blob: e1e42d6c3112b64b0035acb2c5e125fe2a8ed41c [file] [log] [blame]
<html>
<head>
<title>drawElements Coding Guidelines</title>
<style type="text/css">
div.body {
width: 800px;
margin-top: 50px;
margin-left: auto;
margin-right: auto;
border: 1px solid silver;
background-color: #eee;
}
div.title {
text-align: center;
font-size: 24pt;
margin-top: 1.5em;
margin-bottom: 0.5em;
}
div.quote {
font-style: italic;
text-align: center;
width: 48%;
margin-left: auto;
margin-right: auto;
}
div.copyright {
font-style: italic;
text-align: center;
margin-top: 3em;
margin-left: auto;
margin-right: auto;
}
div.author {
font-style: italic;
text-align: center;
margin-bottom: 2em;
margin-left: auto;
margin-right: auto;
}
/* All heading elements */
ol > li > .heading {
font-family: arial;
}
/* Heading 1 elements */
ol.h1 {
font-size: 15pt;
margin-top: 1em;
padding-left: 1em;
list-style: upper-roman;
list-style-position: inside;
}
ol.h1 > li {
margin-top: 2.0em;
}
ol.h1 > li > .heading {
}
/* Heading 2 elements */
ol.h2 {
font-size: 13pt;
margin-top: 1.0em;
margin-bottom: 0.5em;
padding-left: 1em;
}
ol.h2 > li {
margin-top: 1.25em;
}
ol.h2 > li > .heading {
}
ul {
margin-bottom: 0.5em;
}
p {
font-size: 12pt;
margin: 0.6em;
margin-left: 1.3em;
border: 0px;
}
table {
font-size: 12pt;
margin: 0.6em;
margin-left: 1.6em;
border: 0px;
}
table td {
padding-right: 10px;
}
.prettyprint {
font-size: 10pt;
margin: 0px;
margin-left: 2.0em;
margin-bottom: 1.0em;
padding: 0.1em;
padding-left: 0.2em;
border: 1px solid black;
background-color: #ddd;
width: 93%;
}
.codeTitle {
font-style: italic;
font-size: 11pt;
margin-top: 0.5em;
margin-left: 2.0em;
margin-bottom: 0px;
}
</style>
<!-- \todo embed -->
<link href="prettify.css" type="text/css" rel="stylesheet" />
<script type="text/javascript" src="prettify.js"></script>
</head>
<body onLoad="prettyPrint()">
<div class="body">
<div class="title">drawElements Coding Guidelines</div>
<hr width="50%" />
<div class="quote">&quot;Always code as if the person who will maintain your code is a maniac serial killer that knows where you live.&quot;</div>
<div class="copyright">Copyright &copy; 2014 The Android Open Source Project</div>
<ol class="h1">
<li><span class="heading">Table of Contents</span>
<ol class="h2">
TODO: fill in, with links (use JavaScript?)
</ol>
</li>
<li><span class="heading">Introduction</span>
<ol class="h2">
<li><span class="heading">Goal and philosophy</span>
<p>This document describes the drawElements coding style for C and C++ languages.</p>
<p>The intention of the drawElements coding guidelines is to allow us to produce code written in a
consistent fashion, so that our product line will look similar throughout the line. The guiding
philosophy for choosing the described coding style is to avoid bugs when writing code, keep the code
maintainable, and also aim to make it beautiful. Some of the decisions are purely a matter of taste,
but have been made to keep the code consistent overall (say, camelCasing versus underscore_usage in
variable names.</p>
<p>There are also many areas which are not covered by this document and there is some room to bring
your own style into the soup. Some of the ways of writing code are just purely matters of opinion.
The use of whitespace in code is a good example.</p>
<p>This document is *not* the law of drawElements. If there is a good reason to deviate from it, you
should do that. However, if the reason is purely a matter of taste, then please follow the rules set
in here. Also, we want to encourage discussion about these guidelines and contributing to them, in
case you disagree or know a way of doing something better. This is meant to be an evolving document
that follows us as we learn as a group.</p>
<p>A lot of examples are included in this document to make things easily readable and unambiguous.
For more source material, feel free to browse the source code of whichever drawElements projects
you have visibility to. You should see at least <i>debase</i> and <i>depool</i> libraries, if nothing
else.</p>
</li>
<li><span class="heading">Languages of choice</span>
<p>The main languages at drawElements are Ansi C89 and ISO C++ 98. Ansi C is used for developing
driver or middleware IP, while C++ can be used for stand-alone applications.</p>
<p>The reason for using C for middleware IP development is that we build software for
mobile devices and the compilers there are often of dubious quality, especially when it comes to
support of C++. In addition C++ runtime library is a non-trivial dependency.</p>
<p>Stand-alone userspace applications can be written in ISO C++11.</p>
<p>For utility and tool development, other languages may also be used. So far, Python has been used
for all such development and is encouraged to be used in future tools as well. If there are strong
reasons, other languages may also be considered.</p>
</li>
<li><span class="heading">C code example</span>
<p>Let's get started with some sample drawElements code. The code files below show a simple random
"class" implemented in C89. The code is taken from the drawElements base portability library, debase.</p>
<div class="codeTitle">deRandom.h: The header file.</div>
<pre class="prettyprint">
#ifndef _DERANDOM_H
#define _DERANDOM_H
/*-------------------------------------------------------------------------
* drawElements Base Portability Library
* -------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Id: $Id$
*//*!
* \file
* \brief Random number generation.
*//*--------------------------------------------------------------------*/
#ifndef _DEDEFS_H
# include "deDefs.h"
#endif
DE_BEGIN_EXTERN_C
/*--------------------------------------------------------------------*//*!
* \brief Random number generator.
*
* Uses the Xorshift algorithm for producing pseudo-random numbers. The
* values are generated based on an initial seed and the same seed always
* produces the same sequence of numbers.
*
* See: http://en.wikipedia.org/wiki/Xorshift
*//*--------------------------------------------------------------------*/
typedef struct deRandom_s
{
deUint32 x; /*!&lt; Current random state. */
deUint32 y;
deUint32 z;
deUint32 w;
} deRandom;
void deRandom_init (deRandom* rnd, deUint32 seed);
deUint32 deRandom_getUint32 (deRandom* rnd);
float deRandom_getFloat (deRandom* rnd);
deBool deRandom_getBool (deRandom* rnd);
DE_END_EXTERN_C
#endif /* _DERANDOM_H */
</pre>
<div class="codeTitle">deRandom.c: The implementation file.</div>
<pre class="prettyprint">
/*-------------------------------------------------------------------------
* drawElements Base Portability Library
* -------------------------------------
*
* Copyright 2014 The Android Open Source Project
* \todo insert legalese here.
*
* Id: $Id$
*//*!
* \file
* \brief Random number generation.
*//*--------------------------------------------------------------------*/
#include "deRandom.h"
#include <float.h>
#include <math.h>
DE_BEGIN_EXTERN_C
/*--------------------------------------------------------------------*//*!
* \brief Initialize a random number generator with a given seed.
* \param rnd RNG to initialize.
* \param seed Seed value used for random values.
*//*--------------------------------------------------------------------*/
void deRandom_init (deRandom* rnd, deUint32 seed)
{
rnd->x = (deUint32)(-(int)seed ^ 123456789);
rnd->y = (deUint32)(362436069 * seed);
rnd->z = (deUint32)(521288629 ^ (seed >> 7));
rnd->w = (deUint32)(88675123 ^ (seed &lt;&lt; 3));
}
/*--------------------------------------------------------------------*//*!
* \brief Get a pseudo random uint32.
* \param rnd Pointer to RNG.
* \return Random uint32 number.
*//*--------------------------------------------------------------------*/
deUint32 deRandom_getUint32 (deRandom* rnd)
{
const deUint32 w = rnd->w;
deUint32 t;
t = rnd->x ^ (rnd->x &lt;&lt; 11);
rnd->x = rnd->y;
rnd->y = rnd->z;
rnd->z = w;
rnd->w = w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
return w;
}
/*--------------------------------------------------------------------*//*!
* \brief Get a pseudo random float in range [0, 1[.
* \param rnd Pointer to RNG.
* \return Random float number.
*//*--------------------------------------------------------------------*/
float deRandom_getFloat (deRandom* rnd)
{
return (deRandom_getUint32(rnd) &amp; 0xFFFFFFFu) / (float)(0xFFFFFFFu+1);
}
/*--------------------------------------------------------------------*//*!
* \brief Get a pseudo random boolean value (DE_FALSE or DE_TRUE).
* \param rnd Pointer to RNG.
* \return Random float number.
*//*--------------------------------------------------------------------*/
deBool deRandom_getBool (deRandom* rnd)
{
deUint32 val = deRandom_getUint32(rnd);
return ((val &amp; 0xFFFFFF) &lt; 0x800000);
}
DE_END_EXTERN_C
</pre>
</li>
<li><span class="heading">C++ code example</span>
<p>The following code, taken from deutil demonstrates how C++ classes should look like.</p>
<div class="codeTitle">deUniquePtr.hpp: Unique pointer template.</div>
<pre class="prettyprint">
#ifndef _DEUNIQUEPTR_HPP
#define _DEUNIQUEPTR_HPP
/*-------------------------------------------------------------------------
* drawElements C++ Base Library
* -----------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Unique pointer.
*//*--------------------------------------------------------------------*/
#ifndef _DEDEFS_HPP
# include "deDefs.hpp"
#endif
namespace de
{
/*--------------------------------------------------------------------*//*!
* \brief Unique pointer
*
* UniquePtr is smart pointer that retains sole ownership of a pointer
* and destroys it when UniquePtr is destroyed (for example when UniquePtr
* goes out of scope).
*
* UniquePtr is not copyable or assignable. Pointer ownership cannot be
* transferred between UniquePtr's.
*//*--------------------------------------------------------------------*/
template&lt;typename T, class Deleter = DefaultDeleter&lt;T&gt; &gt;
class UniquePtr
{
public:
explicit UniquePtr (T* const ptr, Deleter deleter = Deleter());
~UniquePtr (void);
T* get (void) const throw() { return m_ptr; } //!&lt; Get stored pointer.
T* operator-> (void) const throw() { return m_ptr; } //!&lt; Get stored pointer.
T&amp; operator* (void) const throw() { return *m_ptr; } //!&lt; De-reference stored pointer.
operator bool (void) const throw() { return !!m_ptr; }
private:
UniquePtr (const UniquePtr&lt;T&gt;&amp; other); // Not allowed!
UniquePtr operator= (const UniquePtr&lt;T&gt;&amp; other); // Not allowed!
T* const m_ptr;
Deleter m_deleter;
};
/*--------------------------------------------------------------------*//*!
* \brief Construct unique pointer.
* \param ptr Pointer to be managed.
*
* Pointer ownership is transferred to the UniquePtr.
*//*--------------------------------------------------------------------*/
template&lt;typename T, class Deleter&gt;
inline UniquePtr&lt;T, Deleter&gt;::UniquePtr (T* const ptr, Deleter deleter)
: m_ptr (ptr)
, m_deleter (deleter)
{
}
template&lt;typename T, class Deleter&gt;
inline UniquePtr&lt;T, Deleter&gt;::~UniquePtr (void)
{
m_deleter(m_ptr);
}
} // de
#endif // _DEUNIQUEPTR_HPP
</pre>
</li>
</ol>
</li>
<li><span class="heading">Naming conventions and formatting</span>
<ol class="h2">
<li><span class="heading">Basic naming conventions</span>
<p>Each project should have a prefix of its own. For drawElements base libraries,
the prefix <i>de</i> is used. Other projects should use a different, arbitrary prefix.
For instance, the stitcher project uses the <i>xo</i> prefix.</p>
<p>Anything which has a reasonable possibility of causing a naming conflict should be
prefixed. This includes files, structs, enums, functions (except private ones), macros, etc.
In C projects, just about everything in the code needs to be prefixed (files, struct, enums,
global functions, etc.), but in C++ code, namespaces remove the need for most prefixing.
File names and macros should still be prefixed in C++ code as well. Note that members
of classes (either C or C++), or structs or unions do not need to be prefixed with the
package prefix.</p>
<p>Identifiers are generally typed in camelCase. This applies to file names, structs,
enums, local variables, and struct members. In some cases, prefixes are used to clarify
the behavior of a variable. Static variables are prefixed with <i>s_</i>, global variables
with <i>g_</i>, and C++ class member variables with <i>m_</i>. Macros and enum entries should
always be written in UPPER_CASE with underscores separating the words. Members of C classes
don't need to be prefixed.</p>
<p>When emulating classes in C, the class name itself should be written in CamelCase, but
starting with a upper-case letter. Usually the classes are prefixed: <i>xoArmEmu</i>,
<i>deRandom</i>, but if the class only exists within a single .c file, the prefix can be
omitted: <i>StringBuilder</i>. The member functions of the class should be prefixed with
the full class name and an underscore, followed by a camelCased function name:
<i>xoArmEmu_emulateCode().</i></p>
<p>Examples of correctly named identifiers:</p>
<ul>
<li><i>dePool.c, dePool.h, deUniquePtr.hpp, deThread.cpp</i> -- file names</li>
<li><i>deRandom, xoStitcher</i> -- structs / classes</li>
<li><i>deMemPoolFlag, xoConditionCode</i> -- enums</li>
<li><i>DE_COMPILER_MSC</i> -- macros</li>
<li><i>XO_BACKEND_NEON</i> -- enum entry</li>
<li><i>setTableSize()</i> -- local (static) function</li>
<li><i>xoArmEmu_emulateCode()</i> -- C class member function</li>
<li><i>numVariables</i> -- local variable</li>
<li><i>m_itemHash</i> -- member variable in a C++ class</li>
<li><i>s_rcpTable</i> -- static variable in a function</li>
<li><i>g_debugFlag</i> -- global variable</li>
</ul>
</li>
<li><span class="heading">Choosing good names</span>
<p>Naming your variables is somewhat of a black art, but the main goal of giving a name should
be clarity. You want to communicate what the contents of the variable mean. The more obscure
the purpose of a variable is, the longer (and more descriptive) a name you should invent for it.
Also, the longer the life time of a variable is, the longer a name it deserves. For example, a
loop counter which is alive for page worth of code should be named something like <i>vertexNdx</i>,
whereas a loop counter which lives only a couple of lines can be named simply <i>i</i> or <i>ndx</i>.</p>
<p>Most variables should be declared const and never changed (see coding philosophy section).
Thus one often successful approach for variable naming is to give name for the value instead.
For example when querying first child of node and storing it in variable, that should be named
as <i>firstChild</i> instead of <i>node</i>.</p>
<p>Consistency is one important factor in naming variables. When a similar kind of name is needed
in multiple places, choose a way of devising the name and stick to that. E.g., if you query the
number of elements in an array to a local variable in several functions, always use the same name
in each of the functions.</p>
<p>When dealing with counts or numbers (number of elements in an array, etc.), you should always
clearly indicate with the name that this is the case, e.g., <i>numElements</i> (preferred),
<i>elementCount</i>, etc. Which ever prefix or postfix you choose to use, stick to it.</p>
<p>Function parameters that have an unit of measure (e.g. seconds or bytes) should have the unit
as part of the name, for example <i>timeLimitMs</i> and <i>chunkSizeKb</i>.</p>
<p>Use American English instead of English English. Choose gray over grey, color over colour,
and so forth.</p>
</li>
<li><span class="heading">Canonical abbreviations</span>
<table border="0" cellspacing="0">
<tr><td>buffer </td> <td>buf</td></tr>
<tr><td>destination </td> <td>dst</td></tr>
<tr><td>index </td> <td>ndx</td></tr>
<tr><td>source </td> <td>src</td></tr>
<tr><td>variable </td> <td>var</td></tr>
</table>
</li>
<li><span class="heading">Struct and enum typedeffing</span>
<p>For enums and structs, the types should always be typedeffed and used without the struct or
enum prefix in actual code.</p>
<div class="codeTitle">Example.</div>
<pre class="prettyprint">
/* Declaration. */
typedef enum xoConditionCode_e
{
...
} xoConditionCode;
typedef struct deMempool_s
{
...
} deMemPool;
/* Usage. */
deMemPool* memPool;
xoConditionCode condCode;
</pre>
</li>
<li><span class="heading">Header files and including</span>
<p>All header files should have include guards in them to avoid processing them multiple times
in case they are included from multiple places. The style used for the macro is <i>_FILENAME_H</i>,
for example: <i>_DEDEFS_H</i>. Whenever including other headers from a header file, you should
always use external include guards as well. The external include guards considerably reduce the
number of file accesses that the compiler needs to make, resulting in faster compile times.</p>
<p>Each implementation file should have matching header file and vice versa. The implementation
file must include the corresponding header file first. By doing that, it is guaranteed that the
header file includes all of its dependencies.</p>
<p>Each header file should first include <i>deDefs.h</i>, or alternatively project-specific
<i>xxDefs.h/hpp</i> file that in turn includes deDefs.h. That way all the usual types and macros
are always properly defined.</p>
<div class="codeTitle">External include guard example.</div>
<pre class="prettyprint">
#ifndef _DEDEFS_H
# include "deDefs.h"
#endif
#ifndef _DEINT32_H
# include "deInt32.h"
#endif
#ifndef _DEUNIQUEPTR_HPP
# include "deUniquePtr.hpp"
#endif
</pre>
<p>The include order of files should start from <i>debase</i> (esp. <i>deDefs.h</i>), go thru
other base libraries, then your own project header files, and lastly the system header files.
Also, a <i>.c</i> file must include its own header file first. E.g., <i>deMemPool.c</i> must
first include <i>deMemPool.h</i>.</p>
<p>Every include path must also end up including <i>deDefs.h</i> before any actual code is processed.
This ensures that the basic portability macros (<i>DE_OS</i>, <i>DE_COMPILE</i>, etc.) have been
defined.</p>
</li>
<li><span class="heading">Indenting and whitespace</span>
<p>Code should be indented with tabs (instead of spaces) and a tab-width of 4 characters should
be used.</p>
<p>Always put braces on their own lines. This applies to functions, structs, enums, ifs, loops,
everything. The only exception are single-line scopes. For one-statement ifs or loops, braces
should not be used. Also, put <i>else</i> and <i>else if</i> on their own lines as well.</p>
<div class="codeTitle">Brace usage</div>
<pre class="prettyprint">
void main (int argc, const char** argv)
{
if (argc > 1)
parseArgs(argv[1]);
else
{
printf("Usage:\n");
printf("...\n");
}
}
</pre>
<p>In addition to only indenting your code, things like variable names in a list of
declarations or comments at the end of line, should also be aligned such that they start at
the same column. Compare the following two examples of the same code, only with differing
alignments in the text.</p>
<div class="codeTitle">Aligned variable declarations and comments.</div>
<pre class="prettyprint">
struct deMemPool_s
{
deUint32 flags; /*!&lt; Flags. */
deMemPool* parent; /*!&lt; Pointer to parent (null for root pools). */
deMemPoolUtil* util; /*!&lt; Utilities (callbacks etc.). */
int numChildren; /*!&lt; Number of child pools. */
deMemPool* firstChild; /*!&lt; Pointer to first child pool in linked list. */
deMemPool* prevPool; /*!&lt; Previous pool in parent's linked list. */
deMemPool* nextPool; /*!&lt; Next pool in parent's linked list. */
...
};
</pre>
<div class="codeTitle">No alignments used.</div>
<pre class="prettyprint">
struct deMemPool_s
{
deUint32 flags; /*!&lt; Flags. */
deMemPool* parent; /*!&lt; Pointer to parent (null for root pools). */
deMemPoolUtil* util; /*!&lt; Utilities (callbacks etc.). */
int numChildren; /*!&lt; Number of child pools. */
deMemPool* firstChild; /*!&lt; Pointer to first child pool in linked list. */
deMemPool* prevPool; /*!&lt; Previous pool in parent's linked list. */
deMemPool* nextPool; /*!&lt; Next pool in parent's linked list. */
...
};
</pre>
</li>
<li><span class="heading">Other formatting</span>
<p>Always use C-style comments in C code: /* This is a C comment. */ Only use
the C++ // end-of-line comments in C++ code.</p>
<div class="codeTitle">Comment styles.</div>
<pre class="prettyprint">
/* Use this kind of comments in C code. */
// This kind of comments may only be used in C++ code.
</pre>
<div class="codeTitle">Pointer and references.</div>
<pre class="prettyprint">
// Good: pointers and references are a part of the type
void* ptr;
deInt32* colorBuffer;
xoArmEmu* armEmu;
Array&lt;int&gt;&amp; intArray;
void doBlend (deUint32* dst, const deUint32* src);
// Bad: pointer symbol should not be a part of the name
void *ptr;
void doBlend (deUint32 *dst, const deUint32 * src);
</pre>
<div class="codeTitle">Formatting of function declarations.</div>
<pre class="prettyprint">
// Good: void if empty param list, empty space after name, braces on own line
void doStuff (void)
{
}
// Bad: horrible function name!
void doStuff() {
}
// Good: separate arguments with spaces, function name
ShapeList getIntersectingShapes (float x, float y, float z)
{
}
// Bad: function name (list of what volumes?), no space after commas in arg list
ShapeList getShapeList (float x,float y,float z)
{
}
// Exception: sometimes simple function are best written as one-liners
float deFloatAbs (float f) { return (f &lt; 0.0f) ? -f : f; }
</pre>
<div class="codeTitle">Formatting of control statements.</div>
<pre class="prettyprint">
// Good: no extra braces for one-liner if cases
if (a.isZero)
result = 0.0f;
else
result = a.value * (1.0 / 65536.0f);
// Bad: extraneous braces, bad whitespace usage
if (a.isZero)
{
result=0.0f;
}
else
{
result=a.value*(1.0 / 65536.0f);
}
// Good: expression easy to read
if (a.isZero &amp;&amp; b.isZero)
{
...
}
// Bad: missing spaces around &amp;&amp; operator, missing space after 'if'
if(a.isZero&amp;&amp;b.isZero)
{
...
}
// Good: else on its own line
if (alpha == 0)
{
...
}
else if (alpha == 255)
{
...
}
else
{
...
}
// Bad: else on same line as closing brace
if (alpha == 0)
{
...
} else if (...)
{
...
} else
{
...
}
// Good: note space after 'while'
while (numTriangles--)
{
...
}
// Bad: whitespace usage
while(numTriangles --)
{
...
}
// Good: while on same line as closing brace
do
{
...
} while (--numTriangles);
// Bad: while on its own line, missing whitespace after 'while'
do
{
...
}
while(--numTriangles);
// Good: easy to read
for (ndx = 0; ndx &lt; numTriangles; ndx++)
// Bad: missing spaces all over (whitespace should be used to separate expressions)
for(ndx=0;ndx&lt;numTriangles;ndx ++)
// Good: note missing braces for while, correct usage of whitespace
while (numTriangles--)
area += computeArea(triangle[ndx++]);
// Bad: don't put unnecessary braces, avoid extraneous whitespace in expressions
while (numTriangles--)
{
area+=computeArea( triangle [ndx++] );
}
</pre>
<div class="codeTitle">Formatting switch cases.</div>
<pre class="prettyprint">
// Good: case-statements indented, code indented another level (including breaks)
switch (blendMode)
{
case XX_BLENDMODE_NORMAL: // no variable declarations
...
break;
case XX_BLENDMODE_SRC_OVER: // need braces if declaring variables inside
{
int alpha = ...;
break;
}
case XX_BLENDMODE_XYZ:
...
// FALLTHRU! -- make non-breaked cases very explicit!
default: // handles the final blendmode (DISABLED) with an assertion!
DE_ASSERT(blendMode == XX_BLENDMODE_DISABLED);
break; // always put break!
}
// Bad:
switch(blendMode)
{
case XX_BLENDMODE_NORMAL: // always indent case labels
...
break; // put break on same level as indented code!
case XX_BLENDMODE_SRC_OVER:
{
...
break;
}
case XX_BLENDMODE_XYZ:
...
case XX_BLENDMODE_DISABLED: // always comment the case fall-through (like above)
...
} // default case missing! always need to handle it (and assert if illegal!)
</pre>
<div class="codeTitle">Formatting of expressions.</div>
<pre class="prettyprint">
// Good: parenthesis or whitespace used to indicate evaluation order
array[(a * b) + c];
array[a*b + c];
// Bad: order unclear
array[a*b+c];
// Good: parenthesis (or whitespace) makes evaluation order unambiguous
array[(a &amp;&amp; b) || (c == 0)]
array[a==0 || b==0 || c==0] // in some cases spaces can be used instead of parenthesis
// Bad: unclear evaluation order
array[a&amp;&amp;b || c==0] // does this even work?
array[a == 0 || b == 0 || c == 0]
// Good: easy to see different parts of evaluation (whitespace where it matters)
array[triangle->index0 - cache.baseIndex];
// Bad: hard to read (whitespace around brackets doesn't help readability!)
array[ triangle->index0-cache.baseIndex ];
array [triangle -> index0 - cache.baseIndex];
// Good: easy to see all function arguments
computeArea(vtx0.x, vtx0.y, vtx1.x, vtx1.y, vtx2.x, vtx2.y);
// Bad: missing spaces makes it hard to read, no space after function name when calling
computeArea ( vtx0.x,vtx0.y,vtx1.x,vtx1.y,vtx2.x,vtx2.y );
// Good: readable (the code itself is a made-up example and thus incomprehensible)
// Consider: would probably make more readable code to use temporary variables here
if (sizeArray[a+5] &gt; getSize(getFoo()+2))
if (sizeArray[a + 5] &gt; getSize(getFoo() + 2))
// Bad: whitespace usage confuses rather than helps
if(sizeArray[a+5]&gt;getSize(getFoo()+2))
if ( sizeArray [ a + 5 ] &gt; getSize ( getFoo () + 2 ) )
// Bad: unclear (and wrong) evaluation order
if (bitMask &amp; (1&lt;&lt;bit) == 0)
</pre>
<div class="codeTitle">Other formatting.</div>
<pre class="prettyprint">
#if defined(DE_DEBUG) // prefer #if defined() to #ifdef
...
#endif /* DE_DEBUG */ // only put ending comment if #if is far away
</pre>
</li>
</ol>
</li>
<li><span class="heading">Base library services</span>
<p>TODO: explain all of these</p>
<ol class="h2">
<li><span class="heading"><b>debase</b>/deDefs.h</span>
<pre>
- DE_COMPILER, DE_OS, DE_CPU
- basic types (deUint8, deIntptr, deBool==int, ..)
- DE_NULL
- DE_DEBUG -- #if defined(DE_DEBUG)
- DE_INLINE
- DE_ASSERT(), DE_VERIFY(), DE_TEST_ASSERT(), DE_STATIC_ASSERT()
- DE_BREAKPOINT()
- DE_SWAP()
- DE_LENGTH_OF_ARRAY()
- DE_OFFSET_OF()
- DE_UNREF()
- DE_BEGIN_EXTERN_C, DE_END_EXTERN_C
- DE_NULL_STATEMENT</pre>
</li>
<li><span class="heading">Other <b>debase</b> headers</span>
<pre>
- deInt32.h: deInRange32(), deInBounds32(), hashing
- deFloat16.h: fp16&lt;-&gt;fp32
- deMath.h: generic float math
- deRandom.h: random number generation
- deMemory.h: allocating memory, deMemset(), deMemcpy(), DE_NEW(), DE_DELETE()
- deString.h:</pre>
</li>
<li><span class="heading"><b>depool</b> services</span>
<pre>
- memory pools (deMemPool)
- pooled data structures
* Array
* Set
* Hash
* HashArray
* HashSet</pre>
</li>
</ol>
</li>
<li><span class="heading">Commenting code</span>
<ol class="h2">
<li><span class="heading">File comment boxes</span>
<p>Each source file should contain the following comment box. In header files the comment is placed after
the #ifdef-#endif pair. On implementation files the comment box is placed at the beginning.</p>
<pre class="prettyprint">
/*-------------------------------------------------------------------------
* Full Module Name
* ----------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Short description of the contents.
*
* Followed by longer description if necessary (such as high-level algorithm
* description).
*//*--------------------------------------------------------------------*/
<pre>
</li>
<li><span class="heading">Structs/classes/enums comment boxes</span>
<p>TODO: </p>
</li>
<li><span class="heading">Other Doxygen comment boxes (/** ... */ and /*!&lt; ... */)</span>
<p>TODO: single-line, multi-line</p>
</li>
<li><span class="heading">Code comments</span>
<p>Below and example of code commenting for C. When doing C++, you can replace C-style comments with C++-comments.</p>
<pre class="prettyprint">
callFoo(&amp;a);
/* Comment about following block (Note empty line before and after)*/
callBar(&amp;b);
c = a + b; /* Why we need to do this op */
doItAll(a, b, c);
/* Badness starts with this comment */
callBar(&amp;b);
/* Why we need to do this op */
c = a + b;
doItAll(a, b, c);
</pre>
</li>
<li><span class="heading">Tags</span>
<p>Todo-comments should use the following syntax:</p>
<pre class="prettyprint">
/* \todo [2012-01-26 pyry] Give a longer description of todo-usage in code. */
</pre>
<p>If you wish to communicate to fellow developer about some unexpected behavior or corner-case
that is not obvious, <i>\note</i> tag can be used.</p>
<pre class="prettyprint">
/* \note Tangent may be zero. */
</pre>
</li>
</ol>
</li>
<li><span class="heading">Generic programming</span>
<ol class="h2">
<li><span class="heading">Classes in C</span>
<p>TODO: explain</p>
</li>
<li><span class="heading">Const correctness</span>
<p>When declaring function arguments, local variables, or class members, all non-mutable ones
must be declared const. Declaring variable const communicates clearly your intent to not modify
the given value. This is especially important in function argument lists.</p>
<p>Declaring local variables, or function arguments that are passed by value, const, may be a bit
controversial. There are indeed a lots of existing code that doesn't follow this rule. However,
adding extra constness has proven to improve code readability a quite bit and thus all new code
must use const correctly. The only exception is function arguments passed by value; for those
const keyword can be omitted. By-value function arguments are however considered to be const
for all purposes.</p>
<div class="codeTitle">Example.</div>
<pre class="prettyprint">
// Function example. Note const qualifier on maxDepth as well which is passed by value.
static glu::VarType generateRandomType (const int maxDepth, int&amp; curStructIdx, vector&lt;const StructType*&gt;&amp; structTypesDst, Random&amp; rnd)
{
const bool isStruct = maxDepth > 0 &amp;&amp; rnd.getFloat() &lt; 0.2f;
const bool isArray = rnd.getFloat() &lt; 0.3f;
...
}
// Class members
class Node
{
public:
Node (Node* const parent);
~Node (void);
...
private:
Node* const m_parent;
};
Node::Node (Node* const parent)
: m_parent(parent) // Const members can be initialized
{
}
</pre>
</li>
<li><span class="heading">Declaring variables</span>
<p>All variables should be declared at the beginning of a block. If variables are introduced in
the middle of code, nested block must be used. This is what ANSI C requires, and the same style must
be used in C++ code as well. The only exception for this is loop counters in C++; they may be
declared in loop init expression.</p>
<p>Having variable declarations always at the beginning of the block makes code easier to read
as no new state is introduced in the middle of code. It also guides towards writing smaller
functions that don't use too many variables.</p>
<div class="codeTitle">Example.</div>
<pre class="prettyprint">
static void logTransformFeedbackVaryings (TestLog&amp; log, const glw::Functions&amp; gl, const deUint32 program)
{
int numTfVaryngs = 0;
int maxNameLen = 0;
gl.getProgramiv(program, GL_TRANSFORM_FEEDBACK_VARYINGS, &amp;numTfVaryngs);
gl.getProgramiv(program, GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, &amp;maxNameLen);
GLU_EXPECT_NO_ERROR(gl.getError(), "Query TF varyings");
{
vector&lt;char&gt; nameBuf(maxNameLen+1);
for (int ndx = 0; ndx &lt; numTfVaryngs; ndx++)
{
...
</pre>
</li>
<li><span class="heading">Variable life-time</span>
<p>TODO: minimize life-time of a variable (may sometimes need additional scopes in C)</p>
</li>
<li><span class="heading">Enumerations</span>
<p>TODO: assign zero to first, let compiler assign others (in typical lists)</p>
<p>TODO: use ENUM_LAST</p>
<p>TODO: mask values</p>
<p>TODO: use instead of #defines</p>
<p>TODO: typedef xxEnumName_e trick (already explained above?)</p>
</li>
<li><span class="heading">Error handling</span>
<p>There are generally two types of errors that can occur in code; errors that stem from environment
or bad input, and errors that are caused by logic error in the code. Former ones are typically
outside our control (such as running into a network error) and latter are simply programming mistakes.</p>
<p>External errors must be handled in a graceful way. Depending on the project it may include handling
out-of-memory situations as well (most certainly when doing drivers or middleware). In C function return
value should be used for communicating whether external error was hit. In C++ code exceptions can
be used as well. Assertions must not be used for checking external error conditions.</p>
<p>Internal logic errors must be checked with assertions. See next section.</p>
</li>
<li><span class="heading">Assertions</span>
<p>Assertions are a form of code documentation. They explicitly declare what the code expects from
input values or current state. They are tremendously useful when trying to understand how certain
piece of code should be used. In addition they are a very nice debugging aid as they help catch logic
errors early on before those errors get chance to corrupt program state.</p>
<p>Functions should assert all non-trivial input data and conditions. The one notorious exception is
that pointer validity doesn't need to be asserted if the pointer is dereferenced immediately.
Non-trivial computation results should also be checked with assertions.</p>
<div class="codeTitle">Example.</div>
<pre class="prettyprint">
// Examples of good assertions:
void* deMemPool_alignedAlloc (deMemPool* pool, int numBytes, deUint32 alignBytes)
{
void* ptr;
DE_ASSERT(pool); // Must be asserted since not dereferenced but passed to another function
DE_ASSERT(numBytes > 0); // Assertion on input data condition
DE_ASSERT(deIsPowerOfTwo32((int)alignBytes)); // Non-trivial input condition
ptr = deMemPool_allocInternal(pool, numBytes, alignBytes);
DE_ASSERT(deIsAlignedPtr(ptr, alignBytes)); // Assertion on computation result
return ptr;
}
// Badness starts here
void getTextureWidth (const Texture* texture)
{
DE_ASSERT(texture); // Bad: unnecessary, will crash anyway if texture is null
return texture->width;
}
void doStuff (void)
{
int i = 3;
i += 2;
DE_ASSERT(i == 5); // Bad: assertion on trivial computation result
FILE* f = fopen("myfile.txt", "rb");
DE_ASSERT(f); // Bad: there are legitimate reasons for failure
}
</pre>
</li>
<li><span class="heading">Lookup tables</span>
<p>TODO: DE_STATIC_ASSERT lookup table size - should usually match to ENUM_TYPE_LAST</p>
<pre class="prettyprint">
typedef enum xxBlendEquation_e
{
XX_BLEND_EQUATION_ADD = 0,
XX_BLEND_EQUATION_SUBTRACT,
XX_BLEND_EQUATION_REVERSE_SUBTRACT,
XX_BLEND_EQUATION_LAST
} xxBlendEquation;
// Note: size is left for compiler to figure out
static const s_blendModeMap[] =
{
GL_FUNC_ADD, // XX_BLEND_EQUATION_ADD
GL_FUNC_SUBTRACT, // XX_BLEND_EQUATION_SUBTRACT
GL_FUNC_REVERSE_SUBTRACT // XX_BLEND_EQUATION_REVERSE_SUBTRACT
};
// This will cause compilation failure lookup table size gets out of date
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_blendModeMap) == XX_BLEND_EQUATION_LAST);
</pre>
</li>
<li><span class="heading">Struct size</span>
<p>TODO: DE_STATIC_ASSERT of struct sizes</p>
<p>TODO: use small datatypes (deUint8 instead of deBool) when size matters.</p>
</li>
<li><span class="heading">Extraneous code</span>
<p>TODO: avoid too verbose code.</p>
<div class="codeTitle">Example.</div>
<pre class="prettyprint">
// Good: compact without sacrificing readability
return (a &lt; 0.0f) ? -a : a;
// Bad: waste of space
float result;
if (a &lt; 0.0f)
{
result = -a;
}
else
{
result = a;
}
return result;
</pre>
</li>
</ol>
</li>
<li><span class="heading">C++ topics</span>
<ol class="h2">
<li><span class="heading">Class declarations</span>
<p>TODO: how declaration looks like (already shown in example..)</p>
<p>TODO: function definitions inside class ok if single-line, other special cases</p>
</li>
<li><span class="heading">Class boilerplate</span>
<p>TODO: copy ctor, assignment operator</p>
</li>
<li><span class="heading">Code Formatting</span>
<pre class="prettyprint">
// Constructors
FooAtom::FooAtom(int proton, float electron)
: m_proton (proton) // Note aligning member initializers.
, m_electron (electron)
{
}
// Remember to add the name of the namespace at the end of the namespace
namespace foo
{
// Namespaces aren't indented
class Proton;
...
} // foo
</pre>
</li>
<li><span class="heading">RAII</span>
<p>Everyone should get familiar with RAII. In a nutshell, "resource acquisition is initialization"
means that a class destructor must always release all resources (such as memory or OS handles)
that have been allocated during the whole lifetime of the object.</p>
<p>RAII is essential for exception-safe code. You should always make sure that if an exception is
thrown, including out-of-memory cases, your code behaves properly and releases all allocated resources.</p>
</li>
<li><span class="heading">Pointers and references</span>
<p>In C++ references should be generally preferred over pointers. The main difference between pointers
and references is that references can not change, and are not expected to be null. References should be
used instead of pointers for passing objects when both conditions hold; object can not be null nor
reference won't be modified once initialized.</p>
<p>Pointers are used when there is need to change the address, or it can be null for a valid reason.
Additionally, pointers are always used for passing basic type or object arrays.</p>
</li>
<li><span class="heading">Containers</span>
<p>TODO: describe stl container usage policies</p>
</li>
<li><span class="heading">Exceptions</span>
<p>TODO: exceptions can be used, custom ones must be based on std::exception</p>
</li>
<li><span class="heading">Polymorphism</span>
<p>TODO: when to use virtual functions, virtual destructor</p>
</li>
<li><span class="heading">Namespaces</span>
<p>TODO: namespace naming</p>
<p>TODO: using statement, never using in headers</p>
</li>
</ol>
</li>
<li><span class="heading">Tools</span>
<ol class="h2">
<li><span class="heading">Git</span>
<p>Git is currently the weapon of choice for source control management. Even though it is
not the perfect solution, it gets job done well, or at least better than most other solutions.</p>
<p>Our repositories are hosted on github.com. You are allowed and encouraged to push any number
of new branches to the github repositories. Remember to clean up the obsolete ones after they
have been merged to master. But never delete a remote branch that hasn't been created by you.</p>
<p>Before you commit anything, make sure <i>user.name</i> and <i>user.email</i> are properly set up.</p>
<pre class="prettyprint">
git config --global user.name "Veijo Elements"
git config --global user.email "veijo.elements@drawelements.com"
</pre>
<p>The standard line ending format for all text files is Unix-style. The best way to handle
line endings on Windows systems is to set <i>core.autocrlf</i> to <i>input</i>. That causes
conversion to Unix-style line endings on commit only (i.e. not in checkout).</p>
<pre class="prettyprint">
git config --global core.autocrlf input
</pre>
<p>In order to keep trailing whitespace out of source tree, a standard pre-commit hook must
be placed in each local clone of any source repositories.</p>
<pre class="prettyprint">
# in repository directory
cp ~/Dropbox/drawElements/Misc/git/pre-commit .git/hooks/
</pre>
</li>
<li><span class="heading">Build systems and IDEs</span>
<p>CMake is used as an official project file generator. CMake can be used to generate makefiles
or project files for most IDEs. Unless there is a good reason, you should use project files
generated by CMake.</p>
<p>You are free to choose any IDE or editor you like. At least Visual Studio, vim and
emacs have been successfully used in the past. Good debugger integration is strongly recommended.</p>
</li>
</ol>
</li>
<li><span class="heading">Coding philosophy</span>
<ol class="h2">
<li><span class="heading">Designing classes</span>
<p>Each class should have only a single purpose to fulfill, and it should encapsulate that
entirely. All functionality that is secondary and doesn't require access to classes' internal
implementation should not be part of that class. This is called <a href="http://en.wikipedia.org/wiki/Single_responsibility_principle">
single responsibility principle</a>. It is probably easier to grasp it with an example.</p>
<p>Consider a <i>Texture2D</i> class that manages 2D-dimensional texture data. Such class is clearly
responsible for managing lifetime of the associated memory, and storing properties such as
size and format. Now, one could need a function for blitting (copying) portion of one texture
to some position in an another texture. This could be added as a method to texture class, but
it most certainly isn't core responsibility of that class. So correct way to implement that
is either as a plain function operating on publicly accessible methods of <i>Texture2D</i> class,
or as a separate <i>Blitter</i> class. Same applies to things such as reading texture from a file,
clearing the texture to a certain color and so forth.</p>
<div class="codeTitle">Texture class example.</div>
<pre class="prettyprint">
class Texture2D
{
public:
Texture2D (const TextureFormat format, const int width, const int height);
Texture2D (const char* const filename); // Bad: not core functionality
~Texture2D (void);
// Good methods: essential functionality
Vec4 getPixel (const int x, const int y) const;
void setPixel (const int x, const int y, const Vec4&amp; c);
const deUint8* getPixelPtr (void) const;
// Bad: non-essential
void clear (const Vec4&amp; c);
bool containsColor (const Vec4&amp; c) const;
void setInitialized (void); // Why texture would store bit that belongs outside?
private:
// Good: essential, minimum data set
vector&lt;deUint8&gt; m_pixels;
TextureFormat m_format;
int m_width;
int m_height;
// deUint8* m_pixels; // Bad: explicit mem. mgmt, not core functionality
bool m_initialized; // Bad: extraneous information
};
// Good: independent functions operating on textures
void clearTexture (Texture2D&amp; texture, const Vec4&amp; color);
Texture2D* createFromFile (const char* const filename);
</pre>
<p>One sign of a successful class design is that the interface feels natural to use. Thus when
designing a new class from a scratch, you should start by writing the use cases first. Class
interface can be refined until it suits the most important use cases, and only then the
implementation is filled in. Doing things in reverse order often leads to interfaces that are
later found to be inadequate.</p>
<p>When writing the internal implementation a lot of thought should be put on maintaining
consistent state, or more formally, <a href="http://en.wikipedia.org/wiki/Class_invariant">class invariant</a>.
Member variables in a class are a form of global state and thus special care must be taken
when manipulating that state. If class requires a lot of state, it can be helpful to group
some of the members into separate state-only classes whose sole responsibility is maintaining
the class invariant for that set of members. Another good pattern is to write a state validation
function that is called in debug builds after each non-trivial state change.</p>
<p>Only a minimal set of class member variables should ever be used. If some value can be derived
with a relatively little effort from the minimal set of members, it must not be stored as a
member variable. In the <i>Texture2D</i> class example, length of a pixel row or image size can
be derived from size and format and thus member variables must not be used for them.</i>
<!-- TODO: code example -->
</li>
<li><span class="heading">Global state</span>
<p>Pretty much everyone can agree that relying on global state is undesirable. However, what
is not always obvious is what counts as a global state. Global variables are clearly such state,
but many more can be considered as well. For example state encapsulated in shared objects, state
retained in library API, or even state passed in member variables between member functions
could be counted as a form global state. Another way to define global state is that it is anything
that can be passed from one function to another without including it in function call arguments.</p>
<p>All forms of global state should be used only when necessary. Excluding some very rare cases,
mutable global variables are never necessary. Singletons are really just a fancier version of
global variables. Instead of using for example singleton for application log object, it should be
passed in explicitly to all objects and functions that require logging.</p>
</li>
<li><span class="heading">Variables vs. immutable values</span>
<p>Traditional imperative programming puts emphasis on variables. They are thought of being
limited resource, used for storing immediate computation results for brief periods of time.
In early C days it was even common to declare variable <i>register</i> in order to communicate
the compiler that it should place the variable into a register. Things have changed a lot since
then, and it is no longer necessary to limit use of variables for performance reasons.</p>
<p>Functional languages declare variables immutable, i.e. they are not really <i>var</i>ying
values, but instead named values. This often greatly improves code clarity and correctness,
as variables can not change unexpectedly. While imperative languages certainly need some amout
of mutability, the concept of immutable values certainly has advantages.</p>
<p>As discussed in variable naming section, you often should name a single value, not some
storage slot for arbitrary set of values. In such case it makes a lot of sense to treat that
as immutable named value, not mutable varibale. In C and C++ that can be explicitly declared
with use of <i>const</i> qualifier.</p>
<p>In general the amount of state that is considered mutable in any given context should be
minimized. Understanding code is a much more easier if number of things that can change is
small. This also guides code towards natural separation into smaller functions.</p>
<p>Limiting number of mutable variables leads to a more functional programming style, where a
lot of computation done in initializer expressions at the beginning of a block. This is not
necessarily a bad thing as it requires separating any non-trivial computation into separate
functions. Most often we only need the result of such computation anyway, and how the
value itself is computed is not important for the problem at hand.</i>
<div class="codeTitle">Complex code example.</div>
<pre class="prettyprint">
std::vector&lt;Node*&gt; topologicalSortFromRoot (Node* const root)
{
// Returning containers is OK if called functions are local and compiler
// can easily do return value optimization.
const std::vector&lt;Node*&gt; allNodes = collectAllNodesFromRoot(root); // Reduce number of mutables by computing outside
std::map&lt;Node*, int&gt; useCounts = computeUseCounts(allNodes); // Uses allNodes value, mutable
std::vector&lt;Node*&gt; liveSet; // Mutable as well
std::vector&lt;Node*&gt; sortedNodes; // Used as return value - only appended to
// We have multiple mutables here. Invariant is that each node that has zero in useCount
// must be either in liveSet or sortedNodes, but not in both.
for (std::vector&lt;Node*&gt;::iterator nodeIter = allNodes.begin();
nodeIter != allNodes.end();
++nodeIter)
{
// Note that nodeIter is not considered mutable here - instead it is iteration-specific
// immutable value.
if (useCounts[*nodeIter] == 0)
liveSet.push_back(*nodeIter); // liveSet is used as return value here
}
while (!liveSet.empty())
{
Node* const curNode = liveSet.back();
liveSet.pop_back();
sortedNodes.push_back(curNode);
...
}
return sortedNodes;
}
</pre>
</li>
<li><span class="heading">Pure functions</span>
<p>Pure functions have two properties. Firstly, the result depends only on the input values and
always produces same output value given same set of input values. Secondly, the function does not
cause any observable side effects or changes to global state. For example <i>sin(x)</i> is pure
function as it always returns the same value for same argument value and does not cause any side effects.</p>
<p>As much of the code as possible should be kept pure. Moving pure parts of logic and computation
into separate functions is recommended. Unit testing those pure functions is then much easier.</p>
<p>Mutating objects passed in counts as a side effect. Instead pure functions must return a completely
new value. This may not always be feasible and some functions may need to be impure for performance
reasons. One way to work around that while remaining as pure as possible is to use separate output-only
argument for output value. Perhaps the most ubiquitous example of such function is <i>memcpy()</i>.</p>
<div class="codeTitle">Examples</div>
<pre class="prettyprint">
// Good: pure function (assuming that it doesn't touch global state)
vector&lt;int&gt; findUniqueNumbers (const vector&lt;int&gt;&amp; numbers);
// Good: single output-only parameter
void findUniqueNumbers (vector&lt;int&gt;&amp; dst, const vector&lt;int&gt;&amp; numbers);
// Bad: copying a lot of data for sake of pureness
LargeStateObject setStateX (const LargeStateObject&amp; state, const int value);
// Bad: manipulates input for no reason
void removeDuplicates (vector&lt;string&gt;&amp; words);
</pre>
</li>
</ol>
<!--
Coding philosophy TODO:
- composition vs. inheritance
- dependency injection
- function design
- do not duplicate state (local or remote)
Patterns TODO:
- iterator pattern
- iterate() pattern for long computation
+ state machines for interactive processing?
- accessor class pattern
-->
</li>
<!---
<li><span class="heading">Something else</span>
</li>
-->
</ol> <!-- h1 -->
</div> <!-- body -->
</body>
</html>