0, __LINE__, IMAGE_ZERO_AREA_SUBREGION, "IMAGE",
"%s: pRegion[%d] imageExtent of {%1d, %1d, %1d} has zero area", func_name, i, extent.width,
extent.height, extent.depth);
}
VkExtent3D image_extent = GetImageSubresourceExtent(image_state, &(pRegions[i].imageSubresource));
// If we're using a compressed format, valid extent is rounded up to multiple of block size (per 18.1)
if (FormatIsCompressed(image_info->format)) {
auto block_extent = FormatCompressedTexelBlockExtent(image_info->format);
if (image_extent.width % block_extent.width) {
image_extent.width += (block_extent.width - (image_extent.width % block_extent.width));
}
if (image_extent.height % block_extent.height) {
image_extent.height += (block_extent.height - (image_extent.height % block_extent.height));
}
if (image_extent.depth % block_extent.depth) {
image_extent.depth += (block_extent.depth - (image_extent.depth % block_extent.depth));
}
}
if (0 != ExceedsBounds(&offset, &extent, &image_extent)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, (uint64_t)0,
__LINE__, msg_code, "IMAGE", "%s: pRegion[%d] exceeds image bounds. %s.", func_name, i,
validation_error_map[msg_code]);
}
}
return skip;
}
static inline bool ValidateBufferBounds(const debug_report_data *report_data, IMAGE_STATE *image_state, BUFFER_STATE *buff_state,
uint32_t regionCount, const VkBufferImageCopy *pRegions, const char *func_name,
UNIQUE_VALIDATION_ERROR_CODE msg_code) {
bool skip = false;
VkDeviceSize buffer_size = buff_state->createInfo.size;
for (uint32_t i = 0; i < regionCount; i++) {
VkExtent3D copy_extent = pRegions[i].imageExtent;
VkDeviceSize buffer_width = (0 == pRegions[i].bufferRowLength ? copy_extent.width : pRegions[i].bufferRowLength);
VkDeviceSize buffer_height = (0 == pRegions[i].bufferImageHeight ? copy_extent.height : pRegions[i].bufferImageHeight);
VkDeviceSize unit_size = FormatSize(image_state->createInfo.format); // size (bytes) of texel or block
// Handle special buffer packing rules for specific depth/stencil formats
if (pRegions[i].imageSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
unit_size = FormatSize(VK_FORMAT_S8_UINT);
} else if (pRegions[i].imageSubresource.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
switch (image_state->createInfo.format) {
case VK_FORMAT_D16_UNORM_S8_UINT:
unit_size = FormatSize(VK_FORMAT_D16_UNORM);
break;
case VK_FORMAT_D32_SFLOAT_S8_UINT:
unit_size = FormatSize(VK_FORMAT_D32_SFLOAT);
break;
case VK_FORMAT_X8_D24_UNORM_PACK32: // Fall through
case VK_FORMAT_D24_UNORM_S8_UINT:
unit_size = 4;
break;
default:
break;
}
}
if (FormatIsCompressed(image_state->createInfo.format)) {
// Switch to texel block units, rounding up for any partially-used blocks
auto block_dim = FormatCompressedTexelBlockExtent(image_state->createInfo.format);
buffer_width = (buffer_width + block_dim.width - 1) / block_dim.width;
buffer_height = (buffer_height + block_dim.height - 1) / block_dim.height;
copy_extent.width = (copy_extent.width + block_dim.width - 1) / block_dim.width;
copy_extent.height = (copy_extent.height + block_dim.height - 1) / block_dim.height;
copy_extent.depth = (copy_extent.depth + block_dim.depth - 1) / block_dim.depth;
}
// Either depth or layerCount may be greater than 1 (not both). This is the number of 'slices' to copy
uint32_t z_copies = std::max(copy_extent.depth, pRegions[i].imageSubresource.layerCount);
if (IsExtentSizeZero(&copy_extent) || (0 == z_copies)) {
// TODO: Issue warning here? Already warned in ValidateImageBounds()...
} else {
// Calculate buffer offset of final copied byte, + 1.
VkDeviceSize max_buffer_offset = (z_copies - 1) * buffer_height * buffer_width; // offset to slice
max_buffer_offset += ((copy_extent.height - 1) * buffer_width) + copy_extent.width; // add row,col
max_buffer_offset *= unit_size; // convert to bytes
max_buffer_offset += pRegions[i].bufferOffset; // add initial offset (bytes)
if (buffer_size < max_buffer_offset) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, (uint64_t)0,
__LINE__, msg_code, "IMAGE", "%s: pRegion[%d] exceeds buffer size of %" PRIu64 " bytes. %s.", func_name,
i, buffer_size, validation_error_map[msg_code]);
}
}
}
return skip;
}
bool PreCallValidateCmdCopyImageToBuffer(layer_data *device_data, VkImageLayout srcImageLayout, GLOBAL_CB_NODE *cb_node,
IMAGE_STATE *src_image_state, BUFFER_STATE *dst_buffer_state, uint32_t regionCount,
const VkBufferImageCopy *pRegions, const char *func_name) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = ValidateBufferImageCopyData(report_data, regionCount, pRegions, src_image_state, "vkCmdCopyImageToBuffer");
// Validate command buffer state
if (CB_RECORDING != cb_node->state) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_19202413, "DS",
"Cannot call vkCmdCopyImageToBuffer() on command buffer which is not in recording state. %s.",
validation_error_map[VALIDATION_ERROR_19202413]);
} else {
skip |= ValidateCmdSubpassState(device_data, cb_node, CMD_COPYIMAGETOBUFFER);
}
// Command pool must support graphics, compute, or transfer operations
auto pPool = GetCommandPoolNode(device_data, cb_node->createInfo.commandPool);
VkQueueFlags queue_flags = GetPhysDevProperties(device_data)->queue_family_properties[pPool->queueFamilyIndex].queueFlags;
if (0 == (queue_flags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->createInfo.commandPool), __LINE__, VALIDATION_ERROR_19202415, "DS",
"Cannot call vkCmdCopyImageToBuffer() on a command buffer allocated from a pool without graphics, compute, "
"or transfer capabilities. %s.",
validation_error_map[VALIDATION_ERROR_19202415]);
}
skip |= ValidateImageBounds(report_data, src_image_state, regionCount, pRegions, "vkCmdCopyBufferToImage()",
VALIDATION_ERROR_1920016c);
skip |= ValidateBufferBounds(report_data, src_image_state, dst_buffer_state, regionCount, pRegions, "vkCmdCopyImageToBuffer()",
VALIDATION_ERROR_1920016e);
skip |= ValidateImageSampleCount(device_data, src_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdCopyImageToBuffer(): srcImage",
VALIDATION_ERROR_19200178);
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdCopyImageToBuffer()", VALIDATION_ERROR_19200176);
skip |= ValidateMemoryIsBoundToBuffer(device_data, dst_buffer_state, "vkCmdCopyImageToBuffer()", VALIDATION_ERROR_19200180);
// Validate that SRC image & DST buffer have correct usage flags set
skip |= ValidateImageUsageFlags(device_data, src_image_state, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true, VALIDATION_ERROR_19200174,
"vkCmdCopyImageToBuffer()", "VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateBufferUsageFlags(device_data, dst_buffer_state, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true,
VALIDATION_ERROR_1920017e, "vkCmdCopyImageToBuffer()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
skip |= insideRenderPass(device_data, cb_node, "vkCmdCopyImageToBuffer()", VALIDATION_ERROR_19200017);
bool hit_error = false;
for (uint32_t i = 0; i < regionCount; ++i) {
skip |= VerifyImageLayout(device_data, cb_node, src_image_state, pRegions[i].imageSubresource, srcImageLayout,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, "vkCmdCopyImageToBuffer()", VALIDATION_ERROR_1920017c,
&hit_error);
skip |= ValidateCopyBufferImageTransferGranularityRequirements(device_data, cb_node, src_image_state, &pRegions[i], i,
"vkCmdCopyImageToBuffer()");
}
return skip;
}
void PreCallRecordCmdCopyImageToBuffer(layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
BUFFER_STATE *dst_buffer_state, uint32_t region_count, const VkBufferImageCopy *regions,
VkImageLayout src_image_layout) {
// Make sure that all image slices are updated to correct layout
for (uint32_t i = 0; i < region_count; ++i) {
SetImageLayout(device_data, cb_node, src_image_state, regions[i].imageSubresource, src_image_layout);
}
// Update bindings between buffer/image and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingBuffer(device_data, cb_node, dst_buffer_state);
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdCopyImageToBuffer()");
};
cb_node->queue_submit_functions.push_back(function);
function = [=]() {
SetBufferMemoryValid(device_data, dst_buffer_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
}
bool PreCallValidateCmdCopyBufferToImage(layer_data *device_data, VkImageLayout dstImageLayout, GLOBAL_CB_NODE *cb_node,
BUFFER_STATE *src_buffer_state, IMAGE_STATE *dst_image_state, uint32_t regionCount,
const VkBufferImageCopy *pRegions, const char *func_name) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = ValidateBufferImageCopyData(report_data, regionCount, pRegions, dst_image_state, "vkCmdCopyBufferToImage");
// Validate command buffer state
if (CB_RECORDING != cb_node->state) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_18e02413, "DS",
"Cannot call vkCmdCopyBufferToImage() on command buffer which is not in recording state. %s.",
validation_error_map[VALIDATION_ERROR_18e02413]);
} else {
skip |= ValidateCmdSubpassState(device_data, cb_node, CMD_COPYBUFFERTOIMAGE);
}
// Command pool must support graphics, compute, or transfer operations
auto pPool = GetCommandPoolNode(device_data, cb_node->createInfo.commandPool);
VkQueueFlags queue_flags = GetPhysDevProperties(device_data)->queue_family_properties[pPool->queueFamilyIndex].queueFlags;
if (0 == (queue_flags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
HandleToUint64(cb_node->createInfo.commandPool), __LINE__, VALIDATION_ERROR_18e02415, "DS",
"Cannot call vkCmdCopyBufferToImage() on a command buffer allocated from a pool without graphics, compute, "
"or transfer capabilities. %s.",
validation_error_map[VALIDATION_ERROR_18e02415]);
}
skip |= ValidateImageBounds(report_data, dst_image_state, regionCount, pRegions, "vkCmdCopyBufferToImage()",
VALIDATION_ERROR_18e00158);
skip |= ValidateBufferBounds(report_data, dst_image_state, src_buffer_state, regionCount, pRegions, "vkCmdCopyBufferToImage()",
VALIDATION_ERROR_18e00156);
skip |= ValidateImageSampleCount(device_data, dst_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdCopyBufferToImage(): dstImage",
VALIDATION_ERROR_18e00166);
skip |= ValidateMemoryIsBoundToBuffer(device_data, src_buffer_state, "vkCmdCopyBufferToImage()", VALIDATION_ERROR_18e00160);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdCopyBufferToImage()", VALIDATION_ERROR_18e00164);
skip |= ValidateBufferUsageFlags(device_data, src_buffer_state, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, true,
VALIDATION_ERROR_18e0015c, "vkCmdCopyBufferToImage()", "VK_BUFFER_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateImageUsageFlags(device_data, dst_image_state, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true, VALIDATION_ERROR_18e00162,
"vkCmdCopyBufferToImage()", "VK_IMAGE_USAGE_TRANSFER_DST_BIT");
skip |= insideRenderPass(device_data, cb_node, "vkCmdCopyBufferToImage()", VALIDATION_ERROR_18e00017);
bool hit_error = false;
for (uint32_t i = 0; i < regionCount; ++i) {
skip |= VerifyImageLayout(device_data, cb_node, dst_image_state, pRegions[i].imageSubresource, dstImageLayout,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, "vkCmdCopyBufferToImage()", VALIDATION_ERROR_18e0016a,
&hit_error);
skip |= ValidateCopyBufferImageTransferGranularityRequirements(device_data, cb_node, dst_image_state, &pRegions[i], i,
"vkCmdCopyBufferToImage()");
}
return skip;
}
void PreCallRecordCmdCopyBufferToImage(layer_data *device_data, GLOBAL_CB_NODE *cb_node, BUFFER_STATE *src_buffer_state,
IMAGE_STATE *dst_image_state, uint32_t region_count, const VkBufferImageCopy *regions,
VkImageLayout dst_image_layout) {
// Make sure that all image slices are updated to correct layout
for (uint32_t i = 0; i < region_count; ++i) {
SetImageLayout(device_data, cb_node, dst_image_state, regions[i].imageSubresource, dst_image_layout);
}
AddCommandBufferBindingBuffer(device_data, cb_node, src_buffer_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->queue_submit_functions.push_back(function);
function = [=]() { return ValidateBufferMemoryIsValid(device_data, src_buffer_state, "vkCmdCopyBufferToImage()"); };
cb_node->queue_submit_functions.push_back(function);
}
bool PreCallValidateGetImageSubresourceLayout(layer_data *device_data, VkImage image, const VkImageSubresource *pSubresource) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip = false;
const VkImageAspectFlags sub_aspect = pSubresource->aspectMask;
// VU 00733: The aspectMask member of pSubresource must only have a single bit set
const int num_bits = sizeof(sub_aspect) * CHAR_BIT;
std::bitset<num_bits> aspect_mask_bits(sub_aspect);
if (aspect_mask_bits.count() != 1) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(image),
__LINE__, VALIDATION_ERROR_2a6007ca, "IMAGE",
"vkGetImageSubresourceLayout(): VkImageSubresource.aspectMask must have exactly 1 bit set. %s",
validation_error_map[VALIDATION_ERROR_2a6007ca]);
}
IMAGE_STATE *image_entry = GetImageState(device_data, image);
if (!image_entry) {
return skip;
}
// VU 00732: image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR
if (image_entry->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(image),
__LINE__, VALIDATION_ERROR_2a6007c8, "IMAGE",
"vkGetImageSubresourceLayout(): Image must have tiling of VK_IMAGE_TILING_LINEAR. %s",
validation_error_map[VALIDATION_ERROR_2a6007c8]);
}
// VU 00739: mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created
if (pSubresource->mipLevel >= image_entry->createInfo.mipLevels) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(image),
__LINE__, VALIDATION_ERROR_0a4007cc, "IMAGE",
"vkGetImageSubresourceLayout(): pSubresource.mipLevel (%d) must be less than %d. %s",
pSubresource->mipLevel, image_entry->createInfo.mipLevels, validation_error_map[VALIDATION_ERROR_0a4007cc]);
}
// VU 00740: arrayLayer must be less than the arrayLayers specified in VkImageCreateInfo when the image was created
if (pSubresource->arrayLayer >= image_entry->createInfo.arrayLayers) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(image),
__LINE__, VALIDATION_ERROR_0a4007ce, "IMAGE",
"vkGetImageSubresourceLayout(): pSubresource.arrayLayer (%d) must be less than %d. %s",
pSubresource->arrayLayer, image_entry->createInfo.arrayLayers, validation_error_map[VALIDATION_ERROR_0a4007ce]);
}
// VU 00741: subresource's aspect must be compatible with image's format.
const VkFormat img_format = image_entry->createInfo.format;
if (FormatIsColor(img_format)) {
if (sub_aspect != VK_IMAGE_ASPECT_COLOR_BIT) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, HandleToUint64(image), __LINE__,
VALIDATION_ERROR_0a400c01, "IMAGE",
"vkGetImageSubresourceLayout(): For color formats, VkImageSubresource.aspectMask must be VK_IMAGE_ASPECT_COLOR. %s",
validation_error_map[VALIDATION_ERROR_0a400c01]);
}
} else if (FormatIsDepthOrStencil(img_format)) {
if ((sub_aspect != VK_IMAGE_ASPECT_DEPTH_BIT) && (sub_aspect != VK_IMAGE_ASPECT_STENCIL_BIT)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
HandleToUint64(image), __LINE__, VALIDATION_ERROR_0a400c01, "IMAGE",
"vkGetImageSubresourceLayout(): For depth/stencil formats, VkImageSubresource.aspectMask must be "
"either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT. %s",
validation_error_map[VALIDATION_ERROR_0a400c01]);
}
}
return skip;
}