blob: 5f389eb2e0c47064af5a70622a809a11707aa8c3 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file vktPipelineRenderToImageTests.cpp
* \brief Render to image tests
*//*--------------------------------------------------------------------*/
#include "vktPipelineRenderToImageTests.hpp"
#include "vktPipelineMakeUtil.hpp"
#include "vktTestCase.hpp"
#include "vktTestCaseUtil.hpp"
#include "vktPipelineVertexUtil.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkMemUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkRefUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkPrograms.hpp"
#include "vkImageUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuImageCompare.hpp"
#include "deUniquePtr.hpp"
#include "deSharedPtr.hpp"
#include <string>
#include <vector>
namespace vkt
{
namespace pipeline
{
namespace
{
using namespace vk;
using de::UniquePtr;
using de::MovePtr;
using de::SharedPtr;
using tcu::IVec3;
using tcu::Vec4;
using tcu::UVec4;
using tcu::IVec4;
using std::vector;
typedef SharedPtr<Unique<VkImageView> > SharedPtrVkImageView;
typedef SharedPtr<Unique<VkPipeline> > SharedPtrVkPipeline;
enum Constants
{
REFERENCE_COLOR_VALUE = 125
};
struct CaseDef
{
VkImageViewType imageType;
IVec3 renderSize;
int numLayers;
VkFormat colorFormat;
};
template<typename T>
inline SharedPtr<Unique<T> > makeSharedPtr (Move<T> move)
{
return SharedPtr<Unique<T> >(new Unique<T>(move));
}
template<typename T>
inline VkDeviceSize sizeInBytes (const vector<T>& vec)
{
return vec.size() * sizeof(vec[0]);
}
Move<VkPipeline> makeGraphicsPipeline (const DeviceInterface& vk,
const VkDevice device,
const VkPipelineLayout pipelineLayout,
const VkRenderPass renderPass,
const VkShaderModule vertexModule,
const VkShaderModule fragmentModule,
const IVec3 renderSize,
const VkPrimitiveTopology topology,
const deUint32 subpass)
{
const VkVertexInputBindingDescription vertexInputBindingDescription =
{
0u, // uint32_t binding;
sizeof(Vertex4RGBA), // uint32_t stride;
VK_VERTEX_INPUT_RATE_VERTEX, // VkVertexInputRate inputRate;
};
const VkVertexInputAttributeDescription vertexInputAttributeDescriptions[] =
{
{
0u, // uint32_t location;
0u, // uint32_t binding;
VK_FORMAT_R32G32B32A32_SFLOAT, // VkFormat format;
0u, // uint32_t offset;
},
{
1u, // uint32_t location;
0u, // uint32_t binding;
VK_FORMAT_R32G32B32A32_SFLOAT, // VkFormat format;
sizeof(Vec4), // uint32_t offset;
}
};
const VkPipelineVertexInputStateCreateInfo vertexInputStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineVertexInputStateCreateFlags)0, // VkPipelineVertexInputStateCreateFlags flags;
1u, // uint32_t vertexBindingDescriptionCount;
&vertexInputBindingDescription, // const VkVertexInputBindingDescription* pVertexBindingDescriptions;
DE_LENGTH_OF_ARRAY(vertexInputAttributeDescriptions), // uint32_t vertexAttributeDescriptionCount;
vertexInputAttributeDescriptions, // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;
};
const VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineInputAssemblyStateCreateFlags)0, // VkPipelineInputAssemblyStateCreateFlags flags;
topology, // VkPrimitiveTopology topology;
VK_FALSE, // VkBool32 primitiveRestartEnable;
};
const VkViewport viewport = makeViewport(
0.0f, 0.0f,
static_cast<float>(renderSize.x()), static_cast<float>(renderSize.y()),
0.0f, 1.0f);
const VkRect2D scissor =
{
makeOffset2D(0, 0),
makeExtent2D(renderSize.x(), renderSize.y()),
};
const VkPipelineViewportStateCreateInfo pipelineViewportStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineViewportStateCreateFlags)0, // VkPipelineViewportStateCreateFlags flags;
1u, // uint32_t viewportCount;
&viewport, // const VkViewport* pViewports;
1u, // uint32_t scissorCount;
&scissor, // const VkRect2D* pScissors;
};
const VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineRasterizationStateCreateFlags)0, // VkPipelineRasterizationStateCreateFlags flags;
VK_FALSE, // VkBool32 depthClampEnable;
VK_FALSE, // VkBool32 rasterizerDiscardEnable;
VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode;
VK_CULL_MODE_NONE, // VkCullModeFlags cullMode;
VK_FRONT_FACE_COUNTER_CLOCKWISE, // VkFrontFace frontFace;
VK_FALSE, // VkBool32 depthBiasEnable;
0.0f, // float depthBiasConstantFactor;
0.0f, // float depthBiasClamp;
0.0f, // float depthBiasSlopeFactor;
1.0f, // float lineWidth;
};
const VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineMultisampleStateCreateFlags)0, // VkPipelineMultisampleStateCreateFlags flags;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits rasterizationSamples;
VK_FALSE, // VkBool32 sampleShadingEnable;
0.0f, // float minSampleShading;
DE_NULL, // const VkSampleMask* pSampleMask;
VK_FALSE, // VkBool32 alphaToCoverageEnable;
VK_FALSE // VkBool32 alphaToOneEnable;
};
const VkStencilOpState stencilOpState = makeStencilOpState(
VK_STENCIL_OP_KEEP, // stencil fail
VK_STENCIL_OP_KEEP, // depth & stencil pass
VK_STENCIL_OP_KEEP, // depth only fail
VK_COMPARE_OP_ALWAYS, // compare op
0u, // compare mask
0u, // write mask
0u); // reference
VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineDepthStencilStateCreateFlags)0, // VkPipelineDepthStencilStateCreateFlags flags;
VK_FALSE, // VkBool32 depthTestEnable;
VK_FALSE, // VkBool32 depthWriteEnable;
VK_COMPARE_OP_LESS, // VkCompareOp depthCompareOp;
VK_FALSE, // VkBool32 depthBoundsTestEnable;
VK_FALSE, // VkBool32 stencilTestEnable;
stencilOpState, // VkStencilOpState front;
stencilOpState, // VkStencilOpState back;
0.0f, // float minDepthBounds;
1.0f, // float maxDepthBounds;
};
const VkColorComponentFlags colorComponentsAll = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
// Number of blend attachments must equal the number of color attachments during any subpass.
const VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState =
{
VK_FALSE, // VkBool32 blendEnable;
VK_BLEND_FACTOR_ONE, // VkBlendFactor srcColorBlendFactor;
VK_BLEND_FACTOR_ZERO, // VkBlendFactor dstColorBlendFactor;
VK_BLEND_OP_ADD, // VkBlendOp colorBlendOp;
VK_BLEND_FACTOR_ONE, // VkBlendFactor srcAlphaBlendFactor;
VK_BLEND_FACTOR_ZERO, // VkBlendFactor dstAlphaBlendFactor;
VK_BLEND_OP_ADD, // VkBlendOp alphaBlendOp;
colorComponentsAll, // VkColorComponentFlags colorWriteMask;
};
const VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineColorBlendStateCreateFlags)0, // VkPipelineColorBlendStateCreateFlags flags;
VK_FALSE, // VkBool32 logicOpEnable;
VK_LOGIC_OP_COPY, // VkLogicOp logicOp;
1u, // deUint32 attachmentCount;
&pipelineColorBlendAttachmentState, // const VkPipelineColorBlendAttachmentState* pAttachments;
{ 0.0f, 0.0f, 0.0f, 0.0f }, // float blendConstants[4];
};
const VkPipelineShaderStageCreateInfo pShaderStages[] =
{
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineShaderStageCreateFlags)0, // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_VERTEX_BIT, // VkShaderStageFlagBits stage;
vertexModule, // VkShaderModule module;
"main", // const char* pName;
DE_NULL, // const VkSpecializationInfo* pSpecializationInfo;
},
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineShaderStageCreateFlags)0, // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_FRAGMENT_BIT, // VkShaderStageFlagBits stage;
fragmentModule, // VkShaderModule module;
"main", // const char* pName;
DE_NULL, // const VkSpecializationInfo* pSpecializationInfo;
}
};
const VkGraphicsPipelineCreateInfo graphicsPipelineInfo =
{
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineCreateFlags)0, // VkPipelineCreateFlags flags;
DE_LENGTH_OF_ARRAY(pShaderStages), // deUint32 stageCount;
pShaderStages, // const VkPipelineShaderStageCreateInfo* pStages;
&vertexInputStateInfo, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
&pipelineInputAssemblyStateInfo, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
DE_NULL, // const VkPipelineTessellationStateCreateInfo* pTessellationState;
&pipelineViewportStateInfo, // const VkPipelineViewportStateCreateInfo* pViewportState;
&pipelineRasterizationStateInfo, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
&pipelineMultisampleStateInfo, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
&pipelineDepthStencilStateInfo, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
&pipelineColorBlendStateInfo, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
DE_NULL, // const VkPipelineDynamicStateCreateInfo* pDynamicState;
pipelineLayout, // VkPipelineLayout layout;
renderPass, // VkRenderPass renderPass;
subpass, // deUint32 subpass;
DE_NULL, // VkPipeline basePipelineHandle;
0, // deInt32 basePipelineIndex;
};
return createGraphicsPipeline(vk, device, DE_NULL, &graphicsPipelineInfo);
}
//! Make a render pass with one subpass per color attachment and one attachment per image layer.
Move<VkRenderPass> makeRenderPass (const DeviceInterface& vk,
const VkDevice device,
const VkFormat colorFormat,
const deUint32 numLayers)
{
const VkAttachmentDescription colorAttachmentDescription =
{
(VkAttachmentDescriptionFlags)0, // VkAttachmentDescriptionFlags flags;
colorFormat, // VkFormat format;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_ATTACHMENT_LOAD_OP_CLEAR, // VkAttachmentLoadOp loadOp;
VK_ATTACHMENT_STORE_OP_STORE, // VkAttachmentStoreOp storeOp;
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // VkAttachmentLoadOp stencilLoadOp;
VK_ATTACHMENT_STORE_OP_DONT_CARE, // VkAttachmentStoreOp stencilStoreOp;
VK_IMAGE_LAYOUT_UNDEFINED, // VkImageLayout initialLayout;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // VkImageLayout finalLayout;
};
const vector<VkAttachmentDescription> attachmentDescriptions(numLayers, colorAttachmentDescription);
// Create a subpass for each attachment (each attachement is a layer of an arrayed image).
vector<VkAttachmentReference> colorAttachmentReferences(numLayers);
vector<VkSubpassDescription> subpasses;
for (deUint32 i = 0; i < numLayers; ++i)
{
const VkAttachmentReference attachmentRef =
{
i, // deUint32 attachment;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout layout;
};
colorAttachmentReferences[i] = attachmentRef;
const VkSubpassDescription subpassDescription =
{
(VkSubpassDescriptionFlags)0, // VkSubpassDescriptionFlags flags;
VK_PIPELINE_BIND_POINT_GRAPHICS, // VkPipelineBindPoint pipelineBindPoint;
0u, // deUint32 inputAttachmentCount;
DE_NULL, // const VkAttachmentReference* pInputAttachments;
1u, // deUint32 colorAttachmentCount;
&colorAttachmentReferences[i], // const VkAttachmentReference* pColorAttachments;
DE_NULL, // const VkAttachmentReference* pResolveAttachments;
DE_NULL, // const VkAttachmentReference* pDepthStencilAttachment;
0u, // deUint32 preserveAttachmentCount;
DE_NULL // const deUint32* pPreserveAttachments;
};
subpasses.push_back(subpassDescription);
}
const VkRenderPassCreateInfo renderPassInfo =
{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkRenderPassCreateFlags)0, // VkRenderPassCreateFlags flags;
static_cast<deUint32>(attachmentDescriptions.size()), // deUint32 attachmentCount;
&attachmentDescriptions[0], // const VkAttachmentDescription* pAttachments;
static_cast<deUint32>(subpasses.size()), // deUint32 subpassCount;
&subpasses[0], // const VkSubpassDescription* pSubpasses;
0u, // deUint32 dependencyCount;
DE_NULL // const VkSubpassDependency* pDependencies;
};
return createRenderPass(vk, device, &renderPassInfo);
}
Move<VkImage> makeImage (const DeviceInterface& vk,
const VkDevice device,
VkImageCreateFlags flags,
VkImageType imageType,
const VkFormat format,
const IVec3& size,
const deUint32 numLayers,
const VkImageUsageFlags usage)
{
const VkImageCreateInfo imageParams =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
flags, // VkImageCreateFlags flags;
imageType, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(size), // VkExtent3D extent;
1u, // deUint32 mipLevels;
numLayers, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
usage, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED, // VkImageLayout initialLayout;
};
return createImage(vk, device, &imageParams);
}
inline Move<VkBuffer> makeBuffer (const DeviceInterface& vk, const VkDevice device, const VkDeviceSize bufferSize, const VkBufferUsageFlags usage)
{
const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(bufferSize, usage);
return createBuffer(vk, device, &bufferCreateInfo);
}
inline VkImageSubresourceRange makeColorSubresourceRange (const int baseArrayLayer, const int layerCount)
{
return makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, static_cast<deUint32>(baseArrayLayer), static_cast<deUint32>(layerCount));
}
//! Get a reference clear value based on color format.
VkClearValue getClearValue (const VkFormat format)
{
if (isUintFormat(format) || isIntFormat(format))
return makeClearValueColorU32(REFERENCE_COLOR_VALUE, REFERENCE_COLOR_VALUE, REFERENCE_COLOR_VALUE, REFERENCE_COLOR_VALUE);
else
return makeClearValueColorF32(1.0f, 1.0f, 1.0f, 1.0f);
}
std::string getColorFormatStr (const int numComponents, const bool isUint, const bool isSint)
{
std::ostringstream str;
if (numComponents == 1)
str << (isUint ? "uint" : isSint ? "int" : "float");
else
str << (isUint ? "u" : isSint ? "i" : "") << "vec" << numComponents;
return str.str();
}
//! A half-viewport quad. Use with TRIANGLE_STRIP topology.
vector<Vertex4RGBA> genFullQuadVertices (const int subpassCount, const vector<Vec4>& color)
{
vector<Vertex4RGBA> vectorData;
for (int subpassNdx = 0; subpassNdx < subpassCount; ++subpassNdx)
{
Vertex4RGBA data =
{
Vec4(0.0f, -1.0f, 0.0f, 1.0f),
color[subpassNdx % color.size()],
};
vectorData.push_back(data);
data.position = Vec4(0.0f, 1.0f, 0.0f, 1.0f);
vectorData.push_back(data);
data.position = Vec4(1.0f, -1.0f, 0.0f, 1.0f);
vectorData.push_back(data);
data.position = Vec4(1.0f, 1.0f, 0.0f, 1.0f);
vectorData.push_back(data);
}
return vectorData;
}
VkImageType getImageType (const VkImageViewType viewType)
{
switch (viewType)
{
case VK_IMAGE_VIEW_TYPE_1D:
case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
return VK_IMAGE_TYPE_1D;
case VK_IMAGE_VIEW_TYPE_2D:
case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
case VK_IMAGE_VIEW_TYPE_CUBE:
case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
return VK_IMAGE_TYPE_2D;
case VK_IMAGE_VIEW_TYPE_3D:
return VK_IMAGE_TYPE_3D;
default:
DE_ASSERT(0);
return VK_IMAGE_TYPE_LAST;
}
}
void initPrograms (SourceCollections& programCollection, const CaseDef caseDef)
{
const int numComponents = getNumUsedChannels(mapVkFormat(caseDef.colorFormat).order);
const bool isUint = isUintFormat(caseDef.colorFormat);
const bool isSint = isIntFormat(caseDef.colorFormat);
// Vertex shader
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_position;\n"
<< "layout(location = 1) in vec4 in_color;\n"
<< "layout(location = 0) out vec4 out_color;\n"
<< "\n"
<< "out gl_PerVertex {\n"
<< " vec4 gl_Position;\n"
<< "};\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = in_position;\n"
<< " out_color = in_color;\n"
<< "}\n";
programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
}
// Fragment shader
{
std::ostringstream colorValue;
colorValue << REFERENCE_COLOR_VALUE;
const std::string colorFormat = getColorFormatStr(numComponents, isUint, isSint);
const std::string colorInteger = (isUint || isSint ? " * "+colorFormat+"("+colorValue.str()+")" :"");
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_color;\n"
<< "layout(location = 0) out " << colorFormat << " o_color;\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " o_color = " << colorFormat << "("
<< (numComponents == 1 ? "in_color.r" :
numComponents == 2 ? "in_color.rg" :
numComponents == 3 ? "in_color.rgb" : "in_color")
<< colorInteger
<< ");\n"
<< "}\n";
programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
}
}
tcu::PixelBufferAccess getExpectedData (tcu::TextureLevel& textureLevel, const CaseDef& caseDef, const Vec4* color, const int sizeColor)
{
const bool isInt = isUintFormat(caseDef.colorFormat) || isIntFormat(caseDef.colorFormat);
const tcu::PixelBufferAccess expectedImage (textureLevel);
if (isInt)
tcu::clear(expectedImage, tcu::IVec4(REFERENCE_COLOR_VALUE));
else
tcu::clear(expectedImage, tcu::Vec4(1.0));
for (int z = 0; z < expectedImage.getDepth(); ++z)
{
const Vec4& setColor = color[z % sizeColor];
const IVec4 setColorInt = (static_cast<float>(REFERENCE_COLOR_VALUE) * setColor).cast<deInt32>();
for (int y = 0; y < caseDef.renderSize.y(); ++y)
for (int x = caseDef.renderSize.x()/2; x < caseDef.renderSize.x(); ++x)
{
if (isInt)
expectedImage.setPixel(setColorInt, x, y, z);
else
expectedImage.setPixel(setColor, x, y, z);
}
}
return expectedImage;
}
tcu::TestStatus test (Context& context, const CaseDef caseDef)
{
if (VK_IMAGE_VIEW_TYPE_3D == caseDef.imageType &&
(!de::contains(context.getDeviceExtensions().begin(), context.getDeviceExtensions().end(), "VK_KHR_maintenance1")))
TCU_THROW(NotSupportedError, "Extension VK_KHR_maintenance1 not supported");
const DeviceInterface& vk = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const VkQueue queue = context.getUniversalQueue();
const deUint32 queueFamilyIndex = context.getUniversalQueueFamilyIndex();
Allocator& allocator = context.getDefaultAllocator();
Move<VkImage> colorImage;
MovePtr<Allocation> colorImageAlloc;
const Vec4 color[] =
{
Vec4(0.9f, 0.0f, 0.0f, 1.0f),
Vec4(0.6f, 1.0f, 0.0f, 1.0f),
Vec4(0.3f, 0.0f, 1.0f, 1.0f),
Vec4(0.1f, 0.0f, 1.0f, 1.0f)
};
const int numLayers = (VK_IMAGE_VIEW_TYPE_3D == caseDef.imageType ? caseDef.renderSize.z() : caseDef.numLayers);
const VkDeviceSize colorBufferSize = caseDef.renderSize.x() * caseDef.renderSize.y() * caseDef.renderSize.z() * caseDef.numLayers * tcu::getPixelSize(mapVkFormat(caseDef.colorFormat));
const Unique<VkBuffer> colorBuffer (makeBuffer(vk, device, colorBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT));
const UniquePtr<Allocation> colorBufferAlloc (bindBuffer(vk, device, allocator, *colorBuffer, MemoryRequirement::HostVisible));
const Unique<VkShaderModule> vertexModule (createShaderModule (vk, device, context.getBinaryCollection().get("vert"), 0u));
const Unique<VkShaderModule> fragmentModule (createShaderModule (vk, device, context.getBinaryCollection().get("frag"), 0u));
const Unique<VkRenderPass> renderPass (makeRenderPass (vk, device, caseDef.colorFormat, static_cast<deUint32>(numLayers)));
const Unique<VkPipelineLayout> pipelineLayout (makePipelineLayout (vk, device));
vector<SharedPtrVkPipeline> pipeline;
const Unique<VkCommandPool> cmdPool (makeCommandPool (vk, device, queueFamilyIndex));
const Unique<VkCommandBuffer> cmdBuffer (makeCommandBuffer(vk, device, *cmdPool));
vector<SharedPtrVkImageView> colorAttachments;
vector<VkImageView> attachmentHandles;
Move<VkBuffer> vertexBuffer;
MovePtr<Allocation> vertexBufferAlloc;
Move<VkFramebuffer> framebuffer;
//create colorImage
{
const VkImageViewCreateFlags flags = (VK_IMAGE_VIEW_TYPE_3D == caseDef.imageType ? (VkImageViewCreateFlags)VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR : (VkImageViewCreateFlags)0);
const VkImageUsageFlags colorImageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
colorImage = makeImage(vk, device, flags, getImageType(caseDef.imageType), caseDef.colorFormat, caseDef.renderSize, caseDef.numLayers, colorImageUsage);
colorImageAlloc = bindImage(vk, device, allocator, *colorImage, MemoryRequirement::Any);
}
//create vertexBuffer
{
const vector<Vertex4RGBA> vertices = genFullQuadVertices(numLayers, vector<Vec4>(color, color + DE_LENGTH_OF_ARRAY(color)));
const VkDeviceSize vertexBufferSize = sizeInBytes(vertices);
vertexBuffer = makeBuffer(vk, device, vertexBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
vertexBufferAlloc = bindBuffer(vk, device, allocator, *vertexBuffer, MemoryRequirement::HostVisible);
deMemcpy(vertexBufferAlloc->getHostPtr(), &vertices[0], static_cast<std::size_t>(vertexBufferSize));
flushMappedMemoryRange(vk, device, vertexBufferAlloc->getMemory(), vertexBufferAlloc->getOffset(), vertexBufferSize);
}
//create attachmentHandles and pipelines
for (int layerNdx = 0; layerNdx < numLayers; ++layerNdx)
{
const VkImageViewType imageType = (VK_IMAGE_VIEW_TYPE_3D == caseDef.imageType ? VK_IMAGE_VIEW_TYPE_2D_ARRAY :
(VK_IMAGE_VIEW_TYPE_CUBE == caseDef.imageType || VK_IMAGE_VIEW_TYPE_CUBE_ARRAY == caseDef.imageType ? VK_IMAGE_VIEW_TYPE_2D :
caseDef.imageType));
colorAttachments.push_back(makeSharedPtr(makeImageView(vk, device, *colorImage, imageType, caseDef.colorFormat, makeColorSubresourceRange(layerNdx, 1))));
attachmentHandles.push_back(**colorAttachments.back());
pipeline.push_back(makeSharedPtr(makeGraphicsPipeline(vk, device, *pipelineLayout, *renderPass, *vertexModule, *fragmentModule,
caseDef.renderSize, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, static_cast<deUint32>(layerNdx))));
}
framebuffer = makeFramebuffer(vk, device, *renderPass, numLayers, &attachmentHandles[0], static_cast<deUint32>(caseDef.renderSize.x()), static_cast<deUint32>(caseDef.renderSize.y()));
beginCommandBuffer(vk, *cmdBuffer);
{
const vector<VkClearValue> clearValues (numLayers, getClearValue(caseDef.colorFormat));
const VkRect2D renderArea =
{
makeOffset2D(0, 0),
makeExtent2D(caseDef.renderSize.x(), caseDef.renderSize.y()),
};
const VkRenderPassBeginInfo renderPassBeginInfo =
{
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
*renderPass, // VkRenderPass renderPass;
*framebuffer, // VkFramebuffer framebuffer;
renderArea, // VkRect2D renderArea;
static_cast<deUint32>(clearValues.size()), // uint32_t clearValueCount;
&clearValues[0], // const VkClearValue* pClearValues;
};
const VkDeviceSize vertexBufferOffset = 0ull;
vk.cmdBeginRenderPass(*cmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vk.cmdBindVertexBuffers(*cmdBuffer, 0u, 1u, &vertexBuffer.get(), &vertexBufferOffset);
}
//cmdDraw
for (deUint32 layerNdx = 0; layerNdx < static_cast<deUint32>(numLayers); ++layerNdx)
{
if (layerNdx != 0)
vk.cmdNextSubpass(*cmdBuffer, VK_SUBPASS_CONTENTS_INLINE);
vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, **pipeline[layerNdx]);
vk.cmdDraw(*cmdBuffer, 4u, 1u, layerNdx*4u, 0u);
}
vk.cmdEndRenderPass(*cmdBuffer);
// copy colorImage -> host visible colorBuffer
{
const VkImageMemoryBarrier imageBarriers[] =
{
{
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType sType;
DE_NULL, // const void* pNext;
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // VkAccessFlags outputMask;
VK_ACCESS_TRANSFER_READ_BIT, // VkAccessFlags inputMask;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // VkImageLayout oldLayout;
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // VkImageLayout newLayout;
VK_QUEUE_FAMILY_IGNORED, // deUint32 srcQueueFamilyIndex;
VK_QUEUE_FAMILY_IGNORED, // deUint32 destQueueFamilyIndex;
*colorImage, // VkImage image;
makeColorSubresourceRange(0, caseDef.numLayers) // VkImageSubresourceRange subresourceRange;
}
};
vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u,
0u, DE_NULL, 0u, DE_NULL, DE_LENGTH_OF_ARRAY(imageBarriers), imageBarriers);
const VkBufferImageCopy region =
{
0ull, // VkDeviceSize bufferOffset;
0u, // uint32_t bufferRowLength;
0u, // uint32_t bufferImageHeight;
makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, caseDef.numLayers), // VkImageSubresourceLayers imageSubresource;
makeOffset3D(0, 0, 0), // VkOffset3D imageOffset;
makeExtent3D(caseDef.renderSize), // VkExtent3D imageExtent;
};
vk.cmdCopyImageToBuffer(*cmdBuffer, *colorImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *colorBuffer, 1u, &region);
const VkBufferMemoryBarrier bufferBarriers[] =
{
{
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // VkStructureType sType;
DE_NULL, // const void* pNext;
VK_ACCESS_TRANSFER_WRITE_BIT, // VkAccessFlags srcAccessMask;
VK_ACCESS_HOST_READ_BIT, // VkAccessFlags dstAccessMask;
VK_QUEUE_FAMILY_IGNORED, // uint32_t srcQueueFamilyIndex;
VK_QUEUE_FAMILY_IGNORED, // uint32_t dstQueueFamilyIndex;
*colorBuffer, // VkBuffer buffer;
0ull, // VkDeviceSize offset;
VK_WHOLE_SIZE, // VkDeviceSize size;
},
};
vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u,
0u, DE_NULL, DE_LENGTH_OF_ARRAY(bufferBarriers), bufferBarriers, 0u, DE_NULL);
}
VK_CHECK(vk.endCommandBuffer(*cmdBuffer));
submitCommandsAndWait(vk, device, queue, *cmdBuffer);
// Verify results
{
invalidateMappedMemoryRange(vk, device, colorBufferAlloc->getMemory(), colorBufferAlloc->getOffset(), VK_WHOLE_SIZE);
const tcu::TextureFormat format = mapVkFormat(caseDef.colorFormat);
const int depth = deMax32(caseDef.renderSize.z(), caseDef.numLayers);
tcu::TextureLevel textureLevel (format, caseDef.renderSize.x(), caseDef.renderSize.y(), depth);
const tcu::PixelBufferAccess expectedImage = getExpectedData (textureLevel, caseDef, color, DE_LENGTH_OF_ARRAY(color));
const tcu::ConstPixelBufferAccess resultImage (format, caseDef.renderSize.x(), caseDef.renderSize.y(), depth, colorBufferAlloc->getHostPtr());
if (!tcu::intThresholdCompare(context.getTestContext().getLog(), "Image Comparison", "", expectedImage, resultImage, tcu::UVec4(2), tcu::COMPARE_LOG_RESULT))
return tcu::TestStatus::fail("Fail");
}
return tcu::TestStatus::pass("Pass");
}
std::string getSizeString (const IVec3& size, const int numLayer)
{
std::ostringstream str;
str << size.x();
if (size.y() > 1) str << "x" << size.y();
if (size.z() > 1) str << "x" << size.z();
if (numLayer > 1) str << "_" << numLayer;
return str.str();
}
std::string getFormatString (const VkFormat format)
{
std::string name(getFormatName(format));
return de::toLower(name.substr(10));
}
std::string getShortImageViewTypeName (const VkImageViewType imageViewType)
{
std::string s(getImageViewTypeName(imageViewType));
return de::toLower(s.substr(19));
}
CaseDef caseDefWithFormat (CaseDef caseDef, const VkFormat format)
{
caseDef.colorFormat = format;
return caseDef;
}
void addTestCasesWithFunctions (tcu::TestCaseGroup* group)
{
const CaseDef caseDef[] =
{
{ VK_IMAGE_VIEW_TYPE_1D, IVec3(54, 1, 1), 1, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_1D_ARRAY, IVec3(54, 1, 1), 4, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_2D, IVec3(22, 64, 1), 1, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_2D_ARRAY, IVec3(22, 64, 1), 4, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_3D, IVec3(22, 64, 7), 1, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_CUBE, IVec3(35, 35, 1), 6, VK_FORMAT_UNDEFINED},
{ VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, IVec3(35, 35, 1), 2*6, VK_FORMAT_UNDEFINED},
};
const VkFormat format[] =
{
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R32_UINT,
VK_FORMAT_R16G16_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
};
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(caseDef); ++sizeNdx)
{
MovePtr<tcu::TestCaseGroup> imageGroup(new tcu::TestCaseGroup(group->getTestContext(), getShortImageViewTypeName(caseDef[sizeNdx].imageType).c_str(), ""));
{
MovePtr<tcu::TestCaseGroup> sizeGroup(new tcu::TestCaseGroup(group->getTestContext(), getSizeString(caseDef[sizeNdx].renderSize, caseDef[sizeNdx].numLayers).c_str(), ""));
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(format); ++formatNdx)
addFunctionCaseWithPrograms(sizeGroup.get(), getFormatString(format[formatNdx]).c_str(), "", initPrograms, test, caseDefWithFormat(caseDef[sizeNdx], format[formatNdx]));
imageGroup->addChild(sizeGroup.release());
}
group->addChild(imageGroup.release());
}
}
} // anonymous ns
tcu::TestCaseGroup* createRenderToImageTests (tcu::TestContext& testCtx)
{
return createTestGroup(testCtx, "render_to_image", "Render to image tests", addTestCasesWithFunctions);
}
} // pipeline
} // vkt