blob: ec48454a6188d68f258d487290449418e9c22d2f [file] [log] [blame]
/*-------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Testing compute shader writing to separate planes of a multiplanar format
*//*--------------------------------------------------------------------*/
#include "vktYCbCrStorageImageWriteTests.hpp"
#include "vktTestCaseUtil.hpp"
#include "vktTestGroupUtil.hpp"
#include "vktYCbCrUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkImageUtil.hpp"
#include "tcuTexVerifierUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkRefUtil.hpp"
#include "vkQueryUtil.hpp"
#include "tcuTestLog.hpp"
namespace vkt
{
namespace ycbcr
{
namespace
{
using namespace vk;
struct TestParameters
{
VkFormat format;
tcu::UVec3 size;
VkImageCreateFlags flags;
TestParameters (VkFormat format_,
const tcu::UVec3& size_,
VkImageCreateFlags flags_)
: format (format_)
, size (size_)
, flags (flags_)
{
}
TestParameters (void)
: format (VK_FORMAT_UNDEFINED)
, flags (0u)
{
}
};
void checkSupport (Context& context, const TestParameters params)
{
const bool disjoint = (params.flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0;
std::vector<std::string> reqExts;
if (disjoint)
{
if (!isCoreDeviceExtension(context.getUsedApiVersion(), "VK_KHR_bind_memory2"))
reqExts.push_back("VK_KHR_bind_memory2");
if (!isCoreDeviceExtension(context.getUsedApiVersion(), "VK_KHR_get_memory_requirements2"))
reqExts.push_back("VK_KHR_get_memory_requirements2");
}
for ( const auto& extIter : reqExts )
{
if (!context.isDeviceFunctionalitySupported(extIter))
TCU_THROW(NotSupportedError, (extIter + " is not supported").c_str());
}
{
const VkFormatProperties formatProperties = getPhysicalDeviceFormatProperties(context.getInstanceInterface(),
context.getPhysicalDevice(),
params.format);
if ((formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) == 0)
TCU_THROW(NotSupportedError, "Storage images are not supported for this format");
if (disjoint && ((formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DISJOINT_BIT) == 0))
TCU_THROW(NotSupportedError, "Disjoint planes are not supported for this format");
}
}
template<typename T>
inline de::SharedPtr<vk::Unique<T> > makeVkSharedPtr(vk::Move<T> vkMove)
{
return de::SharedPtr<vk::Unique<T> >(new vk::Unique<T>(vkMove));
}
tcu::UVec3 computeWorkGroupSize(const VkExtent3D& planeExtent)
{
const deUint32 maxComputeWorkGroupInvocations = 128u;
const tcu::UVec3 maxComputeWorkGroupSize = tcu::UVec3(128u, 128u, 64u);
const deUint32 xWorkGroupSize = std::min(std::min(planeExtent.width, maxComputeWorkGroupSize.x()), maxComputeWorkGroupInvocations);
const deUint32 yWorkGroupSize = std::min(std::min(planeExtent.height, maxComputeWorkGroupSize.y()), maxComputeWorkGroupInvocations / xWorkGroupSize);
const deUint32 zWorkGroupSize = std::min(std::min(planeExtent.depth, maxComputeWorkGroupSize.z()), maxComputeWorkGroupInvocations / (xWorkGroupSize*yWorkGroupSize));
return tcu::UVec3(xWorkGroupSize, yWorkGroupSize, zWorkGroupSize);
}
Move<VkPipeline> makeComputePipeline (const DeviceInterface& vk,
const VkDevice device,
const VkPipelineLayout pipelineLayout,
const VkShaderModule shaderModule,
const VkSpecializationInfo* specializationInfo)
{
const VkPipelineShaderStageCreateInfo pipelineShaderStageParams =
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_COMPUTE_BIT, // VkShaderStageFlagBits stage;
shaderModule, // VkShaderModule module;
"main", // const char* pName;
specializationInfo, // const VkSpecializationInfo* pSpecializationInfo;
};
const VkComputePipelineCreateInfo pipelineCreateInfo =
{
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineCreateFlags flags;
pipelineShaderStageParams, // VkPipelineShaderStageCreateInfo stage;
pipelineLayout, // VkPipelineLayout layout;
DE_NULL, // VkPipeline basePipelineHandle;
0, // deInt32 basePipelineIndex;
};
return createComputePipeline(vk, device, DE_NULL , &pipelineCreateInfo);
}
vk::VkFormat getPlaneCompatibleFormatForWriting(const vk::PlanarFormatDescription& formatInfo, deUint32 planeNdx)
{
DE_ASSERT(planeNdx < formatInfo.numPlanes);
vk::VkFormat result = formatInfo.planes[planeNdx].planeCompatibleFormat;
// redirect result for some of the YCbCr image formats
static const std::pair<vk::VkFormat, vk::VkFormat> ycbcrFormats[] =
{
{ VK_FORMAT_G8B8G8R8_422_UNORM_KHR, VK_FORMAT_R8G8B8A8_UNORM },
{ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16_KHR, VK_FORMAT_R16G16B16A16_UNORM },
{ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16_KHR, VK_FORMAT_R16G16B16A16_UNORM },
{ VK_FORMAT_G16B16G16R16_422_UNORM_KHR, VK_FORMAT_R16G16B16A16_UNORM },
{ VK_FORMAT_B8G8R8G8_422_UNORM_KHR, VK_FORMAT_R8G8B8A8_UNORM },
{ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16_KHR, VK_FORMAT_R16G16B16A16_UNORM },
{ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16_KHR, VK_FORMAT_R16G16B16A16_UNORM },
{ VK_FORMAT_B16G16R16G16_422_UNORM_KHR, VK_FORMAT_R16G16B16A16_UNORM }
};
auto it = std::find_if(std::begin(ycbcrFormats), std::end(ycbcrFormats), [result](const std::pair<vk::VkFormat, vk::VkFormat>& p) { return p.first == result; });
if (it != std::end(ycbcrFormats))
result = it->second;
return result;
}
tcu::TestStatus testStorageImageWrite (Context& context, TestParameters params)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const deUint32 queueFamilyIndex = context.getUniversalQueueFamilyIndex();
const VkQueue queue = context.getUniversalQueue();
const PlanarFormatDescription formatDescription = getPlanarFormatDescription(params.format);
VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
DE_NULL,
params.flags,
VK_IMAGE_TYPE_2D,
params.format,
makeExtent3D(params.size.x(), params.size.y(), params.size.z()),
1u, // mipLevels
1u, // arrayLayers
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0u,
(const deUint32*)DE_NULL,
VK_IMAGE_LAYOUT_UNDEFINED,
};
// check if we need to create VkImageView with different VkFormat than VkImage format
VkFormat planeCompatibleFormat0 = getPlaneCompatibleFormatForWriting(formatDescription, 0);
if (planeCompatibleFormat0 != getPlaneCompatibleFormat(formatDescription, 0))
{
imageCreateInfo.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
}
const Unique<VkImage> image (createImage(vkd, device, &imageCreateInfo));
// allocate memory for the whole image, or for each separate plane ( if the params.flags include VK_IMAGE_CREATE_DISJOINT_BIT )
const std::vector<AllocationSp> allocations (allocateAndBindImageMemory(vkd, device, context.getDefaultAllocator(), *image, params.format, params.flags, MemoryRequirement::Any));
// Create descriptor set layout
const Unique<VkDescriptorSetLayout> descriptorSetLayout (DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
.build(vkd, device));
const Unique<VkPipelineLayout> pipelineLayout (makePipelineLayout(vkd, device, *descriptorSetLayout));
// Create descriptor sets
const Unique<VkDescriptorPool> descriptorPool (DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1u)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, vk::PlanarFormatDescription::MAX_PLANES));
// Create command buffer for compute and transfer operations
const Unique<VkCommandPool> commandPool (makeCommandPool(vkd, device, queueFamilyIndex));
const Unique<VkCommandBuffer> commandBuffer (allocateCommandBuffer(vkd, device, *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
std::vector<de::SharedPtr<vk::Unique<vk::VkShaderModule>>> shaderModules;
std::vector<de::SharedPtr<vk::Unique<vk::VkPipeline>>> computePipelines;
std::vector<de::SharedPtr<vk::Unique<vk::VkDescriptorSet>>> descriptorSets;
std::vector<de::SharedPtr<vk::Unique<vk::VkImageView>>> imageViews;
deUint32 imageSizeInBytes = 0;
deUint32 planeOffsets[PlanarFormatDescription::MAX_PLANES];
deUint32 planeRowPitches[PlanarFormatDescription::MAX_PLANES];
void* planePointers[PlanarFormatDescription::MAX_PLANES];
{
// Start recording commands
beginCommandBuffer(vkd, *commandBuffer);
for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
{
const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(aspect, 0u, 1u, 0u, 1u);
VkFormat planeCompatibleFormat = getPlaneCompatibleFormatForWriting(formatDescription, planeNdx);
vk::PlanarFormatDescription compatibleFormatDescription = (planeCompatibleFormat != getPlaneCompatibleFormat(formatDescription, planeNdx)) ? getPlanarFormatDescription(planeCompatibleFormat) : formatDescription;
const tcu::UVec3 compatibleShaderGridSize ( params.size.x() / formatDescription.blockWidth, params.size.y() / formatDescription.blockHeight, params.size.z() / 1u);
VkExtent3D shaderExtent = getPlaneExtent(compatibleFormatDescription, VkExtent3D{ compatibleShaderGridSize.x(), compatibleShaderGridSize.y(), compatibleShaderGridSize.z() }, planeNdx, 0u);
// Create and bind compute pipeline
std::ostringstream shaderName;
shaderName << "comp" << planeNdx;
auto shaderModule = makeVkSharedPtr(createShaderModule(vkd, device, context.getBinaryCollection().get(shaderName.str()), DE_NULL));
shaderModules.push_back(shaderModule);
auto computePipeline = makeVkSharedPtr(makeComputePipeline(vkd, device, *pipelineLayout, shaderModule->get(), DE_NULL));
computePipelines.push_back(computePipeline);
vkd.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline->get());
auto descriptorSet = makeVkSharedPtr(makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout));
descriptorSets.push_back(descriptorSet);
auto imageView = makeVkSharedPtr(makeImageView(vkd, device, *image, VK_IMAGE_VIEW_TYPE_2D, planeCompatibleFormat, subresourceRange));
imageViews.push_back(imageView);
const VkDescriptorImageInfo imageInfo = makeDescriptorImageInfo(DE_NULL, imageView->get(), VK_IMAGE_LAYOUT_GENERAL);
DescriptorSetUpdateBuilder()
.writeSingle(descriptorSet->get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &imageInfo)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet->get(), 0u, DE_NULL);
{
const VkImageMemoryBarrier imageLayoutChangeBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_SHADER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, *image, subresourceRange, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED);
vkd.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageLayoutChangeBarrier);
}
{
const tcu::UVec3 workGroupSize = computeWorkGroupSize(shaderExtent);
const deUint32 xWorkGroupCount = shaderExtent.width / workGroupSize.x() + (shaderExtent.width % workGroupSize.x() ? 1u : 0u);
const deUint32 yWorkGroupCount = shaderExtent.height / workGroupSize.y() + (shaderExtent.height % workGroupSize.y() ? 1u : 0u);
const deUint32 zWorkGroupCount = shaderExtent.depth / workGroupSize.z() + (shaderExtent.depth % workGroupSize.z() ? 1u : 0u);
const tcu::UVec3 maxComputeWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u);
if (maxComputeWorkGroupCount.x() < xWorkGroupCount ||
maxComputeWorkGroupCount.y() < yWorkGroupCount ||
maxComputeWorkGroupCount.z() < zWorkGroupCount)
{
TCU_THROW(NotSupportedError, "Image size is not supported");
}
vkd.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
}
{
const VkImageMemoryBarrier imageTransferBarrier = makeImageMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *image, subresourceRange);
vkd.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageTransferBarrier);
}
}
for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
{
planeOffsets[planeNdx] = imageSizeInBytes;
const deUint32 planeW = imageCreateInfo.extent.width / (formatDescription.blockWidth * formatDescription.planes[planeNdx].widthDivisor);
planeRowPitches[planeNdx] = formatDescription.planes[planeNdx].elementSizeBytes * planeW;
imageSizeInBytes += getPlaneSizeInBytes(formatDescription, makeExtent3D( params.size.x(), params.size.y(), params.size.z()) , planeNdx, 0u, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
}
const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const Unique<VkBuffer> outputBuffer ( createBuffer(vkd, device, &outputBufferCreateInfo) );
const de::UniquePtr<Allocation> outputBufferAlloc ( bindBuffer(vkd, device, context.getDefaultAllocator(), *outputBuffer, MemoryRequirement::HostVisible) );
std::vector<VkBufferImageCopy> bufferImageCopy ( formatDescription.numPlanes );
for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
{
const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
bufferImageCopy[planeNdx] =
{
planeOffsets[planeNdx], // VkDeviceSize bufferOffset;
0u, // deUint32 bufferRowLength;
0u, // deUint32 bufferImageHeight;
makeImageSubresourceLayers(aspect, 0u, 0u, 1u), // VkImageSubresourceLayers imageSubresource;
makeOffset3D(0, 0, 0), // VkOffset3D imageOffset;
getPlaneExtent(formatDescription, makeExtent3D(params.size.x(), params.size.y(), params.size.z()), planeNdx, 0u) // VkExtent3D imageExtent;
};
}
vkd.cmdCopyImageToBuffer(*commandBuffer, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
{
const VkBufferMemoryBarrier outputBufferHostReadBarrier = makeBufferMemoryBarrier
(
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
*outputBuffer,
0u,
imageSizeInBytes
);
vkd.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferHostReadBarrier, 0u, DE_NULL);
}
// End recording commands
endCommandBuffer(vkd, *commandBuffer);
// Submit commands for execution and wait for completion
submitCommandsAndWait(vkd, device, queue, *commandBuffer);
// Retrieve data from buffer to host memory
invalidateAlloc(vkd, device, *outputBufferAlloc);
deUint8* outputData = static_cast<deUint8*>(outputBufferAlloc->getHostPtr());
for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
planePointers[planeNdx] = outputData + static_cast<size_t>(planeOffsets[planeNdx]);
}
// write result images to log file
for (deUint32 channelNdx = 0; channelNdx < 4; ++channelNdx)
{
if (!formatDescription.hasChannelNdx(channelNdx))
continue;
deUint32 planeNdx = formatDescription.channels[channelNdx].planeNdx;
vk::VkFormat planeCompatibleFormat = getPlaneCompatibleFormatForWriting(formatDescription, planeNdx);
vk::PlanarFormatDescription compatibleFormatDescription = (planeCompatibleFormat != getPlaneCompatibleFormat(formatDescription, planeNdx)) ? getPlanarFormatDescription(planeCompatibleFormat) : formatDescription;
const tcu::UVec3 compatibleShaderGridSize ( params.size.x() / formatDescription.blockWidth, params.size.y() / formatDescription.blockHeight, params.size.z() / 1u );
tcu::ConstPixelBufferAccess pixelBuffer = vk::getChannelAccess(compatibleFormatDescription, compatibleShaderGridSize, planeRowPitches, (const void* const*)planePointers, channelNdx);
std::ostringstream str;
str << "image" << channelNdx;
context.getTestContext().getLog() << tcu::LogImage(str.str(), str.str(), pixelBuffer);;
}
// verify data
const float epsilon = 1e-5f;
for (deUint32 channelNdx = 0; channelNdx < 4; ++channelNdx)
{
if (!formatDescription.hasChannelNdx(channelNdx))
continue;
deUint32 planeNdx = formatDescription.channels[channelNdx].planeNdx;
vk::VkFormat planeCompatibleFormat = getPlaneCompatibleFormatForWriting(formatDescription, planeNdx);
vk::PlanarFormatDescription compatibleFormatDescription = (planeCompatibleFormat != getPlaneCompatibleFormat(formatDescription, planeNdx)) ? getPlanarFormatDescription(planeCompatibleFormat) : formatDescription;
const tcu::UVec3 compatibleShaderGridSize ( params.size.x() / formatDescription.blockWidth, params.size.y() / formatDescription.blockHeight, params.size.z() / 1u );
VkExtent3D compatibleImageSize { imageCreateInfo.extent.width / formatDescription.blockWidth, imageCreateInfo.extent.height / formatDescription.blockHeight, imageCreateInfo.extent.depth / 1u };
tcu::ConstPixelBufferAccess pixelBuffer = vk::getChannelAccess(compatibleFormatDescription, compatibleShaderGridSize, planeRowPitches, (const void* const*)planePointers, channelNdx);
VkExtent3D planeExtent = getPlaneExtent(compatibleFormatDescription, compatibleImageSize, planeNdx, 0u);
tcu::IVec3 pixelDivider = pixelBuffer.getDivider();
float fixedPointError = tcu::TexVerifierUtil::computeFixedPointError(formatDescription.channels[channelNdx].sizeBits);
for (deUint32 offsetZ = 0u; offsetZ < planeExtent.depth; ++offsetZ)
for (deUint32 offsetY = 0u; offsetY < planeExtent.height; ++offsetY)
for (deUint32 offsetX = 0u; offsetX < planeExtent.width; ++offsetX)
{
deUint32 iReferenceValue;
float fReferenceValue;
switch (channelNdx)
{
case 0:
iReferenceValue = offsetX % 127u;
fReferenceValue = static_cast<float>(iReferenceValue) / 127.f;
break;
case 1:
iReferenceValue = offsetY % 127u;
fReferenceValue = static_cast<float>(iReferenceValue) / 127.f;
break;
case 2:
iReferenceValue = offsetZ % 127u;
fReferenceValue = static_cast<float>(iReferenceValue) / 127.f;
break;
case 3:
iReferenceValue = 0u;
fReferenceValue = 0.f;
break;
default: DE_FATAL("Unexpected channel index"); break;
}
float acceptableError = epsilon;
switch (formatDescription.channels[channelNdx].type)
{
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
{
tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), 0);
if (outputValue.x() != iReferenceValue)
return tcu::TestStatus::fail("Failed");
break;
}
case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
{
acceptableError += fixedPointError;
tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), 0);
if (deAbs(outputValue.x() - fReferenceValue) > acceptableError)
return tcu::TestStatus::fail("Failed");
break;
}
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
{
const tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), 0);
if (deAbs( outputValue.x() - fReferenceValue) > acceptableError)
return tcu::TestStatus::fail("Failed");
break;
}
default: DE_FATAL("Unexpected channel type"); break;
}
}
}
return tcu::TestStatus::pass("Passed");
}
std::string getShaderImageType (const vk::PlanarFormatDescription& description)
{
std::string formatPart;
// all PlanarFormatDescription types have at least one channel ( 0 ) and all channel types are the same :
switch (description.channels[0].type)
{
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
formatPart = "i";
break;
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
formatPart = "u";
break;
case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
break;
default:
DE_FATAL("Unexpected channel type");
}
return formatPart + "image2D";
}
std::string getShaderImageDataType (const vk::PlanarFormatDescription& description)
{
switch (description.channels[0].type)
{
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
return "uvec4";
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
return "ivec4";
case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
return "vec4";
default:
DE_FATAL("Unexpected channel type");
return "";
}
}
std::string getFormatValueString (const std::vector<std::pair<deUint32, deUint32>>& channelsOnPlane,
const std::vector<std::string>& formatValueStrings)
{
std::string result = "( ";
deUint32 i;
for (i=0; i<channelsOnPlane.size(); ++i)
{
result += formatValueStrings[channelsOnPlane[i].first];
if (i < 3)
result += ", ";
}
for (; i < 4; ++i)
{
result += "0";
if (i < 3)
result += ", ";
}
result += " )";
return result;
}
std::string getShaderImageFormatQualifier (VkFormat format)
{
switch (format)
{
case VK_FORMAT_R8_SINT: return "r8i";
case VK_FORMAT_R16_SINT: return "r16i";
case VK_FORMAT_R32_SINT: return "r32i";
case VK_FORMAT_R8_UINT: return "r8ui";
case VK_FORMAT_R16_UINT: return "r16ui";
case VK_FORMAT_R32_UINT: return "r32ui";
case VK_FORMAT_R8_SNORM: return "r8_snorm";
case VK_FORMAT_R16_SNORM: return "r16_snorm";
case VK_FORMAT_R8_UNORM: return "r8";
case VK_FORMAT_R16_UNORM: return "r16";
case VK_FORMAT_R8G8_SINT: return "rg8i";
case VK_FORMAT_R16G16_SINT: return "rg16i";
case VK_FORMAT_R32G32_SINT: return "rg32i";
case VK_FORMAT_R8G8_UINT: return "rg8ui";
case VK_FORMAT_R16G16_UINT: return "rg16ui";
case VK_FORMAT_R32G32_UINT: return "rg32ui";
case VK_FORMAT_R8G8_SNORM: return "rg8_snorm";
case VK_FORMAT_R16G16_SNORM: return "rg16_snorm";
case VK_FORMAT_R8G8_UNORM: return "rg8";
case VK_FORMAT_R16G16_UNORM: return "rg16";
case VK_FORMAT_R8G8B8A8_SINT: return "rgba8i";
case VK_FORMAT_R16G16B16A16_SINT: return "rgba16i";
case VK_FORMAT_R32G32B32A32_SINT: return "rgba32i";
case VK_FORMAT_R8G8B8A8_UINT: return "rgba8ui";
case VK_FORMAT_R16G16B16A16_UINT: return "rgba16ui";
case VK_FORMAT_R32G32B32A32_UINT: return "rgba32ui";
case VK_FORMAT_R8G8B8A8_SNORM: return "rgba8_snorm";
case VK_FORMAT_R16G16B16A16_SNORM: return "rgba16_snorm";
case VK_FORMAT_R8G8B8A8_UNORM: return "rgba8";
case VK_FORMAT_R16G16B16A16_UNORM: return "rgba16";
case VK_FORMAT_G8B8G8R8_422_UNORM: return "rgba8";
case VK_FORMAT_B8G8R8G8_422_UNORM: return "rgba8";
case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: return "rgba8";
case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: return "rgba8";
case VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM: return "rgba8";
case VK_FORMAT_G8_B8R8_2PLANE_422_UNORM: return "rgba8";
case VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM: return "rgba8";
case VK_FORMAT_R10X6_UNORM_PACK16: return "r16";
case VK_FORMAT_R10X6G10X6_UNORM_2PACK16: return "rg16";
case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_R12X4_UNORM_PACK16: return "r16";
case VK_FORMAT_R12X4G12X4_UNORM_2PACK16: return "rg16";
case VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16: return "rgba16";
case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16: return "rgba16";
case VK_FORMAT_G16B16G16R16_422_UNORM: return "rgba16";
case VK_FORMAT_B16G16R16G16_422_UNORM: return "rgba16";
case VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM: return "rgba16";
case VK_FORMAT_G16_B16R16_2PLANE_420_UNORM: return "rgba16";
case VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM: return "rgba16";
case VK_FORMAT_G16_B16R16_2PLANE_422_UNORM: return "rgba16";
case VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM: return "rgba16";
default:
DE_FATAL("Unexpected texture format");
return "error";
}
}
void initPrograms (SourceCollections& sourceCollections, TestParameters params)
{
// Create compute program
const char* const versionDecl = glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_440);
const PlanarFormatDescription formatDescription = getPlanarFormatDescription(params.format);
const std::string imageTypeStr = getShaderImageType(formatDescription);
const std::string formatDataStr = getShaderImageDataType(formatDescription);
const tcu::UVec3 shaderGridSize ( params.size.x(), params.size.y(), params.size.z() );
std::vector<std::string> formatValueStrings;
switch (formatDescription.channels[0].type)
{
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
formatValueStrings = {
"int(gl_GlobalInvocationID.x) % 127",
"int(gl_GlobalInvocationID.y) % 127",
"int(gl_GlobalInvocationID.z) % 127",
"1"
};
break;
case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
formatValueStrings = {
"float(int(gl_GlobalInvocationID.x) % 127) / 127.0" ,
"float(int(gl_GlobalInvocationID.y) % 127) / 127.0",
"float(int(gl_GlobalInvocationID.z) % 127) / 127.0",
"1.0"
};
break;
default: DE_ASSERT(false); break;
}
for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
{
VkFormat planeCompatibleFormat = getPlaneCompatibleFormatForWriting(formatDescription, planeNdx);
vk::PlanarFormatDescription compatibleFormatDescription = (planeCompatibleFormat != getPlaneCompatibleFormat(formatDescription, planeNdx)) ? getPlanarFormatDescription(planeCompatibleFormat) : formatDescription;
VkExtent3D compatibleShaderGridSize { shaderGridSize.x() / formatDescription.blockWidth, shaderGridSize.y() / formatDescription.blockHeight, shaderGridSize.z() / 1u };
std::vector<std::pair<deUint32, deUint32>> channelsOnPlane;
for (deUint32 channelNdx = 0; channelNdx < 4; ++channelNdx)
{
if (!formatDescription.hasChannelNdx(channelNdx))
continue;
if (formatDescription.channels[channelNdx].planeNdx != planeNdx)
continue;
channelsOnPlane.push_back({ channelNdx,formatDescription.channels[channelNdx].offsetBits });
}
// reorder channels for multi-planar images
if (formatDescription.numPlanes > 1)
std::sort(begin(channelsOnPlane), end(channelsOnPlane), [](const std::pair<deUint32, deUint32>& lhs, const std::pair<deUint32, deUint32>& rhs) { return lhs.second < rhs.second; });
std::string formatValueStr = getFormatValueString(channelsOnPlane, formatValueStrings);
VkExtent3D shaderExtent = getPlaneExtent(compatibleFormatDescription, compatibleShaderGridSize, planeNdx, 0);
const std::string formatQualifierStr = getShaderImageFormatQualifier(formatDescription.planes[planeNdx].planeCompatibleFormat);
const tcu::UVec3 workGroupSize = computeWorkGroupSize(shaderExtent);
std::ostringstream src;
src << versionDecl << "\n"
<< "layout (local_size_x = " << workGroupSize.x() << ", local_size_y = " << workGroupSize.y() << ", local_size_z = " << workGroupSize.z() << ") in; \n"
<< "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform highp " << imageTypeStr << " u_image;\n"
<< "void main (void)\n"
<< "{\n"
<< " if( gl_GlobalInvocationID.x < " << shaderExtent.width << " ) \n"
<< " if( gl_GlobalInvocationID.y < " << shaderExtent.height << " ) \n"
<< " if( gl_GlobalInvocationID.z < " << shaderExtent.depth << " ) \n"
<< " {\n"
<< " imageStore(u_image, ivec2( gl_GlobalInvocationID.x, gl_GlobalInvocationID.y ) ,"
<< formatDataStr << formatValueStr << ");\n"
<< " }\n"
<< "}\n";
std::ostringstream shaderName;
shaderName << "comp" << planeNdx;
sourceCollections.glslSources.add(shaderName.str()) << glu::ComputeSource(src.str());
}
}
tcu::TestCaseGroup* populateStorageImageWriteFormatGroup (tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup)
{
const std::vector<tcu::UVec3> availableSizes{ tcu::UVec3(512u, 512u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(66u, 32u, 1u) };
for (int formatNdx = VK_YCBCR_FORMAT_FIRST; formatNdx < VK_YCBCR_FORMAT_LAST; formatNdx++)
{
const VkFormat format = (VkFormat)formatNdx;
tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format);
std::string formatName = de::toLower(de::toString(format).substr(10));
de::MovePtr<tcu::TestCaseGroup> formatGroup ( new tcu::TestCaseGroup(testCtx, formatName.c_str(), "") );
for (size_t sizeNdx = 0; sizeNdx < availableSizes.size(); sizeNdx++)
{
const tcu::UVec3 imageSize = availableSizes[sizeNdx];
// skip test for images with odd sizes for some YCbCr formats
if ((imageSize.x() % imageSizeAlignment.x()) != 0)
continue;
if ((imageSize.y() % imageSizeAlignment.y()) != 0)
continue;
std::ostringstream stream;
stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
de::MovePtr<tcu::TestCaseGroup> sizeGroup(new tcu::TestCaseGroup(testCtx, stream.str().c_str(), ""));
addFunctionCaseWithPrograms(sizeGroup.get(), "joint", "", checkSupport, initPrograms, testStorageImageWrite, TestParameters(format, imageSize, 0u));
addFunctionCaseWithPrograms(sizeGroup.get(), "disjoint", "", checkSupport, initPrograms, testStorageImageWrite, TestParameters(format, imageSize, (VkImageCreateFlags)VK_IMAGE_CREATE_DISJOINT_BIT));
formatGroup->addChild(sizeGroup.release());
}
testGroup->addChild(formatGroup.release());
}
return testGroup.release();
}
} // namespace
tcu::TestCaseGroup* createStorageImageWriteTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "storage_image_write", "Writing to YCbCr storage images"));
return populateStorageImageWriteFormatGroup(testCtx, testGroup);
}
} // ycbcr
} // vkt