blob: 4521a08d9325ba5755c83f294222c7c230c4634d [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Compressed Texture Utilities.
*//*--------------------------------------------------------------------*/
#include "tcuCompressedTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuAstcUtil.hpp"
#include "deStringUtil.hpp"
#include "deFloat16.h"
#include <algorithm>
namespace tcu
{
int getBlockSize (CompressedTexFormat format)
{
if (isAstcFormat(format))
{
return astc::BLOCK_SIZE_BYTES;
}
else if (isEtcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8: return 8;
case COMPRESSEDTEXFORMAT_EAC_R11: return 8;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11: return 8;
case COMPRESSEDTEXFORMAT_EAC_RG11: return 16;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11: return 16;
case COMPRESSEDTEXFORMAT_ETC2_RGB8: return 8;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8: return 8;
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1: return 8;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: return 8;
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8: return 16;
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8: return 16;
default:
DE_ASSERT(false);
return -1;
}
}
else
{
DE_ASSERT(false);
return -1;
}
}
IVec3 getBlockPixelSize (CompressedTexFormat format)
{
if (isEtcFormat(format))
{
return IVec3(4, 4, 1);
}
else if (isAstcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA: return IVec3(4, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA: return IVec3(5, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA: return IVec3(5, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA: return IVec3(6, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA: return IVec3(6, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA: return IVec3(8, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA: return IVec3(8, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA: return IVec3(8, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA: return IVec3(10, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA: return IVec3(10, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA: return IVec3(10, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA: return IVec3(10, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA: return IVec3(12, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA: return IVec3(12, 12, 1);
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8: return IVec3(4, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8: return IVec3(5, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8: return IVec3(5, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8: return IVec3(6, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8: return IVec3(6, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8: return IVec3(8, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8: return IVec3(8, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8: return IVec3(8, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8: return IVec3(10, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8: return IVec3(10, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8: return IVec3(10, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8: return IVec3(10, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8: return IVec3(12, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8: return IVec3(12, 12, 1);
default:
DE_ASSERT(false);
return IVec3();
}
}
else
{
DE_ASSERT(false);
return IVec3(-1);
}
}
bool isEtcFormat (CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8:
case COMPRESSEDTEXFORMAT_EAC_R11:
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:
case COMPRESSEDTEXFORMAT_EAC_RG11:
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:
case COMPRESSEDTEXFORMAT_ETC2_RGB8:
case COMPRESSEDTEXFORMAT_ETC2_SRGB8:
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
bool isAstcFormat (CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
bool isAstcSRGBFormat (CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
TextureFormat getUncompressedFormat (CompressedTexFormat format)
{
if (isEtcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8: return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_EAC_R11: return TextureFormat(TextureFormat::R, TextureFormat::UNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11: return TextureFormat(TextureFormat::R, TextureFormat::SNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_RG11: return TextureFormat(TextureFormat::RG, TextureFormat::UNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11: return TextureFormat(TextureFormat::RG, TextureFormat::SNORM_INT16);
case COMPRESSEDTEXFORMAT_ETC2_RGB8: return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_SRGB8: return TextureFormat(TextureFormat::sRGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1: return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8: return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8: return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
default:
DE_ASSERT(false);
return TextureFormat();
}
}
else if (isAstcFormat(format))
{
if (isAstcSRGBFormat(format))
return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
else
return TextureFormat(TextureFormat::RGBA, TextureFormat::HALF_FLOAT);
}
else
{
DE_ASSERT(false);
return TextureFormat();
}
}
CompressedTexFormat getAstcFormatByBlockSize (const IVec3& size, bool isSRGB)
{
if (size.z() > 1)
throw InternalError("3D ASTC textures not currently supported");
for (int fmtI = 0; fmtI < COMPRESSEDTEXFORMAT_LAST; fmtI++)
{
const CompressedTexFormat fmt = (CompressedTexFormat)fmtI;
if (isAstcFormat(fmt) && getBlockPixelSize(fmt) == size && isAstcSRGBFormat(fmt) == isSRGB)
return fmt;
}
throw InternalError("Invalid ASTC block size " + de::toString(size.x()) + "x" + de::toString(size.y()) + "x" + de::toString(size.z()));
}
namespace
{
// \todo [2013-08-06 nuutti] ETC and ASTC decompression codes are rather unrelated, and are already in their own "private" namespaces - should this be split to multiple files?
namespace EtcDecompressInternal
{
enum
{
ETC2_BLOCK_WIDTH = 4,
ETC2_BLOCK_HEIGHT = 4,
ETC2_UNCOMPRESSED_PIXEL_SIZE_A8 = 1,
ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 = 2,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 = 4,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8 = 3,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 = 4,
ETC2_UNCOMPRESSED_BLOCK_SIZE_A8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8,
ETC2_UNCOMPRESSED_BLOCK_SIZE_R11 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RG11 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RGBA8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8
};
inline deUint64 get64BitBlock (const deUint8* src, int blockNdx)
{
// Stored in big-endian form.
deUint64 block = 0;
for (int i = 0; i < 8; i++)
block = (block << 8ull) | (deUint64)(src[blockNdx*8+i]);
return block;
}
// Return the first 64 bits of a 128 bit block.
inline deUint64 get128BitBlockStart (const deUint8* src, int blockNdx)
{
return get64BitBlock(src, 2*blockNdx);
}
// Return the last 64 bits of a 128 bit block.
inline deUint64 get128BitBlockEnd (const deUint8* src, int blockNdx)
{
return get64BitBlock(src, 2*blockNdx + 1);
}
inline deUint32 getBit (deUint64 src, int bit)
{
return (src >> bit) & 1;
}
inline deUint32 getBits (deUint64 src, int low, int high)
{
const int numBits = (high-low) + 1;
DE_ASSERT(de::inRange(numBits, 1, 32));
if (numBits < 32)
return (deUint32)((src >> low) & ((1u<<numBits)-1));
else
return (deUint32)((src >> low) & 0xFFFFFFFFu);
}
inline deUint8 extend4To8 (deUint8 src)
{
DE_ASSERT((src & ~((1<<4)-1)) == 0);
return (deUint8)((src << 4) | src);
}
inline deUint8 extend5To8 (deUint8 src)
{
DE_ASSERT((src & ~((1<<5)-1)) == 0);
return (deUint8)((src << 3) | (src >> 2));
}
inline deUint8 extend6To8 (deUint8 src)
{
DE_ASSERT((src & ~((1<<6)-1)) == 0);
return (deUint8)((src << 2) | (src >> 4));
}
inline deUint8 extend7To8 (deUint8 src)
{
DE_ASSERT((src & ~((1<<7)-1)) == 0);
return (deUint8)((src << 1) | (src >> 6));
}
inline deInt8 extendSigned3To8 (deUint8 src)
{
const bool isNeg = (src & (1<<2)) != 0;
return (deInt8)((isNeg ? ~((1<<3)-1) : 0) | src);
}
inline deUint8 extend5Delta3To8 (deUint8 base5, deUint8 delta3)
{
const deUint8 t = (deUint8)((deInt8)base5 + extendSigned3To8(delta3));
return extend5To8(t);
}
inline deUint16 extend11To16 (deUint16 src)
{
DE_ASSERT((src & ~((1<<11)-1)) == 0);
return (deUint16)((src << 5) | (src >> 6));
}
inline deInt16 extend11To16WithSign (deInt16 src)
{
if (src < 0)
return (deInt16)(-(deInt16)extend11To16((deUint16)(-src)));
else
return (deInt16)extend11To16(src);
}
void decompressETC1Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src)
{
const int diffBit = (int)getBit(src, 33);
const int flipBit = (int)getBit(src, 32);
const deUint32 table[2] = { getBits(src, 37, 39), getBits(src, 34, 36) };
deUint8 baseR[2];
deUint8 baseG[2];
deUint8 baseB[2];
if (diffBit == 0)
{
// Individual mode.
baseR[0] = extend4To8((deUint8)getBits(src, 60, 63));
baseR[1] = extend4To8((deUint8)getBits(src, 56, 59));
baseG[0] = extend4To8((deUint8)getBits(src, 52, 55));
baseG[1] = extend4To8((deUint8)getBits(src, 48, 51));
baseB[0] = extend4To8((deUint8)getBits(src, 44, 47));
baseB[1] = extend4To8((deUint8)getBits(src, 40, 43));
}
else
{
// Differential mode (diffBit == 1).
deUint8 bR = (deUint8)getBits(src, 59, 63); // 5b
deUint8 dR = (deUint8)getBits(src, 56, 58); // 3b
deUint8 bG = (deUint8)getBits(src, 51, 55);
deUint8 dG = (deUint8)getBits(src, 48, 50);
deUint8 bB = (deUint8)getBits(src, 43, 47);
deUint8 dB = (deUint8)getBits(src, 40, 42);
baseR[0] = extend5To8(bR);
baseG[0] = extend5To8(bG);
baseB[0] = extend5To8(bB);
baseR[1] = extend5Delta3To8(bR, dR);
baseG[1] = extend5Delta3To8(bG, dG);
baseB[1] = extend5Delta3To8(bB, dB);
}
static const int modifierTable[8][4] =
{
// 00 01 10 11
{ 2, 8, -2, -8 },
{ 5, 17, -5, -17 },
{ 9, 29, -9, -29 },
{ 13, 42, -13, -42 },
{ 18, 60, -18, -60 },
{ 24, 80, -24, -80 },
{ 33, 106, -33, -106 },
{ 47, 183, -47, -183 }
};
// Write final pixels.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0;
const deUint32 tableNdx = table[subBlock];
const deUint32 modifierNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
}
}
// if alphaMode is true, do PUNCHTHROUGH and store alpha to alphaDst; otherwise do ordinary ETC2 RGB8.
void decompressETC2Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src, deUint8 alphaDst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], bool alphaMode)
{
enum Etc2Mode
{
MODE_INDIVIDUAL = 0,
MODE_DIFFERENTIAL,
MODE_T,
MODE_H,
MODE_PLANAR,
MODE_LAST
};
const int diffOpaqueBit = (int)getBit(src, 33);
const deInt8 selBR = (deInt8)getBits(src, 59, 63); // 5 bits.
const deInt8 selBG = (deInt8)getBits(src, 51, 55);
const deInt8 selBB = (deInt8)getBits(src, 43, 47);
const deInt8 selDR = extendSigned3To8((deUint8)getBits(src, 56, 58)); // 3 bits.
const deInt8 selDG = extendSigned3To8((deUint8)getBits(src, 48, 50));
const deInt8 selDB = extendSigned3To8((deUint8)getBits(src, 40, 42));
Etc2Mode mode;
if (!alphaMode && diffOpaqueBit == 0)
mode = MODE_INDIVIDUAL;
else if (!de::inRange(selBR + selDR, 0, 31))
mode = MODE_T;
else if (!de::inRange(selBG + selDG, 0, 31))
mode = MODE_H;
else if (!de::inRange(selBB + selDB, 0, 31))
mode = MODE_PLANAR;
else
mode = MODE_DIFFERENTIAL;
if (mode == MODE_INDIVIDUAL || mode == MODE_DIFFERENTIAL)
{
// Individual and differential modes have some steps in common, handle them here.
static const int modifierTable[8][4] =
{
// 00 01 10 11
{ 2, 8, -2, -8 },
{ 5, 17, -5, -17 },
{ 9, 29, -9, -29 },
{ 13, 42, -13, -42 },
{ 18, 60, -18, -60 },
{ 24, 80, -24, -80 },
{ 33, 106, -33, -106 },
{ 47, 183, -47, -183 }
};
const int flipBit = (int)getBit(src, 32);
const deUint32 table[2] = { getBits(src, 37, 39), getBits(src, 34, 36) };
deUint8 baseR[2];
deUint8 baseG[2];
deUint8 baseB[2];
if (mode == MODE_INDIVIDUAL)
{
// Individual mode, initial values.
baseR[0] = extend4To8((deUint8)getBits(src, 60, 63));
baseR[1] = extend4To8((deUint8)getBits(src, 56, 59));
baseG[0] = extend4To8((deUint8)getBits(src, 52, 55));
baseG[1] = extend4To8((deUint8)getBits(src, 48, 51));
baseB[0] = extend4To8((deUint8)getBits(src, 44, 47));
baseB[1] = extend4To8((deUint8)getBits(src, 40, 43));
}
else
{
// Differential mode, initial values.
baseR[0] = extend5To8(selBR);
baseG[0] = extend5To8(selBG);
baseB[0] = extend5To8(selBB);
baseR[1] = extend5To8((deUint8)(selBR + selDR));
baseG[1] = extend5To8((deUint8)(selBG + selDG));
baseB[1] = extend5To8((deUint8)(selBB + selDB));
}
// Write final pixels for individual or differential mode.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0;
const deUint32 tableNdx = table[subBlock];
const deUint32 modifierNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
// If doing PUNCHTHROUGH version (alphaMode), opaque bit may affect colors.
if (alphaMode && diffOpaqueBit == 0 && modifierNdx == 2)
{
dst[dstOffset+0] = 0;
dst[dstOffset+1] = 0;
dst[dstOffset+2] = 0;
alphaDst[alphaDstOffset] = 0;
}
else
{
int modifier;
// PUNCHTHROUGH version and opaque bit may also affect modifiers.
if (alphaMode && diffOpaqueBit == 0 && (modifierNdx == 0 || modifierNdx == 2))
modifier = 0;
else
modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
else if (mode == MODE_T || mode == MODE_H)
{
// T and H modes have some steps in common, handle them here.
static const int distTable[8] = { 3, 6, 11, 16, 23, 32, 41, 64 };
deUint8 paintR[4];
deUint8 paintG[4];
deUint8 paintB[4];
if (mode == MODE_T)
{
// T mode, calculate paint values.
const deUint8 R1a = (deUint8)getBits(src, 59, 60);
const deUint8 R1b = (deUint8)getBits(src, 56, 57);
const deUint8 G1 = (deUint8)getBits(src, 52, 55);
const deUint8 B1 = (deUint8)getBits(src, 48, 51);
const deUint8 R2 = (deUint8)getBits(src, 44, 47);
const deUint8 G2 = (deUint8)getBits(src, 40, 43);
const deUint8 B2 = (deUint8)getBits(src, 36, 39);
const deUint32 distNdx = (getBits(src, 34, 35) << 1) | getBit(src, 32);
const int dist = distTable[distNdx];
paintR[0] = extend4To8((deUint8)((R1a << 2) | R1b));
paintG[0] = extend4To8(G1);
paintB[0] = extend4To8(B1);
paintR[2] = extend4To8(R2);
paintG[2] = extend4To8(G2);
paintB[2] = extend4To8(B2);
paintR[1] = (deUint8)deClamp32((int)paintR[2] + dist, 0, 255);
paintG[1] = (deUint8)deClamp32((int)paintG[2] + dist, 0, 255);
paintB[1] = (deUint8)deClamp32((int)paintB[2] + dist, 0, 255);
paintR[3] = (deUint8)deClamp32((int)paintR[2] - dist, 0, 255);
paintG[3] = (deUint8)deClamp32((int)paintG[2] - dist, 0, 255);
paintB[3] = (deUint8)deClamp32((int)paintB[2] - dist, 0, 255);
}
else
{
// H mode, calculate paint values.
const deUint8 R1 = (deUint8)getBits(src, 59, 62);
const deUint8 G1a = (deUint8)getBits(src, 56, 58);
const deUint8 G1b = (deUint8)getBit(src, 52);
const deUint8 B1a = (deUint8)getBit(src, 51);
const deUint8 B1b = (deUint8)getBits(src, 47, 49);
const deUint8 R2 = (deUint8)getBits(src, 43, 46);
const deUint8 G2 = (deUint8)getBits(src, 39, 42);
const deUint8 B2 = (deUint8)getBits(src, 35, 38);
deUint8 baseR[2];
deUint8 baseG[2];
deUint8 baseB[2];
deUint32 baseValue[2];
deUint32 distNdx;
int dist;
baseR[0] = extend4To8(R1);
baseG[0] = extend4To8((deUint8)((G1a << 1) | G1b));
baseB[0] = extend4To8((deUint8)((B1a << 3) | B1b));
baseR[1] = extend4To8(R2);
baseG[1] = extend4To8(G2);
baseB[1] = extend4To8(B2);
baseValue[0] = (((deUint32)baseR[0]) << 16) | (((deUint32)baseG[0]) << 8) | baseB[0];
baseValue[1] = (((deUint32)baseR[1]) << 16) | (((deUint32)baseG[1]) << 8) | baseB[1];
distNdx = (getBit(src, 34) << 2) | (getBit(src, 32) << 1) | (deUint32)(baseValue[0] >= baseValue[1]);
dist = distTable[distNdx];
paintR[0] = (deUint8)deClamp32((int)baseR[0] + dist, 0, 255);
paintG[0] = (deUint8)deClamp32((int)baseG[0] + dist, 0, 255);
paintB[0] = (deUint8)deClamp32((int)baseB[0] + dist, 0, 255);
paintR[1] = (deUint8)deClamp32((int)baseR[0] - dist, 0, 255);
paintG[1] = (deUint8)deClamp32((int)baseG[0] - dist, 0, 255);
paintB[1] = (deUint8)deClamp32((int)baseB[0] - dist, 0, 255);
paintR[2] = (deUint8)deClamp32((int)baseR[1] + dist, 0, 255);
paintG[2] = (deUint8)deClamp32((int)baseG[1] + dist, 0, 255);
paintB[2] = (deUint8)deClamp32((int)baseB[1] + dist, 0, 255);
paintR[3] = (deUint8)deClamp32((int)baseR[1] - dist, 0, 255);
paintG[3] = (deUint8)deClamp32((int)baseG[1] - dist, 0, 255);
paintB[3] = (deUint8)deClamp32((int)baseB[1] - dist, 0, 255);
}
// Write final pixels for T or H mode.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const deUint32 paintNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx);
const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
if (alphaMode && diffOpaqueBit == 0 && paintNdx == 2)
{
dst[dstOffset+0] = 0;
dst[dstOffset+1] = 0;
dst[dstOffset+2] = 0;
alphaDst[alphaDstOffset] = 0;
}
else
{
dst[dstOffset+0] = (deUint8)deClamp32((int)paintR[paintNdx], 0, 255);
dst[dstOffset+1] = (deUint8)deClamp32((int)paintG[paintNdx], 0, 255);
dst[dstOffset+2] = (deUint8)deClamp32((int)paintB[paintNdx], 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
else
{
// Planar mode.
const deUint8 GO1 = (deUint8)getBit(src, 56);
const deUint8 GO2 = (deUint8)getBits(src, 49, 54);
const deUint8 BO1 = (deUint8)getBit(src, 48);
const deUint8 BO2 = (deUint8)getBits(src, 43, 44);
const deUint8 BO3 = (deUint8)getBits(src, 39, 41);
const deUint8 RH1 = (deUint8)getBits(src, 34, 38);
const deUint8 RH2 = (deUint8)getBit(src, 32);
const deUint8 RO = extend6To8((deUint8)getBits(src, 57, 62));
const deUint8 GO = extend7To8((deUint8)((GO1 << 6) | GO2));
const deUint8 BO = extend6To8((deUint8)((BO1 << 5) | (BO2 << 3) | BO3));
const deUint8 RH = extend6To8((deUint8)((RH1 << 1) | RH2));
const deUint8 GH = extend7To8((deUint8)getBits(src, 25, 31));
const deUint8 BH = extend6To8((deUint8)getBits(src, 19, 24));
const deUint8 RV = extend6To8((deUint8)getBits(src, 13, 18));
const deUint8 GV = extend7To8((deUint8)getBits(src, 6, 12));
const deUint8 BV = extend6To8((deUint8)getBits(src, 0, 5));
// Write final pixels for planar mode.
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int unclampedR = (x * ((int)RH-(int)RO) + y * ((int)RV-(int)RO) + 4*(int)RO + 2) >> 2;
const int unclampedG = (x * ((int)GH-(int)GO) + y * ((int)GV-(int)GO) + 4*(int)GO + 2) >> 2;
const int unclampedB = (x * ((int)BH-(int)BO) + y * ((int)BV-(int)BO) + 4*(int)BO + 2) >> 2;
const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
dst[dstOffset+0] = (deUint8)deClamp32(unclampedR, 0, 255);
dst[dstOffset+1] = (deUint8)deClamp32(unclampedG, 0, 255);
dst[dstOffset+2] = (deUint8)deClamp32(unclampedB, 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
}
void decompressEAC8Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], deUint64 src)
{
static const int modifierTable[16][8] =
{
{-3, -6, -9, -15, 2, 5, 8, 14},
{-3, -7, -10, -13, 2, 6, 9, 12},
{-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12},
{-3, -6, -8, -12, 2, 5, 7, 11},
{-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10},
{-3, -5, -8, -11, 2, 4, 7, 10},
{-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9},
{-2, -4, -8, -10, 1, 3, 7, 9},
{-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9},
{-1, -2, -3, -10, 0, 1, 2, 9},
{-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}
};
const deUint8 baseCodeword = (deUint8)getBits(src, 56, 63);
const deUint8 multiplier = (deUint8)getBits(src, 52, 55);
const deUint32 tableNdx = getBits(src, 48, 51);
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8;
const int pixelBitNdx = 45 - 3*pixelNdx;
const deUint32 modifierNdx = (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset] = (deUint8)deClamp32((int)baseCodeword + (int)multiplier*modifier, 0, 255);
}
}
void decompressEAC11Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11], deUint64 src, bool signedMode)
{
static const int modifierTable[16][8] =
{
{-3, -6, -9, -15, 2, 5, 8, 14},
{-3, -7, -10, -13, 2, 6, 9, 12},
{-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12},
{-3, -6, -8, -12, 2, 5, 7, 11},
{-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10},
{-3, -5, -8, -11, 2, 4, 7, 10},
{-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9},
{-2, -4, -8, -10, 1, 3, 7, 9},
{-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9},
{-1, -2, -3, -10, 0, 1, 2, 9},
{-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}
};
const deInt32 multiplier = (deInt32)getBits(src, 52, 55);
const deInt32 tableNdx = (deInt32)getBits(src, 48, 51);
deInt32 baseCodeword = (deInt32)getBits(src, 56, 63);
if (signedMode)
{
if (baseCodeword > 127)
baseCodeword -= 256;
if (baseCodeword == -128)
baseCodeword = -127;
}
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
const int pixelBitNdx = 45 - 3*pixelNdx;
const deUint32 modifierNdx = (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
if (signedMode)
{
deInt16 value;
if (multiplier != 0)
value = (deInt16)deClamp32(baseCodeword*8 + multiplier*modifier*8, -1023, 1023);
else
value = (deInt16)deClamp32(baseCodeword*8 + modifier, -1023, 1023);
*((deInt16*)(dst + dstOffset)) = value;
}
else
{
deUint16 value;
if (multiplier != 0)
value = (deUint16)deClamp32(baseCodeword*8 + 4 + multiplier*modifier*8, 0, 2047);
else
value= (deUint16)deClamp32(baseCodeword*8 + 4 + modifier, 0, 2047);
*((deUint16*)(dst + dstOffset)) = value;
}
}
}
} // EtcDecompressInternal
void decompressETC1 (const PixelBufferAccess& dst, const deUint8* src)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const deUint64 compressedBlock = get64BitBlock(src, 0);
decompressETC1Block(dstPtr, compressedBlock);
}
void decompressETC2 (const PixelBufferAccess& dst, const deUint8* src)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const deUint64 compressedBlock = get64BitBlock(src, 0);
decompressETC2Block(dstPtr, compressedBlock, NULL, false);
}
void decompressETC2_EAC_RGBA8 (const PixelBufferAccess& dst, const deUint8* src)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
const deUint64 compressedBlockAlpha = get128BitBlockStart(src, 0);
const deUint64 compressedBlockRGB = get128BitBlockEnd(src, 0);
deUint8 uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
deUint8 uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
// Decompress.
decompressETC2Block(uncompressedBlockRGB, compressedBlockRGB, NULL, false);
decompressEAC8Block(uncompressedBlockAlpha, compressedBlockAlpha);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
const deUint8* const srcPixelRGB = &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
const deUint8* const srcPixelAlpha = &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
deUint8* const dstPixel = dstPtr + y*dstRowPitch + x*dstPixelSize;
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
dstPixel[0] = srcPixelRGB[0];
dstPixel[1] = srcPixelRGB[1];
dstPixel[2] = srcPixelRGB[2];
dstPixel[3] = srcPixelAlpha[0];
}
}
}
void decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (const PixelBufferAccess& dst, const deUint8* src)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
const deUint64 compressedBlockRGBA = get64BitBlock(src, 0);
deUint8 uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
deUint8 uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
// Decompress.
decompressETC2Block(uncompressedBlockRGB, compressedBlockRGBA, uncompressedBlockAlpha, DE_TRUE);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
const deUint8* const srcPixel = &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
const deUint8* const srcPixelAlpha = &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
deUint8* const dstPixel = dstPtr + y*dstRowPitch + x*dstPixelSize;
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
dstPixel[0] = srcPixel[0];
dstPixel[1] = srcPixel[1];
dstPixel[2] = srcPixel[2];
dstPixel[3] = srcPixelAlpha[0];
}
}
}
void decompressEAC_R11 (const PixelBufferAccess& dst, const deUint8* src, bool signedMode)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
const deUint64 compressedBlock = get64BitBlock(src, 0);
deUint8 uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
// Decompress.
decompressEAC11Block(uncompressedBlock, compressedBlock, signedMode);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 == 2);
if (signedMode)
{
const deInt16* const srcPixel = (deInt16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
deInt16* const dstPixel = (deInt16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
dstPixel[0] = extend11To16WithSign(srcPixel[0]);
}
else
{
const deUint16* const srcPixel = (deUint16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
deUint16* const dstPixel = (deUint16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
dstPixel[0] = extend11To16(srcPixel[0]);
}
}
}
}
void decompressEAC_RG11 (const PixelBufferAccess& dst, const deUint8* src, bool signedMode)
{
using namespace EtcDecompressInternal;
deUint8* const dstPtr = (deUint8*)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11;
const deUint64 compressedBlockR = get128BitBlockStart(src, 0);
const deUint64 compressedBlockG = get128BitBlockEnd(src, 0);
deUint8 uncompressedBlockR[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
deUint8 uncompressedBlockG[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
// Decompress.
decompressEAC11Block(uncompressedBlockR, compressedBlockR, signedMode);
decompressEAC11Block(uncompressedBlockG, compressedBlockG, signedMode);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 == 4);
if (signedMode)
{
const deInt16* const srcPixelR = (deInt16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
const deInt16* const srcPixelG = (deInt16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
deInt16* const dstPixel = (deInt16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
dstPixel[0] = extend11To16WithSign(srcPixelR[0]);
dstPixel[1] = extend11To16WithSign(srcPixelG[0]);
}
else
{
const deUint16* const srcPixelR = (deUint16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
const deUint16* const srcPixelG = (deUint16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
deUint16* const dstPixel = (deUint16*)(dstPtr + y*dstRowPitch + x*dstPixelSize);
dstPixel[0] = extend11To16(srcPixelR[0]);
dstPixel[1] = extend11To16(srcPixelG[0]);
}
}
}
}
void decompressBlock (CompressedTexFormat format, const PixelBufferAccess& dst, const deUint8* src, const TexDecompressionParams& params)
{
// No 3D blocks supported right now
DE_ASSERT(dst.getDepth() == 1);
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8: decompressETC1 (dst, src); break;
case COMPRESSEDTEXFORMAT_EAC_R11: decompressEAC_R11 (dst, src, false); break;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11: decompressEAC_R11 (dst, src, true); break;
case COMPRESSEDTEXFORMAT_EAC_RG11: decompressEAC_RG11 (dst, src, false); break;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11: decompressEAC_RG11 (dst, src, true); break;
case COMPRESSEDTEXFORMAT_ETC2_RGB8: decompressETC2 (dst, src); break;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8: decompressETC2 (dst, src); break;
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1: decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (dst, src); break;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (dst, src); break;
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8: decompressETC2_EAC_RGBA8 (dst, src); break;
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8: decompressETC2_EAC_RGBA8 (dst, src); break;
case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
astc::decompress(dst, src, format, params.astcMode);
break;
default:
DE_ASSERT(false);
break;
}
}
int componentSum (const IVec3& vec)
{
return vec.x() + vec.y() + vec.z();
}
} // anonymous
void decompress (const PixelBufferAccess& dst, CompressedTexFormat fmt, const deUint8* src, const TexDecompressionParams& params)
{
const int blockSize = getBlockSize(fmt);
const IVec3 blockPixelSize (getBlockPixelSize(fmt));
const IVec3 blockCount (deDivRoundUp32(dst.getWidth(), blockPixelSize.x()),
deDivRoundUp32(dst.getHeight(), blockPixelSize.y()),
deDivRoundUp32(dst.getDepth(), blockPixelSize.z()));
const IVec3 blockPitches (blockSize, blockSize * blockCount.x(), blockSize * blockCount.x() * blockCount.y());
std::vector<deUint8> uncompressedBlock (dst.getFormat().getPixelSize() * blockPixelSize.x() * blockPixelSize.y() * blockPixelSize.z());
const PixelBufferAccess blockAccess (getUncompressedFormat(fmt), blockPixelSize.x(), blockPixelSize.y(), blockPixelSize.z(), &uncompressedBlock[0]);
DE_ASSERT(dst.getFormat() == getUncompressedFormat(fmt));
for (int blockZ = 0; blockZ < blockCount.z(); blockZ++)
for (int blockY = 0; blockY < blockCount.y(); blockY++)
for (int blockX = 0; blockX < blockCount.x(); blockX++)
{
const IVec3 blockPos (blockX, blockY, blockZ);
const deUint8* const blockPtr = src + componentSum(blockPos * blockPitches);
const IVec3 copySize (de::min(blockPixelSize.x(), dst.getWidth() - blockPos.x() * blockPixelSize.x()),
de::min(blockPixelSize.y(), dst.getHeight() - blockPos.y() * blockPixelSize.y()),
de::min(blockPixelSize.z(), dst.getDepth() - blockPos.z() * blockPixelSize.z()));
const IVec3 dstPixelPos = blockPos * blockPixelSize;
decompressBlock(fmt, blockAccess, blockPtr, params);
copy(getSubregion(dst, dstPixelPos.x(), dstPixelPos.y(), dstPixelPos.z(), copySize.x(), copySize.y(), copySize.z()), getSubregion(blockAccess, 0, 0, 0, copySize.x(), copySize.y(), copySize.z()));
}
}
CompressedTexture::CompressedTexture (void)
: m_format (COMPRESSEDTEXFORMAT_LAST)
, m_width (0)
, m_height (0)
, m_depth (0)
{
}
CompressedTexture::CompressedTexture (CompressedTexFormat format, int width, int height, int depth)
: m_format (COMPRESSEDTEXFORMAT_LAST)
, m_width (0)
, m_height (0)
, m_depth (0)
{
setStorage(format, width, height, depth);
}
CompressedTexture::~CompressedTexture (void)
{
}
void CompressedTexture::setStorage (CompressedTexFormat format, int width, int height, int depth)
{
m_format = format;
m_width = width;
m_height = height;
m_depth = depth;
if (m_format != COMPRESSEDTEXFORMAT_LAST)
{
const IVec3 blockPixelSize = getBlockPixelSize(m_format);
const int blockSize = getBlockSize(m_format);
m_data.resize(deDivRoundUp32(m_width, blockPixelSize.x()) * deDivRoundUp32(m_height, blockPixelSize.y()) * deDivRoundUp32(m_depth, blockPixelSize.z()) * blockSize);
}
else
{
DE_ASSERT(m_format == COMPRESSEDTEXFORMAT_LAST);
DE_ASSERT(m_width == 0 && m_height == 0 && m_depth == 0);
m_data.resize(0);
}
}
/*--------------------------------------------------------------------*//*!
* \brief Decode to uncompressed pixel data
* \param dst Destination buffer
*//*--------------------------------------------------------------------*/
void CompressedTexture::decompress (const PixelBufferAccess& dst, const TexDecompressionParams& params) const
{
DE_ASSERT(dst.getWidth() == m_width && dst.getHeight() == m_height && dst.getDepth() == m_depth);
DE_ASSERT(dst.getFormat() == getUncompressedFormat(m_format));
tcu::decompress(dst, m_format, &m_data[0], params);
}
} // tcu