| /*------------------------------------------------------------------------ |
| * Vulkan Conformance Tests |
| * ------------------------ |
| * |
| * Copyright (c) 2016 The Khronos Group Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//* |
| * \file vktSparseResourcesShaderIntrinsicsBase.cpp |
| * \brief Sparse Resources Shader Intrinsics Base Classes |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "vktSparseResourcesShaderIntrinsicsBase.hpp" |
| #include "vkCmdUtil.hpp" |
| #include "vkBarrierUtil.hpp" |
| |
| using namespace vk; |
| |
| namespace vkt |
| { |
| namespace sparse |
| { |
| |
| std::string getOpTypeImageComponent (const tcu::TextureFormat& format) |
| { |
| switch (tcu::getTextureChannelClass(format.type)) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return "OpTypeInt 32 0"; |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return "OpTypeInt 32 1"; |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "OpTypeFloat 32"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getOpTypeImageComponent (const vk::PlanarFormatDescription& description) |
| { |
| switch (description.channels[0].type) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return "OpTypeInt 32 0"; |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return "OpTypeInt 32 1"; |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "OpTypeFloat 32"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getImageComponentTypeName (const tcu::TextureFormat& format) |
| { |
| switch (tcu::getTextureChannelClass(format.type)) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return "%type_uint"; |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return "%type_int"; |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "%type_float"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getImageComponentTypeName (const vk::PlanarFormatDescription& description) |
| { |
| switch (description.channels[0].type) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return (formatIsR64(description.planes[0].planeCompatibleFormat) ? "%type_uint64" : "%type_uint"); |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return (formatIsR64(description.planes[0].planeCompatibleFormat) ? "%type_int64" : "%type_int"); |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "%type_float"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getImageComponentVec4TypeName (const tcu::TextureFormat& format) |
| { |
| switch (tcu::getTextureChannelClass(format.type)) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return "%type_uvec4"; |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return "%type_ivec4"; |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "%type_vec4"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getImageComponentVec4TypeName (const vk::PlanarFormatDescription& description) |
| { |
| |
| switch (description.channels[0].type) |
| { |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| return (formatIsR64(description.planes[0].planeCompatibleFormat) ? "%type_u64vec4" : "%type_uvec4"); |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| return (formatIsR64(description.planes[0].planeCompatibleFormat) ? "%type_i64vec4" : "%type_ivec4"); |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| return "%type_vec4"; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| return ""; |
| } |
| } |
| |
| std::string getOpTypeImageSparse (const ImageType imageType, |
| const tcu::TextureFormat& format, |
| const std::string& componentType, |
| const bool requiresSampler) |
| { |
| std::ostringstream src; |
| |
| src << "OpTypeImage " << componentType << " "; |
| |
| switch (imageType) |
| { |
| case IMAGE_TYPE_1D : |
| src << "1D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_1D_ARRAY : |
| src << "1D 0 1 0 "; |
| break; |
| case IMAGE_TYPE_2D : |
| src << "2D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_2D_ARRAY : |
| src << "2D 0 1 0 "; |
| break; |
| case IMAGE_TYPE_3D : |
| src << "3D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_CUBE : |
| src << "Cube 0 0 0 "; |
| break; |
| case IMAGE_TYPE_CUBE_ARRAY : |
| src << "Cube 0 1 0 "; |
| break; |
| default : |
| DE_FATAL("Unexpected image type"); |
| break; |
| } |
| |
| if (requiresSampler) |
| src << "1 "; |
| else |
| src << "2 "; |
| |
| switch (format.order) |
| { |
| case tcu::TextureFormat::R: |
| src << "R"; |
| break; |
| case tcu::TextureFormat::RG: |
| src << "Rg"; |
| break; |
| case tcu::TextureFormat::RGB: |
| src << "Rgb"; |
| break; |
| case tcu::TextureFormat::RGBA: |
| src << "Rgba"; |
| break; |
| default: |
| DE_FATAL("Unexpected channel order"); |
| break; |
| } |
| |
| switch (format.type) |
| { |
| case tcu::TextureFormat::SIGNED_INT8: |
| src << "8i"; |
| break; |
| case tcu::TextureFormat::SIGNED_INT16: |
| src << "16i"; |
| break; |
| case tcu::TextureFormat::SIGNED_INT32: |
| src << "32i"; |
| break; |
| case tcu::TextureFormat::UNSIGNED_INT8: |
| src << "8ui"; |
| break; |
| case tcu::TextureFormat::UNSIGNED_INT16: |
| src << "16ui"; |
| break; |
| case tcu::TextureFormat::UNSIGNED_INT32: |
| src << "32ui"; |
| break; |
| case tcu::TextureFormat::SNORM_INT8: |
| src << "8Snorm"; |
| break; |
| case tcu::TextureFormat::SNORM_INT16: |
| src << "16Snorm"; |
| break; |
| case tcu::TextureFormat::SNORM_INT32: |
| src << "32Snorm"; |
| break; |
| case tcu::TextureFormat::UNORM_INT8: |
| src << "8"; |
| break; |
| case tcu::TextureFormat::UNORM_INT16: |
| src << "16"; |
| break; |
| case tcu::TextureFormat::UNORM_INT32: |
| src << "32"; |
| break; |
| default: |
| DE_FATAL("Unexpected channel type"); |
| break; |
| } |
| |
| return src.str(); |
| } |
| |
| std::string getOpTypeImageSparse (const ImageType imageType, |
| const VkFormat format, |
| const std::string& componentType, |
| const bool requiresSampler) |
| { |
| std::ostringstream src; |
| |
| src << "OpTypeImage " << componentType << " "; |
| |
| switch (imageType) |
| { |
| case IMAGE_TYPE_1D : |
| src << "1D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_1D_ARRAY : |
| src << "1D 0 1 0 "; |
| break; |
| case IMAGE_TYPE_2D : |
| src << "2D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_2D_ARRAY : |
| src << "2D 0 1 0 "; |
| break; |
| case IMAGE_TYPE_3D : |
| src << "3D 0 0 0 "; |
| break; |
| case IMAGE_TYPE_CUBE : |
| src << "Cube 0 0 0 "; |
| break; |
| case IMAGE_TYPE_CUBE_ARRAY : |
| src << "Cube 0 1 0 "; |
| break; |
| default : |
| DE_FATAL("Unexpected image type"); |
| break; |
| } |
| |
| if (requiresSampler) |
| src << "1 "; |
| else |
| src << "2 "; |
| |
| switch (format) |
| { |
| case VK_FORMAT_R8_SINT: src << "R8i"; break; |
| case VK_FORMAT_R16_SINT: src << "R16i"; break; |
| case VK_FORMAT_R32_SINT: src << "R32i"; break; |
| case VK_FORMAT_R64_SINT: src << "R64i"; break; |
| case VK_FORMAT_R8_UINT: src << "R8ui"; break; |
| case VK_FORMAT_R16_UINT: src << "R16ui"; break; |
| case VK_FORMAT_R32_UINT: src << "R32ui"; break; |
| case VK_FORMAT_R64_UINT: src << "R64ui"; break; |
| case VK_FORMAT_R8_SNORM: src << "R8Snorm"; break; |
| case VK_FORMAT_R16_SNORM: src << "R16Snorm"; break; |
| case VK_FORMAT_R8_UNORM: src << "R8"; break; |
| case VK_FORMAT_R16_UNORM: src << "R16"; break; |
| |
| case VK_FORMAT_R8G8_SINT: src << "Rg8i"; break; |
| case VK_FORMAT_R16G16_SINT: src << "Rg16i"; break; |
| case VK_FORMAT_R32G32_SINT: src << "Rg32i"; break; |
| case VK_FORMAT_R8G8_UINT: src << "Rg8ui"; break; |
| case VK_FORMAT_R16G16_UINT: src << "Rg16ui"; break; |
| case VK_FORMAT_R32G32_UINT: src << "Rg32ui"; break; |
| case VK_FORMAT_R8G8_SNORM: src << "Rg8Snorm"; break; |
| case VK_FORMAT_R16G16_SNORM: src << "Rg16Snorm"; break; |
| case VK_FORMAT_R8G8_UNORM: src << "Rg8"; break; |
| case VK_FORMAT_R16G16_UNORM: src << "Rg16"; break; |
| |
| case VK_FORMAT_R8G8B8A8_SINT: src << "Rgba8i"; break; |
| case VK_FORMAT_R16G16B16A16_SINT: src << "Rgba16i"; break; |
| case VK_FORMAT_R32G32B32A32_SINT: src << "Rgba32i"; break; |
| case VK_FORMAT_R8G8B8A8_UINT: src << "Rgba8ui"; break; |
| case VK_FORMAT_R16G16B16A16_UINT: src << "Rgba16ui"; break; |
| case VK_FORMAT_R32G32B32A32_UINT: src << "Rgba32ui"; break; |
| case VK_FORMAT_R8G8B8A8_SNORM: src << "Rgba8Snorm"; break; |
| case VK_FORMAT_R16G16B16A16_SNORM: src << "Rgba16Snorm"; break; |
| case VK_FORMAT_R8G8B8A8_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_R16G16B16A16_UNORM: src << "Rgba16"; break; |
| |
| case VK_FORMAT_G8B8G8R8_422_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_B8G8R8G8_422_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_G8_B8R8_2PLANE_422_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM: src << "Rgba8"; break; |
| case VK_FORMAT_R10X6_UNORM_PACK16: src << "R16"; break; |
| case VK_FORMAT_R10X6G10X6_UNORM_2PACK16: src << "Rg16"; break; |
| case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_R12X4_UNORM_PACK16: src << "R16"; break; |
| case VK_FORMAT_R12X4G12X4_UNORM_2PACK16: src << "Rg16"; break; |
| case VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16: src << "Rgba16"; break; |
| case VK_FORMAT_G16B16G16R16_422_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_B16G16R16G16_422_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16R16_2PLANE_420_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16R16_2PLANE_422_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM: src << "Rgba16"; break; |
| case VK_FORMAT_G8_B8R8_2PLANE_444_UNORM_EXT: src << "Rgba8"; break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16_EXT:src << "Rgba16"; break; |
| case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16_EXT:src << "Rgba16"; break; |
| case VK_FORMAT_G16_B16R16_2PLANE_444_UNORM_EXT: src << "Rgba16"; break; |
| |
| default: |
| DE_FATAL("Unexpected texture format"); |
| break; |
| } |
| return src.str(); |
| } |
| |
| |
| std::string getOpTypeImageResidency (const ImageType imageType) |
| { |
| std::ostringstream src; |
| |
| src << "OpTypeImage %type_uint "; |
| |
| switch (imageType) |
| { |
| case IMAGE_TYPE_1D : |
| src << "1D 0 0 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_1D_ARRAY : |
| src << "1D 0 1 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_2D : |
| src << "2D 0 0 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_2D_ARRAY : |
| src << "2D 0 1 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_3D : |
| src << "3D 0 0 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_CUBE : |
| src << "Cube 0 0 0 2 R32ui"; |
| break; |
| case IMAGE_TYPE_CUBE_ARRAY : |
| src << "Cube 0 1 0 2 R32ui"; |
| break; |
| default : |
| DE_FATAL("Unexpected image type"); |
| break; |
| } |
| |
| return src.str(); |
| } |
| |
| void SparseShaderIntrinsicsInstanceBase::checkSupport(VkImageCreateInfo imageSparseInfo) const |
| { |
| const InstanceInterface& instance = m_context.getInstanceInterface(); |
| const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); |
| |
| if (formatIsR64(m_format)) |
| { |
| m_context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64"); |
| |
| if (m_context.getShaderImageAtomicInt64FeaturesEXT().shaderImageInt64Atomics == VK_FALSE) |
| { |
| TCU_THROW(NotSupportedError, "shaderImageInt64Atomics is not supported"); |
| } |
| |
| if (m_context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE) |
| { |
| TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device"); |
| } |
| } |
| |
| // Check if device supports sparse operations for image format |
| if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo)) |
| TCU_THROW(NotSupportedError, "The image format does not support sparse operations"); |
| } |
| |
| tcu::TestStatus SparseShaderIntrinsicsInstanceBase::iterate (void) |
| { |
| const InstanceInterface& instance = m_context.getInstanceInterface(); |
| const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); |
| VkImageCreateInfo imageSparseInfo; |
| VkImageCreateInfo imageTexelsInfo; |
| VkImageCreateInfo imageResidencyInfo; |
| std::vector <deUint32> residencyReferenceData; |
| std::vector<DeviceMemorySp> deviceMemUniquePtrVec; |
| const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); |
| |
| imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| imageSparseInfo.pNext = DE_NULL; |
| imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT; |
| imageSparseInfo.imageType = mapImageType(m_imageType); |
| imageSparseInfo.format = m_format; |
| imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); |
| imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); |
| imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
| imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; |
| imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | imageSparseUsageFlags(); |
| imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| imageSparseInfo.queueFamilyIndexCount = 0u; |
| imageSparseInfo.pQueueFamilyIndices = DE_NULL; |
| |
| if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) |
| { |
| imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; |
| } |
| |
| checkSupport(imageSparseInfo); |
| |
| { |
| // Assign maximum allowed mipmap levels to image |
| VkImageFormatProperties imageFormatProperties; |
| if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, |
| imageSparseInfo.format, |
| imageSparseInfo.imageType, |
| imageSparseInfo.tiling, |
| imageSparseInfo.usage, |
| imageSparseInfo.flags, |
| &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) |
| { |
| TCU_THROW(NotSupportedError, "Image format does not support sparse operations"); |
| } |
| |
| imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent); |
| } |
| |
| { |
| // Create logical device supporting both sparse and compute/graphics queues |
| QueueRequirementsVec queueRequirements; |
| queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); |
| queueRequirements.push_back(QueueRequirements(getQueueFlags(), 1u)); |
| |
| createDeviceSupportingQueues(queueRequirements); |
| } |
| |
| // Create queues supporting sparse binding operations and compute/graphics operations |
| const DeviceInterface& deviceInterface = getDeviceInterface(); |
| const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); |
| const Queue& extractQueue = getQueue(getQueueFlags(), 0); |
| |
| // Create sparse image |
| const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo)); |
| |
| // Create sparse image memory bind semaphore |
| const Unique<VkSemaphore> memoryBindSemaphore(createSemaphore(deviceInterface, getDevice())); |
| |
| std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements; |
| |
| deUint32 imageSparseSizeInBytes = 0; |
| deUint32 imageSizeInPixels = 0; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| imageSparseSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| imageSizeInPixels += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx) / formatDescription.planes[planeNdx].elementSizeBytes; |
| } |
| } |
| |
| residencyReferenceData.assign(imageSizeInPixels, MEMORY_BLOCK_NOT_BOUND_VALUE); |
| |
| { |
| // Get sparse image general memory requirements |
| const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse); |
| |
| // Check if required image memory size does not exceed device limits |
| if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize) |
| TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits"); |
| |
| DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0); |
| |
| const deUint32 memoryType = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any); |
| |
| if (memoryType == NO_MATCH_FOUND) |
| return tcu::TestStatus::fail("No matching memory type found"); |
| |
| // Get sparse image sparse memory requirements |
| sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse); |
| |
| DE_ASSERT(sparseMemoryRequirements.size() != 0); |
| |
| const deUint32 metadataAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT); |
| deUint32 pixelOffset = 0u; |
| std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds; |
| std::vector<VkSparseMemoryBind> imageMipTailBinds; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect); |
| |
| if (aspectIndex == NO_MATCH_FOUND) |
| TCU_THROW(NotSupportedError, "Not supported image aspect"); |
| |
| VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex]; |
| |
| DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0); |
| |
| VkExtent3D imageGranularity = aspectRequirements.formatProperties.imageGranularity; |
| |
| // Bind memory for each mipmap level |
| for (deUint32 mipmapNdx = 0; mipmapNdx < aspectRequirements.imageMipTailFirstLod; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInPixels = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx) / formatDescription.planes[planeNdx].elementSizeBytes; |
| |
| if (mipmapNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_NOT_BOUND) |
| { |
| pixelOffset += mipLevelSizeInPixels; |
| continue; |
| } |
| |
| for (deUint32 pixelNdx = 0u; pixelNdx < mipLevelSizeInPixels; ++pixelNdx) |
| { |
| residencyReferenceData[pixelOffset + pixelNdx] = MEMORY_BLOCK_BOUND_VALUE; |
| } |
| |
| pixelOffset += mipLevelSizeInPixels; |
| |
| for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx) |
| { |
| const VkExtent3D mipExtent = getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx); |
| const tcu::UVec3 sparseBlocks = alignedDivide(mipExtent, imageGranularity); |
| const deUint32 numSparseBlocks = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z(); |
| const VkImageSubresource subresource = { aspect, mipmapNdx, layerNdx }; |
| |
| const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(), |
| imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageResidencyMemoryBinds.push_back(imageMemoryBind); |
| } |
| } |
| |
| if (aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels) |
| { |
| if (aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) |
| { |
| const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageMipTailBinds.push_back(imageMipTailMemoryBind); |
| } |
| else |
| { |
| for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx) |
| { |
| const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageMipTailBinds.push_back(imageMipTailMemoryBind); |
| } |
| } |
| |
| for (deUint32 pixelNdx = pixelOffset; pixelNdx < residencyReferenceData.size(); ++pixelNdx) |
| { |
| residencyReferenceData[pixelNdx] = MEMORY_BLOCK_BOUND_VALUE; |
| } |
| } |
| } |
| |
| // Metadata |
| if (metadataAspectIndex != NO_MATCH_FOUND) |
| { |
| const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex]; |
| |
| const deUint32 metadataBindCount = (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT ? 1u : imageSparseInfo.arrayLayers); |
| for (deUint32 bindNdx = 0u; bindNdx < metadataBindCount; ++bindNdx) |
| { |
| const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| metadataAspectRequirements.imageMipTailSize, memoryType, |
| metadataAspectRequirements.imageMipTailOffset + bindNdx * metadataAspectRequirements.imageMipTailStride, |
| VK_SPARSE_MEMORY_BIND_METADATA_BIT); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageMipTailBinds.push_back(imageMipTailMemoryBind); |
| } |
| } |
| |
| VkBindSparseInfo bindSparseInfo = |
| { |
| VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; |
| DE_NULL, //const void* pNext; |
| 0u, //deUint32 waitSemaphoreCount; |
| DE_NULL, //const VkSemaphore* pWaitSemaphores; |
| 0u, //deUint32 bufferBindCount; |
| DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds; |
| 0u, //deUint32 imageOpaqueBindCount; |
| DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; |
| 0u, //deUint32 imageBindCount; |
| DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; |
| 1u, //deUint32 signalSemaphoreCount; |
| &memoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores; |
| }; |
| |
| VkSparseImageMemoryBindInfo imageResidencyBindInfo; |
| VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo; |
| |
| if (imageResidencyMemoryBinds.size() > 0) |
| { |
| imageResidencyBindInfo.image = *imageSparse; |
| imageResidencyBindInfo.bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size()); |
| imageResidencyBindInfo.pBinds = imageResidencyMemoryBinds.data(); |
| |
| bindSparseInfo.imageBindCount = 1u; |
| bindSparseInfo.pImageBinds = &imageResidencyBindInfo; |
| } |
| |
| if (imageMipTailBinds.size() > 0) |
| { |
| imageMipTailBindInfo.image = *imageSparse; |
| imageMipTailBindInfo.bindCount = static_cast<deUint32>(imageMipTailBinds.size()); |
| imageMipTailBindInfo.pBinds = imageMipTailBinds.data(); |
| |
| bindSparseInfo.imageOpaqueBindCount = 1u; |
| bindSparseInfo.pImageOpaqueBinds = &imageMipTailBindInfo; |
| } |
| |
| // Submit sparse bind commands for execution |
| VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); |
| } |
| |
| // Create image to store texels copied from sparse image |
| imageTexelsInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| imageTexelsInfo.pNext = DE_NULL; |
| imageTexelsInfo.flags = 0u; |
| imageTexelsInfo.imageType = imageSparseInfo.imageType; |
| imageTexelsInfo.format = imageSparseInfo.format; |
| imageTexelsInfo.extent = imageSparseInfo.extent; |
| imageTexelsInfo.arrayLayers = imageSparseInfo.arrayLayers; |
| imageTexelsInfo.mipLevels = imageSparseInfo.mipLevels; |
| imageTexelsInfo.samples = imageSparseInfo.samples; |
| imageTexelsInfo.tiling = VK_IMAGE_TILING_OPTIMAL; |
| imageTexelsInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| imageTexelsInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | imageOutputUsageFlags(); |
| imageTexelsInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| imageTexelsInfo.queueFamilyIndexCount = 0u; |
| imageTexelsInfo.pQueueFamilyIndices = DE_NULL; |
| |
| if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) |
| { |
| imageTexelsInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; |
| } |
| |
| { |
| VkImageFormatProperties imageFormatProperties; |
| if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, |
| imageTexelsInfo.format, |
| imageTexelsInfo.imageType, |
| imageTexelsInfo.tiling, |
| imageTexelsInfo.usage, |
| imageTexelsInfo.flags, |
| &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) |
| { |
| TCU_THROW(NotSupportedError, "Image format not supported for its usage "); |
| } |
| } |
| |
| const Unique<VkImage> imageTexels (createImage(deviceInterface, getDevice(), &imageTexelsInfo)); |
| const de::UniquePtr<Allocation> imageTexelsAlloc (bindImage(deviceInterface, getDevice(), getAllocator(), *imageTexels, MemoryRequirement::Any)); |
| |
| // Create image to store residency info copied from sparse image |
| imageResidencyInfo = imageTexelsInfo; |
| imageResidencyInfo.format = mapTextureFormat(m_residencyFormat); |
| |
| { |
| VkImageFormatProperties imageFormatProperties; |
| if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, |
| imageResidencyInfo.format, |
| imageResidencyInfo.imageType, |
| imageResidencyInfo.tiling, |
| imageResidencyInfo.usage, |
| imageResidencyInfo.flags, |
| &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) |
| { |
| TCU_THROW(NotSupportedError, "Image format not supported for its usage "); |
| } |
| } |
| |
| const Unique<VkImage> imageResidency (createImage(deviceInterface, getDevice(), &imageResidencyInfo)); |
| const de::UniquePtr<Allocation> imageResidencyAlloc (bindImage(deviceInterface, getDevice(), getAllocator(), *imageResidency, MemoryRequirement::Any)); |
| |
| std::vector <VkBufferImageCopy> bufferImageSparseCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels); |
| |
| { |
| deUint32 bufferOffset = 0u; |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| bufferImageSparseCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] = |
| { |
| bufferOffset, // VkDeviceSize bufferOffset; |
| 0u, // deUint32 bufferRowLength; |
| 0u, // deUint32 bufferImageHeight; |
| makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; |
| makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; |
| vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; |
| }; |
| bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| } |
| } |
| } |
| |
| // Create command buffer for compute and transfer operations |
| const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), extractQueue.queueFamilyIndex)); |
| const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); |
| |
| // Start recording commands |
| beginCommandBuffer(deviceInterface, *commandBuffer); |
| |
| // Create input buffer |
| const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); |
| const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); |
| const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); |
| |
| // Fill input buffer with reference data |
| std::vector<deUint8> referenceData(imageSparseSizeInBytes); |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| for (deUint32 mipmapNdx = 0u; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeinBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx); |
| const deUint32 bufferOffset = static_cast<deUint32>(bufferImageSparseCopy[mipmapNdx].bufferOffset); |
| |
| if (formatIsR64(m_format) && |
| (m_function == SPARSE_SAMPLE_EXPLICIT_LOD || m_function == SPARSE_SAMPLE_IMPLICIT_LOD || m_function == SPARSE_GATHER)) |
| { |
| for (deUint32 byteNdx = 0u; byteNdx < mipLevelSizeinBytes/8; byteNdx += 8) |
| { |
| void* prtData = &referenceData[bufferOffset + byteNdx]; |
| *(static_cast<deUint64*>(prtData)) = (deUint64)((mipmapNdx + byteNdx) % 0x0FFFFFFF); |
| } |
| } |
| else |
| { |
| for (deUint32 byteNdx = 0u; byteNdx < mipLevelSizeinBytes; ++byteNdx) |
| { |
| referenceData[bufferOffset + byteNdx] = (deUint8)( (mipmapNdx + byteNdx) % 127u ); |
| } |
| } |
| } |
| } |
| |
| deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSparseSizeInBytes); |
| flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); |
| |
| { |
| // Prepare input buffer for data transfer operation |
| const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| *inputBuffer, |
| 0u, |
| imageSparseSizeInBytes |
| ); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); |
| } |
| |
| { |
| // Prepare sparse image for data transfer operation |
| std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers; |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseTransferDstBarriers.emplace_back(makeImageMemoryBarrier |
| ( |
| 0u, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_IMAGE_LAYOUT_UNDEFINED, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| *imageSparse, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers), |
| sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED, |
| sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? extractQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED |
| )); |
| } |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data()); |
| } |
| |
| // Copy reference data from input buffer to sparse image |
| deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageSparseCopy.size()), bufferImageSparseCopy.data()); |
| |
| recordCommands(*commandBuffer, imageSparseInfo, *imageSparse, *imageTexels, *imageResidency); |
| |
| const VkBufferCreateInfo bufferTexelsCreateInfo = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| const Unique<VkBuffer> bufferTexels (createBuffer(deviceInterface, getDevice(), &bufferTexelsCreateInfo)); |
| const de::UniquePtr<Allocation> bufferTexelsAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *bufferTexels, MemoryRequirement::HostVisible)); |
| |
| // Copy data from texels image to buffer |
| deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageTexels, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *bufferTexels, static_cast<deUint32>(bufferImageSparseCopy.size()), bufferImageSparseCopy.data()); |
| |
| const deUint32 imageResidencySizeInBytes = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| |
| const VkBufferCreateInfo bufferResidencyCreateInfo = makeBufferCreateInfo(imageResidencySizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| const Unique<VkBuffer> bufferResidency (createBuffer(deviceInterface, getDevice(), &bufferResidencyCreateInfo)); |
| const de::UniquePtr<Allocation> bufferResidencyAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *bufferResidency, MemoryRequirement::HostVisible)); |
| |
| // Copy data from residency image to buffer |
| std::vector <VkBufferImageCopy> bufferImageResidencyCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels); |
| |
| { |
| deUint32 bufferOffset = 0u; |
| for (deUint32 planeNdx = 0u; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| for (deUint32 mipmapNdx = 0u; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| bufferImageResidencyCopy[planeNdx * imageSparseInfo.mipLevels + mipmapNdx] = |
| { |
| bufferOffset, // VkDeviceSize bufferOffset; |
| 0u, // deUint32 bufferRowLength; |
| 0u, // deUint32 bufferImageHeight; |
| makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; |
| makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; |
| vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; |
| }; |
| bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| } |
| } |
| } |
| |
| deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageResidency, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *bufferResidency, static_cast<deUint32>(bufferImageResidencyCopy.size()), bufferImageResidencyCopy.data()); |
| |
| { |
| VkBufferMemoryBarrier bufferOutputHostReadBarriers[2]; |
| |
| bufferOutputHostReadBarriers[0] = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| *bufferTexels, |
| 0u, |
| imageSparseSizeInBytes |
| ); |
| |
| bufferOutputHostReadBarriers[1] = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| *bufferResidency, |
| 0u, |
| imageResidencySizeInBytes |
| ); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 2u, bufferOutputHostReadBarriers, 0u, DE_NULL); |
| } |
| |
| // End recording commands |
| endCommandBuffer(deviceInterface, *commandBuffer); |
| |
| const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT }; |
| |
| // Submit commands for execution and wait for completion |
| submitCommandsAndWait(deviceInterface, getDevice(), extractQueue.queueHandle, *commandBuffer, 1u, &memoryBindSemaphore.get(), stageBits); |
| |
| // Wait for sparse queue to become idle |
| deviceInterface.queueWaitIdle(sparseQueue.queueHandle); |
| |
| // Retrieve data from residency buffer to host memory |
| invalidateAlloc(deviceInterface, getDevice(), *bufferResidencyAlloc); |
| |
| const deUint32* bufferResidencyData = static_cast<const deUint32*>(bufferResidencyAlloc->getHostPtr()); |
| |
| deUint32 pixelOffsetNotAligned = 0u; |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipmapNdx); |
| const deUint32 pixelOffsetAligned = static_cast<deUint32>(bufferImageResidencyCopy[planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset) / tcu::getPixelSize(m_residencyFormat); |
| |
| if (deMemCmp(&bufferResidencyData[pixelOffsetAligned], &residencyReferenceData[pixelOffsetNotAligned], mipLevelSizeInBytes) != 0) |
| return tcu::TestStatus::fail("Failed"); |
| |
| pixelOffsetNotAligned += mipLevelSizeInBytes / tcu::getPixelSize(m_residencyFormat); |
| } |
| } |
| // Retrieve data from texels buffer to host memory |
| invalidateAlloc(deviceInterface, getDevice(), *bufferTexelsAlloc); |
| |
| const deUint8* bufferTexelsData = static_cast<const deUint8*>(bufferTexelsAlloc->getHostPtr()); |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect); |
| |
| if (aspectIndex == NO_MATCH_FOUND) |
| TCU_THROW(NotSupportedError, "Not supported image aspect"); |
| |
| VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex]; |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription,planeNdx, mipmapNdx); |
| const deUint32 bufferOffset = static_cast<deUint32>(bufferImageSparseCopy[planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); |
| |
| if (mipmapNdx < aspectRequirements.imageMipTailFirstLod) |
| { |
| if (mipmapNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_BOUND) |
| { |
| if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0) |
| return tcu::TestStatus::fail("Failed"); |
| } |
| else if (getPhysicalDeviceProperties(instance, physicalDevice).sparseProperties.residencyNonResidentStrict) |
| { |
| std::vector<deUint8> zeroData; |
| zeroData.assign(mipLevelSizeInBytes, 0u); |
| |
| if (deMemCmp(&bufferTexelsData[bufferOffset], zeroData.data(), mipLevelSizeInBytes) != 0) |
| return tcu::TestStatus::fail("Failed"); |
| } |
| } |
| else |
| { |
| if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0) |
| return tcu::TestStatus::fail("Failed"); |
| } |
| } |
| } |
| |
| return tcu::TestStatus::pass("Passed"); |
| } |
| |
| } // sparse |
| } // vkt |