blob: 8b4e48c848f826c9adb490cb34c2f2e18d04a4c4 [file] [log] [blame]
/*-------------------------------------------------------------------------
* OpenGL Conformance Test Suite
* -----------------------------
*
* Copyright (c) 2016 Google Inc.
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/ /*!
* \file
* \brief Shader indexing (arrays, vector, matrices) tests.
*/ /*-------------------------------------------------------------------*/
#include "glcShaderIndexingTests.hpp"
#include "glcShaderRenderCase.hpp"
#include "gluShaderUtil.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "tcuStringTemplate.hpp"
#include "deInt32.h"
#include "deMemory.h"
#include <map>
using namespace std;
using namespace tcu;
using namespace glu;
using namespace deqp;
namespace deqp
{
enum IndexAccessType
{
INDEXACCESS_STATIC = 0,
INDEXACCESS_DYNAMIC,
INDEXACCESS_STATIC_LOOP,
INDEXACCESS_DYNAMIC_LOOP,
INDEXACCESS_LAST
};
static const char* getIndexAccessTypeName(IndexAccessType accessType)
{
static const char* s_names[INDEXACCESS_LAST] = { "static", "dynamic", "static_loop", "dynamic_loop" };
DE_ASSERT(deInBounds32((int)accessType, 0, INDEXACCESS_LAST));
return s_names[(int)accessType];
}
enum VectorAccessType
{
DIRECT = 0,
COMPONENT,
SUBSCRIPT_STATIC,
SUBSCRIPT_DYNAMIC,
SUBSCRIPT_STATIC_LOOP,
SUBSCRIPT_DYNAMIC_LOOP,
VECTORACCESS_LAST
};
static const char* getVectorAccessTypeName(VectorAccessType accessType)
{
static const char* s_names[VECTORACCESS_LAST] = { "direct",
"component",
"static_subscript",
"dynamic_subscript",
"static_loop_subscript",
"dynamic_loop_subscript" };
DE_ASSERT(deInBounds32((int)accessType, 0, VECTORACCESS_LAST));
return s_names[(int)accessType];
}
void evalArrayCoordsFloat(ShaderEvalContext& c)
{
c.color.x() = 1.875f * c.coords.x();
}
void evalArrayCoordsVec2(ShaderEvalContext& c)
{
c.color.xy() = 1.875f * c.coords.swizzle(0, 1);
}
void evalArrayCoordsVec3(ShaderEvalContext& c)
{
c.color.xyz() = 1.875f * c.coords.swizzle(0, 1, 2);
}
void evalArrayCoordsVec4(ShaderEvalContext& c)
{
c.color = 1.875f * c.coords;
}
static ShaderEvalFunc getArrayCoordsEvalFunc(DataType dataType)
{
if (dataType == TYPE_FLOAT)
return evalArrayCoordsFloat;
else if (dataType == TYPE_FLOAT_VEC2)
return evalArrayCoordsVec2;
else if (dataType == TYPE_FLOAT_VEC3)
return evalArrayCoordsVec3;
else if (dataType == TYPE_FLOAT_VEC4)
return evalArrayCoordsVec4;
DE_ASSERT(DE_FALSE && "Invalid data type.");
return NULL;
}
void evalArrayUniformFloat(ShaderEvalContext& c)
{
c.color.x() = 1.875f * c.constCoords.x();
}
void evalArrayUniformVec2(ShaderEvalContext& c)
{
c.color.xy() = 1.875f * c.constCoords.swizzle(0, 1);
}
void evalArrayUniformVec3(ShaderEvalContext& c)
{
c.color.xyz() = 1.875f * c.constCoords.swizzle(0, 1, 2);
}
void evalArrayUniformVec4(ShaderEvalContext& c)
{
c.color = 1.875f * c.constCoords;
}
static ShaderEvalFunc getArrayUniformEvalFunc(DataType dataType)
{
if (dataType == TYPE_FLOAT)
return evalArrayUniformFloat;
else if (dataType == TYPE_FLOAT_VEC2)
return evalArrayUniformVec2;
else if (dataType == TYPE_FLOAT_VEC3)
return evalArrayUniformVec3;
else if (dataType == TYPE_FLOAT_VEC4)
return evalArrayUniformVec4;
DE_ASSERT(DE_FALSE && "Invalid data type.");
return NULL;
}
// ShaderIndexingCase
class ShaderIndexingCase : public ShaderRenderCase
{
public:
ShaderIndexingCase(Context& context, const char* name, const char* description, bool isVertexCase, DataType varType,
ShaderEvalFunc evalFunc, const char* vertShaderSource, const char* fragShaderSource);
virtual ~ShaderIndexingCase(void);
private:
ShaderIndexingCase(const ShaderIndexingCase&); // not allowed!
ShaderIndexingCase& operator=(const ShaderIndexingCase&); // not allowed!
virtual void setup(deUint32 programID);
virtual void setupUniforms(deUint32 programID, const Vec4& constCoords);
DataType m_varType;
};
ShaderIndexingCase::ShaderIndexingCase(Context& context, const char* name, const char* description, bool isVertexCase,
DataType varType, ShaderEvalFunc evalFunc, const char* vertShaderSource,
const char* fragShaderSource)
: ShaderRenderCase(context.getTestContext(), context.getRenderContext(), context.getContextInfo(), name,
description, isVertexCase, evalFunc)
{
m_varType = varType;
m_vertShaderSource = vertShaderSource;
m_fragShaderSource = fragShaderSource;
}
ShaderIndexingCase::~ShaderIndexingCase(void)
{
}
void ShaderIndexingCase::setup(deUint32 programID)
{
DE_UNREF(programID);
}
void ShaderIndexingCase::setupUniforms(deUint32 programID, const Vec4& constCoords)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
DE_UNREF(constCoords);
int arrLoc = gl.getUniformLocation(programID, "u_arr");
if (arrLoc != -1)
{
//int scalarSize = getDataTypeScalarSize(m_varType);
if (m_varType == TYPE_FLOAT)
{
float arr[4];
arr[0] = constCoords.x();
arr[1] = constCoords.x() * 0.5f;
arr[2] = constCoords.x() * 0.25f;
arr[3] = constCoords.x() * 0.125f;
gl.uniform1fv(arrLoc, 4, &arr[0]);
}
else if (m_varType == TYPE_FLOAT_VEC2)
{
Vec2 arr[4];
arr[0] = constCoords.swizzle(0, 1);
arr[1] = constCoords.swizzle(0, 1) * 0.5f;
arr[2] = constCoords.swizzle(0, 1) * 0.25f;
arr[3] = constCoords.swizzle(0, 1) * 0.125f;
gl.uniform2fv(arrLoc, 4, arr[0].getPtr());
}
else if (m_varType == TYPE_FLOAT_VEC3)
{
Vec3 arr[4];
arr[0] = constCoords.swizzle(0, 1, 2);
arr[1] = constCoords.swizzle(0, 1, 2) * 0.5f;
arr[2] = constCoords.swizzle(0, 1, 2) * 0.25f;
arr[3] = constCoords.swizzle(0, 1, 2) * 0.125f;
gl.uniform3fv(arrLoc, 4, arr[0].getPtr());
}
else if (m_varType == TYPE_FLOAT_VEC4)
{
Vec4 arr[4];
arr[0] = constCoords.swizzle(0, 1, 2, 3);
arr[1] = constCoords.swizzle(0, 1, 2, 3) * 0.5f;
arr[2] = constCoords.swizzle(0, 1, 2, 3) * 0.25f;
arr[3] = constCoords.swizzle(0, 1, 2, 3) * 0.125f;
gl.uniform4fv(arrLoc, 4, arr[0].getPtr());
}
else
DE_TEST_ASSERT(false);
}
}
// Helpers.
static ShaderIndexingCase* createVaryingArrayCase(Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion, DataType varType,
IndexAccessType vertAccess, IndexAccessType fragAccess)
{
DE_ASSERT(glslVersion == glu::GLSL_VERSION_300_ES || glslVersion == glu::GLSL_VERSION_310_ES ||
glslVersion >= glu::GLSL_VERSION_330);
std::ostringstream vtx;
vtx << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
vtx << "in highp vec4 a_position;\n";
vtx << "in highp vec4 a_coords;\n";
if (vertAccess == INDEXACCESS_DYNAMIC)
vtx << "uniform mediump int ui_zero, ui_one, ui_two, ui_three;\n";
else if (vertAccess == INDEXACCESS_DYNAMIC_LOOP)
vtx << "uniform mediump int ui_four;\n";
vtx << "out ${PRECISION} ${VAR_TYPE} var[${ARRAY_LEN}];\n";
vtx << "\n";
vtx << "void main()\n";
vtx << "{\n";
vtx << " gl_Position = a_position;\n";
if (vertAccess == INDEXACCESS_STATIC)
{
vtx << " var[0] = ${VAR_TYPE}(a_coords);\n";
vtx << " var[1] = ${VAR_TYPE}(a_coords) * 0.5;\n";
vtx << " var[2] = ${VAR_TYPE}(a_coords) * 0.25;\n";
vtx << " var[3] = ${VAR_TYPE}(a_coords) * 0.125;\n";
}
else if (vertAccess == INDEXACCESS_DYNAMIC)
{
vtx << " var[ui_zero] = ${VAR_TYPE}(a_coords);\n";
vtx << " var[ui_one] = ${VAR_TYPE}(a_coords) * 0.5;\n";
vtx << " var[ui_two] = ${VAR_TYPE}(a_coords) * 0.25;\n";
vtx << " var[ui_three] = ${VAR_TYPE}(a_coords) * 0.125;\n";
}
else if (vertAccess == INDEXACCESS_STATIC_LOOP)
{
vtx << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(a_coords);\n";
vtx << " for (int i = 0; i < 4; i++)\n";
vtx << " {\n";
vtx << " var[i] = ${VAR_TYPE}(coords);\n";
vtx << " coords = coords * 0.5;\n";
vtx << " }\n";
}
else
{
DE_ASSERT(vertAccess == INDEXACCESS_DYNAMIC_LOOP);
vtx << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(a_coords);\n";
vtx << " for (int i = 0; i < ui_four; i++)\n";
vtx << " {\n";
vtx << " var[i] = ${VAR_TYPE}(coords);\n";
vtx << " coords = coords * 0.5;\n";
vtx << " }\n";
}
vtx << "}\n";
std::ostringstream frag;
frag << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
frag << "precision mediump int;\n";
frag << "layout(location = 0) out mediump vec4 o_color;\n";
if (fragAccess == INDEXACCESS_DYNAMIC)
frag << "uniform mediump int ui_zero, ui_one, ui_two, ui_three;\n";
else if (fragAccess == INDEXACCESS_DYNAMIC_LOOP)
frag << "uniform int ui_four;\n";
frag << "in ${PRECISION} ${VAR_TYPE} var[${ARRAY_LEN}];\n";
frag << "\n";
frag << "void main()\n";
frag << "{\n";
frag << " ${PRECISION} ${VAR_TYPE} res = ${VAR_TYPE}(0.0);\n";
if (fragAccess == INDEXACCESS_STATIC)
{
frag << " res += var[0];\n";
frag << " res += var[1];\n";
frag << " res += var[2];\n";
frag << " res += var[3];\n";
}
else if (fragAccess == INDEXACCESS_DYNAMIC)
{
frag << " res += var[ui_zero];\n";
frag << " res += var[ui_one];\n";
frag << " res += var[ui_two];\n";
frag << " res += var[ui_three];\n";
}
else if (fragAccess == INDEXACCESS_STATIC_LOOP)
{
frag << " for (int i = 0; i < 4; i++)\n";
frag << " res += var[i];\n";
}
else
{
DE_ASSERT(fragAccess == INDEXACCESS_DYNAMIC_LOOP);
frag << " for (int i = 0; i < ui_four; i++)\n";
frag << " res += var[i];\n";
}
frag << " o_color = vec4(res${PADDING});\n";
frag << "}\n";
// Fill in shader templates.
map<string, string> params;
params.insert(pair<string, string>("VAR_TYPE", getDataTypeName(varType)));
params.insert(pair<string, string>("ARRAY_LEN", "4"));
params.insert(pair<string, string>("PRECISION", "mediump"));
if (varType == TYPE_FLOAT)
params.insert(pair<string, string>("PADDING", ", 0.0, 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC2)
params.insert(pair<string, string>("PADDING", ", 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC3)
params.insert(pair<string, string>("PADDING", ", 1.0"));
else
params.insert(pair<string, string>("PADDING", ""));
StringTemplate vertTemplate(vtx.str().c_str());
StringTemplate fragTemplate(frag.str().c_str());
string vertexShaderSource = vertTemplate.specialize(params);
string fragmentShaderSource = fragTemplate.specialize(params);
ShaderEvalFunc evalFunc = getArrayCoordsEvalFunc(varType);
return new ShaderIndexingCase(context, caseName, description, true, varType, evalFunc, vertexShaderSource.c_str(),
fragmentShaderSource.c_str());
}
static ShaderIndexingCase* createUniformArrayCase(Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion, bool isVertexCase, DataType varType,
IndexAccessType readAccess)
{
DE_ASSERT(glslVersion == glu::GLSL_VERSION_300_ES || glslVersion == glu::GLSL_VERSION_310_ES ||
glslVersion >= glu::GLSL_VERSION_330);
std::ostringstream vtx;
std::ostringstream frag;
std::ostringstream& op = isVertexCase ? vtx : frag;
vtx << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
frag << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
vtx << "in highp vec4 a_position;\n";
vtx << "in highp vec4 a_coords;\n";
frag << "layout(location = 0) out mediump vec4 o_color;\n";
if (isVertexCase)
{
vtx << "out mediump vec4 v_color;\n";
frag << "in mediump vec4 v_color;\n";
}
else
{
vtx << "out mediump vec4 v_coords;\n";
frag << "in mediump vec4 v_coords;\n";
}
if (readAccess == INDEXACCESS_DYNAMIC)
op << "uniform mediump int ui_zero, ui_one, ui_two, ui_three;\n";
else if (readAccess == INDEXACCESS_DYNAMIC_LOOP)
op << "uniform mediump int ui_four;\n";
op << "uniform ${PRECISION} ${VAR_TYPE} u_arr[${ARRAY_LEN}];\n";
vtx << "\n";
vtx << "void main()\n";
vtx << "{\n";
vtx << " gl_Position = a_position;\n";
frag << "\n";
frag << "void main()\n";
frag << "{\n";
// Read array.
op << " ${PRECISION} ${VAR_TYPE} res = ${VAR_TYPE}(0.0);\n";
if (readAccess == INDEXACCESS_STATIC)
{
op << " res += u_arr[0];\n";
op << " res += u_arr[1];\n";
op << " res += u_arr[2];\n";
op << " res += u_arr[3];\n";
}
else if (readAccess == INDEXACCESS_DYNAMIC)
{
op << " res += u_arr[ui_zero];\n";
op << " res += u_arr[ui_one];\n";
op << " res += u_arr[ui_two];\n";
op << " res += u_arr[ui_three];\n";
}
else if (readAccess == INDEXACCESS_STATIC_LOOP)
{
op << " for (int i = 0; i < 4; i++)\n";
op << " res += u_arr[i];\n";
}
else
{
DE_ASSERT(readAccess == INDEXACCESS_DYNAMIC_LOOP);
op << " for (int i = 0; i < ui_four; i++)\n";
op << " res += u_arr[i];\n";
}
if (isVertexCase)
{
vtx << " v_color = vec4(res${PADDING});\n";
frag << " o_color = v_color;\n";
}
else
{
vtx << " v_coords = a_coords;\n";
frag << " o_color = vec4(res${PADDING});\n";
}
vtx << "}\n";
frag << "}\n";
// Fill in shader templates.
map<string, string> params;
params.insert(pair<string, string>("VAR_TYPE", getDataTypeName(varType)));
params.insert(pair<string, string>("ARRAY_LEN", "4"));
params.insert(pair<string, string>("PRECISION", "mediump"));
if (varType == TYPE_FLOAT)
params.insert(pair<string, string>("PADDING", ", 0.0, 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC2)
params.insert(pair<string, string>("PADDING", ", 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC3)
params.insert(pair<string, string>("PADDING", ", 1.0"));
else
params.insert(pair<string, string>("PADDING", ""));
StringTemplate vertTemplate(vtx.str().c_str());
StringTemplate fragTemplate(frag.str().c_str());
string vertexShaderSource = vertTemplate.specialize(params);
string fragmentShaderSource = fragTemplate.specialize(params);
ShaderEvalFunc evalFunc = getArrayUniformEvalFunc(varType);
return new ShaderIndexingCase(context, caseName, description, isVertexCase, varType, evalFunc,
vertexShaderSource.c_str(), fragmentShaderSource.c_str());
}
static ShaderIndexingCase* createTmpArrayCase(Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion, bool isVertexCase, DataType varType,
IndexAccessType writeAccess, IndexAccessType readAccess)
{
DE_ASSERT(glslVersion == glu::GLSL_VERSION_300_ES || glslVersion == glu::GLSL_VERSION_310_ES ||
glslVersion >= glu::GLSL_VERSION_330);
std::ostringstream vtx;
std::ostringstream frag;
std::ostringstream& op = isVertexCase ? vtx : frag;
vtx << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
frag << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
vtx << "in highp vec4 a_position;\n";
vtx << "in highp vec4 a_coords;\n";
frag << "layout(location = 0) out mediump vec4 o_color;\n";
if (isVertexCase)
{
vtx << "out mediump vec4 v_color;\n";
frag << "in mediump vec4 v_color;\n";
}
else
{
vtx << "out mediump vec4 v_coords;\n";
frag << "in mediump vec4 v_coords;\n";
}
if (writeAccess == INDEXACCESS_DYNAMIC || readAccess == INDEXACCESS_DYNAMIC)
op << "uniform mediump int ui_zero, ui_one, ui_two, ui_three;\n";
if (writeAccess == INDEXACCESS_DYNAMIC_LOOP || readAccess == INDEXACCESS_DYNAMIC_LOOP)
op << "uniform mediump int ui_four;\n";
vtx << "\n";
vtx << "void main()\n";
vtx << "{\n";
vtx << " gl_Position = a_position;\n";
frag << "\n";
frag << "void main()\n";
frag << "{\n";
// Write array.
if (isVertexCase)
op << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(a_coords);\n";
else
op << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(v_coords);\n";
op << " ${PRECISION} ${VAR_TYPE} arr[${ARRAY_LEN}];\n";
if (writeAccess == INDEXACCESS_STATIC)
{
op << " arr[0] = ${VAR_TYPE}(coords);\n";
op << " arr[1] = ${VAR_TYPE}(coords) * 0.5;\n";
op << " arr[2] = ${VAR_TYPE}(coords) * 0.25;\n";
op << " arr[3] = ${VAR_TYPE}(coords) * 0.125;\n";
}
else if (writeAccess == INDEXACCESS_DYNAMIC)
{
op << " arr[ui_zero] = ${VAR_TYPE}(coords);\n";
op << " arr[ui_one] = ${VAR_TYPE}(coords) * 0.5;\n";
op << " arr[ui_two] = ${VAR_TYPE}(coords) * 0.25;\n";
op << " arr[ui_three] = ${VAR_TYPE}(coords) * 0.125;\n";
}
else if (writeAccess == INDEXACCESS_STATIC_LOOP)
{
op << " for (int i = 0; i < 4; i++)\n";
op << " {\n";
op << " arr[i] = ${VAR_TYPE}(coords);\n";
op << " coords = coords * 0.5;\n";
op << " }\n";
}
else
{
DE_ASSERT(writeAccess == INDEXACCESS_DYNAMIC_LOOP);
op << " for (int i = 0; i < ui_four; i++)\n";
op << " {\n";
op << " arr[i] = ${VAR_TYPE}(coords);\n";
op << " coords = coords * 0.5;\n";
op << " }\n";
}
// Read array.
op << " ${PRECISION} ${VAR_TYPE} res = ${VAR_TYPE}(0.0);\n";
if (readAccess == INDEXACCESS_STATIC)
{
op << " res += arr[0];\n";
op << " res += arr[1];\n";
op << " res += arr[2];\n";
op << " res += arr[3];\n";
}
else if (readAccess == INDEXACCESS_DYNAMIC)
{
op << " res += arr[ui_zero];\n";
op << " res += arr[ui_one];\n";
op << " res += arr[ui_two];\n";
op << " res += arr[ui_three];\n";
}
else if (readAccess == INDEXACCESS_STATIC_LOOP)
{
op << " for (int i = 0; i < 4; i++)\n";
op << " res += arr[i];\n";
}
else
{
DE_ASSERT(readAccess == INDEXACCESS_DYNAMIC_LOOP);
op << " for (int i = 0; i < ui_four; i++)\n";
op << " res += arr[i];\n";
}
if (isVertexCase)
{
vtx << " v_color = vec4(res${PADDING});\n";
frag << " o_color = v_color;\n";
}
else
{
vtx << " v_coords = a_coords;\n";
frag << " o_color = vec4(res${PADDING});\n";
}
vtx << "}\n";
frag << "}\n";
// Fill in shader templates.
map<string, string> params;
params.insert(pair<string, string>("VAR_TYPE", getDataTypeName(varType)));
params.insert(pair<string, string>("ARRAY_LEN", "4"));
params.insert(pair<string, string>("PRECISION", "mediump"));
if (varType == TYPE_FLOAT)
params.insert(pair<string, string>("PADDING", ", 0.0, 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC2)
params.insert(pair<string, string>("PADDING", ", 0.0, 1.0"));
else if (varType == TYPE_FLOAT_VEC3)
params.insert(pair<string, string>("PADDING", ", 1.0"));
else
params.insert(pair<string, string>("PADDING", ""));
StringTemplate vertTemplate(vtx.str().c_str());
StringTemplate fragTemplate(frag.str().c_str());
string vertexShaderSource = vertTemplate.specialize(params);
string fragmentShaderSource = fragTemplate.specialize(params);
ShaderEvalFunc evalFunc = getArrayCoordsEvalFunc(varType);
return new ShaderIndexingCase(context, caseName, description, isVertexCase, varType, evalFunc,
vertexShaderSource.c_str(), fragmentShaderSource.c_str());
}
void evalGreenColor (ShaderEvalContext& c)
{
c.color = Vec4(0.0f, 1.0f, 0.0f, 1.0f);
}
static ShaderIndexingCase* createTmpArrayVertexIdCase (Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion)
{
DE_ASSERT(glslVersion == glu::GLSL_VERSION_300_ES || glslVersion == glu::GLSL_VERSION_310_ES ||
glslVersion >= glu::GLSL_VERSION_330);
std::string vtx = glu::getGLSLVersionDeclaration(glslVersion) + std::string("\n"
"precision highp float;\n"
"in vec4 a_position;\n"
"out float color[4];\n"
"void main()\n"
"{\n"
" for(int i = 0; i < 4; i++)\n"
" {\n"
" int j = (gl_VertexID + i) % 4;\n"
" color[j] = (j % 2 == 0) ? 0.0 : 1.0;\n"
" }\n"
" gl_Position = vec4(a_position.xy, 0.0, 1.0);\n"
"}\n");
std::string frag = glu::getGLSLVersionDeclaration(glslVersion) + std::string("\n"
"precision highp float;\n"
"in float color[4];\n"
"layout(location = 0) out vec4 o_color;\n"
"void main()\n"
"{\n"
" float temp[4];\n"
" for(int i = 0; i < 4; i++)\n"
" {\n"
" temp[i] = color[i];\n"
" o_color = vec4(temp[0], temp[1], temp[2], temp[3]);\n"
" }\n"
"}\n");
return new ShaderIndexingCase(context, caseName, description, false, TYPE_FLOAT, evalGreenColor,
vtx.c_str(), frag.c_str());
}
// VECTOR SUBSCRIPT.
void evalSubscriptVec2(ShaderEvalContext& c)
{
c.color.xyz() = Vec3(c.coords.x() + 0.5f * c.coords.y());
}
void evalSubscriptVec3(ShaderEvalContext& c)
{
c.color.xyz() = Vec3(c.coords.x() + 0.5f * c.coords.y() + 0.25f * c.coords.z());
}
void evalSubscriptVec4(ShaderEvalContext& c)
{
c.color.xyz() = Vec3(c.coords.x() + 0.5f * c.coords.y() + 0.25f * c.coords.z() + 0.125f * c.coords.w());
}
static ShaderEvalFunc getVectorSubscriptEvalFunc(DataType dataType)
{
if (dataType == TYPE_FLOAT_VEC2)
return evalSubscriptVec2;
else if (dataType == TYPE_FLOAT_VEC3)
return evalSubscriptVec3;
else if (dataType == TYPE_FLOAT_VEC4)
return evalSubscriptVec4;
DE_ASSERT(DE_FALSE && "Invalid data type.");
return NULL;
}
static ShaderIndexingCase* createVectorSubscriptCase(Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion, bool isVertexCase, DataType varType,
VectorAccessType writeAccess, VectorAccessType readAccess)
{
std::ostringstream vtx;
std::ostringstream frag;
std::ostringstream& op = isVertexCase ? vtx : frag;
int vecLen = getDataTypeScalarSize(varType);
const char* vecLenName = getIntUniformName(vecLen);
vtx << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
frag << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
vtx << "in highp vec4 a_position;\n";
vtx << "in highp vec4 a_coords;\n";
frag << "layout(location = 0) out mediump vec4 o_color;\n";
if (isVertexCase)
{
vtx << "out mediump vec3 v_color;\n";
frag << "in mediump vec3 v_color;\n";
}
else
{
vtx << "out mediump vec4 v_coords;\n";
frag << "in mediump vec4 v_coords;\n";
}
if (writeAccess == SUBSCRIPT_DYNAMIC || readAccess == SUBSCRIPT_DYNAMIC)
{
op << "uniform mediump int ui_zero";
if (vecLen >= 2)
op << ", ui_one";
if (vecLen >= 3)
op << ", ui_two";
if (vecLen >= 4)
op << ", ui_three";
op << ";\n";
}
if (writeAccess == SUBSCRIPT_DYNAMIC_LOOP || readAccess == SUBSCRIPT_DYNAMIC_LOOP)
op << "uniform mediump int " << vecLenName << ";\n";
vtx << "\n";
vtx << "void main()\n";
vtx << "{\n";
vtx << " gl_Position = a_position;\n";
frag << "\n";
frag << "void main()\n";
frag << "{\n";
// Write vector.
if (isVertexCase)
op << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(a_coords);\n";
else
op << " ${PRECISION} ${VAR_TYPE} coords = ${VAR_TYPE}(v_coords);\n";
op << " ${PRECISION} ${VAR_TYPE} tmp;\n";
if (writeAccess == DIRECT)
op << " tmp = coords.${SWIZZLE} * vec4(1.0, 0.5, 0.25, 0.125).${SWIZZLE};\n";
else if (writeAccess == COMPONENT)
{
op << " tmp.x = coords.x;\n";
if (vecLen >= 2)
op << " tmp.y = coords.y * 0.5;\n";
if (vecLen >= 3)
op << " tmp.z = coords.z * 0.25;\n";
if (vecLen >= 4)
op << " tmp.w = coords.w * 0.125;\n";
}
else if (writeAccess == SUBSCRIPT_STATIC)
{
op << " tmp[0] = coords.x;\n";
if (vecLen >= 2)
op << " tmp[1] = coords.y * 0.5;\n";
if (vecLen >= 3)
op << " tmp[2] = coords.z * 0.25;\n";
if (vecLen >= 4)
op << " tmp[3] = coords.w * 0.125;\n";
}
else if (writeAccess == SUBSCRIPT_DYNAMIC)
{
op << " tmp[ui_zero] = coords.x;\n";
if (vecLen >= 2)
op << " tmp[ui_one] = coords.y * 0.5;\n";
if (vecLen >= 3)
op << " tmp[ui_two] = coords.z * 0.25;\n";
if (vecLen >= 4)
op << " tmp[ui_three] = coords.w * 0.125;\n";
}
else if (writeAccess == SUBSCRIPT_STATIC_LOOP)
{
op << " for (int i = 0; i < " << vecLen << "; i++)\n";
op << " {\n";
op << " tmp[i] = coords.x;\n";
op << " coords = coords.${ROT_SWIZZLE} * 0.5;\n";
op << " }\n";
}
else
{
DE_ASSERT(writeAccess == SUBSCRIPT_DYNAMIC_LOOP);
op << " for (int i = 0; i < " << vecLenName << "; i++)\n";
op << " {\n";
op << " tmp[i] = coords.x;\n";
op << " coords = coords.${ROT_SWIZZLE} * 0.5;\n";
op << " }\n";
}
// Read vector.
op << " ${PRECISION} float res = 0.0;\n";
if (readAccess == DIRECT)
op << " res = dot(tmp, ${VAR_TYPE}(1.0));\n";
else if (readAccess == COMPONENT)
{
op << " res += tmp.x;\n";
if (vecLen >= 2)
op << " res += tmp.y;\n";
if (vecLen >= 3)
op << " res += tmp.z;\n";
if (vecLen >= 4)
op << " res += tmp.w;\n";
}
else if (readAccess == SUBSCRIPT_STATIC)
{
op << " res += tmp[0];\n";
if (vecLen >= 2)
op << " res += tmp[1];\n";
if (vecLen >= 3)
op << " res += tmp[2];\n";
if (vecLen >= 4)
op << " res += tmp[3];\n";
}
else if (readAccess == SUBSCRIPT_DYNAMIC)
{
op << " res += tmp[ui_zero];\n";
if (vecLen >= 2)
op << " res += tmp[ui_one];\n";
if (vecLen >= 3)
op << " res += tmp[ui_two];\n";
if (vecLen >= 4)
op << " res += tmp[ui_three];\n";
}
else if (readAccess == SUBSCRIPT_STATIC_LOOP)
{
op << " for (int i = 0; i < " << vecLen << "; i++)\n";
op << " res += tmp[i];\n";
}
else
{
DE_ASSERT(readAccess == SUBSCRIPT_DYNAMIC_LOOP);
op << " for (int i = 0; i < " << vecLenName << "; i++)\n";
op << " res += tmp[i];\n";
}
if (isVertexCase)
{
vtx << " v_color = vec3(res);\n";
frag << " o_color = vec4(v_color.rgb, 1.0);\n";
}
else
{
vtx << " v_coords = a_coords;\n";
frag << " o_color = vec4(vec3(res), 1.0);\n";
}
vtx << "}\n";
frag << "}\n";
// Fill in shader templates.
static const char* s_swizzles[5] = { "", "x", "xy", "xyz", "xyzw" };
static const char* s_rotSwizzles[5] = { "", "x", "yx", "yzx", "yzwx" };
map<string, string> params;
params.insert(pair<string, string>("VAR_TYPE", getDataTypeName(varType)));
params.insert(pair<string, string>("PRECISION", "mediump"));
params.insert(pair<string, string>("SWIZZLE", s_swizzles[vecLen]));
params.insert(pair<string, string>("ROT_SWIZZLE", s_rotSwizzles[vecLen]));
StringTemplate vertTemplate(vtx.str().c_str());
StringTemplate fragTemplate(frag.str().c_str());
string vertexShaderSource = vertTemplate.specialize(params);
string fragmentShaderSource = fragTemplate.specialize(params);
ShaderEvalFunc evalFunc = getVectorSubscriptEvalFunc(varType);
return new ShaderIndexingCase(context, caseName, description, isVertexCase, varType, evalFunc,
vertexShaderSource.c_str(), fragmentShaderSource.c_str());
}
// MATRIX SUBSCRIPT.
void evalSubscriptMat2(ShaderEvalContext& c)
{
c.color.xy() = c.coords.swizzle(0, 1) + 0.5f * c.coords.swizzle(1, 2);
}
void evalSubscriptMat2x3(ShaderEvalContext& c)
{
c.color.xyz() = c.coords.swizzle(0, 1, 2) + 0.5f * c.coords.swizzle(1, 2, 3);
}
void evalSubscriptMat2x4(ShaderEvalContext& c)
{
c.color = c.coords.swizzle(0, 1, 2, 3) + 0.5f * c.coords.swizzle(1, 2, 3, 0);
}
void evalSubscriptMat3x2(ShaderEvalContext& c)
{
c.color.xy() = c.coords.swizzle(0, 1) + 0.5f * c.coords.swizzle(1, 2) + 0.25f * c.coords.swizzle(2, 3);
}
void evalSubscriptMat3(ShaderEvalContext& c)
{
c.color.xyz() = c.coords.swizzle(0, 1, 2) + 0.5f * c.coords.swizzle(1, 2, 3) + 0.25f * c.coords.swizzle(2, 3, 0);
}
void evalSubscriptMat3x4(ShaderEvalContext& c)
{
c.color = c.coords.swizzle(0, 1, 2, 3) + 0.5f * c.coords.swizzle(1, 2, 3, 0) + 0.25f * c.coords.swizzle(2, 3, 0, 1);
}
void evalSubscriptMat4x2(ShaderEvalContext& c)
{
c.color.xy() = c.coords.swizzle(0, 1) + 0.5f * c.coords.swizzle(1, 2) + 0.25f * c.coords.swizzle(2, 3) +
0.125f * c.coords.swizzle(3, 0);
}
void evalSubscriptMat4x3(ShaderEvalContext& c)
{
c.color.xyz() = c.coords.swizzle(0, 1, 2) + 0.5f * c.coords.swizzle(1, 2, 3) + 0.25f * c.coords.swizzle(2, 3, 0) +
0.125f * c.coords.swizzle(3, 0, 1);
}
void evalSubscriptMat4(ShaderEvalContext& c)
{
c.color = c.coords + 0.5f * c.coords.swizzle(1, 2, 3, 0) + 0.25f * c.coords.swizzle(2, 3, 0, 1) +
0.125f * c.coords.swizzle(3, 0, 1, 2);
}
static ShaderEvalFunc getMatrixSubscriptEvalFunc(DataType dataType)
{
switch (dataType)
{
case TYPE_FLOAT_MAT2:
return evalSubscriptMat2;
case TYPE_FLOAT_MAT2X3:
return evalSubscriptMat2x3;
case TYPE_FLOAT_MAT2X4:
return evalSubscriptMat2x4;
case TYPE_FLOAT_MAT3X2:
return evalSubscriptMat3x2;
case TYPE_FLOAT_MAT3:
return evalSubscriptMat3;
case TYPE_FLOAT_MAT3X4:
return evalSubscriptMat3x4;
case TYPE_FLOAT_MAT4X2:
return evalSubscriptMat4x2;
case TYPE_FLOAT_MAT4X3:
return evalSubscriptMat4x3;
case TYPE_FLOAT_MAT4:
return evalSubscriptMat4;
default:
DE_ASSERT(DE_FALSE && "Invalid data type.");
return DE_NULL;
}
}
static ShaderIndexingCase* createMatrixSubscriptCase(Context& context, const char* caseName, const char* description,
glu::GLSLVersion glslVersion, bool isVertexCase, DataType varType,
IndexAccessType writeAccess, IndexAccessType readAccess)
{
DE_ASSERT(glslVersion == glu::GLSL_VERSION_300_ES || glslVersion == glu::GLSL_VERSION_310_ES ||
glslVersion >= glu::GLSL_VERSION_330);
std::ostringstream vtx;
std::ostringstream frag;
std::ostringstream& op = isVertexCase ? vtx : frag;
int numCols = getDataTypeMatrixNumColumns(varType);
int numRows = getDataTypeMatrixNumRows(varType);
const char* matSizeName = getIntUniformName(numCols);
DataType vecType = getDataTypeFloatVec(numRows);
vtx << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
frag << glu::getGLSLVersionDeclaration(glslVersion) << "\n";
vtx << "in highp vec4 a_position;\n";
vtx << "in highp vec4 a_coords;\n";
frag << "layout(location = 0) out mediump vec4 o_color;\n";
if (isVertexCase)
{
vtx << "out mediump vec4 v_color;\n";
frag << "in mediump vec4 v_color;\n";
}
else
{
vtx << "out mediump vec4 v_coords;\n";
frag << "in mediump vec4 v_coords;\n";
}
if (writeAccess == INDEXACCESS_DYNAMIC || readAccess == INDEXACCESS_DYNAMIC)
{
op << "uniform mediump int ui_zero";
if (numCols >= 2)
op << ", ui_one";
if (numCols >= 3)
op << ", ui_two";
if (numCols >= 4)
op << ", ui_three";
op << ";\n";
}
if (writeAccess == INDEXACCESS_DYNAMIC_LOOP || readAccess == INDEXACCESS_DYNAMIC_LOOP)
op << "uniform mediump int " << matSizeName << ";\n";
vtx << "\n";
vtx << "void main()\n";
vtx << "{\n";
vtx << " gl_Position = a_position;\n";
frag << "\n";
frag << "void main()\n";
frag << "{\n";
// Write matrix.
if (isVertexCase)
op << " ${PRECISION} vec4 coords = a_coords;\n";
else
op << " ${PRECISION} vec4 coords = v_coords;\n";
op << " ${PRECISION} ${MAT_TYPE} tmp;\n";
if (writeAccess == INDEXACCESS_STATIC)
{
op << " tmp[0] = ${VEC_TYPE}(coords);\n";
if (numCols >= 2)
op << " tmp[1] = ${VEC_TYPE}(coords.yzwx) * 0.5;\n";
if (numCols >= 3)
op << " tmp[2] = ${VEC_TYPE}(coords.zwxy) * 0.25;\n";
if (numCols >= 4)
op << " tmp[3] = ${VEC_TYPE}(coords.wxyz) * 0.125;\n";
}
else if (writeAccess == INDEXACCESS_DYNAMIC)
{
op << " tmp[ui_zero] = ${VEC_TYPE}(coords);\n";
if (numCols >= 2)
op << " tmp[ui_one] = ${VEC_TYPE}(coords.yzwx) * 0.5;\n";
if (numCols >= 3)
op << " tmp[ui_two] = ${VEC_TYPE}(coords.zwxy) * 0.25;\n";
if (numCols >= 4)
op << " tmp[ui_three] = ${VEC_TYPE}(coords.wxyz) * 0.125;\n";
}
else if (writeAccess == INDEXACCESS_STATIC_LOOP)
{
op << " for (int i = 0; i < " << numCols << "; i++)\n";
op << " {\n";
op << " tmp[i] = ${VEC_TYPE}(coords);\n";
op << " coords = coords.yzwx * 0.5;\n";
op << " }\n";
}
else
{
DE_ASSERT(writeAccess == INDEXACCESS_DYNAMIC_LOOP);
op << " for (int i = 0; i < " << matSizeName << "; i++)\n";
op << " {\n";
op << " tmp[i] = ${VEC_TYPE}(coords);\n";
op << " coords = coords.yzwx * 0.5;\n";
op << " }\n";
}
// Read matrix.
op << " ${PRECISION} ${VEC_TYPE} res = ${VEC_TYPE}(0.0);\n";
if (readAccess == INDEXACCESS_STATIC)
{
op << " res += tmp[0];\n";
if (numCols >= 2)
op << " res += tmp[1];\n";
if (numCols >= 3)
op << " res += tmp[2];\n";
if (numCols >= 4)
op << " res += tmp[3];\n";
}
else if (readAccess == INDEXACCESS_DYNAMIC)
{
op << " res += tmp[ui_zero];\n";
if (numCols >= 2)
op << " res += tmp[ui_one];\n";
if (numCols >= 3)
op << " res += tmp[ui_two];\n";
if (numCols >= 4)
op << " res += tmp[ui_three];\n";
}
else if (readAccess == INDEXACCESS_STATIC_LOOP)
{
op << " for (int i = 0; i < " << numCols << "; i++)\n";
op << " res += tmp[i];\n";
}
else
{
DE_ASSERT(readAccess == INDEXACCESS_DYNAMIC_LOOP);
op << " for (int i = 0; i < " << matSizeName << "; i++)\n";
op << " res += tmp[i];\n";
}
if (isVertexCase)
{
vtx << " v_color = vec4(res${PADDING});\n";
frag << " o_color = v_color;\n";
}
else
{
vtx << " v_coords = a_coords;\n";
frag << " o_color = vec4(res${PADDING});\n";
}
vtx << "}\n";
frag << "}\n";
// Fill in shader templates.
map<string, string> params;
params.insert(pair<string, string>("MAT_TYPE", getDataTypeName(varType)));
params.insert(pair<string, string>("VEC_TYPE", getDataTypeName(vecType)));
params.insert(pair<string, string>("PRECISION", "mediump"));
if (numRows == 2)
params.insert(pair<string, string>("PADDING", ", 0.0, 1.0"));
else if (numRows == 3)
params.insert(pair<string, string>("PADDING", ", 1.0"));
else
params.insert(pair<string, string>("PADDING", ""));
StringTemplate vertTemplate(vtx.str().c_str());
StringTemplate fragTemplate(frag.str().c_str());
string vertexShaderSource = vertTemplate.specialize(params);
string fragmentShaderSource = fragTemplate.specialize(params);
ShaderEvalFunc evalFunc = getMatrixSubscriptEvalFunc(varType);
return new ShaderIndexingCase(context, caseName, description, isVertexCase, varType, evalFunc,
vertexShaderSource.c_str(), fragmentShaderSource.c_str());
}
// ShaderIndexingTests.
ShaderIndexingTests::ShaderIndexingTests(Context& context, glu::GLSLVersion glslVersion)
: TestCaseGroup(context, "indexing", "Indexing Tests"), m_glslVersion(glslVersion)
{
}
ShaderIndexingTests::~ShaderIndexingTests(void)
{
}
void ShaderIndexingTests::init(void)
{
static const DataType s_floatAndVecTypes[] = { TYPE_FLOAT, TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC4 };
static const ShaderType s_shaderTypes[] = { SHADERTYPE_VERTEX, SHADERTYPE_FRAGMENT };
// Varying array access cases.
{
TestCaseGroup* varyingGroup = new TestCaseGroup(m_context, "varying_array", "Varying array access tests.");
addChild(varyingGroup);
for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_floatAndVecTypes); typeNdx++)
{
DataType varType = s_floatAndVecTypes[typeNdx];
for (int vertAccess = 0; vertAccess < INDEXACCESS_LAST; vertAccess++)
{
for (int fragAccess = 0; fragAccess < INDEXACCESS_LAST; fragAccess++)
{
if (vertAccess == INDEXACCESS_STATIC && fragAccess == INDEXACCESS_STATIC)
continue;
const char* vertAccessName = getIndexAccessTypeName((IndexAccessType)vertAccess);
const char* fragAccessName = getIndexAccessTypeName((IndexAccessType)fragAccess);
string name =
string(getDataTypeName(varType)) + "_" + vertAccessName + "_write_" + fragAccessName + "_read";
string desc = string("Varying array with ") + vertAccessName + " write in vertex shader and " +
fragAccessName + " read in fragment shader.";
varyingGroup->addChild(createVaryingArrayCase(m_context, name.c_str(), desc.c_str(), m_glslVersion,
varType, (IndexAccessType)vertAccess,
(IndexAccessType)fragAccess));
}
}
}
}
// Uniform array access cases.
{
TestCaseGroup* uniformGroup = new TestCaseGroup(m_context, "uniform_array", "Uniform array access tests.");
addChild(uniformGroup);
for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_floatAndVecTypes); typeNdx++)
{
DataType varType = s_floatAndVecTypes[typeNdx];
for (int readAccess = 0; readAccess < INDEXACCESS_LAST; readAccess++)
{
const char* readAccessName = getIndexAccessTypeName((IndexAccessType)readAccess);
for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++)
{
ShaderType shaderType = s_shaderTypes[shaderTypeNdx];
const char* shaderTypeName = getShaderTypeName((ShaderType)shaderType);
string name = string(getDataTypeName(varType)) + "_" + readAccessName + "_read_" + shaderTypeName;
string desc =
string("Uniform array with ") + readAccessName + " read in " + shaderTypeName + " shader.";
bool isVertexCase = ((ShaderType)shaderType == SHADERTYPE_VERTEX);
uniformGroup->addChild(createUniformArrayCase(m_context, name.c_str(), desc.c_str(), m_glslVersion,
isVertexCase, varType, (IndexAccessType)readAccess));
}
}
}
}
// Temporary array access cases.
{
TestCaseGroup* tmpGroup = new TestCaseGroup(m_context, "tmp_array", "Temporary array access tests.");
addChild(tmpGroup);
for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_floatAndVecTypes); typeNdx++)
{
DataType varType = s_floatAndVecTypes[typeNdx];
for (int isReadStatic = 0; isReadStatic < 2; isReadStatic++)
{
for (int access = INDEXACCESS_STATIC + 1; access < INDEXACCESS_LAST; access++)
{
IndexAccessType readAccess = isReadStatic ? INDEXACCESS_STATIC : (IndexAccessType)access;
IndexAccessType writeAccess = isReadStatic ? (IndexAccessType)access : INDEXACCESS_STATIC;
const char* writeAccessName = getIndexAccessTypeName(writeAccess);
const char* readAccessName = getIndexAccessTypeName(readAccess);
for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++)
{
ShaderType shaderType = s_shaderTypes[shaderTypeNdx];
const char* shaderTypeName = getShaderTypeName((ShaderType)shaderType);
string name = string(getDataTypeName(varType)) + "_" + writeAccessName + "_write_" +
readAccessName + "_read_" + shaderTypeName;
string desc = string("Temporary array with ") + writeAccessName + " write and " +
readAccessName + " read in " + shaderTypeName + " shader.";
bool isVertexCase = ((ShaderType)shaderType == SHADERTYPE_VERTEX);
tmpGroup->addChild(createTmpArrayCase(m_context, name.c_str(), desc.c_str(), m_glslVersion,
isVertexCase, varType, (IndexAccessType)writeAccess,
(IndexAccessType)readAccess));
}
}
}
}
tmpGroup->addChild(createTmpArrayVertexIdCase(m_context, "vertexid", "", m_glslVersion));
}
// Vector indexing with subscripts.
{
TestCaseGroup* vecGroup = new TestCaseGroup(m_context, "vector_subscript", "Vector subscript indexing.");
addChild(vecGroup);
static const DataType s_vectorTypes[] = { TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC4 };
for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_vectorTypes); typeNdx++)
{
DataType varType = s_vectorTypes[typeNdx];
for (int isReadDirect = 0; isReadDirect < 2; isReadDirect++)
{
for (int access = SUBSCRIPT_STATIC; access < VECTORACCESS_LAST; access++)
{
VectorAccessType readAccess = isReadDirect ? DIRECT : (VectorAccessType)access;
VectorAccessType writeAccess = isReadDirect ? (VectorAccessType)access : DIRECT;
const char* writeAccessName = getVectorAccessTypeName(writeAccess);
const char* readAccessName = getVectorAccessTypeName(readAccess);
for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++)
{
ShaderType shaderType = s_shaderTypes[shaderTypeNdx];
const char* shaderTypeName = getShaderTypeName((ShaderType)shaderType);
string name = string(getDataTypeName(varType)) + "_" + writeAccessName + "_write_" +
readAccessName + "_read_" + shaderTypeName;
string desc = string("Vector subscript access with ") + writeAccessName + " write and " +
readAccessName + " read in " + shaderTypeName + " shader.";
bool isVertexCase = ((ShaderType)shaderType == SHADERTYPE_VERTEX);
vecGroup->addChild(createVectorSubscriptCase(
m_context, name.c_str(), desc.c_str(), m_glslVersion, isVertexCase, varType,
(VectorAccessType)writeAccess, (VectorAccessType)readAccess));
}
}
}
}
}
// Matrix indexing with subscripts.
{
TestCaseGroup* matGroup = new TestCaseGroup(m_context, "matrix_subscript", "Matrix subscript indexing.");
addChild(matGroup);
static const DataType s_matrixTypes[] = { TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT2X3, TYPE_FLOAT_MAT2X4,
TYPE_FLOAT_MAT3X2, TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT3X4,
TYPE_FLOAT_MAT4X2, TYPE_FLOAT_MAT4X3, TYPE_FLOAT_MAT4 };
for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_matrixTypes); typeNdx++)
{
DataType varType = s_matrixTypes[typeNdx];
for (int isReadStatic = 0; isReadStatic < 2; isReadStatic++)
{
for (int access = INDEXACCESS_STATIC + 1; access < INDEXACCESS_LAST; access++)
{
IndexAccessType readAccess = isReadStatic ? INDEXACCESS_STATIC : (IndexAccessType)access;
IndexAccessType writeAccess = isReadStatic ? (IndexAccessType)access : INDEXACCESS_STATIC;
const char* writeAccessName = getIndexAccessTypeName(writeAccess);
const char* readAccessName = getIndexAccessTypeName(readAccess);
for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++)
{
ShaderType shaderType = s_shaderTypes[shaderTypeNdx];
const char* shaderTypeName = getShaderTypeName((ShaderType)shaderType);
string name = string(getDataTypeName(varType)) + "_" + writeAccessName + "_write_" +
readAccessName + "_read_" + shaderTypeName;
string desc = string("Vector subscript access with ") + writeAccessName + " write and " +
readAccessName + " read in " + shaderTypeName + " shader.";
bool isVertexCase = ((ShaderType)shaderType == SHADERTYPE_VERTEX);
matGroup->addChild(createMatrixSubscriptCase(
m_context, name.c_str(), desc.c_str(), m_glslVersion, isVertexCase, varType,
(IndexAccessType)writeAccess, (IndexAccessType)readAccess));
}
}
}
}
}
}
} // deqp