blob: d9158789835a46cf67bc4473dd147707c2294a54 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file vktSparseResourcesImageSparseResidency.cpp
* \brief Sparse partially resident images tests
*//*--------------------------------------------------------------------*/
#include "vktSparseResourcesBufferSparseBinding.hpp"
#include "vktSparseResourcesTestsUtil.hpp"
#include "vktSparseResourcesBase.hpp"
#include "vktTestCaseUtil.hpp"
#include "vkDefs.hpp"
#include "vkRef.hpp"
#include "vkRefUtil.hpp"
#include "vkPlatform.hpp"
#include "vkPrograms.hpp"
#include "vkMemUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkImageUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkTypeUtil.hpp"
#include "deUniquePtr.hpp"
#include "deStringUtil.hpp"
#include <string>
#include <vector>
using namespace vk;
namespace vkt
{
namespace sparse
{
namespace
{
const std::string getCoordStr (const ImageType imageType,
const std::string& x,
const std::string& y,
const std::string& z)
{
switch (imageType)
{
case IMAGE_TYPE_1D:
case IMAGE_TYPE_BUFFER:
return x;
case IMAGE_TYPE_1D_ARRAY:
case IMAGE_TYPE_2D:
return "ivec2(" + x + "," + y + ")";
case IMAGE_TYPE_2D_ARRAY:
case IMAGE_TYPE_3D:
case IMAGE_TYPE_CUBE:
case IMAGE_TYPE_CUBE_ARRAY:
return "ivec3(" + x + "," + y + "," + z + ")";
default:
DE_ASSERT(false);
return "";
}
}
tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
{
tcu::UVec3 result;
result.x() = extent.width / divisor.width + ((extent.width % divisor.width) ? 1u : 0u);
result.y() = extent.height / divisor.height + ((extent.height % divisor.height) ? 1u : 0u);
result.z() = extent.depth / divisor.depth + ((extent.depth % divisor.depth) ? 1u : 0u);
return result;
}
tcu::UVec3 computeWorkGroupSize (const tcu::UVec3& gridSize)
{
const deUint32 maxComputeWorkGroupInvocations = 128u;
const tcu::UVec3 maxComputeWorkGroupSize = tcu::UVec3(128u, 128u, 64u);
const deUint32 xWorkGroupSize = std::min(std::min(gridSize.x(), maxComputeWorkGroupSize.x()), maxComputeWorkGroupInvocations);
const deUint32 yWorkGroupSize = std::min(std::min(gridSize.y(), maxComputeWorkGroupSize.y()), maxComputeWorkGroupInvocations / xWorkGroupSize);
const deUint32 zWorkGroupSize = std::min(std::min(gridSize.z(), maxComputeWorkGroupSize.z()), maxComputeWorkGroupInvocations / (xWorkGroupSize*yWorkGroupSize));
return tcu::UVec3(xWorkGroupSize, yWorkGroupSize, zWorkGroupSize);
}
class ImageSparseResidencyCase : public TestCase
{
public:
ImageSparseResidencyCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const ImageType imageType,
const tcu::UVec3& imageSize,
const tcu::TextureFormat& format,
const glu::GLSLVersion glslVersion);
void initPrograms (SourceCollections& sourceCollections) const;
TestInstance* createInstance (Context& context) const;
private:
const ImageType m_imageType;
const tcu::UVec3 m_imageSize;
const tcu::TextureFormat m_format;
const glu::GLSLVersion m_glslVersion;
};
ImageSparseResidencyCase::ImageSparseResidencyCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const ImageType imageType,
const tcu::UVec3& imageSize,
const tcu::TextureFormat& format,
const glu::GLSLVersion glslVersion)
: TestCase (testCtx, name, description)
, m_imageType (imageType)
, m_imageSize (imageSize)
, m_format (format)
, m_glslVersion (glslVersion)
{
}
void ImageSparseResidencyCase::initPrograms (SourceCollections& sourceCollections) const
{
// Create compute program
const char* const versionDecl = glu::getGLSLVersionDeclaration(m_glslVersion);
const std::string imageTypeStr = getShaderImageType(m_format, m_imageType);
const std::string formatQualifierStr = getShaderImageFormatQualifier(m_format);
const std::string formatDataStr = getShaderImageDataType(m_format);
const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize);
const tcu::UVec3 workGroupSize = computeWorkGroupSize(gridSize);
std::ostringstream src;
src << versionDecl << "\n"
<< "layout (local_size_x = " << workGroupSize.x() << ", local_size_y = " << workGroupSize.y() << ", local_size_z = " << workGroupSize.z() << ") in; \n"
<< "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform highp " << imageTypeStr << " u_image;\n"
<< "void main (void)\n"
<< "{\n"
<< " if( gl_GlobalInvocationID.x < " << gridSize.x() << " ) \n"
<< " if( gl_GlobalInvocationID.y < " << gridSize.y() << " ) \n"
<< " if( gl_GlobalInvocationID.z < " << gridSize.z() << " ) \n"
<< " {\n"
<< " imageStore(u_image, " << getCoordStr(m_imageType, "gl_GlobalInvocationID.x", "gl_GlobalInvocationID.y", "gl_GlobalInvocationID.z") << ","
<< formatDataStr << "( int(gl_GlobalInvocationID.x) % 127, int(gl_GlobalInvocationID.y) % 127, int(gl_GlobalInvocationID.z) % 127, 1));\n"
<< " }\n"
<< "}\n";
sourceCollections.glslSources.add("comp") << glu::ComputeSource(src.str());
}
class ImageSparseResidencyInstance : public SparseResourcesBaseInstance
{
public:
ImageSparseResidencyInstance(Context& context,
const ImageType imageType,
const tcu::UVec3& imageSize,
const tcu::TextureFormat& format);
tcu::TestStatus iterate (void);
private:
const ImageType m_imageType;
const tcu::UVec3 m_imageSize;
const tcu::TextureFormat m_format;
};
ImageSparseResidencyInstance::ImageSparseResidencyInstance (Context& context,
const ImageType imageType,
const tcu::UVec3& imageSize,
const tcu::TextureFormat& format)
: SparseResourcesBaseInstance (context)
, m_imageType (imageType)
, m_imageSize (imageSize)
, m_format (format)
{
}
tcu::TestStatus ImageSparseResidencyInstance::iterate (void)
{
const InstanceInterface& instance = m_context.getInstanceInterface();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const VkPhysicalDeviceProperties physicalDeviceProperties = getPhysicalDeviceProperties(instance, physicalDevice);
VkImageCreateInfo imageCreateInfo;
VkSparseImageMemoryRequirements aspectRequirements;
VkExtent3D imageGranularity;
std::vector<DeviceMemorySp> deviceMemUniquePtrVec;
// Check if image size does not exceed device limits
if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
TCU_THROW(NotSupportedError, "Image size not supported for device");
// Check if device supports sparse operations for image type
if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = DE_NULL;
imageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
imageCreateInfo.imageType = mapImageType(m_imageType);
imageCreateInfo.format = mapTextureFormat(m_format);
imageCreateInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize));
imageCreateInfo.mipLevels = 1u;
imageCreateInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize);
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_STORAGE_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.queueFamilyIndexCount = 0u;
imageCreateInfo.pQueueFamilyIndices = DE_NULL;
if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
{
imageCreateInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
}
// Check if device supports sparse operations for image format
if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageCreateInfo))
TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
{
// Create logical device supporting both sparse and compute queues
QueueRequirementsVec queueRequirements;
queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
createDeviceSupportingQueues(queueRequirements);
}
const DeviceInterface& deviceInterface = getDeviceInterface();
const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
// Create sparse image
const Unique<VkImage> sparseImage(createImage(deviceInterface, getDevice(), &imageCreateInfo));
// Create sparse image memory bind semaphore
const Unique<VkSemaphore> imageMemoryBindSemaphore(makeSemaphore(deviceInterface, getDevice()));
{
// Get image general memory requirements
const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *sparseImage);
if (imageMemoryRequirements.size > physicalDeviceProperties.limits.sparseAddressSpaceSize)
TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
// Get sparse image sparse memory requirements
const std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *sparseImage);
DE_ASSERT(sparseMemoryRequirements.size() != 0);
const deUint32 colorAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_COLOR_BIT);
if (colorAspectIndex == NO_MATCH_FOUND)
TCU_THROW(NotSupportedError, "Not supported image aspect - the test supports currently only VK_IMAGE_ASPECT_COLOR_BIT");
aspectRequirements = sparseMemoryRequirements[colorAspectIndex];
imageGranularity = aspectRequirements.formatProperties.imageGranularity;
const VkImageAspectFlags aspectMask = aspectRequirements.formatProperties.aspectMask;
DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds;
std::vector<VkSparseMemoryBind> imageMipTailMemoryBinds;
const deUint32 memoryType = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any);
if (memoryType == NO_MATCH_FOUND)
return tcu::TestStatus::fail("No matching memory type found");
// Bind device memory for each aspect
for (deUint32 layerNdx = 0; layerNdx < imageCreateInfo.arrayLayers; ++layerNdx)
{
for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
{
const VkImageSubresource subresource = { aspectMask, mipLevelNdx, layerNdx };
const VkExtent3D mipExtent = mipLevelExtents(imageCreateInfo.extent, mipLevelNdx);
const tcu::UVec3 numSparseBinds = alignedDivide(mipExtent, imageGranularity);
const tcu::UVec3 lastBlockExtent = tcu::UVec3(mipExtent.width % imageGranularity.width ? mipExtent.width % imageGranularity.width : imageGranularity.width,
mipExtent.height % imageGranularity.height ? mipExtent.height % imageGranularity.height : imageGranularity.height,
mipExtent.depth % imageGranularity.depth ? mipExtent.depth % imageGranularity.depth : imageGranularity.depth);
for (deUint32 z = 0; z < numSparseBinds.z(); ++z)
for (deUint32 y = 0; y < numSparseBinds.y(); ++y)
for (deUint32 x = 0; x < numSparseBinds.x(); ++x)
{
const deUint32 linearIndex = x + y*numSparseBinds.x() + z*numSparseBinds.x()*numSparseBinds.y() + layerNdx*numSparseBinds.x()*numSparseBinds.y()*numSparseBinds.z();
if (linearIndex % 2u == 1u)
{
continue;
}
VkOffset3D offset;
offset.x = x*imageGranularity.width;
offset.y = y*imageGranularity.height;
offset.z = z*imageGranularity.depth;
VkExtent3D extent;
extent.width = (x == numSparseBinds.x() - 1) ? lastBlockExtent.x() : imageGranularity.width;
extent.height = (y == numSparseBinds.y() - 1) ? lastBlockExtent.y() : imageGranularity.height;
extent.depth = (z == numSparseBinds.z() - 1) ? lastBlockExtent.z() : imageGranularity.depth;
const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
imageMemoryRequirements.alignment, memoryType, subresource, offset, extent);
deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
imageResidencyMemoryBinds.push_back(imageMemoryBind);
}
}
if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageCreateInfo.mipLevels)
{
const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
}
}
if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageCreateInfo.mipLevels)
{
const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
}
VkBindSparseInfo bindSparseInfo =
{
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
DE_NULL, //const void* pNext;
0u, //deUint32 waitSemaphoreCount;
DE_NULL, //const VkSemaphore* pWaitSemaphores;
0u, //deUint32 bufferBindCount;
DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
0u, //deUint32 imageOpaqueBindCount;
DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
0u, //deUint32 imageBindCount;
DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
1u, //deUint32 signalSemaphoreCount;
&imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
};
VkSparseImageMemoryBindInfo imageResidencyBindInfo;
VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo;
if (imageResidencyMemoryBinds.size() > 0)
{
imageResidencyBindInfo.image = *sparseImage;
imageResidencyBindInfo.bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
imageResidencyBindInfo.pBinds = &imageResidencyMemoryBinds[0];
bindSparseInfo.imageBindCount = 1u;
bindSparseInfo.pImageBinds = &imageResidencyBindInfo;
}
if (imageMipTailMemoryBinds.size() > 0)
{
imageMipTailBindInfo.image = *sparseImage;
imageMipTailBindInfo.bindCount = static_cast<deUint32>(imageMipTailMemoryBinds.size());
imageMipTailBindInfo.pBinds = &imageMipTailMemoryBinds[0];
bindSparseInfo.imageOpaqueBindCount = 1u;
bindSparseInfo.pImageOpaqueBinds = &imageMipTailBindInfo;
}
// Submit sparse bind commands for execution
VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
}
// Create command buffer for compute and transfer oparations
const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
const Unique<VkCommandBuffer> commandBuffer(makeCommandBuffer(deviceInterface, getDevice(), *commandPool));
// Start recording commands
beginCommandBuffer(deviceInterface, *commandBuffer);
// Create descriptor set layout
const Unique<VkDescriptorSetLayout> descriptorSetLayout(
DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
.build(deviceInterface, getDevice()));
// Create and bind compute pipeline
const Unique<VkShaderModule> shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("comp"), DE_NULL));
const Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
const Unique<VkPipeline> computePipeline(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline);
// Create and bind descriptor set
const Unique<VkDescriptorPool> descriptorPool(
DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1u)
.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u));
const Unique<VkDescriptorSet> descriptorSet(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, getNumLayers(m_imageType, m_imageSize));
const Unique<VkImageView> imageView(makeImageView(deviceInterface, getDevice(), *sparseImage, mapImageViewType(m_imageType), mapTextureFormat(m_format), subresourceRange));
const VkDescriptorImageInfo sparseImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &sparseImageInfo)
.update(deviceInterface, getDevice());
deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet.get(), 0u, DE_NULL);
{
const VkImageMemoryBarrier sparseImageLayoutChangeBarrier = makeImageMemoryBarrier
(
0u,
VK_ACCESS_SHADER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_GENERAL,
sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
*sparseImage,
subresourceRange
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &sparseImageLayoutChangeBarrier);
}
const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize);
{
const tcu::UVec3 workGroupSize = computeWorkGroupSize(gridSize);
const deUint32 xWorkGroupCount = gridSize.x() / workGroupSize.x() + (gridSize.x() % workGroupSize.x() ? 1u : 0u);
const deUint32 yWorkGroupCount = gridSize.y() / workGroupSize.y() + (gridSize.y() % workGroupSize.y() ? 1u : 0u);
const deUint32 zWorkGroupCount = gridSize.z() / workGroupSize.z() + (gridSize.z() % workGroupSize.z() ? 1u : 0u);
const tcu::UVec3 maxComputeWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u);
if (maxComputeWorkGroupCount.x() < xWorkGroupCount ||
maxComputeWorkGroupCount.y() < yWorkGroupCount ||
maxComputeWorkGroupCount.z() < zWorkGroupCount)
{
TCU_THROW(NotSupportedError, "Image size is not supported");
}
deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
}
{
const VkImageMemoryBarrier sparseImageTrasferBarrier = makeImageMemoryBarrier
(
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
*sparseImage,
subresourceRange
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &sparseImageTrasferBarrier);
}
const deUint32 imageSizeInBytes = getNumPixels(m_imageType, m_imageSize) * tcu::getPixelSize(m_format);
const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
{
const VkBufferImageCopy bufferImageCopy = makeBufferImageCopy(imageCreateInfo.extent, imageCreateInfo.arrayLayers);
deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *sparseImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, 1u, &bufferImageCopy);
}
{
const VkBufferMemoryBarrier outputBufferHostReadBarrier = makeBufferMemoryBarrier
(
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
*outputBuffer,
0u,
imageSizeInBytes
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferHostReadBarrier, 0u, DE_NULL);
}
// End recording commands
endCommandBuffer(deviceInterface, *commandBuffer);
// The stage at which execution is going to wait for finish of sparse binding operations
const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT };
// Submit commands for execution and wait for completion
submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits);
// Retrieve data from buffer to host memory
invalidateMappedMemoryRange(deviceInterface, getDevice(), outputBufferAlloc->getMemory(), outputBufferAlloc->getOffset(), imageSizeInBytes);
const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
const tcu::ConstPixelBufferAccess pixelBuffer = tcu::ConstPixelBufferAccess(m_format, gridSize.x(), gridSize.y(), gridSize.z(), outputData);
// Wait for sparse queue to become idle
deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
// Validate results
if( aspectRequirements.imageMipTailFirstLod > 0u )
{
const VkExtent3D mipExtent = mipLevelExtents(imageCreateInfo.extent, 0u);
const tcu::UVec3 numSparseBinds = alignedDivide(mipExtent, imageGranularity);
const tcu::UVec3 lastBlockExtent = tcu::UVec3( mipExtent.width % imageGranularity.width ? mipExtent.width % imageGranularity.width : imageGranularity.width,
mipExtent.height % imageGranularity.height ? mipExtent.height % imageGranularity.height : imageGranularity.height,
mipExtent.depth % imageGranularity.depth ? mipExtent.depth % imageGranularity.depth : imageGranularity.depth);
for (deUint32 layerNdx = 0; layerNdx < imageCreateInfo.arrayLayers; ++layerNdx)
{
for (deUint32 z = 0; z < numSparseBinds.z(); ++z)
for (deUint32 y = 0; y < numSparseBinds.y(); ++y)
for (deUint32 x = 0; x < numSparseBinds.x(); ++x)
{
VkExtent3D offset;
offset.width = x*imageGranularity.width;
offset.height = y*imageGranularity.height;
offset.depth = z*imageGranularity.depth + layerNdx*numSparseBinds.z()*imageGranularity.depth;
VkExtent3D extent;
extent.width = (x == numSparseBinds.x() - 1) ? lastBlockExtent.x() : imageGranularity.width;
extent.height = (y == numSparseBinds.y() - 1) ? lastBlockExtent.y() : imageGranularity.height;
extent.depth = (z == numSparseBinds.z() - 1) ? lastBlockExtent.z() : imageGranularity.depth;
const deUint32 linearIndex = x + y*numSparseBinds.x() + z*numSparseBinds.x()*numSparseBinds.y() + layerNdx*numSparseBinds.x()*numSparseBinds.y()*numSparseBinds.z();
if (linearIndex % 2u == 0u)
{
for (deUint32 offsetZ = offset.depth; offsetZ < offset.depth + extent.depth; ++offsetZ)
for (deUint32 offsetY = offset.height; offsetY < offset.height + extent.height; ++offsetY)
for (deUint32 offsetX = offset.width; offsetX < offset.width + extent.width; ++offsetX)
{
const tcu::UVec4 referenceValue = tcu::UVec4(offsetX % 127u, offsetY % 127u, offsetZ % 127u, 1u);
const tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX, offsetY, offsetZ);
if (deMemCmp(&outputValue, &referenceValue, sizeof(deUint32) * getNumUsedChannels(m_format.order)) != 0)
return tcu::TestStatus::fail("Failed");
}
}
else if (physicalDeviceProperties.sparseProperties.residencyNonResidentStrict)
{
for (deUint32 offsetZ = offset.depth; offsetZ < offset.depth + extent.depth; ++offsetZ)
for (deUint32 offsetY = offset.height; offsetY < offset.height + extent.height; ++offsetY)
for (deUint32 offsetX = offset.width; offsetX < offset.width + extent.width; ++offsetX)
{
const tcu::UVec4 referenceValue = tcu::UVec4(0u, 0u, 0u, 0u);
const tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX, offsetY, offsetZ);
if (deMemCmp(&outputValue, &referenceValue, sizeof(deUint32) * getNumUsedChannels(m_format.order)) != 0)
return tcu::TestStatus::fail("Failed");
}
}
}
}
}
else
{
const VkExtent3D mipExtent = mipLevelExtents(imageCreateInfo.extent, 0u);
for (deUint32 offsetZ = 0u; offsetZ < mipExtent.depth * imageCreateInfo.arrayLayers; ++offsetZ)
for (deUint32 offsetY = 0u; offsetY < mipExtent.height; ++offsetY)
for (deUint32 offsetX = 0u; offsetX < mipExtent.width; ++offsetX)
{
const tcu::UVec4 referenceValue = tcu::UVec4(offsetX % 127u, offsetY % 127u, offsetZ % 127u, 1u);
const tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX, offsetY, offsetZ);
if (deMemCmp(&outputValue, &referenceValue, sizeof(deUint32) * getNumUsedChannels(m_format.order)) != 0)
return tcu::TestStatus::fail("Failed");
}
}
return tcu::TestStatus::pass("Passed");
}
TestInstance* ImageSparseResidencyCase::createInstance (Context& context) const
{
return new ImageSparseResidencyInstance(context, m_imageType, m_imageSize, m_format);
}
} // anonymous ns
tcu::TestCaseGroup* createImageSparseResidencyTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_residency", "Buffer Sparse Residency"));
static const deUint32 sizeCountPerImageType = 3u;
struct ImageParameters
{
ImageType imageType;
tcu::UVec3 imageSizes[sizeCountPerImageType];
};
static const ImageParameters imageParametersArray[] =
{
{ IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) } },
{ IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) } },
{ IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) } },
{ IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) } },
{ IMAGE_TYPE_3D, { tcu::UVec3(512u, 256u, 16u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) } }
};
static const tcu::TextureFormat formats[] =
{
tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT32),
tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT16),
tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::SIGNED_INT8),
tcu::TextureFormat(tcu::TextureFormat::RG, tcu::TextureFormat::SIGNED_INT32),
tcu::TextureFormat(tcu::TextureFormat::RG, tcu::TextureFormat::SIGNED_INT16),
tcu::TextureFormat(tcu::TextureFormat::RG, tcu::TextureFormat::SIGNED_INT8),
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32),
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT16),
tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT8)
};
for (deInt32 imageTypeNdx = 0; imageTypeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray); ++imageTypeNdx)
{
const ImageType imageType = imageParametersArray[imageTypeNdx].imageType;
de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
for (deInt32 formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); ++formatNdx)
{
const tcu::TextureFormat& format = formats[formatNdx];
de::MovePtr<tcu::TestCaseGroup> formatGroup(new tcu::TestCaseGroup(testCtx, getShaderImageFormatQualifier(format).c_str(), ""));
for (deInt32 imageSizeNdx = 0; imageSizeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray[imageTypeNdx].imageSizes); ++imageSizeNdx)
{
const tcu::UVec3 imageSize = imageParametersArray[imageTypeNdx].imageSizes[imageSizeNdx];
std::ostringstream stream;
stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
formatGroup->addChild(new ImageSparseResidencyCase(testCtx, stream.str(), "", imageType, imageSize, format, glu::GLSL_VERSION_440));
}
imageTypeGroup->addChild(formatGroup.release());
}
testGroup->addChild(imageTypeGroup.release());
}
return testGroup.release();
}
} // sparse
} // vkt