| /*------------------------------------------------------------------------ |
| * Vulkan Conformance Tests |
| * ------------------------ |
| * |
| * Copyright (c) 2016 The Khronos Group Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file vktSparseResourcesImageMemoryAliasing.cpp |
| * \brief Sparse image memory aliasing tests |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "vktSparseResourcesImageMemoryAliasing.hpp" |
| #include "vktSparseResourcesTestsUtil.hpp" |
| #include "vktSparseResourcesBase.hpp" |
| #include "vktTestCaseUtil.hpp" |
| |
| #include "vkDefs.hpp" |
| #include "vkRef.hpp" |
| #include "vkRefUtil.hpp" |
| #include "vkPlatform.hpp" |
| #include "vkPrograms.hpp" |
| #include "vkRefUtil.hpp" |
| #include "vkMemUtil.hpp" |
| #include "vkBarrierUtil.hpp" |
| #include "vkQueryUtil.hpp" |
| #include "vkBuilderUtil.hpp" |
| #include "vkTypeUtil.hpp" |
| #include "vkCmdUtil.hpp" |
| #include "vkObjUtil.hpp" |
| |
| #include "deStringUtil.hpp" |
| #include "deUniquePtr.hpp" |
| #include "deSharedPtr.hpp" |
| |
| #include "tcuTexture.hpp" |
| #include "tcuTextureUtil.hpp" |
| #include "tcuTexVerifierUtil.hpp" |
| |
| #include <deMath.h> |
| #include <string> |
| #include <vector> |
| |
| using namespace vk; |
| |
| namespace vkt |
| { |
| namespace sparse |
| { |
| namespace |
| { |
| |
| const deUint32 MODULO_DIVISOR = 127; |
| |
| const std::string getCoordStr (const ImageType imageType, |
| const std::string& x, |
| const std::string& y, |
| const std::string& z) |
| { |
| switch (imageType) |
| { |
| case IMAGE_TYPE_1D: |
| case IMAGE_TYPE_BUFFER: |
| return x; |
| |
| case IMAGE_TYPE_1D_ARRAY: |
| case IMAGE_TYPE_2D: |
| return "ivec2(" + x + "," + y + ")"; |
| |
| case IMAGE_TYPE_2D_ARRAY: |
| case IMAGE_TYPE_3D: |
| case IMAGE_TYPE_CUBE: |
| case IMAGE_TYPE_CUBE_ARRAY: |
| return "ivec3(" + x + "," + y + "," + z + ")"; |
| |
| default: |
| DE_FATAL("Unexpected image type"); |
| return ""; |
| } |
| } |
| |
| class ImageSparseMemoryAliasingCase : public TestCase |
| { |
| public: |
| ImageSparseMemoryAliasingCase (tcu::TestContext& testCtx, |
| const std::string& name, |
| const std::string& description, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const glu::GLSLVersion glslVersion, |
| const bool useDeviceGroups); |
| |
| void initPrograms (SourceCollections& sourceCollections) const; |
| TestInstance* createInstance (Context& context) const; |
| virtual void checkSupport (Context& context) const; |
| |
| |
| private: |
| const bool m_useDeviceGroups; |
| const ImageType m_imageType; |
| const tcu::UVec3 m_imageSize; |
| const VkFormat m_format; |
| const glu::GLSLVersion m_glslVersion; |
| }; |
| |
| ImageSparseMemoryAliasingCase::ImageSparseMemoryAliasingCase (tcu::TestContext& testCtx, |
| const std::string& name, |
| const std::string& description, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const glu::GLSLVersion glslVersion, |
| const bool useDeviceGroups) |
| : TestCase (testCtx, name, description) |
| , m_useDeviceGroups (useDeviceGroups) |
| , m_imageType (imageType) |
| , m_imageSize (imageSize) |
| , m_format (format) |
| , m_glslVersion (glslVersion) |
| { |
| } |
| |
| void ImageSparseMemoryAliasingCase::checkSupport (Context& context) const |
| { |
| const InstanceInterface& instance = context.getInstanceInterface(); |
| const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); |
| |
| context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_RESIDENCY_ALIASED); |
| |
| // Check if image size does not exceed device limits |
| if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize)) |
| TCU_THROW(NotSupportedError, "Image size not supported for device"); |
| |
| // Check if device supports sparse operations for image type |
| if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType)) |
| TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported"); |
| |
| if (formatIsR64(m_format)) |
| { |
| context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64"); |
| |
| if (context.getShaderImageAtomicInt64FeaturesEXT().shaderImageInt64Atomics == VK_FALSE) |
| { |
| TCU_THROW(NotSupportedError, "shaderImageInt64Atomics is not supported"); |
| } |
| |
| if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE) |
| { |
| TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device"); |
| } |
| } |
| } |
| |
| class ImageSparseMemoryAliasingInstance : public SparseResourcesBaseInstance |
| { |
| public: |
| ImageSparseMemoryAliasingInstance (Context& context, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups); |
| |
| tcu::TestStatus iterate (void); |
| |
| private: |
| const bool m_useDeviceGroups; |
| const ImageType m_imageType; |
| const tcu::UVec3 m_imageSize; |
| const VkFormat m_format; |
| }; |
| |
| ImageSparseMemoryAliasingInstance::ImageSparseMemoryAliasingInstance (Context& context, |
| const ImageType imageType, |
| const tcu::UVec3& imageSize, |
| const VkFormat format, |
| const bool useDeviceGroups) |
| : SparseResourcesBaseInstance (context, useDeviceGroups) |
| , m_useDeviceGroups (useDeviceGroups) |
| , m_imageType (imageType) |
| , m_imageSize (imageSize) |
| , m_format (format) |
| { |
| } |
| |
| tcu::TestStatus ImageSparseMemoryAliasingInstance::iterate (void) |
| { |
| const float epsilon = 1e-5f; |
| const InstanceInterface& instance = m_context.getInstanceInterface(); |
| |
| { |
| // Create logical device supporting both sparse and compute queues |
| QueueRequirementsVec queueRequirements; |
| queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); |
| queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u)); |
| |
| createDeviceSupportingQueues(queueRequirements); |
| } |
| |
| const VkPhysicalDevice physicalDevice = getPhysicalDevice(); |
| const tcu::UVec3 maxWorkGroupSize = tcu::UVec3(128u, 128u, 64u); |
| const tcu::UVec3 maxWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u); |
| const deUint32 maxWorkGroupInvocations = 128u; |
| VkImageCreateInfo imageSparseInfo; |
| std::vector<DeviceMemorySp> deviceMemUniquePtrVec; |
| |
| //vsk getting queues should be outside the loop |
| //see these in all image files |
| |
| const DeviceInterface& deviceInterface = getDeviceInterface(); |
| const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); |
| const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0); |
| const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); |
| |
| // Go through all physical devices |
| for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++) |
| { |
| const deUint32 firstDeviceID = physDevID; |
| const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices; |
| |
| imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| imageSparseInfo.pNext = DE_NULL; |
| imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | |
| VK_IMAGE_CREATE_SPARSE_ALIASED_BIT | |
| VK_IMAGE_CREATE_SPARSE_BINDING_BIT; |
| imageSparseInfo.imageType = mapImageType(m_imageType); |
| imageSparseInfo.format = m_format; |
| imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); |
| imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); |
| imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
| imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; |
| imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_STORAGE_BIT; |
| imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| imageSparseInfo.queueFamilyIndexCount = 0u; |
| imageSparseInfo.pQueueFamilyIndices = DE_NULL; |
| |
| if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) |
| imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; |
| |
| // Check if device supports sparse operations for image format |
| if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo)) |
| TCU_THROW(NotSupportedError, "The image format does not support sparse operations"); |
| |
| { |
| // Assign maximum allowed mipmap levels to image |
| VkImageFormatProperties imageFormatProperties; |
| if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, |
| imageSparseInfo.format, |
| imageSparseInfo.imageType, |
| imageSparseInfo.tiling, |
| imageSparseInfo.usage, |
| imageSparseInfo.flags, |
| &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) |
| { |
| TCU_THROW(NotSupportedError, "Image format does not support sparse operations"); |
| } |
| |
| imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent); |
| } |
| |
| // Create sparse image |
| const Unique<VkImage> imageRead(createImage(deviceInterface, getDevice(), &imageSparseInfo)); |
| const Unique<VkImage> imageWrite(createImage(deviceInterface, getDevice(), &imageSparseInfo)); |
| |
| // Create semaphores to synchronize sparse binding operations with other operations on the sparse images |
| const Unique<VkSemaphore> memoryBindSemaphoreTransfer(createSemaphore(deviceInterface, getDevice())); |
| const Unique<VkSemaphore> memoryBindSemaphoreCompute(createSemaphore(deviceInterface, getDevice())); |
| |
| const VkSemaphore imageMemoryBindSemaphores[] = { memoryBindSemaphoreTransfer.get(), memoryBindSemaphoreCompute.get() }; |
| |
| std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements; |
| |
| { |
| // Get sparse image general memory requirements |
| const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageRead); |
| |
| // Check if required image memory size does not exceed device limits |
| if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize) |
| TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits"); |
| |
| DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0); |
| |
| const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any); |
| |
| if (memoryType == NO_MATCH_FOUND) |
| return tcu::TestStatus::fail("No matching memory type found"); |
| |
| if (firstDeviceID != secondDeviceID) |
| { |
| VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0; |
| const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType); |
| deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags); |
| |
| if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) || |
| ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0) || |
| ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT) == 0)) |
| { |
| TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC, COPY_DST, and GENERIC_DST"); |
| } |
| } |
| |
| // Get sparse image sparse memory requirements |
| sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageRead); |
| |
| DE_ASSERT(sparseMemoryRequirements.size() != 0); |
| |
| std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds; |
| std::vector<VkSparseMemoryBind> imageReadMipTailBinds; |
| std::vector<VkSparseMemoryBind> imageWriteMipTailBinds; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect); |
| |
| if (aspectIndex == NO_MATCH_FOUND) |
| TCU_THROW(NotSupportedError, "Not supported image aspect"); |
| |
| VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex]; |
| |
| DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0); |
| |
| VkExtent3D imageGranularity = aspectRequirements.formatProperties.imageGranularity; |
| |
| // Bind memory for each layer |
| for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx) |
| { |
| for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx) |
| { |
| const VkExtent3D mipExtent = getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx); |
| const tcu::UVec3 sparseBlocks = alignedDivide(mipExtent, imageGranularity); |
| const deUint32 numSparseBlocks = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z(); |
| const VkImageSubresource subresource = { aspect, mipLevelNdx, layerNdx }; |
| |
| const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(), |
| imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageResidencyMemoryBinds.push_back(imageMemoryBind); |
| } |
| |
| if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels) |
| { |
| const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind); |
| |
| const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind); |
| } |
| } |
| |
| if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels) |
| { |
| const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind); |
| |
| const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), |
| aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset); |
| |
| deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL)))); |
| |
| imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind); |
| } |
| } |
| |
| const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = |
| { |
| VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType; |
| DE_NULL, //const void* pNext; |
| firstDeviceID, //deUint32 resourceDeviceIndex; |
| secondDeviceID, //deUint32 memoryDeviceIndex; |
| }; |
| |
| VkBindSparseInfo bindSparseInfo = |
| { |
| VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; |
| m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext; |
| 0u, //deUint32 waitSemaphoreCount; |
| DE_NULL, //const VkSemaphore* pWaitSemaphores; |
| 0u, //deUint32 bufferBindCount; |
| DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds; |
| 0u, //deUint32 imageOpaqueBindCount; |
| DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; |
| 0u, //deUint32 imageBindCount; |
| DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; |
| 2u, //deUint32 signalSemaphoreCount; |
| imageMemoryBindSemaphores //const VkSemaphore* pSignalSemaphores; |
| }; |
| |
| VkSparseImageMemoryBindInfo imageResidencyBindInfo[2]; |
| VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo[2]; |
| |
| if (imageResidencyMemoryBinds.size() > 0) |
| { |
| imageResidencyBindInfo[0].image = *imageRead; |
| imageResidencyBindInfo[0].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size()); |
| imageResidencyBindInfo[0].pBinds = imageResidencyMemoryBinds.data(); |
| |
| imageResidencyBindInfo[1].image = *imageWrite; |
| imageResidencyBindInfo[1].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size()); |
| imageResidencyBindInfo[1].pBinds = imageResidencyMemoryBinds.data(); |
| |
| bindSparseInfo.imageBindCount = 2u; |
| bindSparseInfo.pImageBinds = imageResidencyBindInfo; |
| } |
| |
| if (imageReadMipTailBinds.size() > 0) |
| { |
| imageMipTailBindInfo[0].image = *imageRead; |
| imageMipTailBindInfo[0].bindCount = static_cast<deUint32>(imageReadMipTailBinds.size()); |
| imageMipTailBindInfo[0].pBinds = imageReadMipTailBinds.data(); |
| |
| imageMipTailBindInfo[1].image = *imageWrite; |
| imageMipTailBindInfo[1].bindCount = static_cast<deUint32>(imageWriteMipTailBinds.size()); |
| imageMipTailBindInfo[1].pBinds = imageWriteMipTailBinds.data(); |
| |
| bindSparseInfo.imageOpaqueBindCount = 2u; |
| bindSparseInfo.pImageOpaqueBinds = imageMipTailBindInfo; |
| } |
| |
| // Submit sparse bind commands for execution |
| VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); |
| } |
| |
| deUint32 imageSizeInBytes = 0; |
| std::vector<std::vector<deUint32>> planeOffsets( imageSparseInfo.mipLevels ); |
| std::vector<std::vector<deUint32>> planeRowPitches( imageSparseInfo.mipLevels ); |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| planeOffsets[mipmapNdx].resize(formatDescription.numPlanes, 0); |
| planeRowPitches[mipmapNdx].resize(formatDescription.numPlanes, 0); |
| } |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize, mipmapNdx); |
| planeOffsets[mipmapNdx][planeNdx] = imageSizeInBytes; |
| const deUint32 planeW = gridSize.x() / (formatDescription.blockWidth * formatDescription.planes[planeNdx].widthDivisor); |
| planeRowPitches[mipmapNdx][planeNdx] = formatDescription.planes[planeNdx].elementSizeBytes * planeW; |
| imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| } |
| } |
| |
| std::vector <VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels); |
| { |
| deUint32 bufferOffset = 0; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] = |
| { |
| bufferOffset, // VkDeviceSize bufferOffset; |
| 0u, // deUint32 bufferRowLength; |
| 0u, // deUint32 bufferImageHeight; |
| makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; |
| makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; |
| vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; |
| }; |
| bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| } |
| } |
| } |
| |
| // Create command buffer for compute and transfer operations |
| const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex)); |
| const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); |
| |
| // Start recording commands |
| beginCommandBuffer(deviceInterface, *commandBuffer); |
| |
| const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); |
| const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); |
| const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); |
| |
| std::vector<deUint8> referenceData(imageSizeInBytes); |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| for (deUint32 mipmapNdx = 0u; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); |
| const deUint32 bufferOffset = static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); |
| |
| deMemset(&referenceData[bufferOffset], mipmapNdx + 1u, mipLevelSizeInBytes); |
| } |
| |
| deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes); |
| |
| flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); |
| |
| { |
| const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| *inputBuffer, |
| 0u, |
| imageSizeInBytes |
| ); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); |
| } |
| |
| { |
| std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseTransferDstBarriers.emplace_back(makeImageMemoryBarrier |
| ( |
| 0u, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_IMAGE_LAYOUT_UNDEFINED, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| *imageRead, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers), |
| sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED, |
| sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED |
| )); |
| } |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data()); |
| } |
| |
| deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data()); |
| |
| { |
| std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier |
| ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| *imageRead, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers) |
| )); |
| } |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data()); |
| } |
| |
| { |
| std::vector<VkImageMemoryBarrier> imageSparseShaderStorageBarriers; |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| { |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| imageSparseShaderStorageBarriers.emplace_back(makeImageMemoryBarrier |
| ( |
| 0u, |
| VK_ACCESS_SHADER_WRITE_BIT, |
| VK_IMAGE_LAYOUT_UNDEFINED, |
| VK_IMAGE_LAYOUT_GENERAL, |
| *imageWrite, |
| makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers) |
| )); |
| } |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseShaderStorageBarriers.size()), imageSparseShaderStorageBarriers.data()); |
| } |
| |
| // Create descriptor set layout |
| const Unique<VkDescriptorSetLayout> descriptorSetLayout( |
| DescriptorSetLayoutBuilder() |
| .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT) |
| .build(deviceInterface, getDevice())); |
| |
| Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout)); |
| |
| Unique<VkDescriptorPool> descriptorPool( |
| DescriptorPoolBuilder() |
| .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, imageSparseInfo.mipLevels) |
| .build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels)); |
| |
| typedef de::SharedPtr< Unique<VkImageView> > SharedVkImageView; |
| std::vector<SharedVkImageView> imageViews; |
| imageViews.resize(imageSparseInfo.mipLevels); |
| |
| typedef de::SharedPtr< Unique<VkDescriptorSet> > SharedVkDescriptorSet; |
| std::vector<SharedVkDescriptorSet> descriptorSets; |
| descriptorSets.resize(imageSparseInfo.mipLevels); |
| |
| typedef de::SharedPtr< Unique<VkPipeline> > SharedVkPipeline; |
| std::vector<SharedVkPipeline> computePipelines; |
| computePipelines.resize(imageSparseInfo.mipLevels); |
| |
| for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx) |
| { |
| std::ostringstream name; |
| name << "comp" << mipLevelNdx; |
| |
| // Create and bind compute pipeline |
| Unique<VkShaderModule> shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get(name.str()), DE_NULL)); |
| |
| computePipelines[mipLevelNdx] = makeVkSharedPtr(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule)); |
| VkPipeline computePipeline = **computePipelines[mipLevelNdx]; |
| |
| deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline); |
| |
| // Create and bind descriptor set |
| descriptorSets[mipLevelNdx] = makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout)); |
| VkDescriptorSet descriptorSet = **descriptorSets[mipLevelNdx]; |
| |
| // Select which mipmap level to bind |
| const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers); |
| |
| imageViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), *imageWrite, mapImageViewType(m_imageType), imageSparseInfo.format, subresourceRange)); |
| VkImageView imageView = **imageViews[mipLevelNdx]; |
| |
| const VkDescriptorImageInfo descriptorImageSparseInfo = makeDescriptorImageInfo(DE_NULL, imageView, VK_IMAGE_LAYOUT_GENERAL); |
| |
| DescriptorSetUpdateBuilder() |
| .writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageSparseInfo) |
| .update(deviceInterface, getDevice()); |
| |
| deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL); |
| |
| const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx); |
| const deUint32 xWorkGroupSize = std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations); |
| const deUint32 yWorkGroupSize = std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize); |
| const deUint32 zWorkGroupSize = std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize)); |
| |
| const deUint32 xWorkGroupCount = gridSize.x() / xWorkGroupSize + (gridSize.x() % xWorkGroupSize ? 1u : 0u); |
| const deUint32 yWorkGroupCount = gridSize.y() / yWorkGroupSize + (gridSize.y() % yWorkGroupSize ? 1u : 0u); |
| const deUint32 zWorkGroupCount = gridSize.z() / zWorkGroupSize + (gridSize.z() % zWorkGroupSize ? 1u : 0u); |
| |
| if (maxWorkGroupCount.x() < xWorkGroupCount || |
| maxWorkGroupCount.y() < yWorkGroupCount || |
| maxWorkGroupCount.z() < zWorkGroupCount) |
| { |
| TCU_THROW(NotSupportedError, "Image size is not supported"); |
| } |
| |
| deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount); |
| } |
| |
| { |
| const VkMemoryBarrier memoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 1u, &memoryBarrier, 0u, DE_NULL, 0u, DE_NULL); |
| } |
| |
| const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo)); |
| const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible)); |
| |
| deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data()); |
| |
| { |
| const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier |
| ( |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| *outputBuffer, |
| 0u, |
| imageSizeInBytes |
| ); |
| |
| deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL); |
| } |
| |
| // End recording commands |
| endCommandBuffer(deviceInterface, *commandBuffer); |
| |
| const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT }; |
| |
| // Submit commands for execution and wait for completion |
| submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 2u, imageMemoryBindSemaphores, stageBits, |
| 0, DE_NULL, m_useDeviceGroups, firstDeviceID); |
| |
| // Retrieve data from buffer to host memory |
| invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc); |
| |
| deUint8* outputData = static_cast<deUint8*>(outputBufferAlloc->getHostPtr()); |
| |
| std::vector<std::vector<void*>> planePointers(imageSparseInfo.mipLevels); |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| planePointers[mipmapNdx].resize(formatDescription.numPlanes); |
| |
| for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) |
| for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| planePointers[mipmapNdx][planeNdx] = outputData + static_cast<size_t>(planeOffsets[mipmapNdx][planeNdx]); |
| |
| // Wait for sparse queue to become idle |
| deviceInterface.queueWaitIdle(sparseQueue.queueHandle); |
| |
| for (deUint32 channelNdx = 0; channelNdx < 4; ++channelNdx) |
| { |
| if (!formatDescription.hasChannelNdx(channelNdx)) |
| continue; |
| |
| deUint32 planeNdx = formatDescription.channels[channelNdx].planeNdx; |
| const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; |
| const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect); |
| |
| if (aspectIndex == NO_MATCH_FOUND) |
| TCU_THROW(NotSupportedError, "Not supported image aspect"); |
| |
| VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex]; |
| |
| for (deUint32 mipmapNdx = 0; mipmapNdx < aspectRequirements.imageMipTailFirstLod; ++mipmapNdx) |
| { |
| const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize, mipmapNdx); |
| const tcu::ConstPixelBufferAccess pixelBuffer = vk::getChannelAccess(formatDescription, gridSize, planeRowPitches[mipmapNdx].data(), (const void* const*)planePointers[mipmapNdx].data(), channelNdx); |
| tcu::IVec3 pixelDivider = pixelBuffer.getDivider(); |
| |
| for (deUint32 offsetZ = 0u; offsetZ < gridSize.z(); ++offsetZ) |
| for (deUint32 offsetY = 0u; offsetY < gridSize.y(); ++offsetY) |
| for (deUint32 offsetX = 0u; offsetX < gridSize.x(); ++offsetX) |
| { |
| const deUint32 index = offsetX + gridSize.x() * offsetY + gridSize.x() * gridSize.y() * offsetZ; |
| deUint32 iReferenceValue; |
| float fReferenceValue; |
| float acceptableError = epsilon; |
| |
| switch (channelNdx) |
| { |
| case 0: |
| case 1: |
| case 2: |
| iReferenceValue = index % MODULO_DIVISOR; |
| fReferenceValue = static_cast<float>(iReferenceValue) / static_cast<float>(MODULO_DIVISOR); |
| break; |
| case 3: |
| iReferenceValue = 1u; |
| fReferenceValue = 1.f; |
| break; |
| default: DE_FATAL("Unexpected channel index"); break; |
| } |
| |
| switch (formatDescription.channels[channelNdx].type) |
| { |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| { |
| const tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z()); |
| |
| if (outputValue.x() != iReferenceValue) |
| return tcu::TestStatus::fail("Failed"); |
| |
| break; |
| } |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| { |
| float fixedPointError = tcu::TexVerifierUtil::computeFixedPointError(formatDescription.channels[channelNdx].sizeBits); |
| acceptableError += fixedPointError; |
| const tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z()); |
| |
| if (deAbs(outputValue.x() - fReferenceValue) > acceptableError) |
| return tcu::TestStatus::fail("Failed"); |
| |
| break; |
| } |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| { |
| const tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z()); |
| |
| if (deAbs(outputValue.x() - fReferenceValue) > acceptableError) |
| return tcu::TestStatus::fail("Failed"); |
| |
| break; |
| } |
| default: DE_FATAL("Unexpected channel type"); break; |
| } |
| } |
| } |
| |
| for (deUint32 mipmapNdx = aspectRequirements.imageMipTailFirstLod; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) |
| { |
| const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx); |
| const deUint32 bufferOffset = static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); |
| |
| if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0) |
| return tcu::TestStatus::fail("Failed"); |
| } |
| } |
| } |
| |
| return tcu::TestStatus::pass("Passed"); |
| } |
| |
| void ImageSparseMemoryAliasingCase::initPrograms(SourceCollections& sourceCollections) const |
| { |
| const char* const versionDecl = glu::getGLSLVersionDeclaration(m_glslVersion); |
| const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); |
| const std::string imageTypeStr = getShaderImageType(formatDescription, m_imageType); |
| const std::string formatQualifierStr = getShaderImageFormatQualifier(m_format); |
| const std::string formatDataStr = getShaderImageDataType(formatDescription); |
| const deUint32 maxWorkGroupInvocations = 128u; |
| const tcu::UVec3 maxWorkGroupSize = tcu::UVec3(128u, 128u, 64u); |
| VkExtent3D layerExtent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); |
| VkImageFormatProperties imageFormatProperties; |
| imageFormatProperties.maxMipLevels = 20; |
| const deUint32 mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, layerExtent); |
| |
| std::ostringstream formatValueStr; |
| switch (formatDescription.channels[0].type) |
| { |
| case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: |
| formatValueStr << "( index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", 1)"; |
| break; |
| case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: |
| case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: |
| formatValueStr << "( float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, 1.0)"; |
| break; |
| default: DE_FATAL("Unexpected channel type"); break; |
| } |
| |
| |
| for (deUint32 mipLevelNdx = 0; mipLevelNdx < mipLevels; ++mipLevelNdx) |
| { |
| // Create compute program |
| const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx); |
| const deUint32 xWorkGroupSize = std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations); |
| const deUint32 yWorkGroupSize = std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize); |
| const deUint32 zWorkGroupSize = std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize)); |
| |
| std::ostringstream src; |
| |
| src << versionDecl << "\n"; |
| if (formatIsR64(m_format)) |
| { |
| src << "#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require\n" |
| << "#extension GL_EXT_shader_image_int64 : require\n"; |
| } |
| src << "layout (local_size_x = " << xWorkGroupSize << ", local_size_y = " << yWorkGroupSize << ", local_size_z = " << zWorkGroupSize << ") in; \n" |
| << "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform highp " << imageTypeStr << " u_image;\n" |
| << "void main (void)\n" |
| << "{\n" |
| << " if( gl_GlobalInvocationID.x < " << gridSize.x() << " ) \n" |
| << " if( gl_GlobalInvocationID.y < " << gridSize.y() << " ) \n" |
| << " if( gl_GlobalInvocationID.z < " << gridSize.z() << " ) \n" |
| << " {\n" |
| << " int index = int( gl_GlobalInvocationID.x + "<< gridSize.x() << " * gl_GlobalInvocationID.y + " << gridSize.x() << " * " << gridSize.y() << " * gl_GlobalInvocationID.z );\n" |
| << " imageStore(u_image, " << getCoordStr(m_imageType, "gl_GlobalInvocationID.x", "gl_GlobalInvocationID.y", "gl_GlobalInvocationID.z") << "," |
| << formatDataStr << formatValueStr.str() <<"); \n" |
| << " }\n" |
| << "}\n"; |
| |
| std::ostringstream name; |
| name << "comp" << mipLevelNdx; |
| sourceCollections.glslSources.add(name.str()) << glu::ComputeSource(src.str()); |
| } |
| } |
| |
| TestInstance* ImageSparseMemoryAliasingCase::createInstance (Context& context) const |
| { |
| return new ImageSparseMemoryAliasingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups); |
| } |
| |
| } // anonymous ns |
| |
| tcu::TestCaseGroup* createImageSparseMemoryAliasingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false) |
| { |
| |
| const std::vector<TestImageParameters> imageParameters |
| { |
| { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(503u, 137u, 1u), tcu::UVec3(11u, 37u, 1u) }, getTestFormats(IMAGE_TYPE_2D) }, |
| { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(503u, 137u, 3u), tcu::UVec3(11u, 37u, 3u) }, getTestFormats(IMAGE_TYPE_2D_ARRAY) }, |
| { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u), tcu::UVec3(11u, 11u, 1u) }, getTestFormats(IMAGE_TYPE_CUBE) }, |
| { IMAGE_TYPE_CUBE_ARRAY,{ tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u), tcu::UVec3(11u, 11u, 3u) }, getTestFormats(IMAGE_TYPE_CUBE_ARRAY) }, |
| { IMAGE_TYPE_3D, { tcu::UVec3(256u, 256u, 16u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(503u, 137u, 3u), tcu::UVec3(11u, 37u, 3u) }, getTestFormats(IMAGE_TYPE_3D) } |
| }; |
| |
| for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx) |
| { |
| const ImageType imageType = imageParameters[imageTypeNdx].imageType; |
| de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), "")); |
| |
| for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx) |
| { |
| VkFormat format = imageParameters[imageTypeNdx].formats[formatNdx].format; |
| tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format); |
| de::MovePtr<tcu::TestCaseGroup> formatGroup (new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), "")); |
| |
| for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx) |
| { |
| const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx]; |
| |
| // skip test for images with odd sizes for some YCbCr formats |
| if ((imageSize.x() % imageSizeAlignment.x()) != 0) |
| continue; |
| if ((imageSize.y() % imageSizeAlignment.y()) != 0) |
| continue; |
| |
| std::ostringstream stream; |
| stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z(); |
| |
| formatGroup->addChild(new ImageSparseMemoryAliasingCase(testCtx, stream.str(), "", imageType, imageSize, format, glu::GLSL_VERSION_440, useDeviceGroup)); |
| } |
| imageTypeGroup->addChild(formatGroup.release()); |
| } |
| testGroup->addChild(imageTypeGroup.release()); |
| } |
| |
| return testGroup.release(); |
| } |
| |
| tcu::TestCaseGroup* createImageSparseMemoryAliasingTests(tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_memory_aliasing", "Sparse Image Memory Aliasing")); |
| return createImageSparseMemoryAliasingTestsCommon(testCtx, testGroup); |
| } |
| |
| tcu::TestCaseGroup* createDeviceGroupImageSparseMemoryAliasingTests(tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_memory_aliasing", "Sparse Image Memory Aliasing")); |
| return createImageSparseMemoryAliasingTestsCommon(testCtx, testGroup, true); |
| } |
| |
| } // sparse |
| } // vkt |