blob: e5511c9ae8b1e78c37b14c8772ef80e485a562e8 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2015 The Khronos Group Inc.
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Copyright (c) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader matrix arithmetic tests.
*
* Variables:
* + operation
* - mat OP mat
* - mat OP vec
* - vec OP mat
* - mat OP scalar
* - OP ( mat )
* - vec OP vec
* - OP mat
* + matrix source
* - constant (ctor)
* - uniform
* - vertex input
* - fragment input
*//*--------------------------------------------------------------------*/
#include "vktShaderRenderMatrixTests.hpp"
#include "vktShaderRender.hpp"
#include "tcuVector.hpp"
#include "tcuMatrix.hpp"
#include "tcuMatrixUtil.hpp"
#include "deStringUtil.hpp"
namespace vkt
{
namespace sr
{
namespace
{
using std::string;
using std::vector;
using namespace glu;
using tcu::Vec2;
using tcu::Vec3;
using tcu::Vec4;
using tcu::Mat2;
using tcu::Mat2x3;
using tcu::Mat2x4;
using tcu::Mat3x2;
using tcu::Mat3;
using tcu::Mat3x4;
using tcu::Mat4x2;
using tcu::Mat4x3;
using tcu::Mat4;
// Uniform / constant values for tests.
// \note Input1 should not contain 0 components as it is used as divisor in div cases.
static const float s_constInFloat[2] = { 0.5f, -0.2f };
static const Vec2 s_constInVec2[2] = { Vec2(1.2f, 0.5f), Vec2(0.5f, 1.0f) };
static const Vec3 s_constInVec3[2] = { Vec3(1.1f, 0.1f, 0.5f), Vec3(-0.2f, 0.5f, 0.8f) };
static const Vec4 s_constInVec4[2] = { Vec4(1.4f, 0.2f, -0.5f, 0.7f), Vec4(0.2f, -1.0f, 0.5f, 0.8f) };
static const float s_constInMat2x2[2][4] =
{
{
-0.1f, 1.0f,
-0.2f, 0.0f,
},
{
0.8f, 0.1f,
0.5f, -0.9f,
},
};
static const float s_constInMat3x2[2][6] =
{
{
0.8f, -0.3f, 0.3f,
1.0f, 1.2f, -1.2f,
},
{
1.2f, -1.0f, 0.5f,
-0.8f, 1.1f, 0.3f,
},
};
static const float s_constInMat4x2[2][8] =
{
{
-0.2f, 0.5f, 0.0f, -1.0f,
1.2f, -0.5f, 0.3f, -0.9f,
},
{
1.0f, 0.1f, -1.1f, 0.6f,
0.8f, -1.2f, -1.1f, 0.7f,
},
};
static const float s_constInMat2x3[2][6] =
{
{
-0.6f, -0.1f,
-0.7f, -1.2f,
-0.2f, 0.0f,
},
{
1.1f, 0.6f,
0.8f, 1.0f,
0.7f, 0.1f,
},
};
static const float s_constInMat3x3[2][9] =
{
{
-0.2f, 1.1f, 1.2f,
-1.0f, 1.2f, 0.5f,
0.7f, -0.2f, 1.0f,
},
{
-0.1f, -0.1f, 0.1f,
-0.1f, -0.2f, 1.0f,
-0.5f, 0.1f, -0.4f,
},
};
static const float s_constInMat4x3[2][12] =
{
{
-0.9f, 0.0f, 0.6f, 0.2f,
0.9f, -0.1f, -0.3f, -0.7f,
-0.1f, 0.1f, 1.0f, 0.0f,
},
{
0.5f, 0.7f, 0.7f, 1.2f,
1.1f, 0.1f, 1.0f, -1.0f,
-0.2f, -0.2f, -0.3f, -0.5f,
},
};
static const float s_constInMat2x4[2][8] =
{
{
-0.6f, -1.1f,
-0.6f, -0.6f,
-0.2f, -0.6f,
-0.1f, -0.1f,
},
{
-1.2f, -1.0f,
0.7f, -1.0f,
0.7f, 0.7f,
-0.4f, -0.3f,
},
};
static const float s_constInMat3x4[2][12] =
{
{
0.6f, -0.4f, 1.2f,
0.9f, 0.8f, 0.4f,
1.1f, 0.3f, 0.5f,
-0.2f, 0.0f, 1.1f,
},
{
-0.8f, 1.2f, -0.2f,
-1.1f, -0.9f, -0.5f,
-1.2f, 1.0f, 1.2f,
0.1f, -0.7f, -0.5f,
},
};
static const float s_constInMat4x4[2][16] =
{
{
0.3f, 0.9f, -0.2f, 1.0f,
-0.4f, -0.6f, 0.6f, -1.0f,
-0.9f, -0.1f, 0.3f, -0.2f,
-0.3f, -0.9f, 1.0f, 0.1f,
},
{
0.4f, -0.7f, -0.8f, 0.7f,
-0.4f, -0.8f, 0.6f, -0.3f,
0.7f, -1.0f, 0.1f, -0.3f,
0.2f, 0.6f, 0.4f, -1.0f,
},
};
namespace MatrixCaseUtils
{
enum InputType
{
INPUTTYPE_CONST = 0,
INPUTTYPE_UNIFORM,
INPUTTYPE_DYNAMIC,
INPUTTYPE_LAST
};
struct ShaderInput
{
ShaderInput (InputType inputType_, DataType dataType_, Precision precision_)
: inputType (inputType_)
, dataType (dataType_)
, precision (precision_)
{
}
InputType inputType;
DataType dataType;
Precision precision;
};
enum MatrixOp
{
OP_ADD = 0,
OP_SUB,
OP_MUL,
OP_DIV,
OP_COMP_MUL,
OP_OUTER_PRODUCT,
OP_TRANSPOSE,
OP_INVERSE,
OP_DETERMINANT,
OP_UNARY_PLUS,
OP_NEGATION,
OP_PRE_INCREMENT,
OP_PRE_DECREMENT,
OP_POST_INCREMENT,
OP_POST_DECREMENT,
OP_ADD_INTO,
OP_SUBTRACT_FROM,
OP_MULTIPLY_INTO,
OP_DIVIDE_INTO,
OP_LAST
};
// Type traits.
template <int DataT>
struct TypeTraits;
#define DECLARE_TYPE_TRAIT(DATATYPE, TYPE) \
template<> \
struct TypeTraits<DATATYPE> { \
typedef TYPE Type; \
}
DECLARE_TYPE_TRAIT(TYPE_FLOAT, float);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC2, tcu::Vec2);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC3, tcu::Vec3);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC4, tcu::Vec4);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT2, tcu::Mat2);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT2X3, tcu::Mat2x3);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT2X4, tcu::Mat2x4);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT3X2, tcu::Mat3x2);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT3, tcu::Mat3);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT3X4, tcu::Mat3x4);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT4X2, tcu::Mat4x2);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT4X3, tcu::Mat4x3);
DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT4, tcu::Mat4);
// Operation info
enum OperationType
{
OPERATIONTYPE_BINARY_OPERATOR = 0,
OPERATIONTYPE_BINARY_FUNCTION,
OPERATIONTYPE_UNARY_PREFIX_OPERATOR,
OPERATIONTYPE_UNARY_POSTFIX_OPERATOR,
OPERATIONTYPE_UNARY_FUNCTION,
OPERATIONTYPE_ASSIGNMENT,
OPERATIONTYPE_LAST
};
static const char* getOperationName (MatrixOp op)
{
switch (op)
{
case OP_ADD: return "+";
case OP_SUB: return "-";
case OP_MUL: return "*";
case OP_DIV: return "/";
case OP_COMP_MUL: return "matrixCompMult";
case OP_OUTER_PRODUCT: return "outerProduct";
case OP_TRANSPOSE: return "transpose";
case OP_INVERSE: return "inverse";
case OP_DETERMINANT: return "determinant";
case OP_UNARY_PLUS: return "+";
case OP_NEGATION: return "-";
case OP_PRE_INCREMENT: return "++";
case OP_PRE_DECREMENT: return "--";
case OP_POST_INCREMENT: return "++";
case OP_POST_DECREMENT: return "--";
case OP_ADD_INTO: return "+=";
case OP_SUBTRACT_FROM: return "-=";
case OP_MULTIPLY_INTO: return "*=";
case OP_DIVIDE_INTO: return "/=";
default:
DE_ASSERT(DE_FALSE);
return "";
}
}
static OperationType getOperationType (MatrixOp op)
{
switch (op)
{
case OP_ADD: return OPERATIONTYPE_BINARY_OPERATOR;
case OP_SUB: return OPERATIONTYPE_BINARY_OPERATOR;
case OP_MUL: return OPERATIONTYPE_BINARY_OPERATOR;
case OP_DIV: return OPERATIONTYPE_BINARY_OPERATOR;
case OP_COMP_MUL: return OPERATIONTYPE_BINARY_FUNCTION;
case OP_OUTER_PRODUCT: return OPERATIONTYPE_BINARY_FUNCTION;
case OP_TRANSPOSE: return OPERATIONTYPE_UNARY_FUNCTION;
case OP_INVERSE: return OPERATIONTYPE_UNARY_FUNCTION;
case OP_DETERMINANT: return OPERATIONTYPE_UNARY_FUNCTION;
case OP_UNARY_PLUS: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR;
case OP_NEGATION: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR;
case OP_PRE_INCREMENT: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR;
case OP_PRE_DECREMENT: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR;
case OP_POST_INCREMENT: return OPERATIONTYPE_UNARY_POSTFIX_OPERATOR;
case OP_POST_DECREMENT: return OPERATIONTYPE_UNARY_POSTFIX_OPERATOR;
case OP_ADD_INTO: return OPERATIONTYPE_ASSIGNMENT;
case OP_SUBTRACT_FROM: return OPERATIONTYPE_ASSIGNMENT;
case OP_MULTIPLY_INTO: return OPERATIONTYPE_ASSIGNMENT;
case OP_DIVIDE_INTO: return OPERATIONTYPE_ASSIGNMENT;
default:
DE_ASSERT(DE_FALSE);
return OPERATIONTYPE_LAST;
}
}
enum TestMatrixType
{
TESTMATRIXTYPE_DEFAULT = 0,
TESTMATRIXTYPE_NEGATED,
TESTMATRIXTYPE_INCREMENTED,
TESTMATRIXTYPE_DECREMENTED,
TESTMATRIXTYPE_NEGATED_INCREMENTED,
TESTMATRIXTYPE_INCREMENTED_LESS,
TESTMATRIXTYPE_LAST
};
static TestMatrixType getOperationTestMatrixType (MatrixOp op)
{
switch(op)
{
case OP_ADD: return TESTMATRIXTYPE_DEFAULT;
case OP_SUB: return TESTMATRIXTYPE_DEFAULT;
case OP_MUL: return TESTMATRIXTYPE_DEFAULT;
case OP_DIV: return TESTMATRIXTYPE_DEFAULT;
case OP_COMP_MUL: return TESTMATRIXTYPE_DEFAULT;
case OP_OUTER_PRODUCT: return TESTMATRIXTYPE_DEFAULT;
case OP_TRANSPOSE: return TESTMATRIXTYPE_DEFAULT;
case OP_INVERSE: return TESTMATRIXTYPE_DEFAULT;
case OP_DETERMINANT: return TESTMATRIXTYPE_DEFAULT;
case OP_UNARY_PLUS: return TESTMATRIXTYPE_DECREMENTED;
case OP_NEGATION: return TESTMATRIXTYPE_NEGATED_INCREMENTED;
case OP_PRE_INCREMENT: return TESTMATRIXTYPE_NEGATED;
case OP_PRE_DECREMENT: return TESTMATRIXTYPE_INCREMENTED;
case OP_POST_INCREMENT: return TESTMATRIXTYPE_NEGATED;
case OP_POST_DECREMENT: return TESTMATRIXTYPE_DEFAULT;
case OP_ADD_INTO: return TESTMATRIXTYPE_DEFAULT;
case OP_SUBTRACT_FROM: return TESTMATRIXTYPE_INCREMENTED_LESS;
case OP_MULTIPLY_INTO: return TESTMATRIXTYPE_NEGATED;
case OP_DIVIDE_INTO: return TESTMATRIXTYPE_DECREMENTED;
default:
DE_ASSERT(DE_FALSE);
return TESTMATRIXTYPE_LAST;
}
}
static bool isOperationBinary (MatrixOp op)
{
return getOperationType(op) == OPERATIONTYPE_BINARY_OPERATOR ||
getOperationType(op) == OPERATIONTYPE_BINARY_FUNCTION ||
getOperationType(op) == OPERATIONTYPE_ASSIGNMENT;
}
static bool isOperationMatrixScalar (MatrixOp op)
{
return op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV;
}
static bool isOperationMatrixVector (MatrixOp op)
{
return op == OP_MUL;
}
static bool isOperationArithmeticMatrixMatrix (MatrixOp op)
{
return op == OP_MUL;
}
static bool isOperationComponentwiseMatrixMatrix (MatrixOp op)
{
return op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV || op == OP_COMP_MUL;
}
static bool isOperationVectorVector (MatrixOp op)
{
return op == OP_OUTER_PRODUCT;
}
static bool isOperationUnaryAnyMatrix (MatrixOp op)
{
return op == OP_TRANSPOSE ||
op == OP_UNARY_PLUS ||
op == OP_NEGATION ||
op == OP_PRE_INCREMENT ||
op == OP_PRE_DECREMENT ||
op == OP_POST_INCREMENT ||
op == OP_POST_DECREMENT;
}
static bool isOperationUnarySymmetricMatrix (MatrixOp op)
{
return op == OP_INVERSE || op == OP_DETERMINANT;
}
static bool isOperationValueModifying (MatrixOp op)
{
return op == OP_PRE_INCREMENT ||
op == OP_PRE_DECREMENT ||
op == OP_POST_INCREMENT ||
op == OP_POST_DECREMENT;
}
static bool isOperationAssignment (MatrixOp op)
{
return op == OP_ADD_INTO ||
op == OP_SUBTRACT_FROM ||
op == OP_MULTIPLY_INTO ||
op == OP_DIVIDE_INTO;
}
static bool isOperationAssignmentAnyMatrix (MatrixOp op)
{
return op == OP_ADD_INTO ||
op == OP_SUBTRACT_FROM ||
op == OP_DIVIDE_INTO;
}
static bool isOperationAssignmentSymmetricMatrix (MatrixOp op)
{
return op == OP_MULTIPLY_INTO;
}
// Operation nature
enum OperationNature
{
OPERATIONNATURE_PURE = 0,
OPERATIONNATURE_MUTATING,
OPERATIONNATURE_ASSIGNMENT,
OPERATIONNATURE_LAST
};
static OperationNature getOperationNature (MatrixOp op)
{
if (isOperationAssignment(op))
return OPERATIONNATURE_ASSIGNMENT;
if (isOperationValueModifying(op))
return OPERATIONNATURE_MUTATING;
return OPERATIONNATURE_PURE;
}
// Input value loader.
template <int InputT, int DataT>
typename TypeTraits<DataT>::Type getInputValue (const ShaderEvalContext& evalCtx, int inputNdx);
template <> inline float getInputValue<INPUTTYPE_CONST, TYPE_FLOAT> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInFloat[inputNdx]; }
template <> inline tcu::Vec2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec2[inputNdx]; }
template <> inline tcu::Vec3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec3[inputNdx]; }
template <> inline tcu::Vec4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec4[inputNdx]; }
template <> inline tcu::Mat2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat2(s_constInMat2x2[inputNdx]); }
template <> inline tcu::Mat2x3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT2X3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat2x3(s_constInMat2x3[inputNdx]); }
template <> inline tcu::Mat2x4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT2X4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat2x4(s_constInMat2x4[inputNdx]); }
template <> inline tcu::Mat3x2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT3X2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat3x2(s_constInMat3x2[inputNdx]); }
template <> inline tcu::Mat3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat3(s_constInMat3x3[inputNdx]); }
template <> inline tcu::Mat3x4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT3X4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat3x4(s_constInMat3x4[inputNdx]); }
template <> inline tcu::Mat4x2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT4X2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat4x2(s_constInMat4x2[inputNdx]); }
template <> inline tcu::Mat4x3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT4X3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat4x3(s_constInMat4x3[inputNdx]); }
template <> inline tcu::Mat4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return tcu::Mat4(s_constInMat4x4[inputNdx]); }
template <> inline float getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.x(); }
template <> inline tcu::Vec2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1); }
template <> inline tcu::Vec3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1, 2); }
template <> inline tcu::Vec4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1, 2, 3); }
template <> inline tcu::Mat2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT2> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat2 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1));
m.setColumn(1, evalCtx.in[1].swizzle(0,1));
return m;
}
template <> inline tcu::Mat2x3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT2X3> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat2x3 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1,2));
m.setColumn(1, evalCtx.in[1].swizzle(0,1,2));
return m;
}
template <> inline tcu::Mat2x4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT2X4> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat2x4 m;
m.setColumn(0, evalCtx.in[0]);
m.setColumn(1, evalCtx.in[1]);
return m;
}
template <> inline tcu::Mat3x2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT3X2> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat3x2 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1));
m.setColumn(1, evalCtx.in[1].swizzle(0,1));
m.setColumn(2, evalCtx.in[2].swizzle(0,1));
return m;
}
template <> inline tcu::Mat3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT3> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat3 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1,2));
m.setColumn(1, evalCtx.in[1].swizzle(0,1,2));
m.setColumn(2, evalCtx.in[2].swizzle(0,1,2));
return m;
}
template <> inline tcu::Mat3x4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT3X4> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat3x4 m;
m.setColumn(0, evalCtx.in[0]);
m.setColumn(1, evalCtx.in[1]);
m.setColumn(2, evalCtx.in[2]);
return m;
}
template <> inline tcu::Mat4x2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT4X2> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat4x2 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1));
m.setColumn(1, evalCtx.in[1].swizzle(0,1));
m.setColumn(2, evalCtx.in[2].swizzle(0,1));
m.setColumn(3, evalCtx.in[3].swizzle(0,1));
return m;
}
template <> inline tcu::Mat4x3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT4X3> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat4x3 m;
m.setColumn(0, evalCtx.in[0].swizzle(0,1,2));
m.setColumn(1, evalCtx.in[1].swizzle(0,1,2));
m.setColumn(2, evalCtx.in[2].swizzle(0,1,2));
m.setColumn(3, evalCtx.in[3].swizzle(0,1,2));
return m;
}
template <> inline tcu::Mat4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT4> (const ShaderEvalContext& evalCtx, int inputNdx)
{
DE_UNREF(inputNdx); // Not used.
tcu::Mat4 m;
m.setColumn(0, evalCtx.in[0]);
m.setColumn(1, evalCtx.in[1]);
m.setColumn(2, evalCtx.in[2]);
m.setColumn(3, evalCtx.in[3]);
return m;
}
// Reduction from expression result to vec3.
inline tcu::Vec3 reduceToVec3 (const tcu::Vec2& value) { return value.swizzle(0,1,0); }
inline tcu::Vec3 reduceToVec3 (const tcu::Vec3& value) { return value; }
inline tcu::Vec3 reduceToVec3 (const tcu::Vec4& value) { return tcu::Vec3(value.x(), value.y(), value.z()+value.w()); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat2& value) { return tcu::Vec3(value(0, 0), value(0, 1), value(1, 0)+value(1, 1)); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat2x3& value) { return value.getColumn(0) + value.getColumn(1); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat2x4& value) { return value.getColumn(0).swizzle(0,1,2) + value.getColumn(1).swizzle(1,2,3); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat3x2& value) { return tcu::Vec3(value(0,0)+value(1,0), value(0,1)+value(1,1), value(0,2)+value(1,2)); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat3& value) { return value.getColumn(0) + value.getColumn(1) + value.getColumn(2); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat3x4& value) { return value.getColumn(0).swizzle(0,1,2) + value.getColumn(1).swizzle(1,2,3) + value.getColumn(2).swizzle(2,3,0); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat4x2& value) { return tcu::Vec3(value(0,0)+value(1,0)+value(0,3), value(0,1)+value(1,1)+value(1,3), value(0,2)+value(1,2)); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat4x3& value) { return value.getColumn(0) + value.getColumn(1) + value.getColumn(2) + value.getColumn(3); }
inline tcu::Vec3 reduceToVec3 (const tcu::Mat4& value) { return value.getColumn(0).swizzle(0,1,2) + value.getColumn(1).swizzle(1,2,3) + value.getColumn(2).swizzle(2,3,0) + value.getColumn(3).swizzle(3,0,1); }
// matrixCompMult
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Rows, Cols> matrixCompMult (const tcu::Matrix<T, Rows, Cols>& a, const tcu::Matrix<T, Rows, Cols>& b)
{
tcu::Matrix<T, Rows, Cols> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(r,c) = a(r,c) * b(r, c);
return retVal;
}
// transpose
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Cols, Rows> transpose (const tcu::Matrix<T, Rows, Cols>& mat)
{
tcu::Matrix<T, Cols, Rows> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(c, r) = mat(r, c);
return retVal;
}
// outerProduct
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Cols, Rows> outerProduct (const tcu::Vector<T, Cols>& a, const tcu::Vector<T, Rows>& b)
{
tcu::Matrix<T, Rows, Cols> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(r,c) = a[c] * b[r];
return transpose(retVal); // to gl-form (column-major)
}
// Determinant
template <int Size>
float determinant (const tcu::Matrix<float, Size, Size>& mat);
template <>
float determinant<2> (const tcu::Matrix<float, 2, 2>& mat)
{
return mat(0,0) * mat(1,1) - mat(1,0) * mat(0,1);
}
template <>
float determinant<3> (const tcu::Matrix<float, 3, 3>& mat)
{
return + mat(0,0) * mat(1,1) * mat(2,2)
+ mat(0,1) * mat(1,2) * mat(2,0)
+ mat(0,2) * mat(1,0) * mat(2,1)
- mat(0,0) * mat(1,2) * mat(2,1)
- mat(0,1) * mat(1,0) * mat(2,2)
- mat(0,2) * mat(1,1) * mat(2,0);
}
template <>
float determinant<4> (const tcu::Matrix<float, 4, 4>& mat)
{
const float minorMatrices[4][3*3] =
{
{
mat(1,1), mat(2,1), mat(3,1),
mat(1,2), mat(2,2), mat(3,2),
mat(1,3), mat(2,3), mat(3,3),
},
{
mat(1,0), mat(2,0), mat(3,0),
mat(1,2), mat(2,2), mat(3,2),
mat(1,3), mat(2,3), mat(3,3),
},
{
mat(1,0), mat(2,0), mat(3,0),
mat(1,1), mat(2,1), mat(3,1),
mat(1,3), mat(2,3), mat(3,3),
},
{
mat(1,0), mat(2,0), mat(3,0),
mat(1,1), mat(2,1), mat(3,1),
mat(1,2), mat(2,2), mat(3,2),
}
};
return + mat(0,0) * determinant(tcu::Mat3(minorMatrices[0]))
- mat(0,1) * determinant(tcu::Mat3(minorMatrices[1]))
+ mat(0,2) * determinant(tcu::Mat3(minorMatrices[2]))
- mat(0,3) * determinant(tcu::Mat3(minorMatrices[3]));
}
// Inverse
template <int Size>
tcu::Matrix<float, Size, Size> inverse (const tcu::Matrix<float, Size, Size>& mat);
template <>
tcu::Matrix<float, 2, 2> inverse<2> (const tcu::Matrix<float, 2, 2>& mat)
{
const float det = determinant(mat);
tcu::Matrix<float, 2, 2> retVal;
DE_ASSERT(det != 0.0f);
retVal(0, 0) = mat(1, 1) / det;
retVal(0, 1) = -mat(0, 1) / det;
retVal(1, 0) = -mat(1, 0) / det;
retVal(1, 1) = mat(0, 0) / det;
return retVal;
}
template <>
tcu::Matrix<float, 3, 3> inverse<3> (const tcu::Matrix<float, 3, 3>& mat)
{
// Blockwise inversion
DE_ASSERT(determinant(mat) != 0.0f);
const float areaA[2*2] =
{
mat(0,0), mat(0,1),
mat(1,0), mat(1,1)
};
const float areaB[2] =
{
mat(0,2),
mat(1,2),
};
const float areaC[2] =
{
mat(2,0), mat(2,1),
};
const float areaD[1] =
{
mat(2,2)
};
const float nullField[4] = { 0.0f };
const tcu::Matrix<float, 2, 2> invA = inverse(tcu::Matrix<float, 2, 2>(areaA));
const tcu::Matrix<float, 2, 1> matB = tcu::Matrix<float, 2, 1>(areaB);
const tcu::Matrix<float, 1, 2> matC = tcu::Matrix<float, 1, 2>(areaC);
const tcu::Matrix<float, 1, 1> matD = tcu::Matrix<float, 1, 1>(areaD);
const float schurComplement = 1.0f / (matD - matC*invA*matB)(0,0);
const tcu::Matrix<float, 2, 2> zeroMat = Mat2(nullField);
const tcu::Matrix<float, 2, 2> blockA = invA + invA*matB*schurComplement*matC*invA;
const tcu::Matrix<float, 2, 1> blockB = (zeroMat-invA)*matB*schurComplement;
const tcu::Matrix<float, 1, 2> blockC = matC*invA*(-schurComplement);
const float blockD = schurComplement;
const float result[3*3] =
{
blockA(0,0), blockA(0,1), blockB(0,0),
blockA(1,0), blockA(1,1), blockB(1,0),
blockC(0,0), blockC(0,1), blockD,
};
return Mat3(result);
}
template <>
tcu::Matrix<float, 4, 4> inverse<4> (const tcu::Matrix<float, 4, 4>& mat)
{
// Blockwise inversion
DE_ASSERT(determinant(mat) != 0.0f);
const float areaA[2*2] =
{
mat(0,0), mat(0,1),
mat(1,0), mat(1,1)
};
const float areaB[2*2] =
{
mat(0,2), mat(0,3),
mat(1,2), mat(1,3)
};
const float areaC[2*2] =
{
mat(2,0), mat(2,1),
mat(3,0), mat(3,1)
};
const float areaD[2*2] =
{
mat(2,2), mat(2,3),
mat(3,2), mat(3,3)
};
const float nullField[4] = { 0.0f };
const tcu::Matrix<float, 2, 2> invA = inverse(Mat2(areaA));
const tcu::Matrix<float, 2, 2> matB = Mat2(areaB);
const tcu::Matrix<float, 2, 2> matC = Mat2(areaC);
const tcu::Matrix<float, 2, 2> matD = Mat2(areaD);
const tcu::Matrix<float, 2, 2> schurComplement = inverse(matD - matC*invA*matB);
const tcu::Matrix<float, 2, 2> zeroMat = Mat2(nullField);
const tcu::Matrix<float, 2, 2> blockA = invA + invA*matB*schurComplement*matC*invA;
const tcu::Matrix<float, 2, 2> blockB = (zeroMat-invA)*matB*schurComplement;
const tcu::Matrix<float, 2, 2> blockC = (zeroMat-schurComplement)*matC*invA;
const tcu::Matrix<float, 2, 2> blockD = schurComplement;
const float result[4*4] =
{
blockA(0,0), blockA(0,1), blockB(0,0), blockB(0,1),
blockA(1,0), blockA(1,1), blockB(1,0), blockB(1,1),
blockC(0,0), blockC(0,1), blockD(0,0), blockD(0,1),
blockC(1,0), blockC(1,1), blockD(1,0), blockD(1,1),
};
return Mat4(result);
}
// negate
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Rows, Cols> negate (const tcu::Matrix<T, Rows, Cols>& mat)
{
tcu::Matrix<T, Rows, Cols> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(r,c) = -mat(r, c);
return retVal;
}
// increment/decrement
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Rows, Cols> increment (const tcu::Matrix<T, Rows, Cols>& mat)
{
tcu::Matrix<T, Rows, Cols> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(r,c) = mat(r, c) + 1.0f;
return retVal;
}
template <typename T, int Rows, int Cols>
tcu::Matrix<T, Rows, Cols> decrement (const tcu::Matrix<T, Rows, Cols>& mat)
{
tcu::Matrix<T, Rows, Cols> retVal;
for (int r = 0; r < Rows; ++r)
for (int c = 0; c < Cols; ++c)
retVal(r,c) = mat(r, c) - 1.0f;
return retVal;
}
// Evaluator template.
typedef void (*MatrixShaderEvalFunc) (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type);
template <int Op, int In0DataType, int In1DataType>
struct Evaluator;
template <int In0DataType, int In1DataType>
struct Evaluator<OP_ADD, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 + in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_SUB, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 - in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_MUL, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 * in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_DIV, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 / in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_COMP_MUL, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(matrixCompMult(in0, in1));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_OUTER_PRODUCT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(outerProduct(in0, in1));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_TRANSPOSE, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
evalCtx.color.xyz() = reduceToVec3(transpose(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_INVERSE, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
evalCtx.color.xyz() = reduceToVec3(inverse(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_DETERMINANT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
evalCtx.color.xyz() = Vec3(determinant(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_UNARY_PLUS, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
evalCtx.color.xyz() = reduceToVec3(in0);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_NEGATION, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
evalCtx.color.xyz() = reduceToVec3(negate(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_PRE_INCREMENT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
// modifying reduction: sum modified value too
evalCtx.color.xyz() = reduceToVec3(increment(in0)) + reduceToVec3(increment(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_PRE_DECREMENT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
// modifying reduction: sum modified value too
evalCtx.color.xyz() = reduceToVec3(decrement(in0)) + reduceToVec3(decrement(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_POST_INCREMENT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
// modifying reduction: sum modified value too
evalCtx.color.xyz() = reduceToVec3(in0) + reduceToVec3(increment(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_POST_DECREMENT, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
DE_UNREF(in1Type);
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
// modifying reduction: sum modified value too
evalCtx.color.xyz() = reduceToVec3(in0) + reduceToVec3(decrement(in0));
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_ADD_INTO, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 + in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_SUBTRACT_FROM, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 - in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_MULTIPLY_INTO, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 * in1);
}
};
template <int In0DataType, int In1DataType>
struct Evaluator<OP_DIVIDE_INTO, In0DataType, In1DataType>
{
static void evaluate (ShaderEvalContext& evalCtx, InputType in0Type, InputType in1Type)
{
typename TypeTraits<In0DataType>::Type in0 = (in0Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In0DataType>(evalCtx, 0)
: getInputValue<INPUTTYPE_CONST, In0DataType>(evalCtx, 0);
typename TypeTraits<In1DataType>::Type in1 = (in1Type == INPUTTYPE_DYNAMIC) ? getInputValue<INPUTTYPE_DYNAMIC, In1DataType>(evalCtx, 1)
: getInputValue<INPUTTYPE_CONST, In1DataType>(evalCtx, 1);
evalCtx.color.xyz() = reduceToVec3(in0 / in1);
}
};
MatrixShaderEvalFunc getEvalFunc (const ShaderInput& in0, const ShaderInput& in1, MatrixOp op)
{
// Evaluator is selected based on op and input data types.
// For efficient lookup the types and op enums are packed together to form a 19-bit key:
// [18..14 OP] [13..7 TYPE0] [6..0 TYPE1]
DE_STATIC_ASSERT(TYPE_LAST <= (1<<7));
DE_STATIC_ASSERT(OP_LAST <= (1<<5));
#define PACK_EVAL_CASE(OP, IN0DATATYPE, IN1DATATYPE) (((OP) << 14) | ((IN0DATATYPE) << 7) | (IN1DATATYPE))
#define MAKE_EVAL_CASE(OP, IN0DATATYPE, IN1DATATYPE) \
case PACK_EVAL_CASE(OP, IN0DATATYPE, IN1DATATYPE): \
return Evaluator<OP, IN0DATATYPE, IN1DATATYPE>::evaluate
#define MAKE_SCALAR_OPS(IN0DATATYPE, IN1DATATYPE) \
MAKE_EVAL_CASE(OP_ADD, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_SUB, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_MUL, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_DIV, IN0DATATYPE, IN1DATATYPE)
#define MAKE_CWISE_OPS(IN0DATATYPE, IN1DATATYPE) \
MAKE_EVAL_CASE(OP_ADD, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_SUB, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_DIV, IN0DATATYPE, IN1DATATYPE); \
MAKE_EVAL_CASE(OP_COMP_MUL, IN0DATATYPE, IN1DATATYPE)
#define MAKE_MUL_OP(IN0DATATYPE, IN1DATATYPE) \
MAKE_EVAL_CASE(OP_MUL, IN0DATATYPE, IN1DATATYPE)
#define MAKE_VECVEC_OP(IN0DATATYPE, IN1DATATYPE) \
MAKE_EVAL_CASE(OP_OUTER_PRODUCT, IN0DATATYPE, IN1DATATYPE)
#define MAKE_UNARY_OP(IN0DATATYPE) \
MAKE_EVAL_CASE(OP_TRANSPOSE, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_UNARY_PLUS, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_NEGATION, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_PRE_INCREMENT, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_PRE_DECREMENT, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_POST_INCREMENT, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_POST_DECREMENT, IN0DATATYPE, TYPE_LAST)
#define MAKE_UNARY_SYMMETRIC_OP(IN0DATATYPE) \
MAKE_UNARY_OP(IN0DATATYPE); \
MAKE_EVAL_CASE(OP_DETERMINANT, IN0DATATYPE, TYPE_LAST); \
MAKE_EVAL_CASE(OP_INVERSE, IN0DATATYPE, TYPE_LAST)
#define MAKE_ASSIGNMENT_OP(IN0DATATYPE) \
MAKE_EVAL_CASE(OP_ADD_INTO, IN0DATATYPE, IN0DATATYPE); \
MAKE_EVAL_CASE(OP_SUBTRACT_FROM, IN0DATATYPE, IN0DATATYPE); \
MAKE_EVAL_CASE(OP_DIVIDE_INTO, IN0DATATYPE, IN0DATATYPE)
#define MAKE_ASSIGNMENT_SYMMETRIC_OP(IN0DATATYPE) \
MAKE_ASSIGNMENT_OP(IN0DATATYPE); \
MAKE_EVAL_CASE(OP_MULTIPLY_INTO, IN0DATATYPE, IN0DATATYPE)
switch (PACK_EVAL_CASE(op, in0.dataType, in1.dataType))
{
// Matrix-scalar.
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT2, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT2X3, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT2X4, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT3X2, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT3, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT3X4, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT4X2, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT4X3, TYPE_FLOAT);
MAKE_SCALAR_OPS(TYPE_FLOAT_MAT4, TYPE_FLOAT);
// Matrix-vector.
MAKE_MUL_OP(TYPE_FLOAT_MAT2, TYPE_FLOAT_VEC2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X3, TYPE_FLOAT_VEC2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X4, TYPE_FLOAT_VEC2);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X2, TYPE_FLOAT_VEC3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3, TYPE_FLOAT_VEC3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X4, TYPE_FLOAT_VEC3);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X2, TYPE_FLOAT_VEC4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X3, TYPE_FLOAT_VEC4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4, TYPE_FLOAT_VEC4);
// Vector-matrix.
MAKE_MUL_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_MAT2);
MAKE_MUL_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_MAT2X3);
MAKE_MUL_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_MAT2X4);
MAKE_MUL_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_MAT3X2);
MAKE_MUL_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_MAT3);
MAKE_MUL_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_MAT3X4);
MAKE_MUL_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_MAT4X2);
MAKE_MUL_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_MAT4X3);
MAKE_MUL_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_MAT4);
// Matrix-matrix.
MAKE_CWISE_OPS(TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT3X2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT4X2);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT2X3, TYPE_FLOAT_MAT2X3);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X3, TYPE_FLOAT_MAT2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X3, TYPE_FLOAT_MAT3X2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X3, TYPE_FLOAT_MAT4X2);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT2X4, TYPE_FLOAT_MAT2X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X4, TYPE_FLOAT_MAT2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X4, TYPE_FLOAT_MAT3X2);
MAKE_MUL_OP(TYPE_FLOAT_MAT2X4, TYPE_FLOAT_MAT4X2);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT3X2, TYPE_FLOAT_MAT3X2);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X2, TYPE_FLOAT_MAT2X3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X2, TYPE_FLOAT_MAT3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X2, TYPE_FLOAT_MAT4X3);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT2X3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT4X3);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT3X4, TYPE_FLOAT_MAT3X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X4, TYPE_FLOAT_MAT2X3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X4, TYPE_FLOAT_MAT3);
MAKE_MUL_OP(TYPE_FLOAT_MAT3X4, TYPE_FLOAT_MAT4X3);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT4X2, TYPE_FLOAT_MAT4X2);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X2, TYPE_FLOAT_MAT2X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X2, TYPE_FLOAT_MAT3X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X2, TYPE_FLOAT_MAT4);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT4X3, TYPE_FLOAT_MAT4X3);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X3, TYPE_FLOAT_MAT2X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X3, TYPE_FLOAT_MAT3X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4X3, TYPE_FLOAT_MAT4);
MAKE_CWISE_OPS(TYPE_FLOAT_MAT4, TYPE_FLOAT_MAT4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4, TYPE_FLOAT_MAT2X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4, TYPE_FLOAT_MAT3X4);
MAKE_MUL_OP(TYPE_FLOAT_MAT4, TYPE_FLOAT_MAT4);
// Vector-vector.
MAKE_VECVEC_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC2);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC3);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC4);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC2);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC3);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC4);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC2);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC3);
MAKE_VECVEC_OP(TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC4);
// Unary Matrix.
MAKE_UNARY_SYMMETRIC_OP(TYPE_FLOAT_MAT2);
MAKE_UNARY_OP(TYPE_FLOAT_MAT2X3);
MAKE_UNARY_OP(TYPE_FLOAT_MAT2X4);
MAKE_UNARY_OP(TYPE_FLOAT_MAT3X2);
MAKE_UNARY_SYMMETRIC_OP(TYPE_FLOAT_MAT3);
MAKE_UNARY_OP(TYPE_FLOAT_MAT3X4);
MAKE_UNARY_OP(TYPE_FLOAT_MAT4X2);
MAKE_UNARY_OP(TYPE_FLOAT_MAT4X3);
MAKE_UNARY_SYMMETRIC_OP(TYPE_FLOAT_MAT4);
// Assignments
MAKE_ASSIGNMENT_SYMMETRIC_OP(TYPE_FLOAT_MAT2);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT2X3);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT2X4);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT3X2);
MAKE_ASSIGNMENT_SYMMETRIC_OP(TYPE_FLOAT_MAT3);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT3X4);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT4X2);
MAKE_ASSIGNMENT_OP(TYPE_FLOAT_MAT4X3);
MAKE_ASSIGNMENT_SYMMETRIC_OP(TYPE_FLOAT_MAT4);
default:
DE_ASSERT(DE_FALSE);
return DE_NULL;
}
#undef PACK_EVAL_CASE
#undef MAKE_EVAL_CASE
#undef MUL_OP
#undef ALL_OPS
#undef MAKE_MAT_SCALAR_VEC_CASES
#undef MAKE_MAT_MAT_CASES
}
// Shader source format utilities.
template <int Size>
void writeVectorConstructor (std::ostream& str, const tcu::Vector<float, Size>& v)
{
str << "vec" << Size << "(";
for (int ndx = 0; ndx < Size; ndx++)
{
if (ndx != 0)
str << ", ";
str << de::floatToString(v[ndx], 1);
}
str << ")";
}
template <int Cols, int Rows>
void writeMatrixConstructor (std::ostream& str, const tcu::Matrix<float, Rows, Cols>& m)
{
if (Rows == Cols)
str << "mat" << Cols;
else
str << "mat" << Cols << "x" << Rows;
str << "(";
for (int colNdx = 0; colNdx < Cols; colNdx++)
{
for (int rowNdx = 0; rowNdx < Rows; rowNdx++)
{
if (rowNdx > 0 || colNdx > 0)
str << ", ";
str << de::floatToString(m(rowNdx, colNdx), 1);
}
}
str << ")";
}
} // MatrixCaseUtils
using namespace MatrixCaseUtils;
class MatrixShaderEvaluator : public ShaderEvaluator
{
public:
MatrixShaderEvaluator (MatrixShaderEvalFunc evalFunc, InputType inType0, InputType inType1);
virtual void evaluate (ShaderEvalContext& evalCtx) const;
private:
MatrixShaderEvalFunc m_matEvalFunc;
InputType m_inType0;
InputType m_inType1;
};
MatrixShaderEvaluator::MatrixShaderEvaluator (MatrixShaderEvalFunc evalFunc, InputType inType0, InputType inType1)
: m_matEvalFunc (evalFunc)
, m_inType0 (inType0)
, m_inType1 (inType1)
{
}
void MatrixShaderEvaluator::evaluate (ShaderEvalContext& evalCtx) const
{
m_matEvalFunc(evalCtx, m_inType0, m_inType1);
}
BaseAttributeType getAttributeType(const glu::DataType dataType)
{
switch(dataType)
{
case TYPE_FLOAT_MAT2: return MAT2;
case TYPE_FLOAT_MAT2X3: return MAT2x3;
case TYPE_FLOAT_MAT2X4: return MAT2x4;
case TYPE_FLOAT_MAT3X2: return MAT3x2;
case TYPE_FLOAT_MAT3: return MAT3;
case TYPE_FLOAT_MAT3X4: return MAT3x4;
case TYPE_FLOAT_MAT4X2: return MAT4x2;
case TYPE_FLOAT_MAT4X3: return MAT4x3;
case TYPE_FLOAT_MAT4: return MAT4;
default:
TCU_THROW(InternalError, "Not supported");
break;
}
}
// ShaderMatrixInstance
class ShaderMatrixInstance : public ShaderRenderCaseInstance
{
public:
ShaderMatrixInstance (Context& context,
bool isVertex,
const ShaderEvaluator& evaluator,
const ShaderInput in0,
const ShaderInput in1,
const MatrixOp m_op);
virtual ~ShaderMatrixInstance (void);
protected:
virtual void setupUniforms (const tcu::Vec4&);
private:
void addMatrixUniform (deUint32 bindingLocation, DataType dataType, const float* dataPtr);
const ShaderInput m_in0;
const ShaderInput m_in1;
const MatrixOp m_op;
};
ShaderMatrixInstance::ShaderMatrixInstance (Context& context,
bool isVertex,
const ShaderEvaluator& evaluator,
const ShaderInput in0,
const ShaderInput in1,
const MatrixOp op)
: ShaderRenderCaseInstance (context, isVertex, evaluator, DE_NULL, DE_NULL)
, m_in0 (in0)
, m_in1 (in1)
, m_op (op)
{
m_userAttribTransforms.resize(4);
for (int attribNdx = 0; attribNdx < 4; attribNdx++)
{
m_userAttribTransforms[attribNdx] = Mat4(0.0f);
m_userAttribTransforms[attribNdx]( 0, 3) = (op == OP_INVERSE ? -0.5f : 0.2f); // prevent matrix*vec from going into zero (assuming vec.w != 0).
m_userAttribTransforms[attribNdx]( 1, 3) = (op == OP_INVERSE ? -1.3f : 0.1f); // Modified input for OP_INVERSE case, as determinant of final input
m_userAttribTransforms[attribNdx]( 2, 3) = 0.4f + 0.15f * float(attribNdx); // matrix is spanning both sides of 0, so 0 (and division by 0) may happen on mediump.
m_userAttribTransforms[attribNdx]( 3, 3) = (op == OP_INVERSE ? -3.0f : 0.7f); // Modified OP_INVERSE final input matrix is same signed in whole input range.
m_userAttribTransforms[attribNdx]((0 + attribNdx) % 4, 0) = 1.0f;
m_userAttribTransforms[attribNdx]((1 + attribNdx) % 4, 1) = 1.0f;
m_userAttribTransforms[attribNdx]((2 + attribNdx) % 4, 2) = 1.0f;
m_userAttribTransforms[attribNdx]((3 + attribNdx) % 4, 3) = 1.0f;
}
// prevent bad reference cases such as black result images by fine-tuning used matrices
if (getOperationTestMatrixType(m_op) != TESTMATRIXTYPE_DEFAULT)
{
for (int attribNdx = 0; attribNdx < 4; attribNdx++)
{
for (int row = 0; row < 4; row++)
for (int col = 0; col < 4; col++)
{
switch (getOperationTestMatrixType(m_op))
{
case TESTMATRIXTYPE_NEGATED:
m_userAttribTransforms[attribNdx](row, col) = -m_userAttribTransforms[attribNdx](row, col);
break;
case TESTMATRIXTYPE_INCREMENTED:
m_userAttribTransforms[attribNdx](row, col) += 0.3f;
break;
case TESTMATRIXTYPE_DECREMENTED:
m_userAttribTransforms[attribNdx](row, col) -= 0.3f;
break;
case TESTMATRIXTYPE_NEGATED_INCREMENTED:
m_userAttribTransforms[attribNdx](row, col) = -m_userAttribTransforms[attribNdx](row, col) + 0.3f;
break;
case TESTMATRIXTYPE_INCREMENTED_LESS:
m_userAttribTransforms[attribNdx](row, col) -= 0.1f;
break;
default:
DE_ASSERT(DE_FALSE);
break;
}
}
}
}
int numInputs = isOperationBinary(m_op) ? 2 : 1;
for (int inNdx = 0; inNdx < numInputs; inNdx++)
{
const ShaderInput& in = inNdx > 0 ? m_in1 : m_in0;
if (in.inputType == INPUTTYPE_DYNAMIC && isDataTypeMatrix(in.dataType))
{
useAttribute(4u + inNdx, getAttributeType(in.dataType));
}
}
}
ShaderMatrixInstance::~ShaderMatrixInstance (void)
{
}
void ShaderMatrixInstance::addMatrixUniform(deUint32 bindingLocation, DataType dataType, const float *dataPtr)
{
Mat4 result;
const size_t matrixSize = sizeof(float) * 4 * 4;
switch(dataType)
{
case TYPE_FLOAT_MAT2:
{
Mat2 matrix = Mat2(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT2X3:
{
Mat2x3 matrix = Mat2x3(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT2X4:
{
Mat2x4 matrix = Mat2x4(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT3X2:
{
Mat3x2 matrix = Mat3x2(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT3:
{
Mat3 matrix = Mat3(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT3X4:
{
Mat3x4 matrix = Mat3x4(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT4X2:
{
Mat4x2 matrix = Mat4x2(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
result.setColumn(3, matrix.getColumn(3).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT4X3:
{
Mat4x3 matrix = Mat4x3(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
result.setColumn(3, matrix.getColumn(3).toWidth<4>());
break;
}
case TYPE_FLOAT_MAT4:
{
Mat4 matrix = Mat4(dataPtr);
result.setColumn(0, matrix.getColumn(0).toWidth<4>());
result.setColumn(1, matrix.getColumn(1).toWidth<4>());
result.setColumn(2, matrix.getColumn(2).toWidth<4>());
result.setColumn(3, matrix.getColumn(3).toWidth<4>());
break;
}
default:
DE_ASSERT(false);
break;
}
addUniform(bindingLocation, vk::VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, matrixSize, result.getColumnMajorData().getPtr());
}
void ShaderMatrixInstance::setupUniforms (const tcu::Vec4&)
{
const int numInputs = isOperationBinary(m_op) ? 2 : 1;
deUint32 uniformBinding = 0;
for (int inNdx = 0; inNdx < numInputs; inNdx++)
{
const ShaderInput& in = inNdx > 0 ? m_in1 : m_in0;
if (in.inputType == INPUTTYPE_UNIFORM)
{
switch (in.dataType)
{
case TYPE_FLOAT: addUniform(uniformBinding, vk::VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, sizeof(float), &s_constInFloat[inNdx]); break;
case TYPE_FLOAT_VEC2: addUniform(uniformBinding, vk::VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, s_constInVec2[inNdx]); break;
case TYPE_FLOAT_VEC3: addUniform(uniformBinding, vk::VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, s_constInVec3[inNdx]); break;
case TYPE_FLOAT_VEC4: addUniform(uniformBinding, vk::VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, s_constInVec4[inNdx]); break;
// \note GLES3 supports transpose in matrix upload.
case TYPE_FLOAT_MAT2: addMatrixUniform(uniformBinding, in.dataType, s_constInMat2x2[inNdx]); break;
case TYPE_FLOAT_MAT2X3: addMatrixUniform(uniformBinding, in.dataType, s_constInMat2x3[inNdx]); break;
case TYPE_FLOAT_MAT2X4: addMatrixUniform(uniformBinding, in.dataType, s_constInMat2x4[inNdx]); break;
case TYPE_FLOAT_MAT3X2: addMatrixUniform(uniformBinding, in.dataType, s_constInMat3x2[inNdx]); break;
case TYPE_FLOAT_MAT3: addMatrixUniform(uniformBinding, in.dataType, s_constInMat3x3[inNdx]); break;
case TYPE_FLOAT_MAT3X4: addMatrixUniform(uniformBinding, in.dataType, s_constInMat3x4[inNdx]); break;
case TYPE_FLOAT_MAT4X2: addMatrixUniform(uniformBinding, in.dataType, s_constInMat4x2[inNdx]); break;
case TYPE_FLOAT_MAT4X3: addMatrixUniform(uniformBinding, in.dataType, s_constInMat4x3[inNdx]); break;
case TYPE_FLOAT_MAT4: addMatrixUniform(uniformBinding, in.dataType, s_constInMat4x4[inNdx]); break;
default:
DE_ASSERT(false);
}
uniformBinding++;
}
}
}
// ShaderMatrixCase
class ShaderMatrixCase : public ShaderRenderCase
{
public:
ShaderMatrixCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& desc,
const ShaderInput& in0,
const ShaderInput& in1,
const MatrixOp op,
bool isVertexCase);
~ShaderMatrixCase (void);
virtual TestInstance* createInstance (Context& context) const;
protected:
void setupShader (void);
std::string genGLSLMatToVec3Reduction (const glu::DataType& matType, const char* varName);
private:
const ShaderInput m_in0;
const ShaderInput m_in1;
const MatrixOp m_op;
};
ShaderMatrixCase::ShaderMatrixCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& desc,
const ShaderInput& in0,
const ShaderInput& in1,
MatrixOp op,
bool isVertexCase)
: ShaderRenderCase (testCtx,
name,
desc,
isVertexCase,
new MatrixShaderEvaluator(getEvalFunc(in0, in1, op), in0.inputType, in1.inputType),
DE_NULL /* uniform setup */,
DE_NULL /* attribute setup */)
, m_in0 (in0)
, m_in1 (in1)
, m_op (op)
{
setupShader();
}
ShaderMatrixCase::~ShaderMatrixCase (void)
{
}
TestInstance* ShaderMatrixCase::createInstance (Context& context) const
{
return new ShaderMatrixInstance(context, m_isVertexCase, *m_evaluator, m_in0, m_in1, m_op);
}
void ShaderMatrixCase::setupShader (void)
{
std::ostringstream vtx;
std::ostringstream frag;
std::ostringstream& op = m_isVertexCase ? vtx : frag;
bool isInDynMat0 = isDataTypeMatrix(m_in0.dataType) && m_in0.inputType == INPUTTYPE_DYNAMIC;
bool isInDynMat1 = isDataTypeMatrix(m_in1.dataType) && m_in1.inputType == INPUTTYPE_DYNAMIC;
string inValue0;
string inValue1;
DataType resultType = TYPE_LAST;
Precision resultPrec = m_in0.precision;
vector<string> passVars;
int numInputs = (isOperationBinary(m_op)) ? (2) : (1);
std::string operationValue0;
std::string operationValue1;
DE_ASSERT(!isInDynMat0 || !isInDynMat1); // Only single dynamic matrix input is allowed.
DE_UNREF(isInDynMat0 && isInDynMat1);
// Compute result type.
if (m_op == OP_MUL && isDataTypeMatrix(m_in0.dataType) && isDataTypeMatrix(m_in1.dataType))
{
resultType = getDataTypeMatrix(getDataTypeMatrixNumColumns(m_in1.dataType), getDataTypeMatrixNumRows(m_in0.dataType));
}
else if (m_op == OP_OUTER_PRODUCT)
{
resultType = getDataTypeMatrix(getDataTypeScalarSize(m_in1.dataType), getDataTypeScalarSize(m_in0.dataType));
}
else if (m_op == OP_TRANSPOSE)
{
resultType = getDataTypeMatrix(getDataTypeMatrixNumRows(m_in0.dataType), getDataTypeMatrixNumColumns(m_in0.dataType));
}
else if (m_op == OP_INVERSE)
{
resultType = m_in0.dataType;
}
else if (m_op == OP_DETERMINANT)
{
resultType = TYPE_FLOAT;
}
else if (getOperationType(m_op) == OPERATIONTYPE_UNARY_PREFIX_OPERATOR ||
getOperationType(m_op) == OPERATIONTYPE_UNARY_POSTFIX_OPERATOR)
{
resultType = m_in0.dataType;
}
else if (isDataTypeMatrix(m_in0.dataType) && isDataTypeMatrix(m_in1.dataType))
{
DE_ASSERT(m_in0.dataType == m_in1.dataType);
resultType = m_in0.dataType;
}
else if (isDataTypeMatrix(m_in0.dataType) || isDataTypeMatrix(m_in1.dataType))
{
int matNdx = isDataTypeMatrix(m_in0.dataType) ? 0 : 1;
DataType matrixType = matNdx == 0 ? m_in0.dataType : m_in1.dataType;
DataType otherType = matNdx == 0 ? m_in1.dataType : m_in0.dataType;
if (otherType == TYPE_FLOAT)
resultType = matrixType;
else
{
DE_ASSERT(isDataTypeVector(otherType));
resultType = getDataTypeFloatVec(matNdx == 0 ? getDataTypeMatrixNumRows(matrixType) : getDataTypeMatrixNumColumns(matrixType));
}
}
else
{
DE_ASSERT(DE_FALSE);
}
static const std::string header =
"#version 310 es\n";
vtx << header;
frag << header;
vtx << "layout(location = 0) in highp vec4 a_position;\n";
frag << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n";
if (m_isVertexCase)
{
vtx << "layout(location = 0) out mediump vec4 v_color;\n";
frag << "layout(location = 0) in mediump vec4 v_color;\n";
}
// Input declarations.
deUint32 uniformBinding = 0;
deUint32 padding = 0;
for (int inNdx = 0; inNdx < numInputs; inNdx++)
{
const ShaderInput& in = inNdx > 0 ? m_in1 : m_in0;
const char* precName = getPrecisionName(in.precision);
const char* typeName = getDataTypeName(in.dataType);
string& inValue = inNdx > 0 ? inValue1 : inValue0;
if (in.inputType == INPUTTYPE_DYNAMIC)
{
if (isDataTypeMatrix(in.dataType))
{
vtx << "layout(location = " << 4 + inNdx + padding << ") in " << precName << " " << typeName << " a_";
// a_matN, v_matN
vtx << typeName << ";\n";
if (!m_isVertexCase)
{
vtx << "layout(location = " << 1 + inNdx + padding << ") out " << precName << " " << typeName << " v_" << typeName << ";\n";
frag << "layout(location = " << 1 + inNdx + padding << ") in " << precName << " " << typeName << " v_" << typeName << ";\n";
passVars.push_back(typeName);
}
inValue = string(m_isVertexCase ? "a_" : "v_") + getDataTypeName(in.dataType);
padding += getDataTypeMatrixNumColumns(in.dataType);
}
else
{
// a_coords, v_coords
vtx << "layout(location = 1) in " << precName << " " << typeName << " a_coords;\n";
if (!m_isVertexCase)
{
vtx << "layout(location = " << 1 + padding << ") out " << precName << " " << typeName << " v_coords;\n";
frag << "layout(location = " << 1 + padding << ") in " << precName << " " << typeName << " v_coords;\n";
passVars.push_back("coords");
}
inValue = m_isVertexCase ? "a_coords" : "v_coords";
}
}
else if (in.inputType == INPUTTYPE_UNIFORM)
{
op << "layout(std140, set = 0, binding = " << uniformBinding++ << ") uniform buffer"<< inNdx <<" { " << precName << " " << typeName << " u_in" << inNdx << "; };\n";
inValue = string("u_in") + de::toString(inNdx);
}
else if (in.inputType == INPUTTYPE_CONST)
{
op << "const " << precName << " " << typeName << " in" << inNdx << " = ";
// Generate declaration.
switch (in.dataType)
{
case TYPE_FLOAT: op << de::floatToString(s_constInFloat[inNdx], 1); break;
case TYPE_FLOAT_VEC2: writeVectorConstructor<2>(op, s_constInVec2[inNdx]); break;
case TYPE_FLOAT_VEC3: writeVectorConstructor<3>(op, s_constInVec3[inNdx]); break;
case TYPE_FLOAT_VEC4: writeVectorConstructor<4>(op, s_constInVec4[inNdx]); break;
case TYPE_FLOAT_MAT2: writeMatrixConstructor<2, 2>(op, Mat2(s_constInMat2x2[inNdx])); break;
case TYPE_FLOAT_MAT2X3: writeMatrixConstructor<2, 3>(op, Mat2x3(s_constInMat2x3[inNdx])); break;
case TYPE_FLOAT_MAT2X4: writeMatrixConstructor<2, 4>(op, Mat2x4(s_constInMat2x4[inNdx])); break;
case TYPE_FLOAT_MAT3X2: writeMatrixConstructor<3, 2>(op, Mat3x2(s_constInMat3x2[inNdx])); break;
case TYPE_FLOAT_MAT3: writeMatrixConstructor<3, 3>(op, Mat3(s_constInMat3x3[inNdx])); break;
case TYPE_FLOAT_MAT3X4: writeMatrixConstructor<3, 4>(op, Mat3x4(s_constInMat3x4[inNdx])); break;
case TYPE_FLOAT_MAT4X2: writeMatrixConstructor<4, 2>(op, Mat4x2(s_constInMat4x2[inNdx])); break;
case TYPE_FLOAT_MAT4X3: writeMatrixConstructor<4, 3>(op, Mat4x3(s_constInMat4x3[inNdx])); break;
case TYPE_FLOAT_MAT4: writeMatrixConstructor<4, 4>(op, Mat4(s_constInMat4x4[inNdx])); break;
default:
DE_ASSERT(DE_FALSE);
}
op << ";\n";
inValue = string("in") + de::toString(inNdx);
}
}
vtx << "\n"
<< "void main (void)\n"
<< "{\n"
<< " gl_Position = a_position;\n";
frag << "\n"
<< "void main (void)\n"
<< "{\n";
if (m_isVertexCase)
frag << " dEQP_FragColor = v_color;\n";
else
{
for (vector<string>::const_iterator copyIter = passVars.begin(); copyIter != passVars.end(); copyIter++)
vtx << " v_" << *copyIter << " = " << "a_" << *copyIter << ";\n";
}
// Operation.
switch (getOperationNature(m_op))
{
case OPERATIONNATURE_PURE:
DE_ASSERT(getOperationType(m_op) != OPERATIONTYPE_ASSIGNMENT);
operationValue0 = inValue0;
operationValue1 = inValue1;
break;
case OPERATIONNATURE_MUTATING:
DE_ASSERT(getOperationType(m_op) != OPERATIONTYPE_ASSIGNMENT);
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " tmpValue = " << inValue0 << ";\n";
operationValue0 = "tmpValue";
operationValue1 = inValue1;
break;
case OPERATIONNATURE_ASSIGNMENT:
DE_ASSERT(getOperationType(m_op) == OPERATIONTYPE_ASSIGNMENT);
operationValue0 = inValue0;
operationValue1 = inValue1;
break;
default:
DE_ASSERT(DE_FALSE);
}
switch (getOperationType(m_op))
{
case OPERATIONTYPE_BINARY_OPERATOR:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << " " << getOperationName(m_op) << " " << operationValue1 << ";\n";
break;
case OPERATIONTYPE_UNARY_PREFIX_OPERATOR:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << getOperationName(m_op) << operationValue0 << ";\n";
break;
case OPERATIONTYPE_UNARY_POSTFIX_OPERATOR:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << getOperationName(m_op) << ";\n";
break;
case OPERATIONTYPE_BINARY_FUNCTION:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << getOperationName(m_op) << "(" << operationValue0 << ", " << operationValue1 << ");\n";
break;
case OPERATIONTYPE_UNARY_FUNCTION:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << getOperationName(m_op) << "(" << operationValue0 << ");\n";
break;
case OPERATIONTYPE_ASSIGNMENT:
op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << ";\n";
op << " res " << getOperationName(m_op) << " " << operationValue1 << ";\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
// Reduction to vec3 (rgb). Check the used value too if it was modified
op << " " << (m_isVertexCase ? "v_color" : "dEQP_FragColor") << " = ";
if (isOperationValueModifying(m_op))
op << "vec4(" << genGLSLMatToVec3Reduction(resultType, "res") << ", 1.0) + vec4(" << genGLSLMatToVec3Reduction(resultType, "tmpValue") << ", 0.0);\n";
else
op << "vec4(" << genGLSLMatToVec3Reduction(resultType, "res") << ", 1.0);\n";
vtx << "}\n";
frag << "}\n";
m_vertShaderSource = vtx.str();
m_fragShaderSource = frag.str();
}
std::string ShaderMatrixCase::genGLSLMatToVec3Reduction (const glu::DataType& matType, const char* varName)
{
std::ostringstream op;
switch (matType)
{
case TYPE_FLOAT: op << varName << ", " << varName << ", " << varName << ""; break;
case TYPE_FLOAT_VEC2: op << varName << ".x, " << varName << ".y, " << varName << ".x"; break;
case TYPE_FLOAT_VEC3: op << varName << ""; break;
case TYPE_FLOAT_VEC4: op << varName << ".x, " << varName << ".y, " << varName << ".z+" << varName << ".w"; break;
case TYPE_FLOAT_MAT2: op << varName << "[0][0], " << varName << "[1][0], " << varName << "[0][1]+" << varName << "[1][1]"; break;
case TYPE_FLOAT_MAT2X3: op << varName << "[0] + " << varName << "[1]"; break;
case TYPE_FLOAT_MAT2X4: op << varName << "[0].xyz + " << varName << "[1].yzw"; break;
case TYPE_FLOAT_MAT3X2: op << varName << "[0][0]+" << varName << "[0][1], " << varName << "[1][0]+" << varName << "[1][1], " << varName << "[2][0]+" << varName << "[2][1]"; break;
case TYPE_FLOAT_MAT3: op << varName << "[0] + " << varName << "[1] + " << varName << "[2]"; break;
case TYPE_FLOAT_MAT3X4: op << varName << "[0].xyz + " << varName << "[1].yzw + " << varName << "[2].zwx"; break;
case TYPE_FLOAT_MAT4X2: op << varName << "[0][0]+" << varName << "[0][1]+" << varName << "[3][0], " << varName << "[1][0]+" << varName << "[1][1]+" << varName << "[3][1], " << varName << "[2][0]+" << varName << "[2][1]"; break;
case TYPE_FLOAT_MAT4X3: op << varName << "[0] + " << varName << "[1] + " << varName << "[2] + " << varName << "[3]"; break;
case TYPE_FLOAT_MAT4: op << varName << "[0].xyz+" << varName << "[1].yzw+" << varName << "[2].zwx+" << varName << "[3].wxy"; break;
default:
DE_ASSERT(DE_FALSE);
}
return op.str();
}
class ShaderMatrixTests : public tcu::TestCaseGroup
{
public:
ShaderMatrixTests (tcu::TestContext& testCtx);
virtual ~ShaderMatrixTests (void);
virtual void init (void);
private:
ShaderMatrixTests (const ShaderMatrixTests&); // not allowed!
ShaderMatrixTests& operator= (const ShaderMatrixTests&); // not allowed!
};
ShaderMatrixTests::ShaderMatrixTests (tcu::TestContext& testCtx)
: TestCaseGroup(testCtx, "matrix", "Matrix Tests")
{
}
ShaderMatrixTests::~ShaderMatrixTests (void)
{
}
void ShaderMatrixTests::init (void)
{
static const struct
{
const char* name;
const char* desc;
const MatrixOp op;
const bool extendedInputTypeCases; // !< test with const and uniform types too
const bool createInputTypeGroup; // !< create group for input types
} ops[] =
{
{ "add", "Matrix addition tests", OP_ADD, true, true },
{ "sub", "Matrix subtraction tests", OP_SUB, true, true },
{ "mul", "Matrix multiplication tests", OP_MUL, true, true },
{ "div", "Matrix division tests", OP_DIV, true, true },
{ "matrixcompmult", "Matrix component-wise multiplication tests", OP_COMP_MUL, false, true },
{ "outerproduct", "Matrix outerProduct() tests", OP_OUTER_PRODUCT, false, true },
{ "transpose", "Matrix transpose() tests", OP_TRANSPOSE, false, true },
{ "determinant", "Matrix determinant() tests", OP_DETERMINANT, false, true },
{ "inverse", "Matrix inverse() tests", OP_INVERSE, false, true },
{ "unary_addition", "Matrix unary addition tests", OP_UNARY_PLUS, false, false },
{ "negation", "Matrix negation tests", OP_NEGATION, false, false },
{ "pre_increment", "Matrix prefix increment tests", OP_PRE_INCREMENT, false, false },
{ "pre_decrement", "Matrix prefix decrement tests", OP_PRE_DECREMENT, false, false },
{ "post_increment", "Matrix postfix increment tests", OP_POST_INCREMENT, false, false },
{ "post_decrement", "Matrix postfix decrement tests", OP_POST_DECREMENT, false, false },
{ "add_assign", "Matrix add into tests", OP_ADD_INTO, false, false },
{ "sub_assign", "Matrix subtract from tests", OP_SUBTRACT_FROM, false, false },
{ "mul_assign", "Matrix multiply into tests", OP_MULTIPLY_INTO, false, false },
{ "div_assign", "Matrix divide into tests", OP_DIVIDE_INTO, false, false },
};
struct InputTypeSpec
{
const char* name;
const char* desc;
const InputType type;
};
static const InputTypeSpec extendedInputTypes[] =
{
{ "const", "Constant matrix input", INPUTTYPE_CONST },
{ "uniform", "Uniform matrix input", INPUTTYPE_UNIFORM },
{ "dynamic", "Dynamic matrix input", INPUTTYPE_DYNAMIC }
};
static const InputTypeSpec reducedInputTypes[] =
{
{ "dynamic", "Dynamic matrix input", INPUTTYPE_DYNAMIC }
};
static const DataType matrixTypes[] =
{
TYPE_FLOAT_MAT2,
TYPE_FLOAT_MAT2X3,
TYPE_FLOAT_MAT2X4,
TYPE_FLOAT_MAT3X2,
TYPE_FLOAT_MAT3,
TYPE_FLOAT_MAT3X4,
TYPE_FLOAT_MAT4X2,
TYPE_FLOAT_MAT4X3,
TYPE_FLOAT_MAT4
};
static const Precision precisions[] =
{
PRECISION_MEDIUMP,
PRECISION_HIGHP
};
for (int opNdx = 0; opNdx < DE_LENGTH_OF_ARRAY(ops); opNdx++)
{
const InputTypeSpec* inTypeList = (ops[opNdx].extendedInputTypeCases) ? (extendedInputTypes) : (reducedInputTypes);
const int inTypeListSize = (ops[opNdx].extendedInputTypeCases) ? (DE_LENGTH_OF_ARRAY(extendedInputTypes)) : (DE_LENGTH_OF_ARRAY(reducedInputTypes));
const MatrixOp op = ops[opNdx].op;
tcu::TestCaseGroup* opGroup = new tcu::TestCaseGroup(m_testCtx, ops[opNdx].name, ops[opNdx].desc);
addChild(opGroup);
for (int inTypeNdx = 0; inTypeNdx < inTypeListSize; inTypeNdx++)
{
const InputType inputType = inTypeList[inTypeNdx].type;
tcu::TestCaseGroup* inGroup;
if (ops[opNdx].createInputTypeGroup)
{
inGroup = new tcu::TestCaseGroup(m_testCtx, inTypeList[inTypeNdx].name, inTypeList[inTypeNdx].desc);
opGroup->addChild(inGroup);
}
else
inGroup = opGroup;
for (int matTypeNdx = 0; matTypeNdx < DE_LENGTH_OF_ARRAY(matrixTypes); matTypeNdx++)
{
DataType matType = matrixTypes[matTypeNdx];
int numCols = getDataTypeMatrixNumColumns(matType);
int numRows = getDataTypeMatrixNumRows(matType);
const char* matTypeName = getDataTypeName(matType);
for (int precNdx = 0; precNdx < DE_LENGTH_OF_ARRAY(precisions); precNdx++)
{
Precision precision = precisions[precNdx];
const char* precName = getPrecisionName(precision);
string baseName = string(precName) + "_" + matTypeName + "_";
ShaderInput matIn (inputType, matType, precision);
if (isOperationMatrixScalar(op))
{
// Matrix-scalar \note For div cases we use uniform input.
ShaderInput scalarIn(op == OP_DIV ? INPUTTYPE_UNIFORM : INPUTTYPE_DYNAMIC, TYPE_FLOAT, precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_vertex").c_str(), "Matrix-scalar case", matIn, scalarIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_fragment").c_str(), "Matrix-scalar case", matIn, scalarIn, op, false));
}
if (isOperationMatrixVector(op))
{
// Matrix-vector.
DataType colVecType = getDataTypeFloatVec(numCols);
ShaderInput colVecIn (op == OP_DIV ? INPUTTYPE_UNIFORM : INPUTTYPE_DYNAMIC, colVecType, precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + getDataTypeName(colVecType) + "_vertex").c_str(), "Matrix-vector case", matIn, colVecIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + getDataTypeName(colVecType) + "_fragment").c_str(), "Matrix-vector case", matIn, colVecIn, op, false));
// Vector-matrix.
DataType rowVecType = getDataTypeFloatVec(numRows);
ShaderInput rowVecIn (op == OP_DIV ? INPUTTYPE_UNIFORM : INPUTTYPE_DYNAMIC, rowVecType, precision);
string vecMatName = string(precName) + "_" + getDataTypeName(rowVecType) + "_" + matTypeName;
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (vecMatName + "_vertex").c_str(), "Vector-matrix case", rowVecIn, matIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (vecMatName + "_fragment").c_str(), "Vector-matrix case", rowVecIn, matIn, op, false));
}
if (isOperationArithmeticMatrixMatrix(op))
{
// Arithmetic matrix-matrix multiplication.
for (int otherCols = 2; otherCols <= 4; otherCols++)
{
ShaderInput otherMatIn(inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_UNIFORM : inputType, getDataTypeMatrix(otherCols, numCols /* rows */), precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + getDataTypeName(otherMatIn.dataType) + "_vertex").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + getDataTypeName(otherMatIn.dataType) + "_fragment").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, false));
}
}
else if (isOperationComponentwiseMatrixMatrix(op))
{
// Component-wise.
ShaderInput otherMatIn(inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_UNIFORM : inputType, matType, precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + matTypeName + "_vertex").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + matTypeName + "_fragment").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, false));
}
if (isOperationVectorVector(op))
{
ShaderInput vec1In(inputType, getDataTypeFloatVec(numRows), precision);
ShaderInput vec2In((inputType == INPUTTYPE_DYNAMIC) ? (INPUTTYPE_UNIFORM) : (inputType), getDataTypeFloatVec(numCols), precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_vertex").c_str(), "Vector-vector case", vec1In, vec2In, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_fragment").c_str(), "Vector-vector case", vec1In, vec2In, op, false));
}
if ((isOperationUnaryAnyMatrix(op)) ||
(isOperationUnarySymmetricMatrix(op) && numCols == numRows))
{
ShaderInput voidInput(INPUTTYPE_LAST, TYPE_LAST, PRECISION_LAST);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_vertex").c_str(), "Matrix case", matIn, voidInput, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_fragment").c_str(), "Matrix case", matIn, voidInput, op, false));
}
if ((isOperationAssignmentAnyMatrix(op)) ||
(isOperationAssignmentSymmetricMatrix(op) && numCols == numRows))
{
ShaderInput otherMatIn(inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_UNIFORM : inputType, matType, precision);
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_vertex").c_str(), "Matrix assignment case", matIn, otherMatIn, op, true));
inGroup->addChild(new ShaderMatrixCase(m_testCtx, (baseName + "float_fragment").c_str(), "Matrix assignment case", matIn, otherMatIn, op, false));
}
}
}
}
}
}
} // anonymous
tcu::TestCaseGroup* createMatrixTests (tcu::TestContext& testCtx)
{
return new ShaderMatrixTests(testCtx);
}
} // sr
} // vkt