blob: fcadc126885755060d14d8989df5bbc19874162d [file] [log] [blame]
#ifndef _TCUFLOAT_HPP
#define _TCUFLOAT_HPP
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Reconfigurable floating-point value template.
*//*--------------------------------------------------------------------*/
#include "tcuDefs.hpp"
// For memcpy().
#include <string.h>
namespace tcu
{
enum FloatFlags
{
FLOAT_HAS_SIGN = (1<<0),
FLOAT_SUPPORT_DENORM = (1<<1)
};
/*--------------------------------------------------------------------*//*!
* \brief Floating-point format template
*
* This template implements arbitrary floating-point handling. Template
* can be used for conversion between different formats and checking
* various properties of floating-point values.
*//*--------------------------------------------------------------------*/
template <typename StorageType_, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
class Float
{
public:
typedef StorageType_ StorageType;
enum
{
EXPONENT_BITS = ExponentBits,
MANTISSA_BITS = MantissaBits,
EXPONENT_BIAS = ExponentBias,
FLAGS = Flags,
};
Float (void);
explicit Float (StorageType value);
explicit Float (float v);
explicit Float (double v);
template <typename OtherStorageType, int OtherExponentBits, int OtherMantissaBits, int OtherExponentBias, deUint32 OtherFlags>
static Float convert (const Float<OtherStorageType, OtherExponentBits, OtherMantissaBits, OtherExponentBias, OtherFlags>& src);
static inline Float convert (const Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>& src) { return src; }
/*--------------------------------------------------------------------*//*!
* \brief Construct floating point value
* \param sign Sign. Must be +1/-1
* \param exponent Exponent in range [1-ExponentBias, ExponentBias+1]
* \param mantissa Mantissa bits with implicit leading bit explicitly set
* \return The specified float
*
* This function constructs a floating point value from its inputs.
* The normally implicit leading bit of the mantissa must be explicitly set.
* The exponent normally used for zero/subnormals is an invalid input. Such
* values are specified with the leading mantissa bit of zero and the lowest
* normal exponent (1-ExponentBias). Additionally having both exponent and
* mantissa set to zero is a shorthand notation for the correctly signed
* floating point zero. Inf and NaN must be specified directly with an
* exponent of ExponentBias+1 and the appropriate mantissa (with leading
* bit set)
*//*--------------------------------------------------------------------*/
static inline Float construct (int sign, int exponent, StorageType mantissa);
/*--------------------------------------------------------------------*//*!
* \brief Construct floating point value. Explicit version
* \param sign Sign. Must be +1/-1
* \param exponent Exponent in range [-ExponentBias, ExponentBias+1]
* \param mantissa Mantissa bits
* \return The specified float
*
* This function constructs a floating point value from its inputs with
* minimal intervention.
* The sign is turned into a sign bit and the exponent bias is added.
* See IEEE-754 for additional information on the inputs and
* the encoding of special values.
*//*--------------------------------------------------------------------*/
static Float constructBits (int sign, int exponent, StorageType mantissaBits);
StorageType bits (void) const { return m_value; }
float asFloat (void) const;
double asDouble (void) const;
inline int signBit (void) const { return (int)(m_value >> (ExponentBits+MantissaBits)) & 1; }
inline StorageType exponentBits (void) const { return (m_value >> MantissaBits) & ((StorageType(1)<<ExponentBits)-1); }
inline StorageType mantissaBits (void) const { return m_value & ((StorageType(1)<<MantissaBits)-1); }
inline int sign (void) const { return signBit() ? -1 : 1; }
inline int exponent (void) const { return isDenorm() ? 1 - ExponentBias : (int)exponentBits() - ExponentBias; }
inline StorageType mantissa (void) const { return isZero() || isDenorm() ? mantissaBits() : (mantissaBits() | (StorageType(1)<<MantissaBits)); }
inline bool isInf (void) const { return exponentBits() == ((1<<ExponentBits)-1) && mantissaBits() == 0; }
inline bool isNaN (void) const { return exponentBits() == ((1<<ExponentBits)-1) && mantissaBits() != 0; }
inline bool isZero (void) const { return exponentBits() == 0 && mantissaBits() == 0; }
inline bool isDenorm (void) const { return exponentBits() == 0 && mantissaBits() != 0; }
static Float zero (int sign);
static Float inf (int sign);
static Float nan (void);
private:
StorageType m_value;
} DE_WARN_UNUSED_TYPE;
// Common floating-point types.
typedef Float<deUint16, 5, 10, 15, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM> Float16; //!< IEEE 754-2008 16-bit floating-point value
typedef Float<deUint32, 8, 23, 127, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM> Float32; //!< IEEE 754 32-bit floating-point value
typedef Float<deUint64, 11, 52, 1023, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM> Float64; //!< IEEE 754 64-bit floating-point value
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (void)
: m_value(0)
{
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (StorageType value)
: m_value(value)
{
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (float value)
: m_value(0)
{
deUint32 u32;
memcpy(&u32, &value, sizeof(deUint32));
*this = convert(Float32(u32));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (double value)
: m_value(0)
{
deUint64 u64;
memcpy(&u64, &value, sizeof(deUint64));
*this = convert(Float64(u64));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline float Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::asFloat (void) const
{
float v;
deUint32 u32 = Float32::convert(*this).bits();
memcpy(&v, &u32, sizeof(deUint32));
return v;
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline double Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::asDouble (void) const
{
double v;
deUint64 u64 = Float64::convert(*this).bits();
memcpy(&v, &u64, sizeof(deUint64));
return v;
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::zero (int sign)
{
DE_ASSERT(sign == 1 || ((Flags & FLOAT_HAS_SIGN) && sign == -1));
return Float(StorageType((sign > 0 ? 0ull : 1ull) << (ExponentBits+MantissaBits)));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::inf (int sign)
{
DE_ASSERT(sign == 1 || ((Flags & FLOAT_HAS_SIGN) && sign == -1));
return Float(StorageType(((sign > 0 ? 0ull : 1ull) << (ExponentBits+MantissaBits)) | (((1ull<<ExponentBits)-1) << MantissaBits)));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::nan (void)
{
return Float(StorageType((1ull<<(ExponentBits+MantissaBits))-1));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::construct
(int sign, int exponent, StorageType mantissa)
{
// Repurpose this otherwise invalid input as a shorthand notation for zero (no need for caller to care about internal representation)
const bool isShorthandZero = exponent == 0 && mantissa == 0;
// Handles the typical notation for zero (min exponent, mantissa 0). Note that the exponent usually used exponent (-ExponentBias) for zero/subnormals is not used.
// Instead zero/subnormals have the (normally implicit) leading mantissa bit set to zero.
const bool isDenormOrZero = (exponent == 1 - ExponentBias) && (mantissa >> MantissaBits == 0);
const StorageType s = StorageType((StorageType(sign < 0 ? 1 : 0)) << (StorageType(ExponentBits+MantissaBits)));
const StorageType exp = (isShorthandZero || isDenormOrZero) ? StorageType(0) : StorageType(exponent + ExponentBias);
DE_ASSERT(sign == +1 || sign == -1);
DE_ASSERT(isShorthandZero || isDenormOrZero || mantissa >> MantissaBits == 1);
DE_ASSERT(exp >> ExponentBits == 0);
return Float(StorageType(s | (exp << MantissaBits) | (mantissa & ((StorageType(1)<<MantissaBits)-1))));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::constructBits
(int sign, int exponent, StorageType mantissaBits)
{
const StorageType signBit = sign < 0 ? 1 : 0;
const StorageType exponentBits = exponent + ExponentBias;
DE_ASSERT(sign == +1 || sign == -1 );
DE_ASSERT(exponentBits >> ExponentBits == 0);
DE_ASSERT(mantissaBits >> MantissaBits == 0);
return Float(StorageType((signBit << (ExponentBits+MantissaBits)) | (exponentBits << MantissaBits) | (mantissaBits)));
}
template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
template <typename OtherStorageType, int OtherExponentBits, int OtherMantissaBits, int OtherExponentBias, deUint32 OtherFlags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::convert
(const Float<OtherStorageType, OtherExponentBits, OtherMantissaBits, OtherExponentBias, OtherFlags>& other)
{
if (!(Flags & FLOAT_HAS_SIGN) && other.sign() < 0)
{
// Negative number, truncate to zero.
return zero(+1);
}
else if (other.isInf())
{
return inf(other.sign());
}
else if (other.isNaN())
{
return nan();
}
else if (other.isZero())
{
return zero(other.sign());
}
else
{
const int eMin = 1 - ExponentBias;
const int eMax = ((1<<ExponentBits)-2) - ExponentBias;
const StorageType s = StorageType((StorageType(other.signBit())) << (StorageType(ExponentBits+MantissaBits))); // \note Not sign, but sign bit.
int e = other.exponent();
deUint64 m = other.mantissa();
// Normalize denormalized values prior to conversion.
while (!(m & (1ull<<OtherMantissaBits)))
{
m <<= 1;
e -= 1;
}
if (e < eMin)
{
// Underflow.
if ((Flags & FLOAT_SUPPORT_DENORM) && (eMin-e-1 <= MantissaBits))
{
// Shift and round (RTE).
int bitDiff = (OtherMantissaBits-MantissaBits) + (eMin-e);
deUint64 half = (1ull << (bitDiff - 1)) - 1;
deUint64 bias = (m >> bitDiff) & 1;
return Float(StorageType(s | (m + half + bias) >> bitDiff));
}
else
return zero(other.sign());
}
else
{
// Remove leading 1.
m = m & ~(1ull<<OtherMantissaBits);
if (MantissaBits < OtherMantissaBits)
{
// Round mantissa (round to nearest even).
int bitDiff = OtherMantissaBits-MantissaBits;
deUint64 half = (1ull << (bitDiff - 1)) - 1;
deUint64 bias = (m >> bitDiff) & 1;
m = (m + half + bias) >> bitDiff;
if (m & (1ull<<MantissaBits))
{
// Overflow in mantissa.
m = 0;
e += 1;
}
}
else
{
int bitDiff = MantissaBits-OtherMantissaBits;
m = m << bitDiff;
}
if (e > eMax)
{
// Overflow.
return inf(other.sign());
}
else
{
DE_ASSERT(de::inRange(e, eMin, eMax));
DE_ASSERT(((e + ExponentBias) & ~((1ull<<ExponentBits)-1)) == 0);
DE_ASSERT((m & ~((1ull<<MantissaBits)-1)) == 0);
return Float(StorageType(s | (StorageType(e + ExponentBias) << MantissaBits) | m));
}
}
}
}
} // tcu
#endif // _TCUFLOAT_HPP