blob: 8cfcecd9bfc7af8e9f7144ca87a71a686670f6b9 [file] [log] [blame]
/*-------------------------------------------------------------------------
* OpenGL Conformance Test Suite
* -----------------------------
*
* Copyright (c) 2016 Google Inc.
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/ /*!
* \file
* \brief Compiler test case.
*/ /*-------------------------------------------------------------------*/
#include "glcShaderLibraryCase.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuTestLog.hpp"
#include "gluDrawUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "gluShaderProgram.hpp"
#include "tcuStringTemplate.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "deInt32.h"
#include "deMath.h"
#include "deRandom.hpp"
#include "deString.h"
#include <map>
#include <sstream>
#include <string>
#include <vector>
using namespace std;
using namespace tcu;
using namespace glu;
namespace deqp
{
namespace sl
{
enum
{
VIEWPORT_WIDTH = 128,
VIEWPORT_HEIGHT = 128
};
static inline bool usesShaderInoutQualifiers(glu::GLSLVersion version)
{
switch (version)
{
case glu::GLSL_VERSION_100_ES:
case glu::GLSL_VERSION_130:
case glu::GLSL_VERSION_140:
case glu::GLSL_VERSION_150:
return false;
default:
return true;
}
}
// ShaderCase.
ShaderCase::ShaderCase(tcu::TestContext& testCtx, RenderContext& renderCtx, const char* name, const char* description,
ExpectResult expectResult, const std::vector<ValueBlock>& valueBlocks, GLSLVersion targetVersion,
const char* vertexSource, const char* fragmentSource)
: tcu::TestCase(testCtx, name, description)
, m_renderCtx(renderCtx)
, m_expectResult(expectResult)
, m_valueBlocks(valueBlocks)
, m_targetVersion(targetVersion)
{
// If no value blocks given, use an empty one.
if (m_valueBlocks.size() == 0)
m_valueBlocks.push_back(ValueBlock());
// Use first value block to specialize shaders.
const ValueBlock& valueBlock = m_valueBlocks[0];
// \todo [2010-04-01 petri] Check that all value blocks have matching values.
// Generate specialized shader sources.
if (vertexSource && fragmentSource)
{
m_caseType = CASETYPE_COMPLETE;
specializeShaders(vertexSource, fragmentSource, m_vertexSource, m_fragmentSource, valueBlock);
}
else if (vertexSource)
{
m_caseType = CASETYPE_VERTEX_ONLY;
m_vertexSource = specializeVertexShader(vertexSource, valueBlock);
m_fragmentSource = genFragmentShader(valueBlock);
}
else
{
DE_ASSERT(fragmentSource);
m_caseType = CASETYPE_FRAGMENT_ONLY;
m_vertexSource = genVertexShader(valueBlock);
m_fragmentSource = specializeFragmentShader(fragmentSource, valueBlock);
}
}
ShaderCase::~ShaderCase(void)
{
}
static void setUniformValue(const glw::Functions& gl, deUint32 programID, const std::string& name,
const ShaderCase::Value& val, int arrayNdx)
{
int scalarSize = getDataTypeScalarSize(val.dataType);
int loc = gl.getUniformLocation(programID, name.c_str());
TCU_CHECK_MSG(loc != -1, "uniform location not found");
DE_STATIC_ASSERT(sizeof(ShaderCase::Value::Element) == sizeof(glw::GLfloat));
DE_STATIC_ASSERT(sizeof(ShaderCase::Value::Element) == sizeof(glw::GLint));
int elemNdx = (val.arrayLength == 1) ? 0 : (arrayNdx * scalarSize);
switch (val.dataType)
{
case TYPE_FLOAT:
gl.uniform1fv(loc, 1, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_VEC2:
gl.uniform2fv(loc, 1, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_VEC3:
gl.uniform3fv(loc, 1, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_VEC4:
gl.uniform4fv(loc, 1, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT2:
gl.uniformMatrix2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT3:
gl.uniformMatrix3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT4:
gl.uniformMatrix4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_INT:
gl.uniform1iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_INT_VEC2:
gl.uniform2iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_INT_VEC3:
gl.uniform3iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_INT_VEC4:
gl.uniform4iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_BOOL:
gl.uniform1iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_BOOL_VEC2:
gl.uniform2iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_BOOL_VEC3:
gl.uniform3iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_BOOL_VEC4:
gl.uniform4iv(loc, 1, &val.elements[elemNdx].int32);
break;
case TYPE_UINT:
gl.uniform1uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32);
break;
case TYPE_UINT_VEC2:
gl.uniform2uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32);
break;
case TYPE_UINT_VEC3:
gl.uniform3uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32);
break;
case TYPE_UINT_VEC4:
gl.uniform4uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32);
break;
case TYPE_FLOAT_MAT2X3:
gl.uniformMatrix2x3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT2X4:
gl.uniformMatrix2x4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT3X2:
gl.uniformMatrix3x2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT3X4:
gl.uniformMatrix3x4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT4X2:
gl.uniformMatrix4x2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_FLOAT_MAT4X3:
gl.uniformMatrix4x3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32);
break;
case TYPE_SAMPLER_2D:
case TYPE_SAMPLER_CUBE:
DE_ASSERT(DE_FALSE && "implement!");
break;
default:
DE_ASSERT(false);
}
}
bool ShaderCase::checkPixels(Surface& surface, int minX, int maxX, int minY, int maxY)
{
TestLog& log = m_testCtx.getLog();
bool allWhite = true;
bool allBlack = true;
bool anyUnexpected = false;
DE_ASSERT((maxX > minX) && (maxY > minY));
for (int y = minY; y <= maxY; y++)
{
for (int x = minX; x <= maxX; x++)
{
RGBA pixel = surface.getPixel(x, y);
// Note: we really do not want to involve alpha in the check comparison
// \todo [2010-09-22 kalle] Do we know that alpha would be one? If yes, could use color constants white and black.
bool isWhite = (pixel.getRed() == 255) && (pixel.getGreen() == 255) && (pixel.getBlue() == 255);
bool isBlack = (pixel.getRed() == 0) && (pixel.getGreen() == 0) && (pixel.getBlue() == 0);
allWhite = allWhite && isWhite;
allBlack = allBlack && isBlack;
anyUnexpected = anyUnexpected || (!isWhite && !isBlack);
}
}
if (!allWhite)
{
if (anyUnexpected)
log << TestLog::Message
<< "WARNING: expecting all rendered pixels to be white or black, but got other colors as well!"
<< TestLog::EndMessage;
else if (!allBlack)
log << TestLog::Message
<< "WARNING: got inconsistent results over the image, when all pixels should be the same color!"
<< TestLog::EndMessage;
return false;
}
return true;
}
bool ShaderCase::execute(void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
// Compute viewport.
const tcu::RenderTarget& renderTarget = m_renderCtx.getRenderTarget();
de::Random rnd(deStringHash(getName()));
int width = deMin32(renderTarget.getWidth(), VIEWPORT_WIDTH);
int height = deMin32(renderTarget.getHeight(), VIEWPORT_HEIGHT);
int viewportX = rnd.getInt(0, renderTarget.getWidth() - width);
int viewportY = rnd.getInt(0, renderTarget.getHeight() - height);
const int numVerticesPerDraw = 4;
GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderCase::execute(): start");
// Setup viewport.
gl.viewport(viewportX, viewportY, width, height);
const float quadSize = 1.0f;
static const float s_positions[4 * 4] = { -quadSize, -quadSize, 0.0f, 1.0f, -quadSize, +quadSize, 0.0f, 1.0f,
+quadSize, -quadSize, 0.0f, 1.0f, +quadSize, +quadSize, 0.0f, 1.0f };
static const deUint16 s_indices[2 * 3] = { 0, 1, 2, 1, 3, 2 };
// Setup program.
glu::ShaderProgram program(m_renderCtx, glu::makeVtxFragSources(m_vertexSource.c_str(), m_fragmentSource.c_str()));
// Check that compile/link results are what we expect.
bool vertexOk = program.getShaderInfo(SHADERTYPE_VERTEX).compileOk;
bool fragmentOk = program.getShaderInfo(SHADERTYPE_FRAGMENT).compileOk;
bool linkOk = program.getProgramInfo().linkOk;
const char* failReason = DE_NULL;
log << program;
switch (m_expectResult)
{
case EXPECT_PASS:
if (!vertexOk || !fragmentOk)
failReason = "expected shaders to compile and link properly, but failed to compile.";
else if (!linkOk)
failReason = "expected shaders to compile and link properly, but failed to link.";
break;
case EXPECT_COMPILE_FAIL:
if (vertexOk && fragmentOk && !linkOk)
failReason = "expected compilation to fail, but both shaders compiled and link failed.";
else if (vertexOk && fragmentOk)
failReason = "expected compilation to fail, but both shaders compiled correctly.";
break;
case EXPECT_LINK_FAIL:
if (!vertexOk || !fragmentOk)
failReason = "expected linking to fail, but unable to compile.";
else if (linkOk)
failReason = "expected linking to fail, but passed.";
break;
default:
DE_ASSERT(false);
return false;
}
if (failReason != DE_NULL)
{
// \todo [2010-06-07 petri] These should be handled in the test case?
log << TestLog::Message << "ERROR: " << failReason << TestLog::EndMessage;
// If implementation parses shader at link time, report it as quality warning.
if (m_expectResult == EXPECT_COMPILE_FAIL && vertexOk && fragmentOk && !linkOk)
m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, failReason);
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, failReason);
return false;
}
// Return if compile/link expected to fail.
if (m_expectResult != EXPECT_PASS)
return (failReason == DE_NULL);
// Start using program.
deUint32 programID = program.getProgram();
gl.useProgram(programID);
GLU_EXPECT_NO_ERROR(gl.getError(), "glUseProgram()");
// Fetch location for positions positions.
int positionLoc = gl.getAttribLocation(programID, "dEQP_Position");
if (positionLoc == -1)
{
string errStr = string("no location found for attribute 'dEQP_Position'");
TCU_FAIL(errStr.c_str());
}
// Iterate all value blocks.
for (int blockNdx = 0; blockNdx < (int)m_valueBlocks.size(); blockNdx++)
{
const ValueBlock& valueBlock = m_valueBlocks[blockNdx];
// Iterate all array sub-cases.
for (int arrayNdx = 0; arrayNdx < valueBlock.arrayLength; arrayNdx++)
{
int numValues = (int)valueBlock.values.size();
vector<VertexArrayBinding> vertexArrays;
int attribValueNdx = 0;
vector<vector<float> > attribValues(numValues);
vertexArrays.push_back(va::Float(positionLoc, 4, numVerticesPerDraw, 0, &s_positions[0]));
// Collect VA pointer for inputs and set uniform values for outputs (refs).
for (int valNdx = 0; valNdx < numValues; valNdx++)
{
const ShaderCase::Value& val = valueBlock.values[valNdx];
const char* valueName = val.valueName.c_str();
DataType dataType = val.dataType;
int scalarSize = getDataTypeScalarSize(val.dataType);
GLU_EXPECT_NO_ERROR(gl.getError(), "before set uniforms");
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
// Replicate values four times.
std::vector<float>& scalars = attribValues[attribValueNdx++];
scalars.resize(numVerticesPerDraw * scalarSize);
if (isDataTypeFloatOrVec(dataType) || isDataTypeMatrix(dataType))
{
for (int repNdx = 0; repNdx < numVerticesPerDraw; repNdx++)
for (int ndx = 0; ndx < scalarSize; ndx++)
scalars[repNdx * scalarSize + ndx] = val.elements[arrayNdx * scalarSize + ndx].float32;
}
else
{
// convert to floats.
for (int repNdx = 0; repNdx < numVerticesPerDraw; repNdx++)
{
for (int ndx = 0; ndx < scalarSize; ndx++)
{
float v = (float)val.elements[arrayNdx * scalarSize + ndx].int32;
DE_ASSERT(val.elements[arrayNdx * scalarSize + ndx].int32 == (int)v);
scalars[repNdx * scalarSize + ndx] = v;
}
}
}
// Attribute name prefix.
string attribPrefix = "";
// \todo [2010-05-27 petri] Should latter condition only apply for vertex cases (or actually non-fragment cases)?
if ((m_caseType == CASETYPE_FRAGMENT_ONLY) || (getDataTypeScalarType(dataType) != TYPE_FLOAT))
attribPrefix = "a_";
// Input always given as attribute.
string attribName = attribPrefix + valueName;
int attribLoc = gl.getAttribLocation(programID, attribName.c_str());
if (attribLoc == -1)
{
log << TestLog::Message << "Warning: no location found for attribute '" << attribName << "'"
<< TestLog::EndMessage;
continue;
}
if (isDataTypeMatrix(dataType))
{
int numCols = getDataTypeMatrixNumColumns(dataType);
int numRows = getDataTypeMatrixNumRows(dataType);
DE_ASSERT(scalarSize == numCols * numRows);
for (int i = 0; i < numCols; i++)
vertexArrays.push_back(va::Float(attribLoc + i, numRows, numVerticesPerDraw,
static_cast<int>(scalarSize * sizeof(float)),
&scalars[i * numRows]));
}
else
{
DE_ASSERT(isDataTypeFloatOrVec(dataType) || isDataTypeIntOrIVec(dataType) ||
isDataTypeUintOrUVec(dataType) || isDataTypeBoolOrBVec(dataType));
vertexArrays.push_back(va::Float(attribLoc, scalarSize, numVerticesPerDraw, 0, &scalars[0]));
}
GLU_EXPECT_NO_ERROR(gl.getError(), "set vertex attrib array");
}
else if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
// Set reference value.
string refName = string("ref_") + valueName;
setUniformValue(gl, programID, refName, val, arrayNdx);
GLU_EXPECT_NO_ERROR(gl.getError(), "set reference uniforms");
}
else
{
DE_ASSERT(val.storageType == ShaderCase::Value::STORAGE_UNIFORM);
setUniformValue(gl, programID, valueName, val, arrayNdx);
GLU_EXPECT_NO_ERROR(gl.getError(), "set uniforms");
}
}
// Clear.
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
GLU_EXPECT_NO_ERROR(gl.getError(), "clear buffer");
// Draw.
draw(m_renderCtx, program.getProgram(), (int)vertexArrays.size(), &vertexArrays[0],
pr::Triangles(DE_LENGTH_OF_ARRAY(s_indices), &s_indices[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "draw");
// Read back results.
Surface surface(width, height);
glu::readPixels(m_renderCtx, viewportX, viewportY, surface.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels");
float w = s_positions[3];
int minY = deCeilFloatToInt32(((-quadSize / w) * 0.5f + 0.5f) * (float)height + 1.0f);
int maxY = deFloorFloatToInt32(((+quadSize / w) * 0.5f + 0.5f) * (float)height - 0.5f);
int minX = deCeilFloatToInt32(((-quadSize / w) * 0.5f + 0.5f) * (float)width + 1.0f);
int maxX = deFloorFloatToInt32(((+quadSize / w) * 0.5f + 0.5f) * (float)width - 0.5f);
if (!checkPixels(surface, minX, maxX, minY, maxY))
{
log << TestLog::Message << "INCORRECT RESULT for (value block " << (blockNdx + 1) << " of "
<< (int)m_valueBlocks.size() << ", sub-case " << arrayNdx + 1 << " of " << valueBlock.arrayLength
<< "):" << TestLog::EndMessage;
log << TestLog::Message << "Failing shader input/output values:" << TestLog::EndMessage;
dumpValues(valueBlock, arrayNdx);
// Dump image on failure.
log << TestLog::Image("Result", "Rendered result image", surface);
gl.useProgram(0);
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
return false;
}
}
}
gl.useProgram(0);
GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderCase::execute(): end");
return true;
}
TestCase::IterateResult ShaderCase::iterate(void)
{
// Initialize state to pass.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
bool executeOk = execute();
DE_ASSERT(executeOk ? m_testCtx.getTestResult() == QP_TEST_RESULT_PASS :
m_testCtx.getTestResult() != QP_TEST_RESULT_PASS);
(void)executeOk;
return TestCase::STOP;
}
// This functions builds a matching vertex shader for a 'both' case, when
// the fragment shader is being tested.
// We need to build attributes and varyings for each 'input'.
string ShaderCase::genVertexShader(const ValueBlock& valueBlock)
{
ostringstream res;
const bool usesInout = usesShaderInoutQualifiers(m_targetVersion);
const char* vtxIn = usesInout ? "in" : "attribute";
const char* vtxOut = usesInout ? "out" : "varying";
res << glu::getGLSLVersionDeclaration(m_targetVersion) << "\n";
// Declarations (position + attribute/varying for each input).
res << "precision highp float;\n";
res << "precision highp int;\n";
res << "\n";
res << vtxIn << " highp vec4 dEQP_Position;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
DataType floatType = getDataTypeFloatScalars(val.dataType);
const char* typeStr = getDataTypeName(floatType);
res << vtxIn << " " << typeStr << " a_" << val.valueName << ";\n";
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
res << vtxOut << " " << typeStr << " " << val.valueName << ";\n";
else
res << vtxOut << " " << typeStr << " v_" << val.valueName << ";\n";
}
}
res << "\n";
// Main function.
// - gl_Position = dEQP_Position;
// - for each input: write attribute directly to varying
res << "void main()\n";
res << "{\n";
res << " gl_Position = dEQP_Position;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
const string& name = val.valueName;
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
res << " " << name << " = a_" << name << ";\n";
else
res << " v_" << name << " = a_" << name << ";\n";
}
}
res << "}\n";
return res.str();
}
static void genCompareFunctions(ostringstream& stream, const ShaderCase::ValueBlock& valueBlock, bool useFloatTypes)
{
bool cmpTypeFound[TYPE_LAST];
for (int i = 0; i < TYPE_LAST; i++)
cmpTypeFound[i] = false;
for (int valueNdx = 0; valueNdx < (int)valueBlock.values.size(); valueNdx++)
{
const ShaderCase::Value& val = valueBlock.values[valueNdx];
if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
cmpTypeFound[(int)val.dataType] = true;
}
if (useFloatTypes)
{
if (cmpTypeFound[TYPE_BOOL])
stream << "bool isOk (float a, bool b) { return ((a > 0.5) == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC2])
stream << "bool isOk (vec2 a, bvec2 b) { return (greaterThan(a, vec2(0.5)) == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC3])
stream << "bool isOk (vec3 a, bvec3 b) { return (greaterThan(a, vec3(0.5)) == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC4])
stream << "bool isOk (vec4 a, bvec4 b) { return (greaterThan(a, vec4(0.5)) == b); }\n";
if (cmpTypeFound[TYPE_INT])
stream << "bool isOk (float a, int b) { float atemp = a+0.5; return (float(b) <= atemp && atemp <= "
"float(b+1)); }\n";
if (cmpTypeFound[TYPE_INT_VEC2])
stream << "bool isOk (vec2 a, ivec2 b) { return (ivec2(floor(a + 0.5)) == b); }\n";
if (cmpTypeFound[TYPE_INT_VEC3])
stream << "bool isOk (vec3 a, ivec3 b) { return (ivec3(floor(a + 0.5)) == b); }\n";
if (cmpTypeFound[TYPE_INT_VEC4])
stream << "bool isOk (vec4 a, ivec4 b) { return (ivec4(floor(a + 0.5)) == b); }\n";
if (cmpTypeFound[TYPE_UINT])
stream << "bool isOk (float a, uint b) { float atemp = a+0.5; return (float(b) <= atemp && atemp <= "
"float(b+1)); }\n";
if (cmpTypeFound[TYPE_UINT_VEC2])
stream << "bool isOk (vec2 a, uvec2 b) { return (uvec2(floor(a + 0.5)) == b); }\n";
if (cmpTypeFound[TYPE_UINT_VEC3])
stream << "bool isOk (vec3 a, uvec3 b) { return (uvec3(floor(a + 0.5)) == b); }\n";
if (cmpTypeFound[TYPE_UINT_VEC4])
stream << "bool isOk (vec4 a, uvec4 b) { return (uvec4(floor(a + 0.5)) == b); }\n";
}
else
{
if (cmpTypeFound[TYPE_BOOL])
stream << "bool isOk (bool a, bool b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC2])
stream << "bool isOk (bvec2 a, bvec2 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC3])
stream << "bool isOk (bvec3 a, bvec3 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_BOOL_VEC4])
stream << "bool isOk (bvec4 a, bvec4 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_INT])
stream << "bool isOk (int a, int b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_INT_VEC2])
stream << "bool isOk (ivec2 a, ivec2 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_INT_VEC3])
stream << "bool isOk (ivec3 a, ivec3 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_INT_VEC4])
stream << "bool isOk (ivec4 a, ivec4 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_UINT])
stream << "bool isOk (uint a, uint b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_UINT_VEC2])
stream << "bool isOk (uvec2 a, uvec2 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_UINT_VEC3])
stream << "bool isOk (uvec3 a, uvec3 b) { return (a == b); }\n";
if (cmpTypeFound[TYPE_UINT_VEC4])
stream << "bool isOk (uvec4 a, uvec4 b) { return (a == b); }\n";
}
if (cmpTypeFound[TYPE_FLOAT])
stream << "bool isOk (float a, float b, float eps) { return (abs(a-b) <= (eps*abs(b) + eps)); }\n";
if (cmpTypeFound[TYPE_FLOAT_VEC2])
stream
<< "bool isOk (vec2 a, vec2 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_VEC3])
stream
<< "bool isOk (vec3 a, vec3 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_VEC4])
stream
<< "bool isOk (vec4 a, vec4 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT2])
stream << "bool isOk (mat2 a, mat2 b, float eps) { vec2 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return "
"all(lessThanEqual(diff, vec2(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT2X3])
stream << "bool isOk (mat2x3 a, mat2x3 b, float eps) { vec3 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return "
"all(lessThanEqual(diff, vec3(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT2X4])
stream << "bool isOk (mat2x4 a, mat2x4 b, float eps) { vec4 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return "
"all(lessThanEqual(diff, vec4(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT3X2])
stream << "bool isOk (mat3x2 a, mat3x2 b, float eps) { vec2 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"abs(a[2]-b[2])); return all(lessThanEqual(diff, vec2(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT3])
stream << "bool isOk (mat3 a, mat3 b, float eps) { vec3 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"abs(a[2]-b[2])); return all(lessThanEqual(diff, vec3(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT3X4])
stream << "bool isOk (mat3x4 a, mat3x4 b, float eps) { vec4 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"abs(a[2]-b[2])); return all(lessThanEqual(diff, vec4(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT4X2])
stream << "bool isOk (mat4x2 a, mat4x2 b, float eps) { vec2 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec2(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT4X3])
stream << "bool isOk (mat4x3 a, mat4x3 b, float eps) { vec3 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec3(eps))); }\n";
if (cmpTypeFound[TYPE_FLOAT_MAT4])
stream << "bool isOk (mat4 a, mat4 b, float eps) { vec4 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), "
"max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec4(eps))); }\n";
}
static void genCompareOp(ostringstream& output, const char* dstVec4Var, const ShaderCase::ValueBlock& valueBlock,
const char* nonFloatNamePrefix, const char* checkVarName)
{
bool isFirstOutput = true;
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
const char* valueName = val.valueName.c_str();
if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
// Check if we're only interested in one variable (then skip if not the right one).
if (checkVarName && !deStringEqual(valueName, checkVarName))
continue;
// Prefix.
if (isFirstOutput)
{
output << "bool RES = ";
isFirstOutput = false;
}
else
output << "RES = RES && ";
// Generate actual comparison.
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
output << "isOk(" << valueName << ", ref_" << valueName << ", 0.05);\n";
else
output << "isOk(" << nonFloatNamePrefix << valueName << ", ref_" << valueName << ");\n";
}
// \note Uniforms are already declared in shader.
}
if (isFirstOutput)
output << dstVec4Var << " = vec4(1.0);\n"; // \todo [petri] Should we give warning if not expect-failure case?
else
output << dstVec4Var << " = vec4(RES, RES, RES, 1.0);\n";
}
string ShaderCase::genFragmentShader(const ValueBlock& valueBlock)
{
ostringstream shader;
const bool usesInout = usesShaderInoutQualifiers(m_targetVersion);
const bool customColorOut = usesInout;
const char* fragIn = usesInout ? "in" : "varying";
shader << glu::getGLSLVersionDeclaration(m_targetVersion) << "\n";
shader << "precision mediump float;\n";
shader << "precision mediump int;\n";
shader << "\n";
if (customColorOut)
{
shader << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n";
shader << "\n";
}
genCompareFunctions(shader, valueBlock, true);
shader << "\n";
// Declarations (varying, reference for each output).
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
DataType floatType = getDataTypeFloatScalars(val.dataType);
const char* floatTypeStr = getDataTypeName(floatType);
const char* refTypeStr = getDataTypeName(val.dataType);
if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
shader << fragIn << " " << floatTypeStr << " " << val.valueName << ";\n";
else
shader << fragIn << " " << floatTypeStr << " v_" << val.valueName << ";\n";
shader << "uniform " << refTypeStr << " ref_" << val.valueName << ";\n";
}
}
shader << "\n";
shader << "void main()\n";
shader << "{\n";
shader << " ";
genCompareOp(shader, customColorOut ? "dEQP_FragColor" : "gl_FragColor", valueBlock, "v_", DE_NULL);
shader << "}\n";
return shader.str();
}
// Specialize a shader for the vertex shader test case.
string ShaderCase::specializeVertexShader(const char* src, const ValueBlock& valueBlock)
{
ostringstream decl;
ostringstream setup;
ostringstream output;
const bool usesInout = usesShaderInoutQualifiers(m_targetVersion);
const char* vtxIn = usesInout ? "in" : "attribute";
const char* vtxOut = usesInout ? "out" : "varying";
// Output (write out position).
output << "gl_Position = dEQP_Position;\n";
// Declarations (position + attribute for each input, varying for each output).
decl << vtxIn << " highp vec4 dEQP_Position;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
const char* valueName = val.valueName.c_str();
DataType floatType = getDataTypeFloatScalars(val.dataType);
const char* floatTypeStr = getDataTypeName(floatType);
const char* refTypeStr = getDataTypeName(val.dataType);
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
{
decl << vtxIn << " " << floatTypeStr << " " << valueName << ";\n";
}
else
{
decl << vtxIn << " " << floatTypeStr << " a_" << valueName << ";\n";
setup << refTypeStr << " " << valueName << " = " << refTypeStr << "(a_" << valueName << ");\n";
}
}
else if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
decl << vtxOut << " " << floatTypeStr << " " << valueName << ";\n";
else
{
decl << vtxOut << " " << floatTypeStr << " v_" << valueName << ";\n";
decl << refTypeStr << " " << valueName << ";\n";
output << "v_" << valueName << " = " << floatTypeStr << "(" << valueName << ");\n";
}
}
}
// Shader specialization.
map<string, string> params;
params.insert(pair<string, string>("DECLARATIONS", decl.str()));
params.insert(pair<string, string>("SETUP", setup.str()));
params.insert(pair<string, string>("OUTPUT", output.str()));
params.insert(pair<string, string>("POSITION_FRAG_COLOR", "gl_Position"));
StringTemplate tmpl(src);
return tmpl.specialize(params);
}
// Specialize a shader for the fragment shader test case.
string ShaderCase::specializeFragmentShader(const char* src, const ValueBlock& valueBlock)
{
ostringstream decl;
ostringstream setup;
ostringstream output;
const bool usesInout = usesShaderInoutQualifiers(m_targetVersion);
const bool customColorOut = usesInout;
const char* fragIn = usesInout ? "in" : "varying";
const char* fragColor = customColorOut ? "dEQP_FragColor" : "gl_FragColor";
genCompareFunctions(decl, valueBlock, false);
genCompareOp(output, fragColor, valueBlock, "", DE_NULL);
if (customColorOut)
decl << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
const char* valueName = val.valueName.c_str();
DataType floatType = getDataTypeFloatScalars(val.dataType);
const char* floatTypeStr = getDataTypeName(floatType);
const char* refTypeStr = getDataTypeName(val.dataType);
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
decl << fragIn << " " << floatTypeStr << " " << valueName << ";\n";
else
{
decl << fragIn << " " << floatTypeStr << " v_" << valueName << ";\n";
std::string offset =
isDataTypeIntOrIVec(val.dataType) ?
" * 1.0025" :
""; // \todo [petri] bit of a hack to avoid errors in chop() due to varying interpolation
setup << refTypeStr << " " << valueName << " = " << refTypeStr << "(v_" << valueName << offset
<< ");\n";
}
}
else if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
decl << "uniform " << refTypeStr << " ref_" << valueName << ";\n";
decl << refTypeStr << " " << valueName << ";\n";
}
}
/* \todo [2010-04-01 petri] Check all outputs. */
// Shader specialization.
map<string, string> params;
params.insert(pair<string, string>("DECLARATIONS", decl.str()));
params.insert(pair<string, string>("SETUP", setup.str()));
params.insert(pair<string, string>("OUTPUT", output.str()));
params.insert(pair<string, string>("POSITION_FRAG_COLOR", fragColor));
StringTemplate tmpl(src);
return tmpl.specialize(params);
}
void ShaderCase::specializeShaders(const char* vertexSource, const char* fragmentSource, string& outVertexSource,
string& outFragmentSource, const ValueBlock& valueBlock)
{
const bool usesInout = usesShaderInoutQualifiers(m_targetVersion);
const bool customColorOut = usesInout;
// Vertex shader specialization.
{
ostringstream decl;
ostringstream setup;
const char* vtxIn = usesInout ? "in" : "attribute";
decl << vtxIn << " highp vec4 dEQP_Position;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
const char* typeStr = getDataTypeName(val.dataType);
if (val.storageType == ShaderCase::Value::STORAGE_INPUT)
{
if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT)
{
decl << vtxIn << " " << typeStr << " " << val.valueName << ";\n";
}
else
{
DataType floatType = getDataTypeFloatScalars(val.dataType);
const char* floatTypeStr = getDataTypeName(floatType);
decl << vtxIn << " " << floatTypeStr << " a_" << val.valueName << ";\n";
setup << typeStr << " " << val.valueName << " = " << typeStr << "(a_" << val.valueName << ");\n";
}
}
else if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos)
{
decl << "uniform " << typeStr << " " << val.valueName << ";\n";
}
}
map<string, string> params;
params.insert(pair<string, string>("VERTEX_DECLARATIONS", decl.str()));
params.insert(pair<string, string>("VERTEX_SETUP", setup.str()));
params.insert(pair<string, string>("VERTEX_OUTPUT", string("gl_Position = dEQP_Position;\n")));
StringTemplate tmpl(vertexSource);
outVertexSource = tmpl.specialize(params);
}
// Fragment shader specialization.
{
ostringstream decl;
ostringstream output;
const char* fragColor = customColorOut ? "dEQP_FragColor" : "gl_FragColor";
genCompareFunctions(decl, valueBlock, false);
genCompareOp(output, fragColor, valueBlock, "", DE_NULL);
if (customColorOut)
decl << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n";
for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++)
{
const ShaderCase::Value& val = valueBlock.values[ndx];
const char* valueName = val.valueName.c_str();
const char* refTypeStr = getDataTypeName(val.dataType);
if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT)
{
decl << "uniform " << refTypeStr << " ref_" << valueName << ";\n";
decl << refTypeStr << " " << valueName << ";\n";
}
else if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos)
{
decl << "uniform " << refTypeStr << " " << valueName << ";\n";
}
}
map<string, string> params;
params.insert(pair<string, string>("FRAGMENT_DECLARATIONS", decl.str()));
params.insert(pair<string, string>("FRAGMENT_OUTPUT", output.str()));
params.insert(pair<string, string>("FRAG_COLOR", fragColor));
StringTemplate tmpl(fragmentSource);
outFragmentSource = tmpl.specialize(params);
}
}
void ShaderCase::dumpValues(const ValueBlock& valueBlock, int arrayNdx)
{
vector<vector<float> > attribValues;
int numValues = (int)valueBlock.values.size();
for (int valNdx = 0; valNdx < numValues; valNdx++)
{
const ShaderCase::Value& val = valueBlock.values[valNdx];
const char* valueName = val.valueName.c_str();
DataType dataType = val.dataType;
int scalarSize = getDataTypeScalarSize(val.dataType);
ostringstream result;
result << " ";
if (val.storageType == Value::STORAGE_INPUT)
result << "input ";
else if (val.storageType == Value::STORAGE_UNIFORM)
result << "uniform ";
else if (val.storageType == Value::STORAGE_OUTPUT)
result << "expected ";
result << getDataTypeName(dataType) << " " << valueName << ":";
if (isDataTypeScalar(dataType))
result << " ";
if (isDataTypeVector(dataType))
result << " [ ";
else if (isDataTypeMatrix(dataType))
result << "\n";
if (isDataTypeScalarOrVector(dataType))
{
for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
{
int elemNdx = (val.arrayLength == 1) ? 0 : arrayNdx;
const Value::Element& e = val.elements[elemNdx * scalarSize + scalarNdx];
result << ((scalarNdx != 0) ? ", " : "");
if (isDataTypeFloatOrVec(dataType))
result << e.float32;
else if (isDataTypeIntOrIVec(dataType))
result << e.int32;
else if (isDataTypeBoolOrBVec(dataType))
result << (e.bool32 ? "true" : "false");
}
}
else if (isDataTypeMatrix(dataType))
{
int numRows = getDataTypeMatrixNumRows(dataType);
int numCols = getDataTypeMatrixNumColumns(dataType);
for (int rowNdx = 0; rowNdx < numRows; rowNdx++)
{
result << " [ ";
for (int colNdx = 0; colNdx < numCols; colNdx++)
{
int elemNdx = (val.arrayLength == 1) ? 0 : arrayNdx;
float v = val.elements[elemNdx * scalarSize + rowNdx * numCols + colNdx].float32;
result << ((colNdx == 0) ? "" : ", ") << v;
}
result << " ]\n";
}
}
if (isDataTypeScalar(dataType))
result << "\n";
else if (isDataTypeVector(dataType))
result << " ]\n";
m_testCtx.getLog() << TestLog::Message << result.str() << TestLog::EndMessage;
}
}
} // sl
} // deqp