| /*------------------------------------------------------------------------ |
| * Vulkan Conformance Tests |
| * ------------------------ |
| * |
| * Copyright (c) 2016 The Khronos Group Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file vktSparseResourcesImageSparseBinding.cpp |
| * \brief Sparse fully resident images with mipmaps tests |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "vktSparseResourcesBufferSparseBinding.hpp" |
| #include "vktSparseResourcesTestsUtil.hpp" |
| #include "vktSparseResourcesBase.hpp" |
| #include "vktTestCaseUtil.hpp" |
| |
| #include "vkDefs.hpp" |
| #include "vkRef.hpp" |
| #include "vkRefUtil.hpp" |
| #include "vkPlatform.hpp" |
| #include "vkPrograms.hpp" |
| #include "vkMemUtil.hpp" |
| #include "vkBarrierUtil.hpp" |
| #include "vkBuilderUtil.hpp" |
| #include "vkImageUtil.hpp" |
| #include "vkQueryUtil.hpp" |
| #include "vkTypeUtil.hpp" |
| #include "vkCmdUtil.hpp" |
| |
| #include "deUniquePtr.hpp" |
| #include "deStringUtil.hpp" |
| #include "tcuTextureUtil.hpp" |
| |
| #include <string> |
| #include <vector> |
| |
| using namespace vk; |
| |
| namespace vkt |
| { |
| namespace sparse |
| { |
| namespace |
| { |
| |
| class ImageSparseBindingCase : public TestCase |
| { |
| public: |
| ImageSparseBindingCase (tcu::TestContext& testCtx, |
| const std::string& name, |
| const std::string& description, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups = false); |
| |
| TestInstance* createInstance (Context& context) const; |
| virtual void checkSupport (Context& context) const; |
| |
| private: |
| const bool m_useDeviceGroups; |
| const ImageType m_imageType; |
| const tcu::UVec3 m_imageSize; |
| const VkFormat m_format; |
| }; |
| |
| ImageSparseBindingCase::ImageSparseBindingCase (tcu::TestContext& testCtx, |
| const std::string& name, |
| const std::string& description, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups) |
| |
| : TestCase (testCtx, name, description) |
| , m_useDeviceGroups (useDeviceGroups) |
| , m_imageType (imageType) |
| , m_imageSize (imageSize) |
| , m_format (format) |
| { |
| } |
| |
| void ImageSparseBindingCase::checkSupport (Context& context) const |
| { |
| context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING); |
| |
| if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize)) |
| TCU_THROW(NotSupportedError, "Image size not supported for device"); |
| |
| if (formatIsR64(m_format)) |
| { |
| context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64"); |
| |
| if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE) |
| { |
| TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device"); |
| } |
| } |
| } |
| |
| class ImageSparseBindingInstance : public SparseResourcesBaseInstance |
| { |
| public: |
| ImageSparseBindingInstance (Context& context, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups); |
| |
| tcu::TestStatus iterate (void); |
| |
| private: |
| const bool m_useDeviceGroups; |
| const ImageType m_imageType; |
| const tcu::UVec3 m_imageSize; |
| const VkFormat m_format; |
| }; |
| |
| ImageSparseBindingInstance::ImageSparseBindingInstance (Context& context, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups) |
| |
| : SparseResourcesBaseInstance (context, useDeviceGroups) |
| , m_useDeviceGroups (useDeviceGroups) |
| , m_imageType (imageType) |
| , m_imageSize (imageSize) |
| , m_format (format) |
| { |
| } |
| |
| tcu::TestStatus ImageSparseBindingInstance::iterate (void) |
| { |
| const InstanceInterface& instance = m_context.getInstanceInterface(); |
| |
| { |
| // Create logical device supporting both sparse and compute queues |
| QueueRequirementsVec queueRequirements; |
| queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); |
| queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u)); |
| |
| createDeviceSupportingQueues(queueRequirements); |
| } |
| |
| const VkPhysicalDevice physicalDevice = getPhysicalDevice(); |
| VkImageCreateInfo imageSparseInfo; |
| std::vector<DeviceMemorySp> deviceMemUniquePtrVec; |
| |
| const DeviceInterface& deviceInterface = getDeviceInterface(); |
| const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); |
| const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0); |
| const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); |
| |
| // Go through all physical devices |
| for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; ++physDevID) |
| { |
| const deUint32 firstDeviceID = physDevID; |
| const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices; |
| |
| imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; //VkStructureType sType; |
| imageSparseInfo.pNext = DE_NULL; //const void* pNext; |
| imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT; //VkImageCreateFlags flags; |
| imageSparseInfo.imageType = mapImageType(m_imageType); //VkImageType imageType; |
| imageSparseInfo.format = m_format; //VkFormat format; |
| imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); //VkExtent3D extent; |
| imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); //deUint32 arrayLayers; |
| imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; //VkSampleCountFlagBits samples; |
| imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; //VkImageTiling tiling; |
| imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //VkImageLayout initialLayout; |
| imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT; //VkImageUsageFlags usage; |
| imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; //VkSharingMode sharingMode; |
| imageSparseInfo.queueFamilyIndexCount = 0u; //deUint32 queueFamilyIndexCount; |
| imageSparseInfo.pQueueFamilyIndices = DE_NULL; //const deUint32* pQueueFamilyIndices; |
| |
| if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) |
| { |
| imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; |
| } |
| |
| { |
| VkImageFormatProperties imageFormatProperties; |
| if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, |
| imageSparseInfo.format, |
| imageSparseInfo.imageType, |
| imageSparseInfo.tiling, |
| imageSparseInfo.usage, |
| imageSparseInfo.flags, |
| &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) |
| { |
| TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations"); |
| } |
| |
| imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent); |
| } |
| |
| // Create sparse image |
| const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo)); |
| |
| // Create sparse image memory bind semaphore |
| const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice())); |
| |
| // Get sparse image general memory requirements |
| const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse); |
| |
| // Check if required image memory size does not exceed device limits |
| if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize) |
| TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits"); |
| |
| DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0); |
| |
| { |
| std::vector<VkSparseMemoryBind> sparseMemoryBinds; |
| const deUint32 numSparseBinds = static_cast<deUint32>(imageMemoryRequirements.size / imageMemoryRequirements.alignment); |
| const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any); |
| |
| if (memoryType == NO_MATCH_FOUND) |
| return tcu::TestStatus::fail("No matching memory type found"); |
| |
| if (firstDeviceID != secondDeviceID) |
| { |
| VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0; |
| const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType); |
| deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags); |
| |
| if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) || |
| ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0)) |
| { |
| TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST"); |
| } |
| } |
| |
| for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx) |
| { |
| const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| imageMemoryRequirements.alignment, memoryType, imageMemoryRequirements.alignment * sparseBindNdx); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| sparseMemoryBinds.push_back(sparseMemoryBind); |
| } |
| |
| const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(*imageSparse, static_cast<deUint32>(sparseMemoryBinds.size()), sparseMemoryBinds.data()); |
| |
| const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = |
| { |
| VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType; |
| DE_NULL, //const void* pNext; |
| firstDeviceID, //deUint32 resourceDeviceIndex; |
| secondDeviceID, //deUint32 memoryDeviceIndex; |
| }; |
| |
| const VkBindSparseInfo bindSparseInfo = |
| { |
| VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; |
| m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext; |
| 0u, //deUint32 waitSemaphoreCount; |
| DE_NULL, //const VkSemaphore* pWaitSemaphores; |
| 0u, //deUint32 bufferBindCount; |
| DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds; |
| 1u, //deUint32 imageOpaqueBindCount; |
| &opaqueBindInfo, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; |
| 0u, //deUint32 imageBindCount; |
| DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; |
| 1u, //deUint32 signalSemaphoreCount; |
| &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores; |
| }; |
| |
| // Submit sparse bind commands for execution |
| VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); |
| } |
| |
| deUint32 imageSizeInBytes = 0; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| |
| std::vector<VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels); |
| { |
| deUint32 bufferOffset = 0; |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] = |
| { |
| bufferOffset, // VkDeviceSize bufferOffset; |
| 0u, // deUint32 bufferRowLength; |
| 0u, // deUint32 bufferImageHeight; |
| makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; |
| makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; |
| vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; |
| }; |
| bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| } |
| } |
| } |
| |
| // Create command buffer for compute and transfer operations |
| const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex)); |
| const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); |
| |
| // Start recording commands |
| beginCommandBuffer(deviceInterface, *commandBuffer); |
| |
| const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); |
| const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); |
| const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); |
| |
| std::vector<deUint8> referenceData(imageSizeInBytes); |
| for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx) |
| { |
| referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u); |
| } |
| |
| { |
| deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes); |
| flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); |
| |
| const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier ( |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| *inputBuffer, |
| 0u, |
| imageSizeInBytes |
| ); |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); |
| } |
| |
| { |
| std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseTransferDstBarriers.push_back( makeImageMemoryBarrier ( |
| 0u, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_IMAGE_LAYOUT_UNDEFINED, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| *imageSparse, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers), |
| sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED, |
| sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED |
| )); |
| } |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data()); |
| } |
| |
| deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data()); |
| |
| { |
| std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseTransferSrcBarriers.push_back( makeImageMemoryBarrier ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| *imageSparse, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers) |
| )); |
| } |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data()); |
| } |
| |
| const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo)); |
| const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible)); |
| |
| deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data()); |
| |
| { |
| const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| *outputBuffer, |
| 0u, |
| imageSizeInBytes |
| ); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL); |
| } |
| |
| // End recording commands |
| endCommandBuffer(deviceInterface, *commandBuffer); |
| |
| const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT }; |
| |
| // Submit commands for execution and wait for completion |
| submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits, |
| 0, DE_NULL, m_useDeviceGroups, firstDeviceID); |
| |
| // Retrieve data from buffer to host memory |
| invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc); |
| |
| // Wait for sparse queue to become idle |
| deviceInterface.queueWaitIdle(sparseQueue.queueHandle); |
| |
| const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr()); |
| bool ignoreLsb6Bits = areLsb6BitsDontCare(imageSparseInfo.format); |
| bool ignoreLsb4Bits = areLsb4BitsDontCare(imageSparseInfo.format); |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx); |
| const deUint32 bufferOffset = static_cast<deUint32>(bufferImageCopy[ planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); |
| |
| // Validate results |
| for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++) |
| { |
| const deUint8 res = *(outputData + bufferOffset + byteNdx); |
| const deUint8 ref = referenceData[bufferOffset + byteNdx]; |
| |
| deUint8 mask = 0xFF; |
| |
| if (!(byteNdx & 0x01) && (ignoreLsb6Bits)) |
| mask = 0xC0; |
| else if (!(byteNdx & 0x01) && (ignoreLsb4Bits)) |
| mask = 0xF0; |
| |
| if ((res & mask) != (ref & mask)) |
| { |
| return tcu::TestStatus::fail("Failed"); |
| } |
| } |
| } |
| } |
| } |
| |
| return tcu::TestStatus::pass("Passed"); |
| } |
| |
| TestInstance* ImageSparseBindingCase::createInstance (Context& context) const |
| { |
| return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups); |
| } |
| |
| } // anonymous ns |
| |
| tcu::TestCaseGroup* createImageSparseBindingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false) |
| { |
| const std::vector<TestImageParameters> imageParameters |
| { |
| { IMAGE_TYPE_1D, { tcu::UVec3(512u, 1u, 1u ), tcu::UVec3(1024u, 1u, 1u), tcu::UVec3(11u, 1u, 1u) }, getTestFormats(IMAGE_TYPE_1D) }, |
| { IMAGE_TYPE_1D_ARRAY, { tcu::UVec3(512u, 1u, 64u), tcu::UVec3(1024u, 1u, 8u), tcu::UVec3(11u, 1u, 3u) }, getTestFormats(IMAGE_TYPE_1D_ARRAY) }, |
| { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u ), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_2D) }, |
| { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_2D_ARRAY) }, |
| { IMAGE_TYPE_3D, { tcu::UVec3(512u, 256u, 6u ), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_3D) }, |
| { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u ), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_CUBE) }, |
| { IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u ), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_CUBE_ARRAY) } |
| }; |
| |
| for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx) |
| { |
| const ImageType imageType = imageParameters[imageTypeNdx].imageType; |
| de::MovePtr<tcu::TestCaseGroup> imageTypeGroup (new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), "")); |
| |
| for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx) |
| { |
| VkFormat format = imageParameters[imageTypeNdx].formats[formatNdx].format; |
| tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format); |
| de::MovePtr<tcu::TestCaseGroup> formatGroup (new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), "")); |
| |
| for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx) |
| { |
| const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx]; |
| |
| // skip test for images with odd sizes for some YCbCr formats |
| if ((imageSize.x() % imageSizeAlignment.x()) != 0) |
| continue; |
| if ((imageSize.y() % imageSizeAlignment.y()) != 0) |
| continue; |
| |
| std::ostringstream stream; |
| stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z(); |
| |
| formatGroup->addChild(new ImageSparseBindingCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup)); |
| } |
| imageTypeGroup->addChild(formatGroup.release()); |
| } |
| testGroup->addChild(imageTypeGroup.release()); |
| } |
| |
| return testGroup.release(); |
| } |
| |
| tcu::TestCaseGroup* createImageSparseBindingTests(tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding", "Image Sparse Binding")); |
| return createImageSparseBindingTestsCommon(testCtx, testGroup); |
| } |
| |
| tcu::TestCaseGroup* createDeviceGroupImageSparseBindingTests(tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding", "Device Group Image Sparse Binding")); |
| return createImageSparseBindingTestsCommon(testCtx, testGroup, true); |
| } |
| |
| } // sparse |
| } // vkt |