blob: 38b391c6be18479b5ef0d55a909d15ab59584f0b [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 2.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture filtering tests.
*//*--------------------------------------------------------------------*/
#include "es2fTextureFilteringTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluTexture.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuTexLookupVerifier.hpp"
#include "tcuVectorUtil.hpp"
#include "deStringUtil.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
namespace deqp
{
namespace gles2
{
namespace Functional
{
using tcu::TestLog;
using std::vector;
using std::string;
using tcu::Sampler;
using namespace glu;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
enum
{
VIEWPORT_WIDTH = 64,
VIEWPORT_HEIGHT = 64,
MIN_VIEWPORT_WIDTH = 64,
MIN_VIEWPORT_HEIGHT = 64
};
class Texture2DFilteringCase : public tcu::TestCase
{
public:
Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 format, deUint32 dataType, int width, int height);
Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames);
~Texture2DFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DFilteringCase (const Texture2DFilteringCase& other);
Texture2DFilteringCase& operator= (const Texture2DFilteringCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const deUint32 m_format;
const deUint32 m_dataType;
const int m_width;
const int m_height;
const std::vector<std::string> m_filenames;
struct FilterCase
{
const glu::Texture2D* texture;
tcu::Vec2 minCoord;
tcu::Vec2 maxCoord;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::Texture2D* tex_, const tcu::Vec2& minCoord_, const tcu::Vec2& maxCoord_)
: texture (tex_)
, minCoord (minCoord_)
, maxCoord (maxCoord_)
{
}
};
std::vector<glu::Texture2D*> m_textures;
std::vector<FilterCase> m_cases;
TextureRenderer m_renderer;
int m_caseNdx;
};
Texture2DFilteringCase::Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_caseNdx (0)
{
}
Texture2DFilteringCase::Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_format (GL_NONE)
, m_dataType (GL_NONE)
, m_width (0)
, m_height (0)
, m_filenames (filenames)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_caseNdx (0)
{
}
Texture2DFilteringCase::~Texture2DFilteringCase (void)
{
deinit();
}
void Texture2DFilteringCase::init (void)
{
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size(), m_filenames));
}
else
{
// Create 2 textures.
m_textures.reserve(2);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height));
bool mipmaps = deIsPowerOfTwo32(m_width) && deIsPowerOfTwo32(m_height);
int numLevels = mipmaps ? deLog2Floor32(de::max(m_width, m_height))+1 : 1;
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
tcu::Vec4 cBias = fmtInfo.valueMin;
tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
// Fill first gradient texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
tcu::Vec4 gMin = tcu::Vec4(-0.5f, -0.5f, -0.5f, 2.0f)*cScale + cBias;
tcu::Vec4 gMax = tcu::Vec4( 1.0f, 1.0f, 1.0f, 0.0f)*cScale + cBias;
m_textures[0]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithComponentGradients(m_textures[0]->getRefTexture().getLevel(levelNdx), gMin, gMax);
}
// Fill second with grid texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
deUint32 step = 0x00ffffff / numLevels;
deUint32 rgb = step*levelNdx;
deUint32 colorA = 0xff000000 | rgb;
deUint32 colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevel(levelNdx), 4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
// Upload.
for (std::vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
// Compute cases.
{
const struct
{
int texNdx;
float lodX;
float lodY;
float oX;
float oY;
} cases[] =
{
{ 0, 1.6f, 2.9f, -1.0f, -2.7f },
{ 0, -2.0f, -1.35f, -0.2f, 0.7f },
{ 1, 0.14f, 0.275f, -1.5f, -1.1f },
{ 1, -0.92f, -2.64f, 0.4f, -0.1f },
};
const float viewportW = (float)de::min<int>(VIEWPORT_WIDTH, m_renderCtx.getRenderTarget().getWidth());
const float viewportH = (float)de::min<int>(VIEWPORT_HEIGHT, m_renderCtx.getRenderTarget().getHeight());
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); caseNdx++)
{
const int texNdx = de::clamp(cases[caseNdx].texNdx, 0, (int)m_textures.size()-1);
const float lodX = cases[caseNdx].lodX;
const float lodY = cases[caseNdx].lodY;
const float oX = cases[caseNdx].oX;
const float oY = cases[caseNdx].oY;
const float sX = deFloatExp2(lodX)*viewportW / float(m_textures[texNdx]->getRefTexture().getWidth());
const float sY = deFloatExp2(lodY)*viewportH / float(m_textures[texNdx]->getRefTexture().getHeight());
m_cases.push_back(FilterCase(m_textures[texNdx], tcu::Vec2(oX, oY), tcu::Vec2(oX+sX, oY+sY)));
}
}
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
Texture2DFilteringCase::deinit();
throw;
}
}
void Texture2DFilteringCase::deinit (void)
{
for (std::vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
m_cases.clear();
}
Texture2DFilteringCase::IterateResult Texture2DFilteringCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
const RandomViewport viewport (m_renderCtx.getRenderTarget(), VIEWPORT_WIDTH, VIEWPORT_HEIGHT, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const tcu::TextureFormat texFmt = m_textures[0]->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::ScopedLogSection section (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
ReferenceParams refParams (TEXTURETYPE_2D);
tcu::Surface rendered (viewport.width, viewport.height);
vector<float> texCoord;
if (viewport.width < MIN_VIEWPORT_WIDTH || viewport.height < MIN_VIEWPORT_HEIGHT)
throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__);
// Setup params for reference.
refParams.sampler = mapGLSampler(m_wrapS, m_wrapT, m_minFilter, m_magFilter);
refParams.samplerType = getSamplerType(texFmt);
refParams.lodMode = LODMODE_EXACT;
refParams.colorBias = fmtInfo.lookupBias;
refParams.colorScale = fmtInfo.lookupScale;
// Compute texture coordinates.
m_testCtx.getLog() << TestLog::Message << "Texture coordinates: " << curCase.minCoord << " -> " << curCase.maxCoord << TestLog::EndMessage;
computeQuadTexCoord2D(texCoord, curCase.minCoord, curCase.maxCoord);
gl.bindTexture (GL_TEXTURE_2D, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
m_renderer.renderQuad(0, &texCoord[0], refParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, rendered.getAccess());
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 7;
lodPrecision.lodBits = 4;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / refParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(9,9,0); // mediump interpolation
lookupPrecision.uvwBits = tcu::IVec3(5,5,0);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isOk = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
class TextureCubeFilteringCase : public tcu::TestCase
{
public:
TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 format, deUint32 dataType, int width, int height);
TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames);
~TextureCubeFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeFilteringCase (const TextureCubeFilteringCase& other);
TextureCubeFilteringCase& operator= (const TextureCubeFilteringCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const deUint32 m_format;
const deUint32 m_dataType;
const int m_width;
const int m_height;
const std::vector<std::string> m_filenames;
struct FilterCase
{
const glu::TextureCube* texture;
tcu::Vec2 bottomLeft;
tcu::Vec2 topRight;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::TextureCube* tex_, const tcu::Vec2& bottomLeft_, const tcu::Vec2& topRight_)
: texture (tex_)
, bottomLeft(bottomLeft_)
, topRight (topRight_)
{
}
};
std::vector<glu::TextureCube*> m_textures;
std::vector<FilterCase> m_cases;
TextureRenderer m_renderer;
int m_caseNdx;
};
TextureCubeFilteringCase::TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_caseNdx (0)
{
}
TextureCubeFilteringCase::TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_format (GL_NONE)
, m_dataType (GL_NONE)
, m_width (0)
, m_height (0)
, m_filenames (filenames)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_caseNdx (0)
{
}
TextureCubeFilteringCase::~TextureCubeFilteringCase (void)
{
deinit();
}
void TextureCubeFilteringCase::init (void)
{
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size() / 6, m_filenames));
}
else
{
DE_ASSERT(m_width == m_height);
m_textures.reserve(2);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::TextureCube(m_renderCtx, m_format, m_dataType, m_width));
const bool mipmaps = deIsPowerOfTwo32(m_width) && deIsPowerOfTwo32(m_height);
const int numLevels = mipmaps ? deLog2Floor32(de::max(m_width, m_height))+1 : 1;
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
tcu::Vec4 cBias = fmtInfo.valueMin;
tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
// Fill first with gradient texture.
static const tcu::Vec4 gradients[tcu::CUBEFACE_LAST][2] =
{
{ tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // negative x
{ tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // positive x
{ tcu::Vec4(0.0f, 0.5f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // negative y
{ tcu::Vec4(0.0f, 0.0f, 0.5f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // positive y
{ tcu::Vec4(0.0f, 0.0f, 0.0f, 0.5f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f) }, // negative z
{ tcu::Vec4(0.5f, 0.5f, 0.5f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) } // positive z
};
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_textures[0]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithComponentGradients(m_textures[0]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face), gradients[face][0]*cScale + cBias, gradients[face][1]*cScale + cBias);
}
}
// Fill second with grid texture.
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
deUint32 step = 0x00ffffff / (numLevels*tcu::CUBEFACE_LAST);
deUint32 rgb = step*levelNdx*face;
deUint32 colorA = 0xff000000 | rgb;
deUint32 colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face), 4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
}
// Upload.
for (std::vector<glu::TextureCube*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
// Compute cases
{
const glu::TextureCube* tex0 = m_textures[0];
const glu::TextureCube* tex1 = m_textures.size() > 1 ? m_textures[1] : tex0;
// \note Coordinates are chosen so that they only sample face interior. ES3 has changed edge sampling behavior
// and hw is not expected to implement both modes.
m_cases.push_back(FilterCase(tex0, tcu::Vec2(-0.8f, -0.8f), tcu::Vec2(0.8f, 0.8f))); // minification
m_cases.push_back(FilterCase(tex0, tcu::Vec2(0.5f, 0.65f), tcu::Vec2(0.8f, 0.8f))); // magnification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(-0.8f, -0.8f), tcu::Vec2(0.8f, 0.8f))); // minification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(0.2f, 0.2f), tcu::Vec2(0.6f, 0.5f))); // magnification
}
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
TextureCubeFilteringCase::deinit();
throw;
}
}
void TextureCubeFilteringCase::deinit (void)
{
for (std::vector<glu::TextureCube*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
m_cases.clear();
}
static const char* getFaceDesc (const tcu::CubeFace face)
{
switch (face)
{
case tcu::CUBEFACE_NEGATIVE_X: return "-X";
case tcu::CUBEFACE_POSITIVE_X: return "+X";
case tcu::CUBEFACE_NEGATIVE_Y: return "-Y";
case tcu::CUBEFACE_POSITIVE_Y: return "+Y";
case tcu::CUBEFACE_NEGATIVE_Z: return "-Z";
case tcu::CUBEFACE_POSITIVE_Z: return "+Z";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
TextureCubeFilteringCase::IterateResult TextureCubeFilteringCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
const int viewportSize = 28;
const RandomViewport viewport (m_renderCtx.getRenderTarget(), viewportSize, viewportSize, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const tcu::ScopedLogSection iterSection (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::TextureFormat& texFmt = curCase.texture->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
ReferenceParams sampleParams (TEXTURETYPE_CUBE);
if (viewport.width < viewportSize || viewport.height < viewportSize)
throw tcu::NotSupportedError("Too small render target", DE_NULL, __FILE__, __LINE__);
// Setup texture
gl.bindTexture (GL_TEXTURE_CUBE_MAP, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, m_wrapT);
// Other state
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Params for reference computation.
sampleParams.sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_minFilter, m_magFilter);
sampleParams.sampler.seamlessCubeMap = true;
sampleParams.samplerType = getSamplerType(texFmt);
sampleParams.colorBias = fmtInfo.lookupBias;
sampleParams.colorScale = fmtInfo.lookupScale;
sampleParams.lodMode = LODMODE_EXACT;
m_testCtx.getLog() << TestLog::Message << "Coordinates: " << curCase.bottomLeft << " -> " << curCase.topRight << TestLog::EndMessage;
for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
{
const tcu::CubeFace face = tcu::CubeFace(faceNdx);
tcu::Surface result (viewport.width, viewport.height);
vector<float> texCoord;
computeQuadTexCoordCube(texCoord, face, curCase.bottomLeft, curCase.topRight);
m_testCtx.getLog() << TestLog::Message << "Face " << getFaceDesc(face) << TestLog::EndMessage;
// \todo Log texture coordinates.
m_renderer.renderQuad(0, &texCoord[0], sampleParams);
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
glu::readPixels(m_renderCtx, viewport.x, viewport.y, result.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 5;
lodPrecision.lodBits = 3;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / sampleParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(9,9,9); // mediump interpolation
lookupPrecision.uvwBits = tcu::IVec3(3,3,0);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isOk = verifyTextureResult(m_testCtx, result.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], sampleParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
TextureFilteringTests::TextureFilteringTests (Context& context)
: TestCaseGroup(context, "filtering", "Texture Filtering Tests")
{
}
TextureFilteringTests::~TextureFilteringTests (void)
{
}
void TextureFilteringTests::init (void)
{
tcu::TestCaseGroup* group2D = new tcu::TestCaseGroup(m_testCtx, "2d", "2D Texture Filtering");
tcu::TestCaseGroup* groupCube = new tcu::TestCaseGroup(m_testCtx, "cube", "Cube Map Filtering");
addChild(group2D);
addChild(groupCube);
static const struct
{
const char* name;
deUint32 mode;
} wrapModes[] =
{
{ "clamp", GL_CLAMP_TO_EDGE },
{ "repeat", GL_REPEAT },
{ "mirror", GL_MIRRORED_REPEAT }
};
static const struct
{
const char* name;
deUint32 mode;
} minFilterModes[] =
{
{ "nearest", GL_NEAREST },
{ "linear", GL_LINEAR },
{ "nearest_mipmap_nearest", GL_NEAREST_MIPMAP_NEAREST },
{ "linear_mipmap_nearest", GL_LINEAR_MIPMAP_NEAREST },
{ "nearest_mipmap_linear", GL_NEAREST_MIPMAP_LINEAR },
{ "linear_mipmap_linear", GL_LINEAR_MIPMAP_LINEAR }
};
static const struct
{
const char* name;
deUint32 mode;
} magFilterModes[] =
{
{ "nearest", GL_NEAREST },
{ "linear", GL_LINEAR }
};
static const struct
{
const char* name;
int width;
int height;
} sizes2D[] =
{
{ "pot", 32, 64 },
{ "npot", 31, 55 }
};
static const struct
{
const char* name;
int width;
int height;
} sizesCube[] =
{
{ "pot", 64, 64 },
{ "npot", 63, 63 }
};
static const struct
{
const char* name;
deUint32 format;
deUint32 dataType;
} formats[] =
{
{ "rgba8888", GL_RGBA, GL_UNSIGNED_BYTE },
{ "rgb888", GL_RGB, GL_UNSIGNED_BYTE },
{ "rgba4444", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 },
{ "l8", GL_LUMINANCE, GL_UNSIGNED_BYTE }
};
#define FOR_EACH(ITERATOR, ARRAY, BODY) \
for (int ITERATOR = 0; ITERATOR < DE_LENGTH_OF_ARRAY(ARRAY); ITERATOR++) \
BODY
// 2D cases.
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
FOR_EACH(wrapMode, wrapModes,
FOR_EACH(format, formats,
FOR_EACH(size, sizes2D,
{
bool isMipmap = minFilterModes[minFilter].mode != GL_NEAREST && minFilterModes[minFilter].mode != GL_LINEAR;
bool isClamp = wrapModes[wrapMode].mode == GL_CLAMP_TO_EDGE;
bool isRepeat = wrapModes[wrapMode].mode == GL_REPEAT;
bool isMagNearest = magFilterModes[magFilter].mode == GL_NEAREST;
bool isPotSize = deIsPowerOfTwo32(sizes2D[size].width) && deIsPowerOfTwo32(sizes2D[size].height);
if ((isMipmap || !isClamp) && !isPotSize)
continue; // Not supported.
if ((format != 0) && !(!isMipmap || (isRepeat && isMagNearest)))
continue; // Skip.
string name = string("") + minFilterModes[minFilter].name + "_" + magFilterModes[magFilter].name + "_" + wrapModes[wrapMode].name + "_" + formats[format].name;
if (!isMipmap)
name += string("_") + sizes2D[size].name;
group2D->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode,
wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode,
formats[format].format, formats[format].dataType,
sizes2D[size].width, sizes2D[size].height));
})))));
// 2D ETC1 texture cases.
{
std::vector<std::string> filenames;
for (int i = 0; i <= 7; i++)
filenames.push_back(string("data/etc1/photo_helsinki_mip_") + de::toString(i) + ".pkm");
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
FOR_EACH(wrapMode, wrapModes,
{
string name = string("") + minFilterModes[minFilter].name + "_" + magFilterModes[magFilter].name + "_" + wrapModes[wrapMode].name + "_etc1";
group2D->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode,
wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode,
filenames));
})));
}
// Cubemap cases.
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
FOR_EACH(wrapMode, wrapModes,
FOR_EACH(format, formats,
FOR_EACH(size, sizesCube,
{
bool isMipmap = minFilterModes[minFilter].mode != GL_NEAREST && minFilterModes[minFilter].mode != GL_LINEAR;
bool isClamp = wrapModes[wrapMode].mode == GL_CLAMP_TO_EDGE;
bool isRepeat = wrapModes[wrapMode].mode == GL_REPEAT;
bool isMagNearest = magFilterModes[magFilter].mode == GL_NEAREST;
bool isPotSize = deIsPowerOfTwo32(sizesCube[size].width) && deIsPowerOfTwo32(sizesCube[size].height);
if ((isMipmap || !isClamp) && !isPotSize)
continue; // Not supported.
if (format != 0 && !(!isMipmap || (isRepeat && isMagNearest)))
continue; // Skip.
string name = string("") + minFilterModes[minFilter].name + "_" + magFilterModes[magFilter].name + "_" + wrapModes[wrapMode].name + "_" + formats[format].name;
if (!isMipmap)
name += string("_") + sizesCube[size].name;
groupCube->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode,
wrapModes[wrapMode].mode,
wrapModes[wrapMode].mode,
formats[format].format, formats[format].dataType,
sizesCube[size].width, sizesCube[size].height));
})))));
// Cubemap ETC1 cases
{
static const char* faceExt[] = { "neg_x", "pos_x", "neg_y", "pos_y", "neg_z", "pos_z" };
const int numLevels = 7;
vector<string> filenames;
for (int level = 0; level < numLevels; level++)
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
filenames.push_back(string("data/etc1/skybox_") + faceExt[face] + "_mip_" + de::toString(level) + ".pkm");
FOR_EACH(minFilter, minFilterModes,
FOR_EACH(magFilter, magFilterModes,
{
string name = string("") + minFilterModes[minFilter].name + "_" + magFilterModes[magFilter].name + "_clamp_etc1";
groupCube->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilterModes[minFilter].mode,
magFilterModes[magFilter].mode,
GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_EDGE,
filenames));
}));
}
}
} // Functional
} // gles2
} // deqp