blob: 67046b7dd16797599e356bd6e4399db3f6abd014 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*
* \file vktPipelineMultisampleBaseResolve.cpp
* \brief Base class for tests that check results of multisample resolve
*//*--------------------------------------------------------------------*/
#include "vktPipelineMultisampleBaseResolve.hpp"
#include "vktPipelineMakeUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkObjUtil.hpp"
#include "tcuTestLog.hpp"
#include <vector>
namespace vkt
{
namespace pipeline
{
namespace multisample
{
using namespace vk;
tcu::TestStatus MSInstanceBaseResolve::iterate (void)
{
const InstanceInterface& instance = m_context.getInstanceInterface();
const DeviceInterface& deviceInterface = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const VkPhysicalDeviceFeatures& features = m_context.getDeviceFeatures();
Allocator& allocator = m_context.getDefaultAllocator();
const VkQueue queue = m_context.getUniversalQueue();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const bool usePushConstants = (m_imageMSParams.componentData.source == ComponentSource::PUSH_CONSTANT);
const deUint32 pushConstantSize = static_cast<deUint32>(sizeof(decltype(m_imageMSParams.componentData.index)));
VkImageCreateInfo imageMSInfo;
VkImageCreateInfo imageRSInfo;
// Check if image size does not exceed device limits
validateImageSize(instance, physicalDevice, m_imageType, m_imageMSParams.imageSize);
// Check if device supports image format as color attachment
validateImageFeatureFlags(instance, physicalDevice, mapTextureFormat(m_imageFormat), VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT);
imageMSInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageMSInfo.pNext = DE_NULL;
imageMSInfo.flags = 0u;
imageMSInfo.imageType = mapImageType(m_imageType);
imageMSInfo.format = mapTextureFormat(m_imageFormat);
imageMSInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageMSParams.imageSize));
imageMSInfo.arrayLayers = getNumLayers(m_imageType, m_imageMSParams.imageSize);
imageMSInfo.mipLevels = 1u;
imageMSInfo.samples = m_imageMSParams.numSamples;
imageMSInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageMSInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMSInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageMSInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageMSInfo.queueFamilyIndexCount = 0u;
imageMSInfo.pQueueFamilyIndices = DE_NULL;
if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
{
imageMSInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
}
validateImageInfo(instance, physicalDevice, imageMSInfo);
const de::UniquePtr<Image> imageMS(new Image(deviceInterface, device, allocator, imageMSInfo, MemoryRequirement::Any));
imageRSInfo = imageMSInfo;
imageRSInfo.samples = VK_SAMPLE_COUNT_1_BIT;
validateImageInfo(instance, physicalDevice, imageRSInfo);
const de::UniquePtr<Image> imageRS(new Image(deviceInterface, device, allocator, imageRSInfo, MemoryRequirement::Any));
// Create render pass
const VkAttachmentDescription attachmentMSDesc =
{
(VkAttachmentDescriptionFlags)0u, // VkAttachmentDescriptionFlags flags;
imageMSInfo.format, // VkFormat format;
imageMSInfo.samples, // VkSampleCountFlagBits samples;
VK_ATTACHMENT_LOAD_OP_CLEAR, // VkAttachmentLoadOp loadOp;
VK_ATTACHMENT_STORE_OP_STORE, // VkAttachmentStoreOp storeOp;
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // VkAttachmentLoadOp stencilLoadOp;
VK_ATTACHMENT_STORE_OP_DONT_CARE, // VkAttachmentStoreOp stencilStoreOp;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // VkImageLayout initialLayout;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout finalLayout;
};
const VkAttachmentDescription attachmentRSDesc =
{
(VkAttachmentDescriptionFlags)0u, // VkAttachmentDescriptionFlags flags;
imageRSInfo.format, // VkFormat format;
imageRSInfo.samples, // VkSampleCountFlagBits samples;
VK_ATTACHMENT_LOAD_OP_CLEAR, // VkAttachmentLoadOp loadOp;
VK_ATTACHMENT_STORE_OP_STORE, // VkAttachmentStoreOp storeOp;
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // VkAttachmentLoadOp stencilLoadOp;
VK_ATTACHMENT_STORE_OP_DONT_CARE, // VkAttachmentStoreOp stencilStoreOp;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // VkImageLayout initialLayout;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout finalLayout;
};
const VkAttachmentDescription attachments[] = { attachmentMSDesc, attachmentRSDesc };
const VkAttachmentReference attachmentMSRef =
{
0u, // deUint32 attachment;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout layout;
};
const VkAttachmentReference attachmentRSRef =
{
1u, // deUint32 attachment;
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout layout;
};
const VkAttachmentReference* resolveAttachment = m_imageMSParams.numSamples == VK_SAMPLE_COUNT_1_BIT ? DE_NULL : &attachmentRSRef;
const VkSubpassDescription subpassDescription =
{
(VkSubpassDescriptionFlags)0u, // VkSubpassDescriptionFlags flags;
VK_PIPELINE_BIND_POINT_GRAPHICS, // VkPipelineBindPoint pipelineBindPoint;
0u, // deUint32 inputAttachmentCount;
DE_NULL, // const VkAttachmentReference* pInputAttachments;
1u, // deUint32 colorAttachmentCount;
&attachmentMSRef, // const VkAttachmentReference* pColorAttachments;
resolveAttachment, // const VkAttachmentReference* pResolveAttachments;
DE_NULL, // const VkAttachmentReference* pDepthStencilAttachment;
0u, // deUint32 preserveAttachmentCount;
DE_NULL // const deUint32* pPreserveAttachments;
};
const VkRenderPassCreateInfo renderPassInfo =
{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkRenderPassCreateFlags)0u, // VkRenderPassCreateFlags flags;
2u, // deUint32 attachmentCount;
attachments, // const VkAttachmentDescription* pAttachments;
1u, // deUint32 subpassCount;
&subpassDescription, // const VkSubpassDescription* pSubpasses;
0u, // deUint32 dependencyCount;
DE_NULL // const VkSubpassDependency* pDependencies;
};
const Unique<VkRenderPass> renderPass(createRenderPass(deviceInterface, device, &renderPassInfo));
const VkImageSubresourceRange fullImageRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageMSInfo.mipLevels, 0u, imageMSInfo.arrayLayers);
// Create color attachments image views
const Unique<VkImageView> imageMSView(makeImageView(deviceInterface, device, **imageMS, mapImageViewType(m_imageType), imageMSInfo.format, fullImageRange));
const Unique<VkImageView> imageRSView(makeImageView(deviceInterface, device, **imageRS, mapImageViewType(m_imageType), imageMSInfo.format, fullImageRange));
const VkImageView attachmentsViews[] = { *imageMSView, *imageRSView };
// Create framebuffer
const VkFramebufferCreateInfo framebufferInfo =
{
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkFramebufferCreateFlags)0u, // VkFramebufferCreateFlags flags;
*renderPass, // VkRenderPass renderPass;
2u, // uint32_t attachmentCount;
attachmentsViews, // const VkImageView* pAttachments;
imageMSInfo.extent.width, // uint32_t width;
imageMSInfo.extent.height, // uint32_t height;
imageMSInfo.arrayLayers, // uint32_t layers;
};
const Unique<VkFramebuffer> framebuffer(createFramebuffer(deviceInterface, device, &framebufferInfo));
std::vector<vk::VkPushConstantRange> pushConstantRanges;
if (usePushConstants)
{
const vk::VkPushConstantRange pushConstantRange =
{
vk::VK_SHADER_STAGE_ALL, // VkShaderStageFlags stageFlags;
0u, // deUint32 offset;
pushConstantSize, // deUint32 size;
};
pushConstantRanges.push_back(pushConstantRange);
}
// Create pipeline layout
const VkPipelineLayoutCreateInfo pipelineLayoutParams =
{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineLayoutCreateFlags)0u, // VkPipelineLayoutCreateFlags flags;
0u, // deUint32 setLayoutCount;
DE_NULL, // const VkDescriptorSetLayout* pSetLayouts;
static_cast<deUint32>(pushConstantRanges.size()), // deUint32 pushConstantRangeCount;
(pushConstantRanges.empty() ? nullptr : pushConstantRanges.data()), // const VkPushConstantRange* pPushConstantRanges;
};
const Unique<VkPipelineLayout> pipelineLayout(createPipelineLayout(deviceInterface, device, &pipelineLayoutParams));
// Create vertex attributes data
const VertexDataDesc vertexDataDesc = getVertexDataDescripton();
de::SharedPtr<Buffer> vertexBuffer = de::SharedPtr<Buffer>(new Buffer(deviceInterface, device, allocator, makeBufferCreateInfo(vertexDataDesc.dataSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT), MemoryRequirement::HostVisible));
const Allocation& vertexBufferAllocation = vertexBuffer->getAllocation();
uploadVertexData(vertexBufferAllocation, vertexDataDesc);
flushAlloc(deviceInterface, device, vertexBufferAllocation);
const VkVertexInputBindingDescription vertexBinding =
{
0u, // deUint32 binding;
vertexDataDesc.dataStride, // deUint32 stride;
VK_VERTEX_INPUT_RATE_VERTEX // VkVertexInputRate inputRate;
};
const VkPipelineVertexInputStateCreateInfo vertexInputStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineVertexInputStateCreateFlags)0u, // VkPipelineVertexInputStateCreateFlags flags;
1u, // uint32_t vertexBindingDescriptionCount;
&vertexBinding, // const VkVertexInputBindingDescription* pVertexBindingDescriptions;
static_cast<deUint32>(vertexDataDesc.vertexAttribDescVec.size()), // uint32_t vertexAttributeDescriptionCount;
dataPointer(vertexDataDesc.vertexAttribDescVec), // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;
};
const std::vector<VkViewport> viewports (1, makeViewport(imageMSInfo.extent));
const std::vector<VkRect2D> scissors (1, makeRect2D(imageMSInfo.extent));
const VkPipelineMultisampleStateCreateInfo multisampleStateInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkPipelineMultisampleStateCreateFlags)0u, // VkPipelineMultisampleStateCreateFlags flags;
imageMSInfo.samples, // VkSampleCountFlagBits rasterizationSamples;
features.sampleRateShading, // VkBool32 sampleShadingEnable;
1.0f, // float minSampleShading;
DE_NULL, // const VkSampleMask* pSampleMask;
VK_FALSE, // VkBool32 alphaToCoverageEnable;
VK_FALSE, // VkBool32 alphaToOneEnable;
};
const Unique<VkShaderModule> vsModule(createShaderModule(deviceInterface, device, m_context.getBinaryCollection().get("vertex_shader"), (VkShaderModuleCreateFlags)0));
const Unique<VkShaderModule> fsModule(createShaderModule(deviceInterface, device, m_context.getBinaryCollection().get("fragment_shader"), (VkShaderModuleCreateFlags)0));
// Create graphics pipeline
const Unique<VkPipeline> graphicsPipeline(makeGraphicsPipeline(deviceInterface, // const DeviceInterface& vk
device, // const VkDevice device
*pipelineLayout, // const VkPipelineLayout pipelineLayout
*vsModule, // const VkShaderModule vertexShaderModule
DE_NULL, // const VkShaderModule tessellationControlModule
DE_NULL, // const VkShaderModule tessellationEvalModule
DE_NULL, // const VkShaderModule geometryShaderModule
*fsModule, // const VkShaderModule fragmentShaderModule
*renderPass, // const VkRenderPass renderPass
viewports, // const std::vector<VkViewport>& viewports
scissors, // const std::vector<VkRect2D>& scissors
vertexDataDesc.primitiveTopology, // const VkPrimitiveTopology topology
0u, // const deUint32 subpass
0u, // const deUint32 patchControlPoints
&vertexInputStateInfo, // const VkPipelineVertexInputStateCreateInfo* vertexInputStateCreateInfo
DE_NULL, // const VkPipelineRasterizationStateCreateInfo* rasterizationStateCreateInfo
&multisampleStateInfo)); // const VkPipelineMultisampleStateCreateInfo* multisampleStateCreateInfo
// Create command buffer for compute and transfer oparations
const Unique<VkCommandPool> commandPool(createCommandPool(deviceInterface, device, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, queueFamilyIndex));
const Unique<VkCommandBuffer> commandBuffer(makeCommandBuffer(deviceInterface, device, *commandPool));
// Start recording commands
beginCommandBuffer(deviceInterface, *commandBuffer);
{
VkImageMemoryBarrier imageOutputAttachmentBarriers[2];
imageOutputAttachmentBarriers[0] = makeImageMemoryBarrier
(
0u,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
**imageMS,
fullImageRange
);
imageOutputAttachmentBarriers[1] = makeImageMemoryBarrier
(
0u,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
**imageRS,
fullImageRange
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 2u, imageOutputAttachmentBarriers);
}
{
const VkDeviceSize vertexStartOffset = 0u;
std::vector<VkClearValue> clearValues;
clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));
clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));
beginRenderPass(deviceInterface, *commandBuffer, *renderPass, *framebuffer, makeRect2D(0, 0, imageMSInfo.extent.width, imageMSInfo.extent.height), (deUint32)clearValues.size(), &clearValues[0]);
// Bind graphics pipeline
deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *graphicsPipeline);
// Bind vertex buffer
deviceInterface.cmdBindVertexBuffers(*commandBuffer, 0u, 1u, &vertexBuffer->get(), &vertexStartOffset);
// Push constants.
if (usePushConstants)
deviceInterface.cmdPushConstants(*commandBuffer, *pipelineLayout, vk::VK_SHADER_STAGE_ALL, 0u, pushConstantSize, &m_imageMSParams.componentData.index);
// Draw full screen quad
deviceInterface.cmdDraw(*commandBuffer, vertexDataDesc.verticesCount, 1u, 0u, 0u);
// End render pass
endRenderPass(deviceInterface, *commandBuffer);
}
const VkImage sourceImage = m_imageMSParams.numSamples == VK_SAMPLE_COUNT_1_BIT ? **imageMS : **imageRS;
{
const VkImageMemoryBarrier imageTransferSrcBarrier = makeImageMemoryBarrier
(
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
sourceImage,
fullImageRange
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageTransferSrcBarrier);
}
// Copy data from resolve image to buffer
const deUint32 imageRSSizeInBytes = getImageSizeInBytes(imageRSInfo.extent, imageRSInfo.arrayLayers, m_imageFormat, imageRSInfo.mipLevels);
const VkBufferCreateInfo bufferRSInfo = makeBufferCreateInfo(imageRSSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const de::UniquePtr<Buffer> bufferRS(new Buffer(deviceInterface, device, allocator, bufferRSInfo, MemoryRequirement::HostVisible));
{
const VkBufferImageCopy bufferImageCopy =
{
0u, // VkDeviceSize bufferOffset;
0u, // deUint32 bufferRowLength;
0u, // deUint32 bufferImageHeight;
makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, imageRSInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource;
makeOffset3D(0, 0, 0), // VkOffset3D imageOffset;
imageRSInfo.extent, // VkExtent3D imageExtent;
};
deviceInterface.cmdCopyImageToBuffer(*commandBuffer, sourceImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, bufferRS->get(), 1u, &bufferImageCopy);
}
{
const VkBufferMemoryBarrier bufferRSHostReadBarrier = makeBufferMemoryBarrier
(
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
bufferRS->get(),
0u,
imageRSSizeInBytes
);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &bufferRSHostReadBarrier, 0u, DE_NULL);
}
// End recording commands
endCommandBuffer(deviceInterface, *commandBuffer);
// Submit commands for execution and wait for completion
submitCommandsAndWait(deviceInterface, device, queue, *commandBuffer);
// Retrieve data from buffer to host memory
const Allocation& bufferRSAllocation = bufferRS->getAllocation();
invalidateAlloc(deviceInterface, device, bufferRSAllocation);
const tcu::ConstPixelBufferAccess bufferRSData (m_imageFormat,
imageRSInfo.extent.width,
imageRSInfo.extent.height,
imageRSInfo.extent.depth * imageRSInfo.arrayLayers,
bufferRSAllocation.getHostPtr());
std::stringstream imageName;
imageName << getImageTypeName(m_imageType) << "_" << bufferRSData.getWidth() << "_" << bufferRSData.getHeight() << "_" << bufferRSData.getDepth() << std::endl;
m_context.getTestContext().getLog()
<< tcu::TestLog::Section(imageName.str(), imageName.str())
<< tcu::LogImage("image", "", bufferRSData)
<< tcu::TestLog::EndSection;
return verifyImageData(imageRSInfo, bufferRSData);
}
} // multisample
} // pipeline
} // vkt