blob: cc6b779316ed7b5b948de6b6c385e11e8c1bf9e6 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 2.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture format tests.
*
* Constants:
* + nearest-neighbor filtering
* + no mipmaps
* + full texture coordinate range (but not outside) tested
* + accessed from fragment shader
* + texture unit 0
* + named texture object
*
* Variables:
* + texture format
* + texture type: 2D or cubemap
*//*--------------------------------------------------------------------*/
#include "es2fTextureFormatTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluTexture.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "tcuSurfaceAccess.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "deStringUtil.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
namespace deqp
{
namespace gles2
{
namespace Functional
{
using tcu::TestLog;
using std::vector;
using std::string;
using tcu::Sampler;
using namespace glu;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
// Texture2DFormatCase
class Texture2DFormatCase : public tcu::TestCase
{
public:
Texture2DFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height);
~Texture2DFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DFormatCase (const Texture2DFormatCase& other);
Texture2DFormatCase& operator= (const Texture2DFormatCase& other);
glu::RenderContext& m_renderCtx;
const deUint32 m_format;
const deUint32 m_dataType;
const int m_width;
const int m_height;
glu::Texture2D* m_texture;
TextureRenderer m_renderer;
};
Texture2DFormatCase::Texture2DFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
Texture2DFormatCase::~Texture2DFormatCase (void)
{
deinit();
}
void Texture2DFormatCase::init (void)
{
TestLog& log = m_testCtx.getLog();
tcu::TextureFormat fmt = glu::mapGLTransferFormat(m_format, m_dataType);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt);
std::ostringstream fmtName;
fmtName << getTextureFormatStr(m_format) << ", " << getTypeStr(m_dataType);
log << TestLog::Message << "2D texture, " << fmtName.str() << ", " << m_width << "x" << m_height
<< ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient"
<< TestLog::EndMessage;
m_texture = new Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height);
// Fill level 0.
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax);
}
void Texture2DFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Texture2DFormatCase::IterateResult Texture2DFormatCase::iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_2D);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
const deUint32 wrapS = GL_CLAMP_TO_EDGE;
const deUint32 wrapT = GL_CLAMP_TO_EDGE;
const deUint32 minFilter = GL_NEAREST;
const deUint32 magFilter = GL_NEAREST;
renderParams.flags |= RenderParams::LOG_ALL;
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
log << TestLog::Message << "Texture parameters:"
<< "\n WRAP_S = " << getTextureParameterValueStr(GL_TEXTURE_WRAP_S, wrapS)
<< "\n WRAP_T = " << getTextureParameterValueStr(GL_TEXTURE_WRAP_T, wrapT)
<< "\n MIN_FILTER = " << getTextureParameterValueStr(GL_TEXTURE_MIN_FILTER, minFilter)
<< "\n MAG_FILTER = " << getTextureParameterValueStr(GL_TEXTURE_MAG_FILTER, magFilter)
<< TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// TextureCubeFormatCase
class TextureCubeFormatCase : public tcu::TestCase
{
public:
TextureCubeFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height);
~TextureCubeFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeFormatCase (const TextureCubeFormatCase& other);
TextureCubeFormatCase& operator= (const TextureCubeFormatCase& other);
bool testFace (tcu::CubeFace face);
glu::RenderContext& m_renderCtx;
const deUint32 m_format;
const deUint32 m_dataType;
const int m_width;
const int m_height;
glu::TextureCube* m_texture;
TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
TextureCubeFormatCase::TextureCubeFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 format, deUint32 dataType, int width, int height)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_format (format)
, m_dataType (dataType)
, m_width (width)
, m_height (height)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_curFace (0)
, m_isOk (false)
{
}
TextureCubeFormatCase::~TextureCubeFormatCase (void)
{
deinit();
}
void TextureCubeFormatCase::init (void)
{
TestLog& log = m_testCtx.getLog();
tcu::TextureFormat fmt = glu::mapGLTransferFormat(m_format, m_dataType);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt);
std::ostringstream fmtName;
if (m_dataType)
fmtName << getTextureFormatStr(m_format) << ", " << getTypeStr(m_dataType);
else
fmtName << getTextureFormatStr(m_format);
log << TestLog::Message << "Cube map texture, " << fmtName.str() << ", " << m_width << "x" << m_height
<< ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient"
<< TestLog::EndMessage;
DE_ASSERT(m_width == m_height);
m_texture = m_dataType != GL_NONE
? new TextureCube(m_renderCtx, m_format, m_dataType, m_width) // Implicit internal format.
: new TextureCube(m_renderCtx, m_format, m_width); // Explicit internal format.
// Fill level 0.
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
tcu::Vec4 gMin, gMax;
switch (face)
{
case 0: gMin = spec.valueMin.swizzle(0, 1, 2, 3); gMax = spec.valueMax.swizzle(0, 1, 2, 3); break;
case 1: gMin = spec.valueMin.swizzle(2, 1, 0, 3); gMax = spec.valueMax.swizzle(2, 1, 0, 3); break;
case 2: gMin = spec.valueMin.swizzle(1, 2, 0, 3); gMax = spec.valueMax.swizzle(1, 2, 0, 3); break;
case 3: gMin = spec.valueMax.swizzle(0, 1, 2, 3); gMax = spec.valueMin.swizzle(0, 1, 2, 3); break;
case 4: gMin = spec.valueMax.swizzle(2, 1, 0, 3); gMax = spec.valueMin.swizzle(2, 1, 0, 3); break;
case 5: gMin = spec.valueMax.swizzle(1, 2, 0, 3); gMax = spec.valueMin.swizzle(1, 2, 0, 3); break;
default:
DE_ASSERT(false);
}
m_texture->getRefTexture().allocLevel((tcu::CubeFace)face, 0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevelFace(0, (tcu::CubeFace)face), gMin, gMax);
}
// Upload texture data to GL.
m_texture->upload();
// Initialize iteration state.
m_curFace = 0;
m_isOk = true;
}
void TextureCubeFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool TextureCubeFormatCase::testFace (tcu::CubeFace face)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName())+(deUint32)face);
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_CUBE);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.sampler.seamlessCubeMap = false;
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
// Log render info on first face.
if (face == tcu::CUBEFACE_NEGATIVE_X)
renderParams.flags |= RenderParams::LOG_ALL;
computeQuadTexCoordCube(texCoord, face);
// \todo [2011-10-28 pyry] Image set name / section?
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
TextureCubeFormatCase::IterateResult TextureCubeFormatCase::iterate (void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
TextureFormatTests::TextureFormatTests (Context& context)
: TestCaseGroup(context, "format", "Texture Format Tests")
{
}
TextureFormatTests::~TextureFormatTests (void)
{
}
// Compressed2DFormatCase
class Compressed2DFormatCase : public tcu::TestCase
{
public:
Compressed2DFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames);
~Compressed2DFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Compressed2DFormatCase (const Compressed2DFormatCase& other);
Compressed2DFormatCase& operator= (const Compressed2DFormatCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
std::vector<std::string> m_filenames;
glu::Texture2D* m_texture;
TextureRenderer m_renderer;
};
Compressed2DFormatCase::Compressed2DFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_filenames (filenames)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
{
}
Compressed2DFormatCase::~Compressed2DFormatCase (void)
{
deinit();
}
void Compressed2DFormatCase::init (void)
{
// Create texture.
m_texture = Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size(), m_filenames);
}
void Compressed2DFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
Compressed2DFormatCase::IterateResult Compressed2DFormatCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getWidth(), m_texture->getRefTexture().getHeight(), deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f));
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_2D);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
ReferenceParams refParams(TEXTURETYPE_2D);
refParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], refParams);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// CompressedCubeFormatCase
class CompressedCubeFormatCase : public tcu::TestCase
{
public:
CompressedCubeFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames);
~CompressedCubeFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
CompressedCubeFormatCase (const CompressedCubeFormatCase& other);
CompressedCubeFormatCase& operator= (const CompressedCubeFormatCase& other);
bool testFace (tcu::CubeFace face);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
std::vector<std::string> m_filenames;
glu::TextureCube* m_texture;
TextureRenderer m_renderer;
int m_curFace;
bool m_isOk;
};
CompressedCubeFormatCase::CompressedCubeFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_filenames (filenames)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP)
, m_curFace (0)
, m_isOk (false)
{
}
CompressedCubeFormatCase::~CompressedCubeFormatCase (void)
{
deinit();
}
void CompressedCubeFormatCase::init (void)
{
// Create texture.
DE_ASSERT(m_filenames.size() % 6 == 0);
m_texture = TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size()/6, m_filenames);
m_curFace = 0;
m_isOk = true;
}
void CompressedCubeFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool CompressedCubeFormatCase::testFace (tcu::CubeFace face)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getSize(), m_texture->getRefTexture().getSize(), deStringHash(getName())+(deUint32)face);
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
Sampler sampler (Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
computeQuadTexCoordCube(texCoord, face);
// \todo [2011-10-28 pyry] Image set name / section?
log << TestLog::Message << face << TestLog::EndMessage;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_CUBE);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], ReferenceParams(TEXTURETYPE_CUBE, sampler));
// Compare and log.
return compareImages(log, referenceFrame, renderedFrame, threshold);
}
CompressedCubeFormatCase::IterateResult CompressedCubeFormatCase::iterate (void)
{
// Execute test for all faces.
if (!testFace((tcu::CubeFace)m_curFace))
m_isOk = false;
m_curFace += 1;
if (m_curFace == tcu::CUBEFACE_LAST)
{
m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
m_isOk ? "Pass" : "Image comparison failed");
return STOP;
}
else
return CONTINUE;
}
vector<string> toStringVector (const char* const* str, int numStr)
{
vector<string> v;
v.resize(numStr);
for (int i = 0; i < numStr; i++)
v[i] = str[i];
return v;
}
void TextureFormatTests::init (void)
{
struct
{
const char* name;
deUint32 format;
deUint32 dataType;
} texFormats[] =
{
{ "a8", GL_ALPHA, GL_UNSIGNED_BYTE },
{ "l8", GL_LUMINANCE, GL_UNSIGNED_BYTE },
{ "la88", GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE },
{ "rgb565", GL_RGB, GL_UNSIGNED_SHORT_5_6_5 },
{ "rgb888", GL_RGB, GL_UNSIGNED_BYTE },
{ "rgba4444", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 },
{ "rgba5551", GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1 },
{ "rgba8888", GL_RGBA, GL_UNSIGNED_BYTE }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(texFormats); formatNdx++)
{
deUint32 format = texFormats[formatNdx].format;
deUint32 dataType = texFormats[formatNdx].dataType;
string nameBase = texFormats[formatNdx].name;
string descriptionBase = string(glu::getTextureFormatName(format)) + ", " + glu::getTypeName(dataType);
addChild(new Texture2DFormatCase (m_testCtx, m_context.getRenderContext(), (nameBase + "_2d_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 128, 128));
addChild(new Texture2DFormatCase (m_testCtx, m_context.getRenderContext(), (nameBase + "_2d_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 63, 112));
addChild(new TextureCubeFormatCase (m_testCtx, m_context.getRenderContext(), (nameBase + "_cube_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 64, 64));
addChild(new TextureCubeFormatCase (m_testCtx, m_context.getRenderContext(), (nameBase + "_cube_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 57, 57));
}
// ETC-1 compressed formats.
{
static const char* filenames[] =
{
"data/etc1/photo_helsinki_mip_0.pkm",
"data/etc1/photo_helsinki_mip_1.pkm",
"data/etc1/photo_helsinki_mip_2.pkm",
"data/etc1/photo_helsinki_mip_3.pkm",
"data/etc1/photo_helsinki_mip_4.pkm",
"data/etc1/photo_helsinki_mip_5.pkm",
"data/etc1/photo_helsinki_mip_6.pkm",
"data/etc1/photo_helsinki_mip_7.pkm"
};
addChild(new Compressed2DFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", toStringVector(filenames, DE_LENGTH_OF_ARRAY(filenames))));
}
{
vector<string> filenames;
filenames.push_back("data/etc1/photo_helsinki_113x89.pkm");
addChild(new Compressed2DFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_npot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", filenames));
}
{
static const char* faceExt[] = { "neg_x", "pos_x", "neg_y", "pos_y", "neg_z", "pos_z" };
const int potNumLevels = 7;
vector<string> potFilenames;
for (int level = 0; level < potNumLevels; level++)
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
potFilenames.push_back(string("data/etc1/skybox_") + faceExt[face] + "_mip_" + de::toString(level) + ".pkm");
addChild(new CompressedCubeFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_CUBE_MAP", potFilenames));
vector<string> npotFilenames;
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
npotFilenames.push_back(string("data/etc1/skybox_61x61_") + faceExt[face] + ".pkm");
addChild(new CompressedCubeFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_npot", "GL_ETC_RGB8_OES, GL_TEXTURE_CUBE_MAP", npotFilenames));
}
}
} // Functional
} // gles2
} // deqp