blob: 1cebc7d954ddcb9f4e527460384c5a59e45cadb1 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2015 The Khronos Group Inc.
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Vulkan Buffers Tests
*//*--------------------------------------------------------------------*/
#include "vktApiBufferTests.hpp"
#include "deStringUtil.hpp"
#include "gluVarType.hpp"
#include "tcuTestLog.hpp"
#include "vkPrograms.hpp"
#include "vkQueryUtil.hpp"
#include "vkRefUtil.hpp"
#include "vkPlatform.hpp"
#include "vktTestCase.hpp"
#include "tcuPlatform.hpp"
namespace vkt
{
namespace api
{
namespace
{
using namespace vk;
PlatformMemoryLimits getPlatformMemoryLimits (Context& context)
{
PlatformMemoryLimits memoryLimits;
context.getTestContext().getPlatform().getVulkanPlatform().getMemoryLimits(memoryLimits);
return memoryLimits;
}
VkDeviceSize getMaxBufferSize(const VkDeviceSize& bufferSize,
const VkDeviceSize& alignment,
const PlatformMemoryLimits& limits)
{
VkDeviceSize size = bufferSize;
if (limits.totalDeviceLocalMemory == 0)
{
// 'UMA' systems where device memory counts against system memory
size = std::min(bufferSize, limits.totalSystemMemory - alignment);
}
else
{
// 'LMA' systems where device memory is local to the GPU
size = std::min(bufferSize, limits.totalDeviceLocalMemory - alignment);
}
return size;
}
struct BufferCaseParameters
{
VkBufferUsageFlags usage;
VkBufferCreateFlags flags;
VkSharingMode sharingMode;
};
class BufferTestInstance : public TestInstance
{
public:
BufferTestInstance (Context& ctx,
BufferCaseParameters testCase)
: TestInstance (ctx)
, m_testCase (testCase)
, m_sparseContext (createSparseContext())
{}
virtual tcu::TestStatus iterate (void);
tcu::TestStatus bufferCreateAndAllocTest (VkDeviceSize size);
private:
BufferCaseParameters m_testCase;
private:
// Custom context for sparse cases
struct SparseContext
{
SparseContext (Move<VkDevice>& device, const deUint32 queueFamilyIndex, const InstanceInterface& interface)
: m_device (device)
, m_queueFamilyIndex (queueFamilyIndex)
, m_deviceInterface (interface, *m_device)
{}
Unique<VkDevice> m_device;
const deUint32 m_queueFamilyIndex;
DeviceDriver m_deviceInterface;
};
de::UniquePtr<SparseContext> m_sparseContext;
// Wrapper functions around m_context calls to support sparse cases.
VkPhysicalDevice getPhysicalDevice (void) const
{
// Same in sparse and regular case
return m_context.getPhysicalDevice();
}
VkDevice getDevice (void) const
{
if (m_sparseContext)
return *(m_sparseContext->m_device);
return m_context.getDevice();
}
const InstanceInterface& getInstanceInterface (void) const
{
// Same in sparse and regular case
return m_context.getInstanceInterface();
}
const DeviceInterface& getDeviceInterface (void) const
{
if (m_sparseContext)
return m_sparseContext->m_deviceInterface;
return m_context.getDeviceInterface();
}
deUint32 getUniversalQueueFamilyIndex (void) const
{
if (m_sparseContext)
return m_sparseContext->m_queueFamilyIndex;
return m_context.getUniversalQueueFamilyIndex();
}
static deUint32 findQueueFamilyIndexWithCaps (const InstanceInterface& vkInstance, VkPhysicalDevice physicalDevice, VkQueueFlags requiredCaps)
{
const std::vector<VkQueueFamilyProperties> queueProps = getPhysicalDeviceQueueFamilyProperties(vkInstance, physicalDevice);
for (size_t queueNdx = 0; queueNdx < queueProps.size(); queueNdx++)
{
if ((queueProps[queueNdx].queueFlags & requiredCaps) == requiredCaps)
return (deUint32)queueNdx;
}
TCU_THROW(NotSupportedError, "No matching queue found");
}
// Create the sparseContext
SparseContext* createSparseContext (void) const
{
if ((m_testCase.flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) ||
(m_testCase.flags & VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT) ||
(m_testCase.flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT))
{
const InstanceInterface& vk = getInstanceInterface();
const VkPhysicalDevice physicalDevice = getPhysicalDevice();
const VkPhysicalDeviceFeatures deviceFeatures = getPhysicalDeviceFeatures(vk, physicalDevice);
const deUint32 queueIndex = findQueueFamilyIndexWithCaps(vk, physicalDevice, VK_QUEUE_GRAPHICS_BIT|VK_QUEUE_SPARSE_BINDING_BIT);
VkDeviceQueueCreateInfo queueInfo;
VkDeviceCreateInfo deviceInfo;
const float queuePriority = 1.0f;
deMemset(&queueInfo, 0, sizeof(queueInfo));
deMemset(&deviceInfo, 0, sizeof(deviceInfo));
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.pNext = DE_NULL;
queueInfo.flags = (VkDeviceQueueCreateFlags)0u;
queueInfo.queueFamilyIndex = queueIndex;
queueInfo.queueCount = 1u;
queueInfo.pQueuePriorities = &queuePriority;
deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceInfo.pNext = DE_NULL;
deviceInfo.queueCreateInfoCount = 1u;
deviceInfo.pQueueCreateInfos = &queueInfo;
deviceInfo.enabledExtensionCount = 0u;
deviceInfo.ppEnabledExtensionNames = DE_NULL;
deviceInfo.enabledLayerCount = 0u;
deviceInfo.ppEnabledLayerNames = DE_NULL;
deviceInfo.pEnabledFeatures = &deviceFeatures;
Move<VkDevice> device = createDevice(vk, physicalDevice, &deviceInfo);
return new SparseContext(device, queueIndex, vk);
}
return DE_NULL;
}
};
class BuffersTestCase : public TestCase
{
public:
BuffersTestCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
BufferCaseParameters testCase)
: TestCase(testCtx, name, description)
, m_testCase(testCase)
{}
virtual ~BuffersTestCase (void) {}
virtual TestInstance* createInstance (Context& ctx) const
{
tcu::TestLog& log = m_testCtx.getLog();
log << tcu::TestLog::Message << getBufferUsageFlagsStr(m_testCase.usage) << tcu::TestLog::EndMessage;
return new BufferTestInstance(ctx, m_testCase);
}
private:
BufferCaseParameters m_testCase;
};
inline VkDeviceSize alignDeviceSize (VkDeviceSize val, VkDeviceSize align)
{
DE_ASSERT(deIsPowerOfTwo64(align));
DE_ASSERT(val + align >= val); // crash on overflow
return (val + align - 1) & ~(align - 1);
}
tcu::TestStatus BufferTestInstance::bufferCreateAndAllocTest (VkDeviceSize size)
{
const VkPhysicalDevice vkPhysicalDevice = getPhysicalDevice();
const InstanceInterface& vkInstance = getInstanceInterface();
const VkDevice vkDevice = getDevice();
const DeviceInterface& vk = getDeviceInterface();
const deUint32 queueFamilyIndex = getUniversalQueueFamilyIndex();
const VkPhysicalDeviceMemoryProperties memoryProperties = getPhysicalDeviceMemoryProperties(vkInstance, vkPhysicalDevice);
const VkPhysicalDeviceLimits limits = getPhysicalDeviceProperties(vkInstance, vkPhysicalDevice).limits;
Move<VkBuffer> buffer;
Move<VkDeviceMemory> memory;
VkMemoryRequirements memReqs;
if ((m_testCase.flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) != 0)
size = std::min(size, limits.sparseAddressSpaceSize);
// Create the test buffer and a memory allocation for it
{
// Create a minimal buffer first to get the supported memory types
VkBufferCreateInfo bufferParams =
{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
m_testCase.flags, // VkBufferCreateFlags flags;
1u, // VkDeviceSize size;
m_testCase.usage, // VkBufferUsageFlags usage;
m_testCase.sharingMode, // VkSharingMode sharingMode;
1u, // uint32_t queueFamilyIndexCount;
&queueFamilyIndex, // const uint32_t* pQueueFamilyIndices;
};
buffer = createBuffer(vk, vkDevice, &bufferParams);
vk.getBufferMemoryRequirements(vkDevice, *buffer, &memReqs);
const deUint32 heapTypeIndex = (deUint32)deCtz32(memReqs.memoryTypeBits);
const VkMemoryType memoryType = memoryProperties.memoryTypes[heapTypeIndex];
const VkMemoryHeap memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
const deUint32 shrinkBits = 4; // number of bits to shift when reducing the size with each iteration
// Buffer size - Choose half of the reported heap size for the maximum buffer size, we
// should attempt to test as large a portion as possible.
//
// However on a system where device memory is shared with the system, the maximum size
// should be tested against the platform memory limits as significant portion of the heap
// may already be in use by the operating system and other running processes.
const VkDeviceSize availableBufferSize = getMaxBufferSize(memoryHeap.size,
memReqs.alignment,
getPlatformMemoryLimits(m_context));
// For our test buffer size, halve the maximum available size and align
const VkDeviceSize maxBufferSize = alignDeviceSize(availableBufferSize >> 1, memReqs.alignment);
size = std::min(size, maxBufferSize);
while (*memory == DE_NULL)
{
// Create the buffer
{
VkResult result = VK_ERROR_OUT_OF_HOST_MEMORY;
VkBuffer rawBuffer = DE_NULL;
bufferParams.size = size;
buffer = Move<VkBuffer>(); // free the previous buffer, if any
result = vk.createBuffer(vkDevice, &bufferParams, (VkAllocationCallbacks*)DE_NULL, &rawBuffer);
if (result != VK_SUCCESS)
{
size = alignDeviceSize(size >> shrinkBits, memReqs.alignment);
if (size == 0 || bufferParams.size == memReqs.alignment)
return tcu::TestStatus::fail("Buffer creation failed! (" + de::toString(getResultName(result)) + ")");
continue; // didn't work, try with a smaller buffer
}
buffer = Move<VkBuffer>(check<VkBuffer>(rawBuffer), Deleter<VkBuffer>(vk, vkDevice, DE_NULL));
}
vk.getBufferMemoryRequirements(vkDevice, *buffer, &memReqs); // get the proper size requirement
if (size > memReqs.size)
{
std::ostringstream errorMsg;
errorMsg << "Requied memory size (" << memReqs.size << " bytes) smaller than the buffer's size (" << size << " bytes)!";
return tcu::TestStatus::fail(errorMsg.str());
}
// Allocate the memory
{
VkResult result = VK_ERROR_OUT_OF_HOST_MEMORY;
VkDeviceMemory rawMemory = DE_NULL;
const VkMemoryAllocateInfo memAlloc =
{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType;
NULL, // const void* pNext;
memReqs.size, // VkDeviceSize allocationSize;
heapTypeIndex, // uint32_t memoryTypeIndex;
};
result = vk.allocateMemory(vkDevice, &memAlloc, (VkAllocationCallbacks*)DE_NULL, &rawMemory);
if (result != VK_SUCCESS)
{
size = alignDeviceSize(size >> shrinkBits, memReqs.alignment);
if (size == 0 || memReqs.size == memReqs.alignment)
return tcu::TestStatus::fail("Unable to allocate " + de::toString(memReqs.size) + " bytes of memory");
continue; // didn't work, try with a smaller allocation (and a smaller buffer)
}
memory = Move<VkDeviceMemory>(check<VkDeviceMemory>(rawMemory), Deleter<VkDeviceMemory>(vk, vkDevice, DE_NULL));
}
} // while
}
// Bind the memory
if ((m_testCase.flags & (VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT)) != 0)
{
VkQueue queue = DE_NULL;
vk.getDeviceQueue(vkDevice, queueFamilyIndex, 0, &queue);
const VkSparseMemoryBind sparseMemoryBind =
{
0, // VkDeviceSize resourceOffset;
memReqs.size, // VkDeviceSize size;
*memory, // VkDeviceMemory memory;
0, // VkDeviceSize memoryOffset;
0 // VkSparseMemoryBindFlags flags;
};
const VkSparseBufferMemoryBindInfo sparseBufferMemoryBindInfo =
{
*buffer, // VkBuffer buffer;
1u, // deUint32 bindCount;
&sparseMemoryBind // const VkSparseMemoryBind* pBinds;
};
const VkBindSparseInfo bindSparseInfo =
{
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0, // deUint32 waitSemaphoreCount;
DE_NULL, // const VkSemaphore* pWaitSemaphores;
1u, // deUint32 bufferBindCount;
&sparseBufferMemoryBindInfo, // const VkSparseBufferMemoryBindInfo* pBufferBinds;
0, // deUint32 imageOpaqueBindCount;
DE_NULL, // const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
0, // deUint32 imageBindCount;
DE_NULL, // const VkSparseImageMemoryBindInfo* pImageBinds;
0, // deUint32 signalSemaphoreCount;
DE_NULL, // const VkSemaphore* pSignalSemaphores;
};
const VkFenceCreateInfo fenceParams =
{
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u // VkFenceCreateFlags flags;
};
const vk::Unique<vk::VkFence> fence(vk::createFence(vk, vkDevice, &fenceParams));
if (vk.queueBindSparse(queue, 1, &bindSparseInfo, *fence) != VK_SUCCESS)
return tcu::TestStatus::fail("Bind sparse buffer memory failed! (requested memory size: " + de::toString(size) + ")");
VK_CHECK(vk.waitForFences(vkDevice, 1, &fence.get(), VK_TRUE, ~(0ull) /* infinity */));
}
else
{
if (vk.bindBufferMemory(vkDevice, *buffer, *memory, 0) != VK_SUCCESS)
return tcu::TestStatus::fail("Bind buffer memory failed! (requested memory size: " + de::toString(size) + ")");
}
return tcu::TestStatus::pass("Pass");
}
tcu::TestStatus BufferTestInstance::iterate (void)
{
const VkPhysicalDeviceFeatures& physicalDeviceFeatures = getPhysicalDeviceFeatures(getInstanceInterface(), getPhysicalDevice());
if ((m_testCase.flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT ) && !physicalDeviceFeatures.sparseBinding)
TCU_THROW(NotSupportedError, "Sparse bindings feature is not supported");
if ((m_testCase.flags & VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT ) && !physicalDeviceFeatures.sparseResidencyBuffer)
TCU_THROW(NotSupportedError, "Sparse buffer residency feature is not supported");
if ((m_testCase.flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT ) && !physicalDeviceFeatures.sparseResidencyAliased)
TCU_THROW(NotSupportedError, "Sparse aliased residency feature is not supported");
const VkDeviceSize testSizes[] =
{
1,
1181,
15991,
16384,
~0ull, // try to exercise a very large buffer too (will be clamped to a sensible size later)
};
for (int i = 0; i < DE_LENGTH_OF_ARRAY(testSizes); ++i)
{
const tcu::TestStatus testStatus = bufferCreateAndAllocTest(testSizes[i]);
if (testStatus.getCode() != QP_TEST_RESULT_PASS)
return testStatus;
}
return tcu::TestStatus::pass("Pass");
}
} // anonymous
tcu::TestCaseGroup* createBufferTests (tcu::TestContext& testCtx)
{
const VkBufferUsageFlags bufferUsageModes[] =
{
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT
};
// \note SPARSE_RESIDENCY and SPARSE_ALIASED have to be used together with the SPARSE_BINDING flag.
const VkBufferCreateFlags bufferCreateFlags[] =
{
0,
VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT,
VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT,
VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT,
};
de::MovePtr<tcu::TestCaseGroup> buffersTests (new tcu::TestCaseGroup(testCtx, "buffer", "Buffer Tests"));
const deUint32 maximumValueOfBufferUsageFlags = (1u << (DE_LENGTH_OF_ARRAY(bufferUsageModes) - 1)) - 1u;
for (deUint32 bufferCreateFlagsNdx = 0u; bufferCreateFlagsNdx < DE_LENGTH_OF_ARRAY(bufferCreateFlags); bufferCreateFlagsNdx++)
for (deUint32 combinedBufferUsageFlags = 1u; combinedBufferUsageFlags <= maximumValueOfBufferUsageFlags; combinedBufferUsageFlags++)
{
const BufferCaseParameters testParams =
{
combinedBufferUsageFlags,
bufferCreateFlags[bufferCreateFlagsNdx],
VK_SHARING_MODE_EXCLUSIVE
};
std::ostringstream testName;
std::ostringstream testDescription;
testName << "create_buffer_" << combinedBufferUsageFlags << "_" << testParams.flags;
testDescription << "vkCreateBuffer test " << combinedBufferUsageFlags << " " << testParams.flags;
buffersTests->addChild(new BuffersTestCase(testCtx, testName.str(), testDescription.str(), testParams));
}
return buffersTests.release();
}
} // api
} // vk