blob: 0beddc1fc1895d85cdce797108d0ff7d009d8f0e [file] [log] [blame]
# -*- coding: utf-8 -*-
#-------------------------------------------------------------------------
# drawElements Quality Program utilities
# --------------------------------------
#
# Copyright 2016 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#-------------------------------------------------------------------------
import re
import math
import random
PREAMBLE = """
# WARNING: This file is auto-generated. Do NOT modify it manually, but rather
# modify the generating script file. Otherwise changes will be lost!
"""[1:]
class CaseGroup:
def __init__(self, name, description, children):
self.name = name
self.description = description
self.children = children
class ShaderCase:
def __init__(self):
pass
g_processedCases = {}
def indentTextBlock(text, indent):
indentStr = indent * "\t"
lines = text.split("\n")
lines = [indentStr + line for line in lines]
lines = [ ["", line][line.strip() != ""] for line in lines]
return "\n".join(lines)
def writeCase(f, case, indent, prefix):
print("\t%s" % (prefix + case.name))
if isinstance(case, CaseGroup):
f.write(indentTextBlock('group %s "%s"\n\n' % (case.name, case.description), indent))
for child in case.children:
writeCase(f, child, indent + 1, prefix + case.name + ".")
f.write(indentTextBlock("\nend # %s\n" % case.name, indent))
else:
# \todo [petri] Fix hack.
fullPath = prefix + case.name
assert (fullPath not in g_processedCases)
g_processedCases[fullPath] = None
f.write(indentTextBlock(str(case) + "\n", indent))
def writeAllCases(fileName, caseList):
# Write all cases to file.
print(" %s.." % fileName)
f = file(fileName, "wb")
f.write(PREAMBLE + "\n")
for case in caseList:
writeCase(f, case, 0, "")
f.close()
print("done! (%d cases written)" % len(g_processedCases))
# Template operations.
def genValues(inputs, outputs):
res = []
for (name, values) in inputs:
res.append("input %s = [ %s ];" % (name, " | ".join([str(v) for v in values]).lower()))
for (name, values) in outputs:
res.append("output %s = [ %s ];" % (name, " | ".join([str(v) for v in values]).lower()))
return ("\n".join(res))
def fillTemplate(template, params):
s = template
for (key, value) in params.items():
m = re.search(r"^(\s*)\$\{\{%s\}\}$" % key, s, re.M)
if m is not None:
start = m.start(0)
end = m.end(0)
ws = m.group(1)
if value is not None:
repl = "\n".join(["%s%s" % (ws, line) for line in value.split("\n")])
s = s[:start] + repl + s[end:]
else:
s = s[:start] + s[end+1:] # drop the whole line
else:
s = s.replace("${{%s}}" % key, value)
return s
# Return shuffled version of list
def shuffled(lst):
tmp = lst[:]
random.shuffle(tmp)
return tmp
def repeatToLength(lst, toLength):
return (toLength / len(lst)) * lst + lst[: toLength % len(lst)]
# Helpers to convert a list of Scalar/Vec values into another type.
def toFloat(lst): return [Scalar(float(v.x)) for v in lst]
def toInt(lst): return [Scalar(int(v.x)) for v in lst]
def toBool(lst): return [Scalar(bool(v.x)) for v in lst]
def toVec4(lst): return [v.toFloat().toVec4() for v in lst]
def toVec3(lst): return [v.toFloat().toVec3() for v in lst]
def toVec2(lst): return [v.toFloat().toVec2() for v in lst]
def toIVec4(lst): return [v.toInt().toVec4() for v in lst]
def toIVec3(lst): return [v.toInt().toVec3() for v in lst]
def toIVec2(lst): return [v.toInt().toVec2() for v in lst]
def toBVec4(lst): return [v.toBool().toVec4() for v in lst]
def toBVec3(lst): return [v.toBool().toVec3() for v in lst]
def toBVec2(lst): return [v.toBool().toVec2() for v in lst]
def toMat2(lst): return [v.toMat2() for v in lst]
def toMat3(lst): return [v.toMat3() for v in lst]
def toMat4(lst): return [v.toMat4() for v in lst]
# Random value generation.
class GenRandom:
def __init__(self):
pass
def uniformVec4(self, count, mn, mx):
ret = [Vec4(random.uniform(mn, mx), random.uniform(mn, mx), random.uniform(mn, mx), random.uniform(mn, mx)) for x in xrange(count)]
ret[0].x = mn
ret[1].x = mx
ret[2].x = (mn + mx) * 0.5
return ret
def uniformBVec4(self, count):
ret = [Vec4(random.random() >= 0.5, random.random() >= 0.5, random.random() >= 0.5, random.random() >= 0.5) for x in xrange(count)]
ret[0].x = True
ret[1].x = False
return ret
# def uniform(self,
# Math operating on Scalar/Vector types.
def glslSign(a): return 0.0 if (a == 0) else +1.0 if (a > 0.0) else -1.0
def glslMod(x, y): return x - y*math.floor(x/y)
def glslClamp(x, mn, mx): return mn if (x < mn) else mx if (x > mx) else x
class GenMath:
@staticmethod
def unary(func): return lambda val: val.applyUnary(func)
@staticmethod
def binary(func): return lambda a, b: (b.expandVec(a)).applyBinary(func, a.expandVec(b))
@staticmethod
def frac(val): return val.applyUnary(lambda x: x - math.floor(x))
@staticmethod
def exp2(val): return val.applyUnary(lambda x: math.pow(2.0, x))
@staticmethod
def log2(val): return val.applyUnary(lambda x: math.log(x, 2.0))
@staticmethod
def rsq(val): return val.applyUnary(lambda x: 1.0 / math.sqrt(x))
@staticmethod
def sign(val): return val.applyUnary(glslSign)
@staticmethod
def isEqual(a, b): return Scalar(a.isEqual(b))
@staticmethod
def isNotEqual(a, b): return Scalar(not a.isEqual(b))
@staticmethod
def step(a, b): return (b.expandVec(a)).applyBinary(lambda edge, x: [1.0, 0.0][x < edge], a.expandVec(b))
@staticmethod
def length(a): return a.length()
@staticmethod
def distance(a, b): return a.distance(b)
@staticmethod
def dot(a, b): return a.dot(b)
@staticmethod
def cross(a, b): return a.cross(b)
@staticmethod
def normalize(a): return a.normalize()
@staticmethod
def boolAny(a): return a.boolAny()
@staticmethod
def boolAll(a): return a.boolAll()
@staticmethod
def boolNot(a): return a.boolNot()
# ..
class Scalar:
def __init__(self, x):
self.x = x
def applyUnary(self, func): return Scalar(func(self.x))
def applyBinary(self, func, other): return Scalar(func(self.x, other.x))
def isEqual(self, other): assert isinstance(other, Scalar); return (self.x == other.x)
def expandVec(self, val): return val
def toScalar(self): return Scalar(self.x)
def toVec2(self): return Vec2(self.x, self.x)
def toVec3(self): return Vec3(self.x, self.x, self.x)
def toVec4(self): return Vec4(self.x, self.x, self.x, self.x)
def toMat2(self): return self.toVec2().toMat2()
def toMat3(self): return self.toVec3().toMat3()
def toMat4(self): return self.toVec4().toMat4()
def toFloat(self): return Scalar(float(self.x))
def toInt(self): return Scalar(int(self.x))
def toBool(self): return Scalar(bool(self.x))
def getNumScalars(self): return 1
def getScalars(self): return [self.x]
def typeString(self):
if isinstance(self.x, bool):
return "bool"
elif isinstance(self.x, int):
return "int"
elif isinstance(self.x, float):
return "float"
else:
assert False
def vec4Swizzle(self):
return ""
def __str__(self):
return "%s" % self.x
def length(self):
return Scalar(abs(self.x))
def distance(self, v):
assert isinstance(v, Scalar)
return Scalar(abs(self.x - v.x))
def dot(self, v):
assert isinstance(v, Scalar)
return Scalar(self.x * v.x)
def normalize(self):
return Scalar(glslSign(self.x))
def __neg__(self):
return Scalar(-self.x)
def __add__(self, val):
assert isinstance(val, Scalar)
return Scalar(self.x + val.x)
def __sub__(self, val):
return self + (-val)
def __mul__(self, val):
if isinstance(val, Scalar):
return Scalar(self.x * val.x)
elif isinstance(val, Vec2):
return Vec2(self.x * val.x, self.x * val.y)
elif isinstance(val, Vec3):
return Vec3(self.x * val.x, self.x * val.y, self.x * val.z)
elif isinstance(val, Vec4):
return Vec4(self.x * val.x, self.x * val.y, self.x * val.z, self.x * val.w)
else:
assert False
def __div__(self, val):
if isinstance(val, Scalar):
return Scalar(self.x / val.x)
elif isinstance(val, Vec2):
return Vec2(self.x / val.x, self.x / val.y)
elif isinstance(val, Vec3):
return Vec3(self.x / val.x, self.x / val.y, self.x / val.z)
elif isinstance(val, Vec4):
return Vec4(self.x / val.x, self.x / val.y, self.x / val.z, self.x / val.w)
else:
assert False
class Vec:
@staticmethod
def fromScalarList(lst):
assert (len(lst) >= 1 and len(lst) <= 4)
if (len(lst) == 1): return Scalar(lst[0])
elif (len(lst) == 2): return Vec2(lst[0], lst[1])
elif (len(lst) == 3): return Vec3(lst[0], lst[1], lst[2])
else: return Vec4(lst[0], lst[1], lst[2], lst[3])
def isEqual(self, other):
assert isinstance(other, Vec);
return (self.getScalars() == other.getScalars())
def length(self):
return Scalar(math.sqrt(self.dot(self).x))
def normalize(self):
return self * Scalar(1.0 / self.length().x)
def swizzle(self, indexList):
inScalars = self.getScalars()
outScalars = map(lambda ndx: inScalars[ndx], indexList)
return Vec.fromScalarList(outScalars)
def __init__(self):
pass
class Vec2(Vec):
def __init__(self, x, y):
assert(x.__class__ == y.__class__)
self.x = x
self.y = y
def applyUnary(self, func): return Vec2(func(self.x), func(self.y))
def applyBinary(self, func, other): return Vec2(func(self.x, other.x), func(self.y, other.y))
def expandVec(self, val): return val.toVec2()
def toScalar(self): return Scalar(self.x)
def toVec2(self): return Vec2(self.x, self.y)
def toVec3(self): return Vec3(self.x, self.y, 0.0)
def toVec4(self): return Vec4(self.x, self.y, 0.0, 0.0)
def toMat2(self): return Mat2(float(self.x), 0.0, 0.0, float(self.y));
def toFloat(self): return Vec2(float(self.x), float(self.y))
def toInt(self): return Vec2(int(self.x), int(self.y))
def toBool(self): return Vec2(bool(self.x), bool(self.y))
def getNumScalars(self): return 2
def getScalars(self): return [self.x, self.y]
def typeString(self):
if isinstance(self.x, bool):
return "bvec2"
elif isinstance(self.x, int):
return "ivec2"
elif isinstance(self.x, float):
return "vec2"
else:
assert False
def vec4Swizzle(self):
return ".xyxy"
def __str__(self):
if isinstance(self.x, bool):
return "bvec2(%s, %s)" % (str(self.x).lower(), str(self.y).lower())
elif isinstance(self.x, int):
return "ivec2(%i, %i)" % (self.x, self.y)
elif isinstance(self.x, float):
return "vec2(%s, %s)" % (self.x, self.y)
else:
assert False
def distance(self, v):
assert isinstance(v, Vec2)
return (self - v).length()
def dot(self, v):
assert isinstance(v, Vec2)
return Scalar(self.x*v.x + self.y*v.y)
def __neg__(self):
return Vec2(-self.x, -self.y)
def __add__(self, val):
if isinstance(val, Scalar):
return Vec2(self.x + val, self.y + val)
elif isinstance(val, Vec2):
return Vec2(self.x + val.x, self.y + val.y)
else:
assert False
def __sub__(self, val):
return self + (-val)
def __mul__(self, val):
if isinstance(val, Scalar):
val = val.toVec2()
assert isinstance(val, Vec2)
return Vec2(self.x * val.x, self.y * val.y)
def __div__(self, val):
if isinstance(val, Scalar):
return Vec2(self.x / val.x, self.y / val.x)
else:
assert isinstance(val, Vec2)
return Vec2(self.x / val.x, self.y / val.y)
def boolAny(self): return Scalar(self.x or self.y)
def boolAll(self): return Scalar(self.x and self.y)
def boolNot(self): return Vec2(not self.x, not self.y)
class Vec3(Vec):
def __init__(self, x, y, z):
assert((x.__class__ == y.__class__) and (x.__class__ == z.__class__))
self.x = x
self.y = y
self.z = z
def applyUnary(self, func): return Vec3(func(self.x), func(self.y), func(self.z))
def applyBinary(self, func, other): return Vec3(func(self.x, other.x), func(self.y, other.y), func(self.z, other.z))
def expandVec(self, val): return val.toVec3()
def toScalar(self): return Scalar(self.x)
def toVec2(self): return Vec2(self.x, self.y)
def toVec3(self): return Vec3(self.x, self.y, self.z)
def toVec4(self): return Vec4(self.x, self.y, self.z, 0.0)
def toMat3(self): return Mat3(float(self.x), 0.0, 0.0, 0.0, float(self.y), 0.0, 0.0, 0.0, float(self.z));
def toFloat(self): return Vec3(float(self.x), float(self.y), float(self.z))
def toInt(self): return Vec3(int(self.x), int(self.y), int(self.z))
def toBool(self): return Vec3(bool(self.x), bool(self.y), bool(self.z))
def getNumScalars(self): return 3
def getScalars(self): return [self.x, self.y, self.z]
def typeString(self):
if isinstance(self.x, bool):
return "bvec3"
elif isinstance(self.x, int):
return "ivec3"
elif isinstance(self.x, float):
return "vec3"
else:
assert False
def vec4Swizzle(self):
return ".xyzx"
def __str__(self):
if isinstance(self.x, bool):
return "bvec3(%s, %s, %s)" % (str(self.x).lower(), str(self.y).lower(), str(self.z).lower())
elif isinstance(self.x, int):
return "ivec3(%i, %i, %i)" % (self.x, self.y, self.z)
elif isinstance(self.x, float):
return "vec3(%s, %s, %s)" % (self.x, self.y, self.z)
else:
assert False
def distance(self, v):
assert isinstance(v, Vec3)
return (self - v).length()
def dot(self, v):
assert isinstance(v, Vec3)
return Scalar(self.x*v.x + self.y*v.y + self.z*v.z)
def cross(self, v):
assert isinstance(v, Vec3)
return Vec3(self.y*v.z - v.y*self.z,
self.z*v.x - v.z*self.x,
self.x*v.y - v.x*self.y)
def __neg__(self):
return Vec3(-self.x, -self.y, -self.z)
def __add__(self, val):
if isinstance(val, Scalar):
return Vec3(self.x + val, self.y + val)
elif isinstance(val, Vec3):
return Vec3(self.x + val.x, self.y + val.y, self.z + val.z)
else:
assert False
def __sub__(self, val):
return self + (-val)
def __mul__(self, val):
if isinstance(val, Scalar):
val = val.toVec3()
assert isinstance(val, Vec3)
return Vec3(self.x * val.x, self.y * val.y, self.z * val.z)
def __div__(self, val):
if isinstance(val, Scalar):
return Vec3(self.x / val.x, self.y / val.x, self.z / val.x)
else:
assert False
def boolAny(self): return Scalar(self.x or self.y or self.z)
def boolAll(self): return Scalar(self.x and self.y and self.z)
def boolNot(self): return Vec3(not self.x, not self.y, not self.z)
class Vec4(Vec):
def __init__(self, x, y, z, w):
assert((x.__class__ == y.__class__) and (x.__class__ == z.__class__) and (x.__class__ == w.__class__))
self.x = x
self.y = y
self.z = z
self.w = w
def applyUnary(self, func): return Vec4(func(self.x), func(self.y), func(self.z), func(self.w))
def applyBinary(self, func, other): return Vec4(func(self.x, other.x), func(self.y, other.y), func(self.z, other.z), func(self.w, other.w))
def expandVec(self, val): return val.toVec4()
def toScalar(self): return Scalar(self.x)
def toVec2(self): return Vec2(self.x, self.y)
def toVec3(self): return Vec3(self.x, self.y, self.z)
def toVec4(self): return Vec4(self.x, self.y, self.z, self.w)
def toMat2(self): return Mat2(float(self.x), float(self.y), float(self.z), float(self.w))
def toMat4(self): return Mat4(float(self.x), 0.0, 0.0, 0.0, 0.0, float(self.y), 0.0, 0.0, 0.0, 0.0, float(self.z), 0.0, 0.0, 0.0, 0.0, float(self.w));
def toFloat(self): return Vec4(float(self.x), float(self.y), float(self.z), float(self.w))
def toInt(self): return Vec4(int(self.x), int(self.y), int(self.z), int(self.w))
def toBool(self): return Vec4(bool(self.x), bool(self.y), bool(self.z), bool(self.w))
def getNumScalars(self): return 4
def getScalars(self): return [self.x, self.y, self.z, self.w]
def typeString(self):
if isinstance(self.x, bool):
return "bvec4"
elif isinstance(self.x, int):
return "ivec4"
elif isinstance(self.x, float):
return "vec4"
else:
assert False
def vec4Swizzle(self):
return ""
def __str__(self):
if isinstance(self.x, bool):
return "bvec4(%s, %s, %s, %s)" % (str(self.x).lower(), str(self.y).lower(), str(self.z).lower(), str(self.w).lower())
elif isinstance(self.x, int):
return "ivec4(%i, %i, %i, %i)" % (self.x, self.y, self.z, self.w)
elif isinstance(self.x, float):
return "vec4(%s, %s, %s, %s)" % (self.x, self.y, self.z, self.w)
else:
assert False
def distance(self, v):
assert isinstance(v, Vec4)
return (self - v).length()
def dot(self, v):
assert isinstance(v, Vec4)
return Scalar(self.x*v.x + self.y*v.y + self.z*v.z + self.w*v.w)
def __neg__(self):
return Vec4(-self.x, -self.y, -self.z, -self.w)
def __add__(self, val):
if isinstance(val, Scalar):
return Vec3(self.x + val, self.y + val)
elif isinstance(val, Vec4):
return Vec4(self.x + val.x, self.y + val.y, self.z + val.z, self.w + val.w)
else:
assert False
def __sub__(self, val):
return self + (-val)
def __mul__(self, val):
if isinstance(val, Scalar):
val = val.toVec4()
assert isinstance(val, Vec4)
return Vec4(self.x * val.x, self.y * val.y, self.z * val.z, self.w * val.w)
def __div__(self, val):
if isinstance(val, Scalar):
return Vec4(self.x / val.x, self.y / val.x, self.z / val.x, self.w / val.x)
else:
assert False
def boolAny(self): return Scalar(self.x or self.y or self.z or self.w)
def boolAll(self): return Scalar(self.x and self.y and self.z and self.w)
def boolNot(self): return Vec4(not self.x, not self.y, not self.z, not self.w)
# \note Column-major storage.
class Mat:
def __init__ (self, numCols, numRows, scalars):
assert len(scalars) == numRows*numCols
self.numCols = numCols
self.numRows = numRows
self.scalars = scalars
@staticmethod
def identity (numCols, numRows):
scalars = []
for col in range(0, numCols):
for row in range(0, numRows):
scalars.append(1.0 if col == row else 0.0)
return Mat(numCols, numRows, scalars)
def get (self, colNdx, rowNdx):
assert 0 <= colNdx and colNdx < self.numCols
assert 0 <= rowNdx and rowNdx < self.numRows
return self.scalars[colNdx*self.numRows + rowNdx]
def set (self, colNdx, rowNdx, scalar):
assert 0 <= colNdx and colNdx < self.numCols
assert 0 <= rowNdx and rowNdx < self.numRows
self.scalars[colNdx*self.numRows + rowNdx] = scalar
def toMatrix (self, numCols, numRows):
res = Mat.identity(numCols, numRows)
for col in range(0, min(self.numCols, numCols)):
for row in range(0, min(self.numRows, numRows)):
res.set(col, row, self.get(col, row))
return res
def toMat2 (self): return self.toMatrix(2, 2)
def toMat2x3 (self): return self.toMatrix(2, 3)
def toMat2x4 (self): return self.toMatrix(2, 4)
def toMat3x2 (self): return self.toMatrix(3, 2)
def toMat3 (self): return self.toMatrix(3, 3)
def toMat3x4 (self): return self.toMatrix(3, 4)
def toMat4x2 (self): return self.toMatrix(4, 2)
def toMat4x3 (self): return self.toMatrix(4, 3)
def toMat4 (self): return self.toMatrix(4, 4)
def typeString(self):
if self.numRows == self.numCols:
return "mat%d" % self.numRows
else:
return "mat%dx%d" % (self.numCols, self.numRows)
def __str__(self):
return "%s(%s)" % (self.typeString(), ", ".join([str(s) for s in self.scalars]))
def isTypeEqual (self, other):
return isinstance(other, Mat) and self.numRows == other.numRows and self.numCols == other.numCols
def isEqual(self, other):
assert self.isTypeEqual(other)
return (self.scalars == other.scalars)
def compMul(self, val):
assert self.isTypeEqual(val)
return Mat(self.numRows, self.numCols, [self.scalars(i) * val.scalars(i) for i in range(self.numRows*self.numCols)])
class Mat2(Mat):
def __init__(self, m00, m01, m10, m11):
Mat.__init__(self, 2, 2, [m00, m10, m01, m11])
class Mat3(Mat):
def __init__(self, m00, m01, m02, m10, m11, m12, m20, m21, m22):
Mat.__init__(self, 3, 3, [m00, m10, m20,
m01, m11, m21,
m02, m12, m22])
class Mat4(Mat):
def __init__(self, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33):
Mat.__init__(self, 4, 4, [m00, m10, m20, m30,
m01, m11, m21, m31,
m02, m12, m22, m32,
m03, m13, m23, m33])