blob: 613c9a8b111211bf48445a17c3e47c76692703d7 [file] [log] [blame]
/*-------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2015 Google Inc.
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
*//*--------------------------------------------------------------------*/
#include "vktSpvAsmInstructionTests.hpp"
#include "tcuCommandLine.hpp"
#include "tcuFormatUtil.hpp"
#include "tcuFloat.hpp"
#include "tcuRGBA.hpp"
#include "tcuStringTemplate.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuInterval.hpp"
#include "vkDefs.hpp"
#include "vkDeviceUtil.hpp"
#include "vkMemUtil.hpp"
#include "vkPlatform.hpp"
#include "vkPrograms.hpp"
#include "vkQueryUtil.hpp"
#include "vkRef.hpp"
#include "vkRefUtil.hpp"
#include "vkStrUtil.hpp"
#include "vkTypeUtil.hpp"
#include "deStringUtil.hpp"
#include "deUniquePtr.hpp"
#include "deMath.h"
#include "tcuStringTemplate.hpp"
#include "vktSpvAsm8bitStorageTests.hpp"
#include "vktSpvAsm16bitStorageTests.hpp"
#include "vktSpvAsmUboMatrixPaddingTests.hpp"
#include "vktSpvAsmConditionalBranchTests.hpp"
#include "vktSpvAsmIndexingTests.hpp"
#include "vktSpvAsmImageSamplerTests.hpp"
#include "vktSpvAsmComputeShaderCase.hpp"
#include "vktSpvAsmComputeShaderTestUtil.hpp"
#include "vktSpvAsmGraphicsShaderTestUtil.hpp"
#include "vktSpvAsmVariablePointersTests.hpp"
#include "vktSpvAsmSpirvVersionTests.hpp"
#include "vktTestCaseUtil.hpp"
#include "vktSpvAsmLoopDepLenTests.hpp"
#include "vktSpvAsmLoopDepInfTests.hpp"
#include <cmath>
#include <limits>
#include <map>
#include <string>
#include <sstream>
#include <utility>
#include <stack>
namespace vkt
{
namespace SpirVAssembly
{
namespace
{
using namespace vk;
using std::map;
using std::string;
using std::vector;
using tcu::IVec3;
using tcu::IVec4;
using tcu::RGBA;
using tcu::TestLog;
using tcu::TestStatus;
using tcu::Vec4;
using de::UniquePtr;
using tcu::StringTemplate;
using tcu::Vec4;
template<typename T>
static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
{
T* const typedPtr = (T*)dst;
for (int ndx = 0; ndx < numValues; ndx++)
typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
}
// Filter is a function that returns true if a value should pass, false otherwise.
template<typename T, typename FilterT>
static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, FilterT filter, int offset = 0)
{
T* const typedPtr = (T*)dst;
T value;
for (int ndx = 0; ndx < numValues; ndx++)
{
do
value = randomScalar<T>(rnd, minValue, maxValue);
while (!filter(value));
typedPtr[offset + ndx] = value;
}
}
// Gets a 64-bit integer with a more logarithmic distribution
deInt64 randomInt64LogDistributed (de::Random& rnd)
{
deInt64 val = rnd.getUint64();
val &= (1ull << rnd.getInt(1, 63)) - 1;
if (rnd.getBool())
val = -val;
return val;
}
static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues)
{
for (int ndx = 0; ndx < numValues; ndx++)
dst[ndx] = randomInt64LogDistributed(rnd);
}
template<typename FilterT>
static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues, FilterT filter)
{
for (int ndx = 0; ndx < numValues; ndx++)
{
deInt64 value;
do {
value = randomInt64LogDistributed(rnd);
} while (!filter(value));
dst[ndx] = value;
}
}
inline bool filterNonNegative (const deInt64 value)
{
return value >= 0;
}
inline bool filterPositive (const deInt64 value)
{
return value > 0;
}
inline bool filterNotZero (const deInt64 value)
{
return value != 0;
}
static void floorAll (vector<float>& values)
{
for (size_t i = 0; i < values.size(); i++)
values[i] = deFloatFloor(values[i]);
}
static void floorAll (vector<Vec4>& values)
{
for (size_t i = 0; i < values.size(); i++)
values[i] = floor(values[i]);
}
struct CaseParameter
{
const char* name;
string param;
CaseParameter (const char* case_, const string& param_) : name(case_), param(param_) {}
};
// Assembly code used for testing LocalSize, OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
//
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// output_data.elements[x] = -input_data.elements[x];
// }
static string getAsmForLocalSizeTest(bool useLiteralLocalSize, bool useSpecConstantWorkgroupSize, IVec3 workGroupSize, deUint32 ndx)
{
std::ostringstream out;
out << getComputeAsmShaderPreambleWithoutLocalSize();
if (useLiteralLocalSize)
{
out << "OpExecutionMode %main LocalSize "
<< workGroupSize.x() << " " << workGroupSize.y() << " " << workGroupSize.z() << "\n";
}
out << "OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n";
if (useSpecConstantWorkgroupSize)
{
out << "OpDecorate %spec_0 SpecId 100\n"
<< "OpDecorate %spec_1 SpecId 101\n"
<< "OpDecorate %spec_2 SpecId 102\n"
<< "OpDecorate %gl_WorkGroupSize BuiltIn WorkgroupSize\n";
}
out << getComputeAsmInputOutputBufferTraits()
<< getComputeAsmCommonTypes()
<< getComputeAsmInputOutputBuffer()
<< "%id = OpVariable %uvec3ptr Input\n"
<< "%zero = OpConstant %i32 0 \n";
if (useSpecConstantWorkgroupSize)
{
out << "%spec_0 = OpSpecConstant %u32 "<< workGroupSize.x() << "\n"
<< "%spec_1 = OpSpecConstant %u32 "<< workGroupSize.y() << "\n"
<< "%spec_2 = OpSpecConstant %u32 "<< workGroupSize.z() << "\n"
<< "%gl_WorkGroupSize = OpSpecConstantComposite %uvec3 %spec_0 %spec_1 %spec_2\n";
}
out << "%main = OpFunction %void None %voidf\n"
<< "%label = OpLabel\n"
<< "%idval = OpLoad %uvec3 %id\n"
<< "%ndx = OpCompositeExtract %u32 %idval " << ndx << "\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %ndx\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %ndx\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
return out.str();
}
tcu::TestCaseGroup* createLocalSizeGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "localsize", ""));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const deUint32 numElements = 64u;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize", "", spec));
spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize", "", spec));
spec.numWorkGroups = IVec3(1, 1, 1);
spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(numElements, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_x", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(numElements, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_x", "", spec));
spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(numElements, 1, 1), 0u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_x", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, numElements, 1), 1u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_y", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, numElements, 1), 1u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_y", "", spec));
spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, numElements, 1), 1u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_y", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, 1, numElements), 2u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_z", "", spec));
spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, 1, numElements), 2u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_z", "", spec));
spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, 1, numElements), 2u);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_z", "", spec));
return group.release();
}
tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes())
+ string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
" OpNop\n" // Inside a function body
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
return group.release();
}
bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
{
if (outputAllocs.size() != 1)
return false;
vector<deUint8> input1Bytes;
vector<deUint8> input2Bytes;
vector<deUint8> expectedBytes;
inputs[0]->getBytes(input1Bytes);
inputs[1]->getBytes(input2Bytes);
expectedOutputs[0]->getBytes(expectedBytes);
const deInt32* const expectedOutputAsInt = reinterpret_cast<const deInt32* const>(&expectedBytes.front());
const deInt32* const outputAsInt = static_cast<const deInt32* const>(outputAllocs[0]->getHostPtr());
const float* const input1AsFloat = reinterpret_cast<const float* const>(&input1Bytes.front());
const float* const input2AsFloat = reinterpret_cast<const float* const>(&input2Bytes.front());
bool returnValue = true;
for (size_t idx = 0; idx < expectedBytes.size() / sizeof(deInt32); ++idx)
{
if (outputAsInt[idx] != expectedOutputAsInt[idx])
{
log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage;
returnValue = false;
}
}
return returnValue;
}
typedef VkBool32 (*compareFuncType) (float, float);
struct OpFUnordCase
{
const char* name;
const char* opCode;
compareFuncType compareFunc;
OpFUnordCase (const char* _name, const char* _opCode, compareFuncType _compareFunc)
: name (_name)
, opCode (_opCode)
, compareFunc (_compareFunc) {}
};
#define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \
do { \
struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \
cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \
} while (deGetFalse())
tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<OpFUnordCase> cases;
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %buf2 BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpDecorate %i32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
"OpMemberDecorate %buf2 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%buf2 = OpTypeStruct %i32arr\n"
"%buf2ptr = OpTypePointer Uniform %buf2\n"
"%outdata = OpVariable %buf2ptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%consti1 = OpConstant %i32 1\n"
"%constf1 = OpConstant %f32 1.0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%outloc = OpAccessChain %i32ptr %outdata %zero %x\n"
"%result = ${OPCODE} %bool %inval1 %inval2\n"
"%int_res = OpSelect %i32 %result %consti1 %zero\n"
" OpStore %outloc %int_res\n"
" OpReturn\n"
" OpFunctionEnd\n");
ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==);
ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <);
ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=);
ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >);
ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=);
ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=);
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
const float NaN = std::numeric_limits<float>::quiet_NaN();
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<deInt32> expectedInts (numElements, 0);
specializations["OPCODE"] = cases[caseNdx].opCode;
spec.assembly = shaderTemplate.specialize(specializations);
fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
switch (ndx % 6)
{
case 0: inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break;
case 1: inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break;
case 2: inputFloats2[ndx] = inputFloats1[ndx]; break;
case 3: inputFloats2[ndx] = NaN; break;
case 4: inputFloats2[ndx] = inputFloats1[ndx]; inputFloats1[ndx] = NaN; break;
case 5: inputFloats2[ndx] = NaN; inputFloats1[ndx] = NaN; break;
}
expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]);
}
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareFUnord;
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
struct OpAtomicCase
{
const char* name;
const char* assembly;
OpAtomicType opAtomic;
deInt32 numOutputElements;
OpAtomicCase (const char* _name, const char* _assembly, OpAtomicType _opAtomic, deInt32 _numOutputElements)
: name (_name)
, assembly (_assembly)
, opAtomic (_opAtomic)
, numOutputElements (_numOutputElements) {}
};
tcu::TestCaseGroup* createOpAtomicGroup (tcu::TestContext& testCtx, bool useStorageBuffer)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx,
useStorageBuffer ? "opatomic_storage_buffer" : "opatomic",
"Test the OpAtomic* opcodes"));
const int numElements = 65535;
vector<OpAtomicCase> cases;
const StringTemplate shaderTemplate (
string("OpCapability Shader\n") +
(useStorageBuffer ? "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n" : "") +
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n" +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf ${BLOCK_DECORATION}\n"
"OpDecorate %indata DescriptorSet 0\n"
"OpDecorate %indata Binding 0\n"
"OpDecorate %i32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
"OpDecorate %sumbuf ${BLOCK_DECORATION}\n"
"OpDecorate %sum DescriptorSet 0\n"
"OpDecorate %sum Binding 1\n"
"OpMemberDecorate %sumbuf 0 Coherent\n"
"OpMemberDecorate %sumbuf 0 Offset 0\n"
+ getComputeAsmCommonTypes("${BLOCK_POINTER_TYPE}") +
"%buf = OpTypeStruct %i32arr\n"
"%bufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %buf\n"
"%indata = OpVariable %bufptr ${BLOCK_POINTER_TYPE}\n"
"%sumbuf = OpTypeStruct %i32arr\n"
"%sumbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %sumbuf\n"
"%sum = OpVariable %sumbufptr ${BLOCK_POINTER_TYPE}\n"
"%id = OpVariable %uvec3ptr Input\n"
"%minusone = OpConstant %i32 -1\n"
"%zero = OpConstant %i32 0\n"
"%one = OpConstant %u32 1\n"
"%two = OpConstant %i32 2\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %i32ptr %indata %zero %x\n"
"%inval = OpLoad %i32 %inloc\n"
"%outloc = OpAccessChain %i32ptr %sum %zero ${INDEX}\n"
"${INSTRUCTION}"
" OpReturn\n"
" OpFunctionEnd\n");
#define ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS) \
do { \
DE_STATIC_ASSERT((NUM_OUTPUT_ELEMENTS) == 1 || (NUM_OUTPUT_ELEMENTS) == numElements); \
cases.push_back(OpAtomicCase(#NAME, ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS)); \
} while (deGetFalse())
#define ADD_OPATOMIC_CASE_1(NAME, ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, 1)
#define ADD_OPATOMIC_CASE_N(NAME, ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, numElements)
ADD_OPATOMIC_CASE_1(iadd, "%unused = OpAtomicIAdd %i32 %outloc %one %zero %inval\n", OPATOMIC_IADD );
ADD_OPATOMIC_CASE_1(isub, "%unused = OpAtomicISub %i32 %outloc %one %zero %inval\n", OPATOMIC_ISUB );
ADD_OPATOMIC_CASE_1(iinc, "%unused = OpAtomicIIncrement %i32 %outloc %one %zero\n", OPATOMIC_IINC );
ADD_OPATOMIC_CASE_1(idec, "%unused = OpAtomicIDecrement %i32 %outloc %one %zero\n", OPATOMIC_IDEC );
ADD_OPATOMIC_CASE_N(load, "%inval2 = OpAtomicLoad %i32 %inloc %zero %zero\n"
" OpStore %outloc %inval2\n", OPATOMIC_LOAD );
ADD_OPATOMIC_CASE_N(store, " OpAtomicStore %outloc %zero %zero %inval\n", OPATOMIC_STORE );
ADD_OPATOMIC_CASE_N(compex, "%even = OpSMod %i32 %inval %two\n"
" OpStore %outloc %even\n"
"%unused = OpAtomicCompareExchange %i32 %outloc %one %zero %zero %minusone %zero\n", OPATOMIC_COMPEX );
#undef ADD_OPATOMIC_CASE
#undef ADD_OPATOMIC_CASE_1
#undef ADD_OPATOMIC_CASE_N
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
vector<deInt32> inputInts (numElements, 0);
vector<deInt32> expected (cases[caseNdx].numOutputElements, -1);
specializations["INDEX"] = (cases[caseNdx].numOutputElements == 1) ? "%zero" : "%x";
specializations["INSTRUCTION"] = cases[caseNdx].assembly;
specializations["BLOCK_DECORATION"] = useStorageBuffer ? "Block" : "BufferBlock";
specializations["BLOCK_POINTER_TYPE"] = useStorageBuffer ? "StorageBuffer" : "Uniform";
spec.assembly = shaderTemplate.specialize(specializations);
if (useStorageBuffer)
spec.extensions.push_back("VK_KHR_storage_buffer_storage_class");
spec.inputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_INPUT)));
spec.outputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_EXPECTED)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"%fname1 = OpString \"negateInputs.comp\"\n"
"%fname2 = OpString \"negateInputs\"\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) +
"OpLine %fname1 0 0\n" // At the earliest possible position
+ string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"OpLine %fname1 0 1\n" // Multiple OpLines in sequence
"OpLine %fname2 1 0\n" // Different filenames
"OpLine %fname1 1000 100000\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"OpLine %fname1 1 1\n" // Before a function
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"OpLine %fname1 1 1\n" // In a function
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
return group.release();
}
bool veryfiBinaryShader (const ProgramBinary& binary)
{
const size_t paternCount = 3u;
bool paternsCheck[paternCount] =
{
false, false, false
};
const string patersns[paternCount] =
{
"VULKAN CTS",
"Negative values",
"Date: 2017/09/21"
};
size_t paternNdx = 0u;
for (size_t ndx = 0u; ndx < binary.getSize(); ++ndx)
{
if (false == paternsCheck[paternNdx] &&
patersns[paternNdx][0] == static_cast<char>(binary.getBinary()[ndx]) &&
deMemoryEqual((const char*)&binary.getBinary()[ndx], &patersns[paternNdx][0], patersns[paternNdx].length()))
{
paternsCheck[paternNdx]= true;
paternNdx++;
if (paternNdx == paternCount)
break;
}
}
for (size_t ndx = 0u; ndx < paternCount; ++ndx)
{
if (!paternsCheck[ndx])
return false;
}
return true;
}
tcu::TestCaseGroup* createOpModuleProcessedGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opmoduleprocessed", "Test the OpModuleProcessed instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 10;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"%fname = OpString \"negateInputs.comp\"\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpModuleProcessed \"VULKAN CTS\"\n" //OpModuleProcessed;
"OpModuleProcessed \"Negative values\"\n"
"OpModuleProcessed \"Date: 2017/09/21\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits())
+ string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"OpLine %fname 0 1\n"
"OpLine %fname 1000 1\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyBinary = veryfiBinaryShader;
spec.spirvVersion = SPIRV_VERSION_1_3;
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpModuleProcessed Tests", spec));
return group.release();
}
tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"%fname = OpString \"negateInputs.comp\"\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) +
"OpNoLine\n" // At the earliest possible position, without preceding OpLine
+ string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"OpLine %fname 0 1\n"
"OpNoLine\n" // Immediately following a preceding OpLine
"OpLine %fname 1000 1\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"OpNoLine\n" // Contents after the previous OpLine
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"OpNoLine\n" // Multiple OpNoLine
"OpNoLine\n"
"OpNoLine\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
return group.release();
}
// Compare instruction for the contraction compute case.
// Returns true if the output is what is expected from the test case.
bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
// Only size is needed because we are not comparing the exact values.
size_t byteSize = expectedOutputs[0]->getByteSize();
const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
for(size_t i = 0; i < byteSize / sizeof(float); ++i) {
if (outputAsFloat[i] != 0.f &&
outputAsFloat[i] != -ldexp(1, -24)) {
return false;
}
}
return true;
}
tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
vector<CaseParameter> cases;
const int numElements = 100;
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"${DECORATION}\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%c_f_m1 = OpConstant %f32 -1.\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%mul = OpFMul %f32 %inval1 %inval2\n"
"%add = OpFAdd %f32 %mul %c_f_m1\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %add\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
cases.push_back(CaseParameter("addition", "OpDecorate %add NoContraction"));
cases.push_back(CaseParameter("both", "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
inputFloats1[ndx] = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
inputFloats2[ndx] = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
// Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
// conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
// So the final result will be 0.f or 0x1p-24.
// If the operation is combined into a precise fused multiply-add, then the result would be
// 2^-46 (0xa8800000).
outputFloats[ndx] = 0.f;
}
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["DECORATION"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
// Check against the two possible answers based on rounding mode.
spec.verifyIO = &compareNoContractCase;
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
vector<deUint8> expectedBytes;
expectedOutputs[0]->getBytes(expectedBytes);
const float* expectedOutputAsFloat = reinterpret_cast<const float*>(&expectedBytes.front());
const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
for (size_t idx = 0; idx < expectedBytes.size() / sizeof(float); ++idx)
{
const float f0 = expectedOutputAsFloat[idx];
const float f1 = outputAsFloat[idx];
// \todo relative error needs to be fairly high because FRem may be implemented as
// (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
if (deFloatAbs((f1 - f0) / f0) > 0.02)
return false;
}
return true;
}
tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
// Guard against divisors near zero.
if (std::fabs(inputFloats2[ndx]) < 1e-3)
inputFloats2[ndx] = 8.f;
// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
}
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%rem = OpFRem %f32 %inval1 %inval2\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareFRem;
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
return group.release();
}
bool compareNMin (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
const BufferSp& expectedOutput (expectedOutputs[0]);
std::vector<deUint8> data;
expectedOutput->getBytes(data);
const float* const expectedOutputAsFloat = reinterpret_cast<const float*>(&data.front());
const float* const outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
{
const float f0 = expectedOutputAsFloat[idx];
const float f1 = outputAsFloat[idx];
// For NMin, we accept NaN as output if both inputs were NaN.
// Otherwise the NaN is the wrong choise, as on architectures that
// do not handle NaN, those are huge values.
if (!(tcu::Float32(f1).isNaN() && tcu::Float32(f0).isNaN()) && deFloatAbs(f1 - f0) > 0.00001f)
return false;
}
return true;
}
tcu::TestCaseGroup* createOpNMinGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnmin", "Test the OpNMin instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
// Make the first case a full-NAN case.
inputFloats1[0] = TCU_NAN;
inputFloats2[0] = TCU_NAN;
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
// By default, pick the smallest
outputFloats[ndx] = std::min(inputFloats1[ndx], inputFloats2[ndx]);
// Make half of the cases NaN cases
if ((ndx & 1) == 0)
{
// Alternate between the NaN operand
if ((ndx & 2) == 0)
{
outputFloats[ndx] = inputFloats2[ndx];
inputFloats1[ndx] = TCU_NAN;
}
else
{
outputFloats[ndx] = inputFloats1[ndx];
inputFloats2[ndx] = TCU_NAN;
}
}
}
spec.assembly =
"OpCapability Shader\n"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%rem = OpExtInst %f32 %std450 NMin %inval1 %inval2\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareNMin;
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
return group.release();
}
bool compareNMax (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
const BufferSp& expectedOutput = expectedOutputs[0];
std::vector<deUint8> data;
expectedOutput->getBytes(data);
const float* const expectedOutputAsFloat = reinterpret_cast<const float*>(&data.front());
const float* const outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
{
const float f0 = expectedOutputAsFloat[idx];
const float f1 = outputAsFloat[idx];
// For NMax, NaN is considered acceptable result, since in
// architectures that do not handle NaNs, those are huge values.
if (!tcu::Float32(f1).isNaN() && deFloatAbs(f1 - f0) > 0.00001f)
return false;
}
return true;
}
tcu::TestCaseGroup* createOpNMaxGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "opnmax", "Test the OpNMax instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
// Make the first case a full-NAN case.
inputFloats1[0] = TCU_NAN;
inputFloats2[0] = TCU_NAN;
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
// By default, pick the biggest
outputFloats[ndx] = std::max(inputFloats1[ndx], inputFloats2[ndx]);
// Make half of the cases NaN cases
if ((ndx & 1) == 0)
{
// Alternate between the NaN operand
if ((ndx & 2) == 0)
{
outputFloats[ndx] = inputFloats2[ndx];
inputFloats1[ndx] = TCU_NAN;
}
else
{
outputFloats[ndx] = inputFloats1[ndx];
inputFloats2[ndx] = TCU_NAN;
}
}
}
spec.assembly =
"OpCapability Shader\n"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%rem = OpExtInst %f32 %std450 NMax %inval1 %inval2\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareNMax;
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
return group.release();
}
bool compareNClamp (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
const BufferSp& expectedOutput = expectedOutputs[0];
std::vector<deUint8> data;
expectedOutput->getBytes(data);
const float* const expectedOutputAsFloat = reinterpret_cast<const float*>(&data.front());
const float* const outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float) / 2; ++idx)
{
const float e0 = expectedOutputAsFloat[idx * 2];
const float e1 = expectedOutputAsFloat[idx * 2 + 1];
const float res = outputAsFloat[idx];
// For NClamp, we have two possible outcomes based on
// whether NaNs are handled or not.
// If either min or max value is NaN, the result is undefined,
// so this test doesn't stress those. If the clamped value is
// NaN, and NaNs are handled, the result is min; if NaNs are not
// handled, they are big values that result in max.
// If all three parameters are NaN, the result should be NaN.
if (!((tcu::Float32(e0).isNaN() && tcu::Float32(res).isNaN()) ||
(deFloatAbs(e0 - res) < 0.00001f) ||
(deFloatAbs(e1 - res) < 0.00001f)))
return false;
}
return true;
}
tcu::TestCaseGroup* createOpNClampGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnclamp", "Test the OpNClamp instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> inputFloats3 (numElements, 0);
vector<float> outputFloats (numElements * 2, 0);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats3[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
// Results are only defined if max value is bigger than min value.
if (inputFloats2[ndx] > inputFloats3[ndx])
{
float t = inputFloats2[ndx];
inputFloats2[ndx] = inputFloats3[ndx];
inputFloats3[ndx] = t;
}
// By default, do the clamp, setting both possible answers
float defaultRes = std::min(std::max(inputFloats1[ndx], inputFloats2[ndx]), inputFloats3[ndx]);
float maxResA = std::max(inputFloats1[ndx], inputFloats2[ndx]);
float maxResB = maxResA;
// Alternate between the NaN cases
if (ndx & 1)
{
inputFloats1[ndx] = TCU_NAN;
// If NaN is handled, the result should be same as the clamp minimum.
// If NaN is not handled, the result should clamp to the clamp maximum.
maxResA = inputFloats2[ndx];
maxResB = inputFloats3[ndx];
}
else
{
// Not a NaN case - only one legal result.
maxResA = defaultRes;
maxResB = defaultRes;
}
outputFloats[ndx * 2] = maxResA;
outputFloats[ndx * 2 + 1] = maxResB;
}
// Make the first case a full-NAN case.
inputFloats1[0] = TCU_NAN;
inputFloats2[0] = TCU_NAN;
inputFloats3[0] = TCU_NAN;
outputFloats[0] = TCU_NAN;
outputFloats[1] = TCU_NAN;
spec.assembly =
"OpCapability Shader\n"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %indata3 DescriptorSet 0\n"
"OpDecorate %indata3 Binding 2\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 3\n"
"OpDecorate %f32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %f32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%indata3 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
"%inval3 = OpLoad %f32 %inloc3\n"
"%rem = OpExtInst %f32 %std450 NClamp %inval1 %inval2 %inval3\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareNClamp;
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
return group.release();
}
tcu::TestCaseGroup* createOpSRemComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsrem", "Test the OpSRem instruction"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
const struct CaseParams
{
const char* name;
const char* failMessage; // customized status message
qpTestResult failResult; // override status on failure
int op1Min, op1Max; // operand ranges
int op2Min, op2Max;
} cases[] =
{
{ "positive", "Output doesn't match with expected", QP_TEST_RESULT_FAIL, 0, 65536, 0, 100 },
{ "all", "Inconsistent results, but within specification", negFailResult, -65536, 65536, -100, 100 }, // see below
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
ComputeShaderSpec spec;
vector<deInt32> inputInts1 (numElements, 0);
vector<deInt32> inputInts2 (numElements, 0);
vector<deInt32> outputInts (numElements, 0);
fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
for (int ndx = 0; ndx < numElements; ++ndx)
{
// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
}
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %i32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %i32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %i32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %i32 %inloc1\n"
"%inloc2 = OpAccessChain %i32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %i32 %inloc2\n"
"%rem = OpSRem %i32 %inval1 %inval2\n"
"%outloc = OpAccessChain %i32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back (BufferSp(new Int32Buffer(inputInts1)));
spec.inputs.push_back (BufferSp(new Int32Buffer(inputInts2)));
spec.outputs.push_back (BufferSp(new Int32Buffer(outputInts)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.failResult = params.failResult;
spec.failMessage = params.failMessage;
group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
}
return group.release();
}
tcu::TestCaseGroup* createOpSRemComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsrem64", "Test the 64-bit OpSRem instruction"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
const struct CaseParams
{
const char* name;
const char* failMessage; // customized status message
qpTestResult failResult; // override status on failure
bool positive;
} cases[] =
{
{ "positive", "Output doesn't match with expected", QP_TEST_RESULT_FAIL, true },
{ "all", "Inconsistent results, but within specification", negFailResult, false }, // see below
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
ComputeShaderSpec spec;
vector<deInt64> inputInts1 (numElements, 0);
vector<deInt64> inputInts2 (numElements, 0);
vector<deInt64> outputInts (numElements, 0);
if (params.positive)
{
fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
}
else
{
fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
}
for (int ndx = 0; ndx < numElements; ++ndx)
{
// The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
}
spec.assembly =
"OpCapability Int64\n"
+ string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %i64arr ArrayStride 8\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes())
+ string(getComputeAsmCommonInt64Types()) +
"%buf = OpTypeStruct %i64arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i64 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %i64ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %i64 %inloc1\n"
"%inloc2 = OpAccessChain %i64ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %i64 %inloc2\n"
"%rem = OpSRem %i64 %inval1 %inval2\n"
"%outloc = OpAccessChain %i64ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back (BufferSp(new Int64Buffer(inputInts1)));
spec.inputs.push_back (BufferSp(new Int64Buffer(inputInts2)));
spec.outputs.push_back (BufferSp(new Int64Buffer(outputInts)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.failResult = params.failResult;
spec.failMessage = params.failMessage;
group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
}
return group.release();
}
tcu::TestCaseGroup* createOpSModComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsmod", "Test the OpSMod instruction"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
const struct CaseParams
{
const char* name;
const char* failMessage; // customized status message
qpTestResult failResult; // override status on failure
int op1Min, op1Max; // operand ranges
int op2Min, op2Max;
} cases[] =
{
{ "positive", "Output doesn't match with expected", QP_TEST_RESULT_FAIL, 0, 65536, 0, 100 },
{ "all", "Inconsistent results, but within specification", negFailResult, -65536, 65536, -100, 100 }, // see below
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
ComputeShaderSpec spec;
vector<deInt32> inputInts1 (numElements, 0);
vector<deInt32> inputInts2 (numElements, 0);
vector<deInt32> outputInts (numElements, 0);
fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
for (int ndx = 0; ndx < numElements; ++ndx)
{
deInt32 rem = inputInts1[ndx] % inputInts2[ndx];
if (rem == 0)
{
outputInts[ndx] = 0;
}
else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
{
// They have the same sign
outputInts[ndx] = rem;
}
else
{
// They have opposite sign. The remainder operation takes the
// sign inputInts1[ndx] but OpSMod is supposed to take ths sign
// of inputInts2[ndx]. Adding inputInts2[ndx] will ensure that
// the result has the correct sign and that it is still
// congruent to inputInts1[ndx] modulo inputInts2[ndx]
//
// See also http://mathforum.org/library/drmath/view/52343.html
outputInts[ndx] = rem + inputInts2[ndx];
}
}
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %i32arr ArrayStride 4\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes()) +
"%buf = OpTypeStruct %i32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %i32ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %i32 %inloc1\n"
"%inloc2 = OpAccessChain %i32ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %i32 %inloc2\n"
"%rem = OpSMod %i32 %inval1 %inval2\n"
"%outloc = OpAccessChain %i32ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back (BufferSp(new Int32Buffer(inputInts1)));
spec.inputs.push_back (BufferSp(new Int32Buffer(inputInts2)));
spec.outputs.push_back (BufferSp(new Int32Buffer(outputInts)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.failResult = params.failResult;
spec.failMessage = params.failMessage;
group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
}
return group.release();
}
tcu::TestCaseGroup* createOpSModComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsmod64", "Test the OpSMod instruction"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 200;
const struct CaseParams
{
const char* name;
const char* failMessage; // customized status message
qpTestResult failResult; // override status on failure
bool positive;
} cases[] =
{
{ "positive", "Output doesn't match with expected", QP_TEST_RESULT_FAIL, true },
{ "all", "Inconsistent results, but within specification", negFailResult, false }, // see below
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
ComputeShaderSpec spec;
vector<deInt64> inputInts1 (numElements, 0);
vector<deInt64> inputInts2 (numElements, 0);
vector<deInt64> outputInts (numElements, 0);
if (params.positive)
{
fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
}
else
{
fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
}
for (int ndx = 0; ndx < numElements; ++ndx)
{
deInt64 rem = inputInts1[ndx] % inputInts2[ndx];
if (rem == 0)
{
outputInts[ndx] = 0;
}
else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
{
// They have the same sign
outputInts[ndx] = rem;
}
else
{
// They have opposite sign. The remainder operation takes the
// sign inputInts1[ndx] but OpSMod is supposed to take ths sign
// of inputInts2[ndx]. Adding inputInts2[ndx] will ensure that
// the result has the correct sign and that it is still
// congruent to inputInts1[ndx] modulo inputInts2[ndx]
//
// See also http://mathforum.org/library/drmath/view/52343.html
outputInts[ndx] = rem + inputInts2[ndx];
}
}
spec.assembly =
"OpCapability Int64\n"
+ string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata1 DescriptorSet 0\n"
"OpDecorate %indata1 Binding 0\n"
"OpDecorate %indata2 DescriptorSet 0\n"
"OpDecorate %indata2 Binding 1\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 2\n"
"OpDecorate %i64arr ArrayStride 8\n"
"OpMemberDecorate %buf 0 Offset 0\n"
+ string(getComputeAsmCommonTypes())
+ string(getComputeAsmCommonInt64Types()) +
"%buf = OpTypeStruct %i64arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata1 = OpVariable %bufptr Uniform\n"
"%indata2 = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i64 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc1 = OpAccessChain %i64ptr %indata1 %zero %x\n"
"%inval1 = OpLoad %i64 %inloc1\n"
"%inloc2 = OpAccessChain %i64ptr %indata2 %zero %x\n"
"%inval2 = OpLoad %i64 %inloc2\n"
"%rem = OpSMod %i64 %inval1 %inval2\n"
"%outloc = OpAccessChain %i64ptr %outdata %zero %x\n"
" OpStore %outloc %rem\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back (BufferSp(new Int64Buffer(inputInts1)));
spec.inputs.push_back (BufferSp(new Int64Buffer(inputInts2)));
spec.outputs.push_back (BufferSp(new Int64Buffer(outputInts)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.failResult = params.failResult;
spec.failMessage = params.failMessage;
group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
}
return group.release();
}
// Copy contents in the input buffer to the output buffer.
tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
// The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
ComputeShaderSpec spec1;
vector<Vec4> inputFloats1 (numElements);
vector<Vec4> outputFloats1 (numElements);
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats1);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
spec1.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %vec4arr ArrayStride 16\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%vec4 = OpTypeVector %f32 4\n"
"%vec4ptr_u = OpTypePointer Uniform %vec4\n"
"%vec4ptr_f = OpTypePointer Function %vec4\n"
"%vec4arr = OpTypeRuntimeArray %vec4\n"
"%buf = OpTypeStruct %vec4arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%c_f_0 = OpConstant %f32 0.\n"
"%c_f_0_5 = OpConstant %f32 0.5\n"
"%c_f_1_5 = OpConstant %f32 1.5\n"
"%c_f_2_5 = OpConstant %f32 2.5\n"
"%c_vec4 = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%v_vec4 = OpVariable %vec4ptr_f Function\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %vec4ptr_u %indata %zero %x\n"
"%outloc = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
" OpCopyMemory %v_vec4 %inloc\n"
"%v_vec4_val = OpLoad %vec4 %v_vec4\n"
"%add = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
" OpStore %outloc %add\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
spec1.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
// The following case copies a float[100] variable from the input buffer to the output buffer.
ComputeShaderSpec spec2;
vector<float> inputFloats2 (numElements);
vector<float> outputFloats2 (numElements);
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats2[ndx] = inputFloats2[ndx];
spec2.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %f32arr100 ArrayStride 4\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%hundred = OpConstant %u32 100\n"
"%f32arr100 = OpTypeArray %f32 %hundred\n"
"%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
"%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
"%buf = OpTypeStruct %f32arr100\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%var = OpVariable %f32arr100ptr_f Function\n"
"%inarr = OpAccessChain %f32arr100ptr_u %indata %zero\n"
"%outarr = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
" OpCopyMemory %var %inarr\n"
" OpCopyMemory %outarr %var\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
spec2.numWorkGroups = IVec3(1, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
// The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
ComputeShaderSpec spec3;
vector<float> inputFloats3 (16);
vector<float> outputFloats3 (16);
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
for (size_t ndx = 0; ndx < 16; ++ndx)
outputFloats3[ndx] = inputFloats3[ndx];
spec3.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpMemberDecorate %buf 0 Offset 0\n"
"OpMemberDecorate %buf 1 Offset 16\n"
"OpMemberDecorate %buf 2 Offset 32\n"
"OpMemberDecorate %buf 3 Offset 48\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%vec4 = OpTypeVector %f32 4\n"
"%buf = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%vec4stptr = OpTypePointer Function %buf\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%var = OpVariable %vec4stptr Function\n"
" OpCopyMemory %var %indata\n"
" OpCopyMemory %outdata %var\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
spec3.numWorkGroups = IVec3(1, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
// The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
ComputeShaderSpec spec4;
vector<float> inputFloats4 (numElements);
vector<float> outputFloats4 (numElements);
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats4[ndx] = -inputFloats4[ndx];
spec4.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%f32ptr_f = OpTypePointer Function %f32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%var = OpVariable %f32ptr_f Function\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpCopyMemory %var %inloc\n"
"%val = OpLoad %f32 %var\n"
"%neg = OpFNegate %f32 %val\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
spec4.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
return group.release();
}
tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats[ndx] + 7.5f;
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%fmat = OpTypeMatrix %fvec3 3\n"
"%three = OpConstant %u32 3\n"
"%farr = OpTypeArray %f32 %three\n"
"%fst = OpTypeStruct %f32 %f32\n"
+ string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%c_f = OpConstant %f32 1.5\n"
"%c_fvec3 = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
"%c_fmat = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
"%c_farr = OpConstantComposite %farr %c_f %c_f %c_f\n"
"%c_fst = OpConstantComposite %fst %c_f %c_f\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%c_f_copy = OpCopyObject %f32 %c_f\n"
"%c_fvec3_copy = OpCopyObject %fvec3 %c_fvec3\n"
"%c_fmat_copy = OpCopyObject %fmat %c_fmat\n"
"%c_farr_copy = OpCopyObject %farr %c_farr\n"
"%c_fst_copy = OpCopyObject %fst %c_fst\n"
"%fvec3_elem = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
"%fmat_elem = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
"%farr_elem = OpCompositeExtract %f32 %c_farr_copy 2\n"
"%fst_elem = OpCompositeExtract %f32 %c_fst_copy 1\n"
// Add up. 1.5 * 5 = 7.5.
"%add1 = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
"%add2 = OpFAdd %f32 %add1 %fmat_elem\n"
"%add3 = OpFAdd %f32 %add2 %farr_elem\n"
"%add4 = OpFAdd %f32 %add3 %fst_elem\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%add = OpFAdd %f32 %add4 %inval\n"
" OpStore %outloc %add\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
return group.release();
}
// Assembly code used for testing OpUnreachable is based on GLSL source code:
//
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// void not_called_func() {
// // place OpUnreachable here
// }
//
// uint modulo4(uint val) {
// switch (val % uint(4)) {
// case 0: return 3;
// case 1: return 2;
// case 2: return 1;
// case 3: return 0;
// default: return 100; // place OpUnreachable here
// }
// }
//
// uint const5() {
// return 5;
// // place OpUnreachable here
// }
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// if (const5() > modulo4(1000)) {
// output_data.elements[x] = -input_data.elements[x];
// } else {
// // place OpUnreachable here
// output_data.elements[x] = input_data.elements[x];
// }
// }
tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %func_not_called_func \"not_called_func(\"\n"
"OpName %func_modulo4 \"modulo4(u1;\"\n"
"OpName %func_const5 \"const5(\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%u32ptr = OpTypePointer Function %u32\n"
"%uintfuint = OpTypeFunction %u32 %u32ptr\n"
"%unitf = OpTypeFunction %u32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %u32 0\n"
"%one = OpConstant %u32 1\n"
"%two = OpConstant %u32 2\n"
"%three = OpConstant %u32 3\n"
"%four = OpConstant %u32 4\n"
"%five = OpConstant %u32 5\n"
"%hundred = OpConstant %u32 100\n"
"%thousand = OpConstant %u32 1000\n"
+ string(getComputeAsmInputOutputBuffer()) +
// Main()
"%main = OpFunction %void None %voidf\n"
"%main_entry = OpLabel\n"
"%v_thousand = OpVariable %u32ptr Function %thousand\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%ret_const5 = OpFunctionCall %u32 %func_const5\n"
"%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
"%cmp_gt = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
" OpSelectionMerge %if_end None\n"
" OpBranchConditional %cmp_gt %if_true %if_false\n"
"%if_true = OpLabel\n"
"%negate = OpFNegate %f32 %inval\n"
" OpStore %outloc %negate\n"
" OpBranch %if_end\n"
"%if_false = OpLabel\n"
" OpUnreachable\n" // Unreachable else branch for if statement
"%if_end = OpLabel\n"
" OpReturn\n"
" OpFunctionEnd\n"
// not_called_function()
"%func_not_called_func = OpFunction %void None %voidf\n"
"%not_called_func_entry = OpLabel\n"
" OpUnreachable\n" // Unreachable entry block in not called static function
" OpFunctionEnd\n"
// modulo4()
"%func_modulo4 = OpFunction %u32 None %uintfuint\n"
"%valptr = OpFunctionParameter %u32ptr\n"
"%modulo4_entry = OpLabel\n"
"%val = OpLoad %u32 %valptr\n"
"%modulo = OpUMod %u32 %val %four\n"
" OpSelectionMerge %switch_merge None\n"
" OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
"%case0 = OpLabel\n"
" OpReturnValue %three\n"
"%case1 = OpLabel\n"
" OpReturnValue %two\n"
"%case2 = OpLabel\n"
" OpReturnValue %one\n"
"%case3 = OpLabel\n"
" OpReturnValue %zero\n"
"%default = OpLabel\n"
" OpUnreachable\n" // Unreachable default case for switch statement
"%switch_merge = OpLabel\n"
" OpUnreachable\n" // Unreachable merge block for switch statement
" OpFunctionEnd\n"
// const5()
"%func_const5 = OpFunction %u32 None %unitf\n"
"%const5_entry = OpLabel\n"
" OpReturnValue %five\n"
"%unreachable = OpLabel\n"
" OpUnreachable\n" // Unreachable block in function
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
return group.release();
}
// Assembly code used for testing decoration group is based on GLSL source code:
//
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input0 {
// float elements[];
// } input_data0;
// layout(std140, set = 0, binding = 1) readonly buffer Input1 {
// float elements[];
// } input_data1;
// layout(std140, set = 0, binding = 2) readonly buffer Input2 {
// float elements[];
// } input_data2;
// layout(std140, set = 0, binding = 3) readonly buffer Input3 {
// float elements[];
// } input_data3;
// layout(std140, set = 0, binding = 4) readonly buffer Input4 {
// float elements[];
// } input_data4;
// layout(std140, set = 0, binding = 5) writeonly buffer Output {
// float elements[];
// } output_data;
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
// }
tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats0 (numElements, 0);
vector<float> inputFloats1 (numElements, 0);
vector<float> inputFloats2 (numElements, 0);
vector<float> inputFloats3 (numElements, 0);
vector<float> inputFloats4 (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats0);
floorAll(inputFloats1);
floorAll(inputFloats2);
floorAll(inputFloats3);
floorAll(inputFloats4);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
// Not using group decoration on variable.
"OpDecorate %id BuiltIn GlobalInvocationId\n"
// Not using group decoration on type.
"OpDecorate %f32arr ArrayStride 4\n"
"OpDecorate %groups BufferBlock\n"
"OpDecorate %groupm Offset 0\n"
"%groups = OpDecorationGroup\n"
"%groupm = OpDecorationGroup\n"
// Group decoration on multiple structs.
"OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
// Group decoration on multiple struct members.
"OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
"OpDecorate %group1 DescriptorSet 0\n"
"OpDecorate %group3 DescriptorSet 0\n"
"OpDecorate %group3 NonWritable\n"
"OpDecorate %group3 Restrict\n"
"%group0 = OpDecorationGroup\n"
"%group1 = OpDecorationGroup\n"
"%group3 = OpDecorationGroup\n"
// Applying the same decoration group multiple times.
"OpGroupDecorate %group1 %outdata\n"
"OpGroupDecorate %group1 %outdata\n"
"OpGroupDecorate %group1 %outdata\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 5\n"
// Applying decoration group containing nothing.
"OpGroupDecorate %group0 %indata0\n"
"OpDecorate %indata0 DescriptorSet 0\n"
"OpDecorate %indata0 Binding 0\n"
// Applying decoration group containing one decoration.
"OpGroupDecorate %group1 %indata1\n"
"OpDecorate %indata1 Binding 1\n"
// Applying decoration group containing multiple decorations.
"OpGroupDecorate %group3 %indata2 %indata3\n"
"OpDecorate %indata2 Binding 2\n"
"OpDecorate %indata3 Binding 3\n"
// Applying multiple decoration groups (with overlapping).
"OpGroupDecorate %group0 %indata4\n"
"OpGroupDecorate %group1 %indata4\n"
"OpGroupDecorate %group3 %indata4\n"
"OpDecorate %indata4 Binding 4\n"
+ string(getComputeAsmCommonTypes()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%outbuf = OpTypeStruct %f32arr\n"
"%outbufptr = OpTypePointer Uniform %outbuf\n"
"%outdata = OpVariable %outbufptr Uniform\n"
"%inbuf0 = OpTypeStruct %f32arr\n"
"%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
"%indata0 = OpVariable %inbuf0ptr Uniform\n"
"%inbuf1 = OpTypeStruct %f32arr\n"
"%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
"%indata1 = OpVariable %inbuf1ptr Uniform\n"
"%inbuf2 = OpTypeStruct %f32arr\n"
"%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
"%indata2 = OpVariable %inbuf2ptr Uniform\n"
"%inbuf3 = OpTypeStruct %f32arr\n"
"%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
"%indata3 = OpVariable %inbuf3ptr Uniform\n"
"%inbuf4 = OpTypeStruct %f32arr\n"
"%inbufptr = OpTypePointer Uniform %inbuf4\n"
"%indata4 = OpVariable %inbufptr Uniform\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
"%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
"%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
"%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
"%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%inval0 = OpLoad %f32 %inloc0\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%inval3 = OpLoad %f32 %inloc3\n"
"%inval4 = OpLoad %f32 %inloc4\n"
"%add0 = OpFAdd %f32 %inval0 %inval1\n"
"%add1 = OpFAdd %f32 %add0 %inval2\n"
"%add2 = OpFAdd %f32 %add1 %inval3\n"
"%add = OpFAdd %f32 %add2 %inval4\n"
" OpStore %outloc %add\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
return group.release();
}
struct SpecConstantTwoIntCase
{
const char* caseName;
const char* scDefinition0;
const char* scDefinition1;
const char* scResultType;
const char* scOperation;
deInt32 scActualValue0;
deInt32 scActualValue1;
const char* resultOperation;
vector<deInt32> expectedOutput;
SpecConstantTwoIntCase (const char* name,
const char* definition0,
const char* definition1,
const char* resultType,
const char* operation,
deInt32 value0,
deInt32 value1,
const char* resultOp,
const vector<deInt32>& output)
: caseName (name)
, scDefinition0 (definition0)
, scDefinition1 (definition1)
, scResultType (resultType)
, scOperation (operation)
, scActualValue0 (value0)
, scActualValue1 (value1)
, resultOperation (resultOp)
, expectedOutput (output) {}
};
tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
vector<SpecConstantTwoIntCase> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<deInt32> inputInts (numElements, 0);
vector<deInt32> outputInts1 (numElements, 0);
vector<deInt32> outputInts2 (numElements, 0);
vector<deInt32> outputInts3 (numElements, 0);
vector<deInt32> outputInts4 (numElements, 0);
const StringTemplate shaderTemplate (
"${CAPABILITIES:opt}"
+ string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %sc_0 SpecId 0\n"
"OpDecorate %sc_1 SpecId 1\n"
"OpDecorate %i32arr ArrayStride 4\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"${OPTYPE_DEFINITIONS:opt}"
"%buf = OpTypeStruct %i32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%sc_0 = OpSpecConstant${SC_DEF0}\n"
"%sc_1 = OpSpecConstant${SC_DEF1}\n"
"%sc_final = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"${TYPE_CONVERT:opt}"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %i32ptr %indata %zero %x\n"
"%inval = OpLoad %i32 %inloc\n"
"%final = ${GEN_RESULT}\n"
"%outloc = OpAccessChain %i32ptr %outdata %zero %x\n"
" OpStore %outloc %final\n"
" OpReturn\n"
" OpFunctionEnd\n");
fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
outputInts1[ndx] = inputInts[ndx] + 42;
outputInts2[ndx] = inputInts[ndx];
outputInts3[ndx] = inputInts[ndx] - 11200;
outputInts4[ndx] = inputInts[ndx] + 1;
}
const char addScToInput[] = "OpIAdd %i32 %inval %sc_final";
const char addSc32ToInput[] = "OpIAdd %i32 %inval %sc_final32";
const char selectTrueUsingSc[] = "OpSelect %i32 %sc_final %inval %zero";
const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
cases.push_back(SpecConstantTwoIntCase("iadd", " %i32 0", " %i32 0", "%i32", "IAdd %sc_0 %sc_1", 62, -20, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("isub", " %i32 0", " %i32 0", "%i32", "ISub %sc_0 %sc_1", 100, 58, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("imul", " %i32 0", " %i32 0", "%i32", "IMul %sc_0 %sc_1", -2, -21, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("sdiv", " %i32 0", " %i32 0", "%i32", "SDiv %sc_0 %sc_1", -126, -3, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("udiv", " %i32 0", " %i32 0", "%i32", "UDiv %sc_0 %sc_1", 126, 3, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("srem", " %i32 0", " %i32 0", "%i32", "SRem %sc_0 %sc_1", 7, 3, addScToInput, outputInts4));
cases.push_back(SpecConstantTwoIntCase("smod", " %i32 0", " %i32 0", "%i32", "SMod %sc_0 %sc_1", 7, 3, addScToInput, outputInts4));
cases.push_back(SpecConstantTwoIntCase("umod", " %i32 0", " %i32 0", "%i32", "UMod %sc_0 %sc_1", 342, 50, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("bitwiseand", " %i32 0", " %i32 0", "%i32", "BitwiseAnd %sc_0 %sc_1", 42, 63, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("bitwiseor", " %i32 0", " %i32 0", "%i32", "BitwiseOr %sc_0 %sc_1", 34, 8, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("bitwisexor", " %i32 0", " %i32 0", "%i32", "BitwiseXor %sc_0 %sc_1", 18, 56, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("shiftrightlogical", " %i32 0", " %i32 0", "%i32", "ShiftRightLogical %sc_0 %sc_1", 168, 2, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic", " %i32 0", " %i32 0", "%i32", "ShiftRightArithmetic %sc_0 %sc_1", 168, 2, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("shiftleftlogical", " %i32 0", " %i32 0", "%i32", "ShiftLeftLogical %sc_0 %sc_1", 21, 1, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("slessthan", " %i32 0", " %i32 0", "%bool", "SLessThan %sc_0 %sc_1", -20, -10, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("ulessthan", " %i32 0", " %i32 0", "%bool", "ULessThan %sc_0 %sc_1", 10, 20, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("sgreaterthan", " %i32 0", " %i32 0", "%bool", "SGreaterThan %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("ugreaterthan", " %i32 0", " %i32 0", "%bool", "UGreaterThan %sc_0 %sc_1", 10, 5, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("slessthanequal", " %i32 0", " %i32 0", "%bool", "SLessThanEqual %sc_0 %sc_1", -10, -10, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("ulessthanequal", " %i32 0", " %i32 0", "%bool", "ULessThanEqual %sc_0 %sc_1", 50, 100, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal", " %i32 0", " %i32 0", "%bool", "SGreaterThanEqual %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal", " %i32 0", " %i32 0", "%bool", "UGreaterThanEqual %sc_0 %sc_1", 10, 10, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("iequal", " %i32 0", " %i32 0", "%bool", "IEqual %sc_0 %sc_1", 42, 24, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("logicaland", "True %bool", "True %bool", "%bool", "LogicalAnd %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("logicalor", "False %bool", "False %bool", "%bool", "LogicalOr %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("logicalequal", "True %bool", "True %bool", "%bool", "LogicalEqual %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("logicalnotequal", "False %bool", "False %bool", "%bool", "LogicalNotEqual %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("snegate", " %i32 0", " %i32 0", "%i32", "SNegate %sc_0", -42, 0, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("not", " %i32 0", " %i32 0", "%i32", "Not %sc_0", -43, 0, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("logicalnot", "False %bool", "False %bool", "%bool", "LogicalNot %sc_0", 1, 0, selectFalseUsingSc, outputInts2));
cases.push_back(SpecConstantTwoIntCase("select", "False %bool", " %i32 0", "%i32", "Select %sc_0 %sc_1 %zero", 1, 42, addScToInput, outputInts1));
cases.push_back(SpecConstantTwoIntCase("sconvert", " %i32 0", " %i32 0", "%i16", "SConvert %sc_0", -11200, 0, addSc32ToInput, outputInts3));
// -969998336 stored as 32-bit two's complement is the binary representation of -11200 as IEEE-754 Float
cases.push_back(SpecConstantTwoIntCase("fconvert", " %f32 0", " %f32 0", "%f64", "FConvert %sc_0", -969998336, 0, addSc32ToInput, outputInts3));
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
ComputeTestFeatures features = COMPUTE_TEST_USES_NONE;
specializations["SC_DEF0"] = cases[caseNdx].scDefinition0;
specializations["SC_DEF1"] = cases[caseNdx].scDefinition1;
specializations["SC_RESULT_TYPE"] = cases[caseNdx].scResultType;
specializations["SC_OP"] = cases[caseNdx].scOperation;
specializations["GEN_RESULT"] = cases[caseNdx].resultOperation;
// Special SPIR-V code for SConvert-case
if (strcmp(cases[caseNdx].caseName, "sconvert") == 0)
{
features = COMPUTE_TEST_USES_INT16;
specializations["CAPABILITIES"] = "OpCapability Int16\n"; // Adds 16-bit integer capability
specializations["OPTYPE_DEFINITIONS"] = "%i16 = OpTypeInt 16 1\n"; // Adds 16-bit integer type
specializations["TYPE_CONVERT"] = "%sc_final32 = OpSConvert %i32 %sc_final\n"; // Converts 16-bit integer to 32-bit integer
}
// Special SPIR-V code for FConvert-case
if (strcmp(cases[caseNdx].caseName, "fconvert") == 0)
{
features = COMPUTE_TEST_USES_FLOAT64;
specializations["CAPABILITIES"] = "OpCapability Float64\n"; // Adds 64-bit float capability
specializations["OPTYPE_DEFINITIONS"] = "%f64 = OpTypeFloat 64\n"; // Adds 64-bit float type
specializations["TYPE_CONVERT"] = "%sc_final32 = OpConvertFToS %i32 %sc_final\n"; // Converts 64-bit float to 32-bit integer
}
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.specConstants.push_back(cases[caseNdx].scActualValue0);
spec.specConstants.push_back(cases[caseNdx].scActualValue1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec, features));
}
ComputeShaderSpec spec;
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %sc_0 SpecId 0\n"
"OpDecorate %sc_1 SpecId 1\n"
"OpDecorate %sc_2 SpecId 2\n"
"OpDecorate %i32arr ArrayStride 4\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%ivec3 = OpTypeVector %i32 3\n"
"%buf = OpTypeStruct %i32arr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%ivec3_0 = OpConstantComposite %ivec3 %zero %zero %zero\n"
"%vec3_undef = OpUndef %ivec3\n"
"%sc_0 = OpSpecConstant %i32 0\n"
"%sc_1 = OpSpecConstant %i32 0\n"
"%sc_2 = OpSpecConstant %i32 0\n"
"%sc_vec3_0 = OpSpecConstantOp %ivec3 CompositeInsert %sc_0 %ivec3_0 0\n" // (sc_0, 0, 0)
"%sc_vec3_1 = OpSpecConstantOp %ivec3 CompositeInsert %sc_1 %ivec3_0 1\n" // (0, sc_1, 0)
"%sc_vec3_2 = OpSpecConstantOp %ivec3 CompositeInsert %sc_2 %ivec3_0 2\n" // (0, 0, sc_2)
"%sc_vec3_0_s = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_0 %vec3_undef 0 0xFFFFFFFF 2\n" // (sc_0, ???, 0)
"%sc_vec3_1_s = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_1 %vec3_undef 0xFFFFFFFF 1 0\n" // (???, sc_1, 0)
"%sc_vec3_2_s = OpSpecConstantOp %ivec3 VectorShuffle %vec3_undef %sc_vec3_2 5 0xFFFFFFFF 5\n" // (sc_2, ???, sc_2)
"%sc_vec3_01 = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n" // (0, sc_0, sc_1)
"%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_01 %sc_vec3_2_s 5 1 2\n" // (sc_2, sc_0, sc_1)
"%sc_ext_0 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 0\n" // sc_2
"%sc_ext_1 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 1\n" // sc_0
"%sc_ext_2 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 2\n" // sc_1
"%sc_sub = OpSpecConstantOp %i32 ISub %sc_ext_0 %sc_ext_1\n" // (sc_2 - sc_0)
"%sc_final = OpSpecConstantOp %i32 IMul %sc_sub %sc_ext_2\n" // (sc_2 - sc_0) * sc_1
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %i32ptr %indata %zero %x\n"
"%inval = OpLoad %i32 %inloc\n"
"%final = OpIAdd %i32 %inval %sc_final\n"
"%outloc = OpAccessChain %i32ptr %outdata %zero %x\n"
" OpStore %outloc %final\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.specConstants.push_back(123);
spec.specConstants.push_back(56);
spec.specConstants.push_back(-77);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
return group.release();
}
void createOpPhiVartypeTests (de::MovePtr<tcu::TestCaseGroup>& group, tcu::TestContext& testCtx)
{
ComputeShaderSpec specInt;
ComputeShaderSpec specFloat;
ComputeShaderSpec specVec3;
ComputeShaderSpec specMat4;
ComputeShaderSpec specArray;
ComputeShaderSpec specStruct;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
// Just check if the value is positive or not
outputFloats[ndx] = (inputFloats[ndx] > 0) ? 1.0f : -1.0f;
}
// All of the tests are of the form:
//
// testtype r
//
// if (inputdata > 0)
// r = 1
// else
// r = -1
//
// return (float)r
specFloat.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%float_0 = OpConstant %f32 0.0\n"
"%float_1 = OpConstant %f32 1.0\n"
"%float_n1 = OpConstant %f32 -1.0\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%res = OpPhi %f32 %float_1 %tb %float_n1 %fb\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specFloat.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specFloat.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specFloat.numWorkGroups = IVec3(numElements, 1, 1);
specMat4.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%v4f32 = OpTypeVector %f32 4\n"
"%mat4v4f32 = OpTypeMatrix %v4f32 4\n"
"%zero = OpConstant %i32 0\n"
"%float_0 = OpConstant %f32 0.0\n"
"%float_1 = OpConstant %f32 1.0\n"
"%float_n1 = OpConstant %f32 -1.0\n"
"%m11 = OpConstantComposite %v4f32 %float_1 %float_0 %float_0 %float_0\n"
"%m12 = OpConstantComposite %v4f32 %float_0 %float_1 %float_0 %float_0\n"
"%m13 = OpConstantComposite %v4f32 %float_0 %float_0 %float_1 %float_0\n"
"%m14 = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_1\n"
"%m1 = OpConstantComposite %mat4v4f32 %m11 %m12 %m13 %m14\n"
"%m21 = OpConstantComposite %v4f32 %float_n1 %float_0 %float_0 %float_0\n"
"%m22 = OpConstantComposite %v4f32 %float_0 %float_n1 %float_0 %float_0\n"
"%m23 = OpConstantComposite %v4f32 %float_0 %float_0 %float_n1 %float_0\n"
"%m24 = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_n1\n"
"%m2 = OpConstantComposite %mat4v4f32 %m21 %m22 %m23 %m24\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%mres = OpPhi %mat4v4f32 %m1 %tb %m2 %fb\n"
"%res = OpCompositeExtract %f32 %mres 2 2\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specMat4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specMat4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specMat4.numWorkGroups = IVec3(numElements, 1, 1);
specVec3.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%float_0 = OpConstant %f32 0.0\n"
"%float_1 = OpConstant %f32 1.0\n"
"%float_n1 = OpConstant %f32 -1.0\n"
"%v1 = OpConstantComposite %fvec3 %float_1 %float_1 %float_1\n"
"%v2 = OpConstantComposite %fvec3 %float_n1 %float_n1 %float_n1\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%vres = OpPhi %fvec3 %v1 %tb %v2 %fb\n"
"%res = OpCompositeExtract %f32 %vres 2\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specVec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specVec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specVec3.numWorkGroups = IVec3(numElements, 1, 1);
specInt.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%float_0 = OpConstant %f32 0.0\n"
"%i1 = OpConstant %i32 1\n"
"%i2 = OpConstant %i32 -1\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%ires = OpPhi %i32 %i1 %tb %i2 %fb\n"
"%res = OpConvertSToF %f32 %ires\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specInt.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specInt.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specInt.numWorkGroups = IVec3(numElements, 1, 1);
specArray.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%u7 = OpConstant %u32 7\n"
"%float_0 = OpConstant %f32 0.0\n"
"%float_1 = OpConstant %f32 1.0\n"
"%float_n1 = OpConstant %f32 -1.0\n"
"%f32a7 = OpTypeArray %f32 %u7\n"
"%a1 = OpConstantComposite %f32a7 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1\n"
"%a2 = OpConstantComposite %f32a7 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%ares = OpPhi %f32a7 %a1 %tb %a2 %fb\n"
"%res = OpCompositeExtract %f32 %ares 5\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specArray.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specArray.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specArray.numWorkGroups = IVec3(numElements, 1, 1);
specStruct.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%float_0 = OpConstant %f32 0.0\n"
"%float_1 = OpConstant %f32 1.0\n"
"%float_n1 = OpConstant %f32 -1.0\n"
"%v2f32 = OpTypeVector %f32 2\n"
"%Data2 = OpTypeStruct %f32 %v2f32\n"
"%Data = OpTypeStruct %Data2 %f32\n"
"%in1a = OpConstantComposite %v2f32 %float_1 %float_1\n"
"%in1b = OpConstantComposite %Data2 %float_1 %in1a\n"
"%s1 = OpConstantComposite %Data %in1b %float_1\n"
"%in2a = OpConstantComposite %v2f32 %float_n1 %float_n1\n"
"%in2b = OpConstantComposite %Data2 %float_n1 %in2a\n"
"%s2 = OpConstantComposite %Data %in2b %float_n1\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%comp = OpFOrdGreaterThan %bool %inval %float_0\n"
" OpSelectionMerge %cm None\n"
" OpBranchConditional %comp %tb %fb\n"
"%tb = OpLabel\n"
" OpBranch %cm\n"
"%fb = OpLabel\n"
" OpBranch %cm\n"
"%cm = OpLabel\n"
"%sres = OpPhi %Data %s1 %tb %s2 %fb\n"
"%res = OpCompositeExtract %f32 %sres 0 0\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
specStruct.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
specStruct.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
specStruct.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_int", "OpPhi with int variables", specInt));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_float", "OpPhi with float variables", specFloat));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_vec3", "OpPhi with vec3 variables", specVec3));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_mat4", "OpPhi with mat4 variables", specMat4));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_array", "OpPhi with array variables", specArray));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_struct", "OpPhi with struct variables", specStruct));
}
string generateConstantDefinitions (int count)
{
std::ostringstream r;
for (int i = 0; i < count; i++)
r << "%cf" << (i * 10 + 5) << " = OpConstant %f32 " <<(i * 10 + 5) << ".0\n";
r << "\n";
return r.str();
}
string generateSwitchCases (int count)
{
std::ostringstream r;
for (int i = 0; i < count; i++)
r << " " << i << " %case" << i;
r << "\n";
return r.str();
}
string generateSwitchTargets (int count)
{
std::ostringstream r;
for (int i = 0; i < count; i++)
r << "%case" << i << " = OpLabel\n OpBranch %phi\n";
r << "\n";
return r.str();
}
string generateOpPhiParams (int count)
{
std::ostringstream r;
for (int i = 0; i < count; i++)
r << " %cf" << (i * 10 + 5) << " %case" << i;
r << "\n";
return r.str();
}
string generateIntWidth (int value)
{
std::ostringstream r;
r << value;
return r.str();
}
// Expand input string by injecting "ABC" between the input
// string characters. The acc/add/treshold parameters are used
// to skip some of the injections to make the result less
// uniform (and a lot shorter).
string expandOpPhiCase5 (const string& s, int &acc, int add, int treshold)
{
std::ostringstream res;
const char* p = s.c_str();
while (*p)
{
res << *p;
acc += add;
if (acc > treshold)
{
acc -= treshold;
res << "ABC";
}
p++;
}
return res.str();
}
// Calculate expected result based on the code string
float calcOpPhiCase5 (float val, const string& s)
{
const char* p = s.c_str();
float x[8];
bool b[8];
const float tv[8] = { 0.5f, 1.5f, 3.5f, 7.5f, 15.5f, 31.5f, 63.5f, 127.5f };
const float v = deFloatAbs(val);
float res = 0;
int depth = -1;
int skip = 0;
for (int i = 7; i >= 0; --i)
x[i] = std::fmod((float)v, (float)(2 << i));
for (int i = 7; i >= 0; --i)
b[i] = x[i] > tv[i];
while (*p)
{
if (*p == 'A')
{
depth++;
if (skip == 0 && b[depth])
{
res++;
}
else
skip++;
}
if (*p == 'B')
{
if (skip)
skip--;
if (b[depth] || skip)
skip++;
}
if (*p == 'C')
{
depth--;
if (skip)
skip--;
}
p++;
}
return res;
}
// In the code string, the letters represent the following:
//
// A:
// if (certain bit is set)
// {
// result++;
//
// B:
// } else {
//
// C:
// }
//
// examples:
// AABCBC leads to if(){r++;if(){r++;}else{}}else{}
// ABABCC leads to if(){r++;}else{if(){r++;}else{}}
// ABCABC leads to if(){r++;}else{}if(){r++;}else{}
//
// Code generation gets a bit complicated due to the else-branches,
// which do not generate new values. Thus, the generator needs to
// keep track of the previous variable change seen by the else
// branch.
string generateOpPhiCase5 (const string& s)
{
std::stack<int> idStack;
std::stack<std::string> value;
std::stack<std::string> valueLabel;
std::stack<std::string> mergeLeft;
std::stack<std::string> mergeRight;
std::ostringstream res;
const char* p = s.c_str();
int depth = -1;
int currId = 0;
int iter = 0;
idStack.push(-1);
value.push("%f32_0");
valueLabel.push("%f32_0 %entry");
while (*p)
{
if (*p == 'A')
{
depth++;
currId = iter;
idStack.push(currId);
res << "\tOpSelectionMerge %m" << currId << " None\n";
res << "\tOpBranchConditional %b" << depth << " %t" << currId << " %f" << currId << "\n";
res << "%t" << currId << " = OpLabel\n";
res << "%rt" << currId << " = OpFAdd %f32 " << value.top() << " %f32_1\n";
std::ostringstream tag;
tag << "%rt" << currId;
value.push(tag.str());
tag << " %t" << currId;
valueLabel.push(tag.str());
}
if (*p == 'B')
{
mergeLeft.push(valueLabel.top());
value.pop();
valueLabel.pop();
res << "\tOpBranch %m" << currId << "\n";
res << "%f" << currId << " = OpLabel\n";
std::ostringstream tag;
tag << value.top() << " %f" << currId;
valueLabel.pop();
valueLabel.push(tag.str());
}
if (*p == 'C')
{
mergeRight.push(valueLabel.top());
res << "\tOpBranch %m" << currId << "\n";
res << "%m" << currId << " = OpLabel\n";
if (*(p + 1) == 0)
res << "%res"; // last result goes to %res
else
res << "%rm" << currId;
res << " = OpPhi %f32 " << mergeLeft.top() << " " << mergeRight.top() << "\n";
std::ostringstream tag;
tag << "%rm" << currId;
value.pop();
value.push(tag.str());
tag << " %m" << currId;
valueLabel.pop();
valueLabel.push(tag.str());
mergeLeft.pop();
mergeRight.pop();
depth--;
idStack.pop();
currId = idStack.top();
}
p++;
iter++;
}
return res.str();
}
tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
ComputeShaderSpec spec1;
ComputeShaderSpec spec2;
ComputeShaderSpec spec3;
ComputeShaderSpec spec4;
ComputeShaderSpec spec5;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats1 (numElements, 0);
vector<float> outputFloats2 (numElements, 0);
vector<float> outputFloats3 (numElements, 0);
vector<float> outputFloats4 (numElements, 0);
vector<float> outputFloats5 (numElements, 0);
std::string codestring = "ABC";
const int test4Width = 1024;
// Build case 5 code string. Each iteration makes the hierarchy more complicated.
// 9 iterations with (7, 24) parameters makes the hierarchy 8 deep with about 1500 lines of
// shader code.
for (int i = 0, acc = 0; i < 9; i++)
codestring = expandOpPhiCase5(codestring, acc, 7, 24);
fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
switch (ndx % 3)
{
case 0: outputFloats1[ndx] = inputFloats[ndx] + 5.5f; break;
case 1: outputFloats1[ndx] = inputFloats[ndx] + 20.5f; break;
case 2: outputFloats1[ndx] = inputFloats[ndx] + 1.75f; break;
default: break;
}
outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
outputFloats3[ndx] = 8.5f - inputFloats[ndx];
int index4 = (int)deFloor(deAbs((float)ndx * inputFloats[ndx]));
outputFloats4[ndx] = (float)(index4 % test4Width) * 10.0f + 5.0f;
outputFloats5[ndx] = calcOpPhiCase5(inputFloats[ndx], codestring);
}
spec1.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%three = OpConstant %u32 3\n"
"%constf5p5 = OpConstant %f32 5.5\n"
"%constf20p5 = OpConstant %f32 20.5\n"
"%constf1p75 = OpConstant %f32 1.75\n"
"%constf8p5 = OpConstant %f32 8.5\n"
"%constf6p5 = OpConstant %f32 6.5\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%selector = OpUMod %u32 %x %three\n"
" OpSelectionMerge %phi None\n"
" OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
// Case 1 before OpPhi.
"%case1 = OpLabel\n"
" OpBranch %phi\n"
"%default = OpLabel\n"
" OpUnreachable\n"
"%phi = OpLabel\n"
"%operand = OpPhi %f32 %constf1p75 %case2 %constf20p5 %case1 %constf5p5 %case0\n" // not in the order of blocks
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%add = OpFAdd %f32 %inval %operand\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %add\n"
" OpReturn\n"
// Case 0 after OpPhi.
"%case0 = OpLabel\n"
" OpBranch %phi\n"
// Case 2 after OpPhi.
"%case2 = OpLabel\n"
" OpBranch %phi\n"
" OpFunctionEnd\n";
spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
spec1.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
spec2.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%one = OpConstant %i32 1\n"
"%three = OpConstant %i32 3\n"
"%constf6p5 = OpConstant %f32 6.5\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
" OpBranch %phi\n"
"%phi = OpLabel\n"
"%step = OpPhi %i32 %zero %entry %step_next %phi\n"
"%accum = OpPhi %f32 %inval %entry %accum_next %phi\n"
"%step_next = OpIAdd %i32 %step %one\n"
"%accum_next = OpFAdd %f32 %accum %constf6p5\n"
"%still_loop = OpSLessThan %bool %step %three\n"
" OpLoopMerge %exit %phi None\n"
" OpBranchConditional %still_loop %phi %exit\n"
"%exit = OpLabel\n"
" OpStore %outloc %accum\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
spec2.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
spec3.assembly =
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%f32ptr_f = OpTypePointer Function %f32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%true = OpConstantTrue %bool\n"
"%false = OpConstantFalse %bool\n"
"%zero = OpConstant %i32 0\n"
"%constf8p5 = OpConstant %f32 8.5\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%b = OpVariable %f32ptr_f Function %constf8p5\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%a_init = OpLoad %f32 %inloc\n"
"%b_init = OpLoad %f32 %b\n"
" OpBranch %phi\n"
"%phi = OpLabel\n"
"%still_loop = OpPhi %bool %true %entry %false %phi\n"
"%a_next = OpPhi %f32 %a_init %entry %b_next %phi\n"
"%b_next = OpPhi %f32 %b_init %entry %a_next %phi\n"
" OpLoopMerge %exit %phi None\n"
" OpBranchConditional %still_loop %phi %exit\n"
"%exit = OpLabel\n"
"%sub = OpFSub %f32 %a_next %b_next\n"
" OpStore %outloc %sub\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
spec3.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
spec4.assembly =
"OpCapability Shader\n"
"%ext = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%cimod = OpConstant %u32 " + generateIntWidth(test4Width) + "\n"
+ generateConstantDefinitions(test4Width) +
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%xf = OpConvertUToF %f32 %x\n"
"%xm = OpFMul %f32 %xf %inval\n"
"%xa = OpExtInst %f32 %ext FAbs %xm\n"
"%xi = OpConvertFToU %u32 %xa\n"
"%selector = OpUMod %u32 %xi %cimod\n"
" OpSelectionMerge %phi None\n"
" OpSwitch %selector %default "
+ generateSwitchCases(test4Width) +
"%default = OpLabel\n"
" OpUnreachable\n"
+ generateSwitchTargets(test4Width) +
"%phi = OpLabel\n"
"%result = OpPhi %f32"
+ generateOpPhiParams(test4Width) +
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %result\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
spec4.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "wide", "OpPhi with a lot of parameters", spec4));
spec5.assembly =
"OpCapability Shader\n"
"%ext = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"%code = OpString \"" + codestring + "\"\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%f32_0 = OpConstant %f32 0.0\n"
"%f32_0_5 = OpConstant %f32 0.5\n"
"%f32_1 = OpConstant %f32 1.0\n"
"%f32_1_5 = OpConstant %f32 1.5\n"
"%f32_2 = OpConstant %f32 2.0\n"
"%f32_3_5 = OpConstant %f32 3.5\n"
"%f32_4 = OpConstant %f32 4.0\n"
"%f32_7_5 = OpConstant %f32 7.5\n"
"%f32_8 = OpConstant %f32 8.0\n"
"%f32_15_5 = OpConstant %f32 15.5\n"
"%f32_16 = OpConstant %f32 16.0\n"
"%f32_31_5 = OpConstant %f32 31.5\n"
"%f32_32 = OpConstant %f32 32.0\n"
"%f32_63_5 = OpConstant %f32 63.5\n"
"%f32_64 = OpConstant %f32 64.0\n"
"%f32_127_5 = OpConstant %f32 127.5\n"
"%f32_128 = OpConstant %f32 128.0\n"
"%f32_256 = OpConstant %f32 256.0\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%xabs = OpExtInst %f32 %ext FAbs %inval\n"
"%x8 = OpFMod %f32 %xabs %f32_256\n"
"%x7 = OpFMod %f32 %xabs %f32_128\n"
"%x6 = OpFMod %f32 %xabs %f32_64\n"
"%x5 = OpFMod %f32 %xabs %f32_32\n"
"%x4 = OpFMod %f32 %xabs %f32_16\n"
"%x3 = OpFMod %f32 %xabs %f32_8\n"
"%x2 = OpFMod %f32 %xabs %f32_4\n"
"%x1 = OpFMod %f32 %xabs %f32_2\n"
"%b7 = OpFOrdGreaterThanEqual %bool %x8 %f32_127_5\n"
"%b6 = OpFOrdGreaterThanEqual %bool %x7 %f32_63_5\n"
"%b5 = OpFOrdGreaterThanEqual %bool %x6 %f32_31_5\n"
"%b4 = OpFOrdGreaterThanEqual %bool %x5 %f32_15_5\n"
"%b3 = OpFOrdGreaterThanEqual %bool %x4 %f32_7_5\n"
"%b2 = OpFOrdGreaterThanEqual %bool %x3 %f32_3_5\n"
"%b1 = OpFOrdGreaterThanEqual %bool %x2 %f32_1_5\n"
"%b0 = OpFOrdGreaterThanEqual %bool %x1 %f32_0_5\n"
+ generateOpPhiCase5(codestring) +
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %res\n"
" OpReturn\n"
" OpFunctionEnd\n";
spec5.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec5.outputs.push_back(BufferSp(new Float32Buffer(outputFloats5)));
spec5.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "nested", "Stress OpPhi with a lot of nesting", spec5));
createOpPhiVartypeTests(group, testCtx);
return group.release();
}
// Assembly code used for testing block order is based on GLSL source code:
//
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// output_data.elements[x] = input_data.elements[x];
// if (x > uint(50)) {
// switch (x % uint(3)) {
// case 0: output_data.elements[x] += 1.5f; break;
// case 1: output_data.elements[x] += 42.f; break;
// case 2: output_data.elements[x] -= 27.f; break;
// default: break;
// }
// } else {
// output_data.elements[x] = -input_data.elements[x];
// }
// }
tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx <= 50; ++ndx)
outputFloats[ndx] = -inputFloats[ndx];
for (size_t ndx = 51; ndx < numElements; ++ndx)
{
switch (ndx % 3)
{
case 0: outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
case 1: outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
case 2: outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
default: break;
}
}
spec.assembly =
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%u32ptr = OpTypePointer Function %u32\n"
"%u32ptr_input = OpTypePointer Input %u32\n"
+ string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%const3 = OpConstant %u32 3\n"
"%const50 = OpConstant %u32 50\n"
"%constf1p5 = OpConstant %f32 1.5\n"
"%constf27 = OpConstant %f32 27.0\n"
"%constf42 = OpConstant %f32 42.0\n"
"%main = OpFunction %void None %voidf\n"
// entry block.
"%entry = OpLabel\n"
// Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
"%xvar = OpVariable %u32ptr Function\n"
"%xptr = OpAccessChain %u32ptr_input %id %zero\n"
"%x = OpLoad %u32 %xptr\n"
" OpStore %xvar %x\n"
"%cmp = OpUGreaterThan %bool %x %const50\n"
" OpSelectionMerge %if_merge None\n"
" OpBranchConditional %cmp %if_true %if_false\n"
// False branch for if-statement: placed in the middle of switch cases and before true branch.
"%if_false = OpLabel\n"
"%x_f = OpLoad %u32 %xvar\n"
"%inloc_f = OpAccessChain %f32ptr %indata %zero %x_f\n"
"%inval_f = OpLoad %f32 %inloc_f\n"
"%negate = OpFNegate %f32 %inval_f\n"
"%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
" OpStore %outloc_f %negate\n"
" OpBranch %if_merge\n"
// Merge block for if-statement: placed in the middle of true and false branch.
"%if_merge = OpLabel\n"
" OpReturn\n"
// True branch for if-statement: placed in the middle of swtich cases and after the false branch.
"%if_true = OpLabel\n"
"%xval_t = OpLoad %u32 %xvar\n"
"%mod = OpUMod %u32 %xval_t %const3\n"
" OpSelectionMerge %switch_merge None\n"
" OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
// Merge block for switch-statement: placed before the case
// bodies. But it must follow OpSwitch which dominates it.
"%switch_merge = OpLabel\n"
" OpBranch %if_merge\n"
// Case 1 for switch-statement: placed before case 0.
// It must follow the OpSwitch that dominates it.
"%case1 = OpLabel\n"
"%x_1 = OpLoad %u32 %xvar\n"
"%inloc_1 = OpAccessChain %f32ptr %indata %zero %x_1\n"
"%inval_1 = OpLoad %f32 %inloc_1\n"
"%addf42 = OpFAdd %f32 %inval_1 %constf42\n"
"%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
" OpStore %outloc_1 %addf42\n"
" OpBranch %switch_merge\n"
// Case 2 for switch-statement.
"%case2 = OpLabel\n"
"%x_2 = OpLoad %u32 %xvar\n"
"%inloc_2 = OpAccessChain %f32ptr %indata %zero %x_2\n"
"%inval_2 = OpLoad %f32 %inloc_2\n"
"%subf27 = OpFSub %f32 %inval_2 %constf27\n"
"%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
" OpStore %outloc_2 %subf27\n"
" OpBranch %switch_merge\n"
// Default case for switch-statement: placed in the middle of normal cases.
"%default = OpLabel\n"
" OpBranch %switch_merge\n"
// Case 0 for switch-statement: out of order.
"%case0 = OpLabel\n"
"%x_0 = OpLoad %u32 %xvar\n"
"%inloc_0 = OpAccessChain %f32ptr %indata %zero %x_0\n"
"%inval_0 = OpLoad %f32 %inloc_0\n"
"%addf1p5 = OpFAdd %f32 %inval_0 %constf1p5\n"
"%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
" OpStore %outloc_0 %addf1p5\n"
" OpBranch %switch_merge\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
return group.release();
}
tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
ComputeShaderSpec spec1;
ComputeShaderSpec spec2;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats1 (numElements, 0);
vector<float> outputFloats2 (numElements, 0);
fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
{
outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
outputFloats2[ndx] = -inputFloats[ndx];
}
const string assembly(
"OpCapability Shader\n"
"OpCapability ClipDistance\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
"OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
// A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
"OpEntryPoint Vertex %vert_main \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
"OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
"OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
"OpName %comp_main1 \"entrypoint1\"\n"
"OpName %comp_main2 \"entrypoint2\"\n"
"OpName %vert_main \"entrypoint2\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpName %vert_builtin_st \"gl_PerVertex\"\n"
"OpName %vertexIndex \"gl_VertexIndex\"\n"
"OpName %instanceIndex \"gl_InstanceIndex\"\n"
"OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
"OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
"OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %vertexIndex BuiltIn VertexIndex\n"
"OpDecorate %instanceIndex BuiltIn InstanceIndex\n"
"OpDecorate %vert_builtin_st Block\n"
"OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
"OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
"OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%zero = OpConstant %i32 0\n"
"%one = OpConstant %u32 1\n"
"%c_f32_1 = OpConstant %f32 1\n"
"%i32inputptr = OpTypePointer Input %i32\n"
"%vec4 = OpTypeVector %f32 4\n"
"%vec4ptr = OpTypePointer Output %vec4\n"
"%f32arr1 = OpTypeArray %f32 %one\n"
"%vert_builtin_st = OpTypeStruct %vec4 %f32 %f32arr1\n"
"%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
"%vert_builtins = OpVariable %vert_builtin_st_ptr Output\n"
"%id = OpVariable %uvec3ptr Input\n"
"%vertexIndex = OpVariable %i32inputptr Input\n"
"%instanceIndex = OpVariable %i32inputptr Input\n"
"%c_vec4_1 = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
// gl_Position = vec4(1.);
"%vert_main = OpFunction %void None %voidf\n"
"%vert_entry = OpLabel\n"
"%position = OpAccessChain %vec4ptr %vert_builtins %zero\n"
" OpStore %position %c_vec4_1\n"
" OpReturn\n"
" OpFunctionEnd\n"
// Double inputs.
"%comp_main1 = OpFunction %void None %voidf\n"
"%comp1_entry = OpLabel\n"
"%idval1 = OpLoad %uvec3 %id\n"
"%x1 = OpCompositeExtract %u32 %idval1 0\n"
"%inloc1 = OpAccessChain %f32ptr %indata %zero %x1\n"
"%inval1 = OpLoad %f32 %inloc1\n"
"%add = OpFAdd %f32 %inval1 %inval1\n"
"%outloc1 = OpAccessChain %f32ptr %outdata %zero %x1\n"
" OpStore %outloc1 %add\n"
" OpReturn\n"
" OpFunctionEnd\n"
// Negate inputs.
"%comp_main2 = OpFunction %void None %voidf\n"
"%comp2_entry = OpLabel\n"
"%idval2 = OpLoad %uvec3 %id\n"
"%x2 = OpCompositeExtract %u32 %idval2 0\n"
"%inloc2 = OpAccessChain %f32ptr %indata %zero %x2\n"
"%inval2 = OpLoad %f32 %inloc2\n"
"%neg = OpFNegate %f32 %inval2\n"
"%outloc2 = OpAccessChain %f32ptr %outdata %zero %x2\n"
" OpStore %outloc2 %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
spec1.assembly = assembly;
spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
spec1.numWorkGroups = IVec3(numElements, 1, 1);
spec1.entryPoint = "entrypoint1";
spec2.assembly = assembly;
spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
spec2.numWorkGroups = IVec3(numElements, 1, 1);
spec2.entryPoint = "entrypoint2";
group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
return group.release();
}
inline std::string makeLongUTF8String (size_t num4ByteChars)
{
// An example of a longest valid UTF-8 character. Be explicit about the
// character type because Microsoft compilers can otherwise interpret the
// character string as being over wide (16-bit) characters. Ideally, we
// would just use a C++11 UTF-8 string literal, but we want to support older
// Microsoft compilers.
const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
std::string longString;
longString.reserve(num4ByteChars * 4);
for (size_t count = 0; count < num4ByteChars; count++)
{
longString += earthAfrica;
}
return longString;
}
tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
const StringTemplate shaderTemplate (
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"${SOURCE}\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("unknown_source", "OpSource Unknown 0"));
cases.push_back(CaseParameter("wrong_source", "OpSource OpenCL_C 210"));
cases.push_back(CaseParameter("normal_filename", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname"));
cases.push_back(CaseParameter("empty_filename", "%fname = OpString \"\"\n"
"OpSource GLSL 430 %fname"));
cases.push_back(CaseParameter("normal_source_code", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
cases.push_back(CaseParameter("empty_source_code", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"\""));
cases.push_back(CaseParameter("long_source_code", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
cases.push_back(CaseParameter("utf8_source_code", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
cases.push_back(CaseParameter("normal_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
"OpSourceContinued \"id main() {}\""));
cases.push_back(CaseParameter("empty_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
"OpSourceContinued \"\""));
cases.push_back(CaseParameter("long_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
"OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
cases.push_back(CaseParameter("utf8_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
"OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
cases.push_back(CaseParameter("multi_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"#version 430\n\"\n"
"OpSourceContinued \"void\"\n"
"OpSourceContinued \"main()\"\n"
"OpSourceContinued \"{}\""));
cases.push_back(CaseParameter("empty_source_before_sourcecontinued", "%fname = OpString \"filename\"\n"
"OpSource GLSL 430 %fname \"\"\n"
"OpSourceContinued \"#version 430\nvoid main() {}\""));
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["SOURCE"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSourceExtension \"${EXTENSION}\"\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("empty_extension", ""));
cases.push_back(CaseParameter("real_extension", "GL_ARB_texture_rectangle"));
cases.push_back(CaseParameter("fake_extension", "GL_ARB_im_the_ultimate_extension"));
cases.push_back(CaseParameter("utf8_extension", "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
cases.push_back(CaseParameter("long_extension", makeLongUTF8String(65533) + "ccc")); // word count: 65535
fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = -inputFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["EXTENSION"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
// Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%uvec2 = OpTypeVector %u32 2\n"
"%bvec3 = OpTypeVector %bool 3\n"
"%fvec4 = OpTypeVector %f32 4\n"
"%fmat33 = OpTypeMatrix %fvec3 3\n"
"%const100 = OpConstant %u32 100\n"
"%uarr100 = OpTypeArray %i32 %const100\n"
"%struct = OpTypeStruct %f32 %i32 %u32\n"
"%pointer = OpTypePointer Function %i32\n"
+ string(getComputeAsmInputOutputBuffer()) +
"%null = OpConstantNull ${TYPE}\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("bool", "%bool"));
cases.push_back(CaseParameter("sint32", "%i32"));
cases.push_back(CaseParameter("uint32", "%u32"));
cases.push_back(CaseParameter("float32", "%f32"));
cases.push_back(CaseParameter("vec4float32", "%fvec4"));
cases.push_back(CaseParameter("vec3bool", "%bvec3"));
cases.push_back(CaseParameter("vec2uint32", "%uvec2"));
cases.push_back(CaseParameter("matrix", "%fmat33"));
cases.push_back(CaseParameter("array", "%uarr100"));
cases.push_back(CaseParameter("struct", "%struct"));
cases.push_back(CaseParameter("pointer", "%pointer"));
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["TYPE"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"${CONSTANT}\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("vector", "%five = OpConstant %u32 5\n"
"%const = OpConstantComposite %uvec3 %five %zero %five"));
cases.push_back(CaseParameter("matrix", "%m3fvec3 = OpTypeMatrix %fvec3 3\n"
"%ten = OpConstant %f32 10.\n"
"%fzero = OpConstant %f32 0.\n"
"%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
"%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
cases.push_back(CaseParameter("struct", "%m2vec3 = OpTypeMatrix %fvec3 2\n"
"%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
"%fzero = OpConstant %f32 0.\n"
"%one = OpConstant %f32 1.\n"
"%point5 = OpConstant %f32 0.5\n"
"%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
"%mat = OpConstantComposite %m2vec3 %vec %vec\n"
"%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
cases.push_back(CaseParameter("nested_struct", "%st1 = OpTypeStruct %u32 %f32\n"
"%st2 = OpTypeStruct %i32 %i32\n"
"%struct = OpTypeStruct %st1 %st2\n"
"%point5 = OpConstant %f32 0.5\n"
"%one = OpConstant %u32 1\n"
"%ten = OpConstant %i32 10\n"
"%st1val = OpConstantComposite %st1 %one %point5\n"
"%st2val = OpConstantComposite %st2 %ten %ten\n"
"%const = OpConstantComposite %struct %st1val %st2val"));
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["CONSTANT"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
// Creates a floating point number with the given exponent, and significand
// bits set. It can only create normalized numbers. Only the least significant
// 24 bits of the significand will be examined. The final bit of the
// significand will also be ignored. This allows alignment to be written
// similarly to C99 hex-floats.
// For example if you wanted to write 0x1.7f34p-12 you would call
// constructNormalizedFloat(-12, 0x7f3400)
float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
{
float f = 1.0f;
for (deInt32 idx = 0; idx < 23; ++idx)
{
f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
significand <<= 1;
}
return std::ldexp(f, exponent);
}
// Compare instruction for the OpQuantizeF16 compute exact case.
// Returns true if the output is what is expected from the test case.
bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
// Only size is needed because we cannot compare Nans.
size_t byteSize = expectedOutputs[0]->getByteSize();
const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());
if (byteSize != 4*sizeof(float)) {
return false;
}
if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
*outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
return false;
}
outputAsFloat++;
if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
*outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
return false;
}
outputAsFloat++;
if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
*outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
return false;
}
outputAsFloat++;
if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
*outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
return false;
}
return true;
}
// Checks that every output from a test-case is a float NaN.
bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
if (outputAllocs.size() != 1)
return false;
// Only size is needed because we cannot compare Nans.
size_t byteSize = expectedOutputs[0]->getByteSize();
const float* const output_as_float = static_cast<const float* const>(outputAllocs[0]->getHostPtr());
for (size_t idx = 0; idx < byteSize / sizeof(float); ++idx)
{
if (!deFloatIsNaN(output_as_float[idx]))
{
return false;
}
}
return true;
}
// Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
const std::string shader (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%quant = OpQuantizeToF16 %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %quant\n"
" OpReturn\n"
" OpFunctionEnd\n");
{
ComputeShaderSpec spec;
const deUint32 numElements = 100;
vector<float> infinities;
vector<float> results;
infinities.reserve(numElements);
results.reserve(numElements);
for (size_t idx = 0; idx < numElements; ++idx)
{
switch(idx % 4)
{
case 0:
infinities.push_back(std::numeric_limits<float>::infinity());
results.push_back(std::numeric_limits<float>::infinity());
break;
case 1:
infinities.push_back(-std::numeric_limits<float>::infinity());
results.push_back(-std::numeric_limits<float>::infinity());
break;
case 2:
infinities.push_back(std::ldexp(1.0f, 16));
results.push_back(std::numeric_limits<float>::infinity());
break;
case 3:
infinities.push_back(std::ldexp(-1.0f, 32));
results.push_back(-std::numeric_limits<float>::infinity());
break;
}
}
spec.assembly = shader;
spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "infinities", "Check that infinities propagated and created", spec));
}
{
ComputeShaderSpec spec;
vector<float> nans;
const deUint32 numElements = 100;
nans.reserve(numElements);
for (size_t idx = 0; idx < numElements; ++idx)
{
if (idx % 2 == 0)
{
nans.push_back(std::numeric_limits<float>::quiet_NaN());
}
else
{
nans.push_back(-std::numeric_limits<float>::quiet_NaN());
}
}
spec.assembly = shader;
spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
spec.verifyIO = &compareNan;
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "propagated_nans", "Check that nans are propagated", spec));
}
{
ComputeShaderSpec spec;
vector<float> small;
vector<float> zeros;
const deUint32 numElements = 100;
small.reserve(numElements);
zeros.reserve(numElements);
for (size_t idx = 0; idx < numElements; ++idx)
{
switch(idx % 6)
{
case 0:
small.push_back(0.f);
zeros.push_back(0.f);
break;
case 1:
small.push_back(-0.f);
zeros.push_back(-0.f);
break;
case 2:
small.push_back(std::ldexp(1.0f, -16));
zeros.push_back(0.f);
break;
case 3:
small.push_back(std::ldexp(-1.0f, -32));
zeros.push_back(-0.f);
break;
case 4:
small.push_back(std::ldexp(1.0f, -127));
zeros.push_back(0.f);
break;
case 5:
small.push_back(-std::ldexp(1.0f, -128));
zeros.push_back(-0.f);
break;
}
}
spec.assembly = shader;
spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
}
{
ComputeShaderSpec spec;
vector<float> exact;
const deUint32 numElements = 200;
exact.reserve(numElements);
for (size_t idx = 0; idx < numElements; ++idx)
exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
spec.assembly = shader;
spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
}
{
ComputeShaderSpec spec;
vector<float> inputs;
const deUint32 numElements = 4;
inputs.push_back(constructNormalizedFloat(8, 0x300300));
inputs.push_back(-constructNormalizedFloat(-7, 0x600800));
inputs.push_back(constructNormalizedFloat(2, 0x01E000));
inputs.push_back(constructNormalizedFloat(1, 0xFFE000));
spec.assembly = shader;
spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "rounded", "Check that are rounded when needed", spec));
}
return group.release();
}
tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
const std::string shader (
string(getComputeAsmShaderPreamble()) +
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %sc_0 SpecId 0\n"
"OpDecorate %sc_1 SpecId 1\n"
"OpDecorate %sc_2 SpecId 2\n"
"OpDecorate %sc_3 SpecId 3\n"
"OpDecorate %sc_4 SpecId 4\n"
"OpDecorate %sc_5 SpecId 5\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%c_u32_6 = OpConstant %u32 6\n"
"%sc_0 = OpSpecConstant %f32 0.\n"
"%sc_1 = OpSpecConstant %f32 0.\n"
"%sc_2 = OpSpecConstant %f32 0.\n"
"%sc_3 = OpSpecConstant %f32 0.\n"
"%sc_4 = OpSpecConstant %f32 0.\n"
"%sc_5 = OpSpecConstant %f32 0.\n"
"%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
"%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
"%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
"%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
"%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
"%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%selector = OpUMod %u32 %x %c_u32_6\n"
" OpSelectionMerge %exit None\n"
" OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
"%case0 = OpLabel\n"
" OpStore %outloc %sc_0_quant\n"
" OpBranch %exit\n"
"%case1 = OpLabel\n"
" OpStore %outloc %sc_1_quant\n"
" OpBranch %exit\n"
"%case2 = OpLabel\n"
" OpStore %outloc %sc_2_quant\n"
" OpBranch %exit\n"
"%case3 = OpLabel\n"
" OpStore %outloc %sc_3_quant\n"
" OpBranch %exit\n"
"%case4 = OpLabel\n"
" OpStore %outloc %sc_4_quant\n"
" OpBranch %exit\n"
"%case5 = OpLabel\n"
" OpStore %outloc %sc_5_quant\n"
" OpBranch %exit\n"
"%exit = OpLabel\n"
" OpReturn\n"
" OpFunctionEnd\n");
{
ComputeShaderSpec spec;
const deUint8 numCases = 4;
vector<float> inputs (numCases, 0.f);
vector<float> outputs;
spec.assembly = shader;
spec.numWorkGroups = IVec3(numCases, 1, 1);
spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
outputs.push_back(std::numeric_limits<float>::infinity());
outputs.push_back(-std::numeric_limits<float>::infinity());
outputs.push_back(std::numeric_limits<float>::infinity());
outputs.push_back(-std::numeric_limits<float>::infinity());
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "infinities", "Check that infinities propagated and created", spec));
}
{
ComputeShaderSpec spec;
const deUint8 numCases = 2;
vector<float> inputs (numCases, 0.f);
vector<float> outputs;
spec.assembly = shader;
spec.numWorkGroups = IVec3(numCases, 1, 1);
spec.verifyIO = &compareNan;
outputs.push_back(std::numeric_limits<float>::quiet_NaN());
outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
for (deUint8 idx = 0; idx < numCases; ++idx)
spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "propagated_nans", "Check that nans are propagated", spec));
}
{
ComputeShaderSpec spec;
const deUint8 numCases = 6;
vector<float> inputs (numCases, 0.f);
vector<float> outputs;
spec.assembly = shader;
spec.numWorkGroups = IVec3(numCases, 1, 1);
spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
outputs.push_back(0.f);
outputs.push_back(-0.f);
outputs.push_back(0.f);
outputs.push_back(-0.f);
outputs.push_back(0.f);
outputs.push_back(-0.f);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
}
{
ComputeShaderSpec spec;
const deUint8 numCases = 6;
vector<float> inputs (numCases, 0.f);
vector<float> outputs;
spec.assembly = shader;
spec.numWorkGroups = IVec3(numCases, 1, 1);
for (deUint8 idx = 0; idx < 6; ++idx)
{
const float f = static_cast<float>(idx * 10 - 30) / 4.f;
spec.specConstants.push_back(bitwiseCast<deUint32>(f));
outputs.push_back(f);
}
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
}
{
ComputeShaderSpec spec;
const deUint8 numCases = 4;
vector<float> inputs (numCases, 0.f);
vector<float> outputs;
spec.assembly = shader;
spec.numWorkGroups = IVec3(numCases, 1, 1);
spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
outputs.push_back(constructNormalizedFloat(8, 0x300300));
outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
outputs.push_back(constructNormalizedFloat(2, 0x01E000));
outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
for (deUint8 idx = 0; idx < numCases; ++idx)
spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
group->addChild(new SpvAsmComputeShaderCase(
testCtx, "rounded", "Check that are rounded when needed", spec));
}
return group.release();
}
// Checks that constant null/composite values can be used in computation.
tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
ComputeShaderSpec spec;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
spec.assembly =
"OpCapability Shader\n"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%fmat = OpTypeMatrix %fvec3 3\n"
"%ten = OpConstant %u32 10\n"
"%f32arr10 = OpTypeArray %f32 %ten\n"
"%fst = OpTypeStruct %f32 %f32\n"
+ string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
// Create a bunch of null values
"%unull = OpConstantNull %u32\n"
"%fnull = OpConstantNull %f32\n"
"%vnull = OpConstantNull %fvec3\n"
"%mnull = OpConstantNull %fmat\n"
"%anull = OpConstantNull %f32arr10\n"
"%snull = OpConstantComposite %fst %fnull %fnull\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
// Get the abs() of (a certain element of) those null values
"%unull_cov = OpConvertUToF %f32 %unull\n"
"%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
"%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
"%vnull_0 = OpCompositeExtract %f32 %vnull 0\n"
"%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
"%mnull_12 = OpCompositeExtract %f32 %mnull 1 2\n"
"%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
"%anull_3 = OpCompositeExtract %f32 %anull 3\n"
"%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
"%snull_1 = OpCompositeExtract %f32 %snull 1\n"
"%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
// Add them all
"%add1 = OpFAdd %f32 %neg %unull_abs\n"
"%add2 = OpFAdd %f32 %add1 %fnull_abs\n"
"%add3 = OpFAdd %f32 %add2 %vnull_abs\n"
"%add4 = OpFAdd %f32 %add3 %mnull_abs\n"
"%add5 = OpFAdd %f32 %add4 %anull_abs\n"
"%final = OpFAdd %f32 %add5 %snull_abs\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %final\n" // write to output
" OpReturn\n"
" OpFunctionEnd\n";
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
return group.release();
}
// Assembly code used for testing loop control is based on GLSL source code:
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// output_data.elements[x] = input_data.elements[x];
// for (uint i = 0; i < 4; ++i)
// output_data.elements[x] += 1.f;
// }
tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%u32ptr = OpTypePointer Function %u32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%uzero = OpConstant %u32 0\n"
"%one = OpConstant %i32 1\n"
"%constf1 = OpConstant %f32 1.0\n"
"%four = OpConstant %u32 4\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%i = OpVariable %u32ptr Function\n"
" OpStore %i %uzero\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %inval\n"
" OpBranch %loop_entry\n"
"%loop_entry = OpLabel\n"
"%i_val = OpLoad %u32 %i\n"
"%cmp_lt = OpULessThan %bool %i_val %four\n"
" OpLoopMerge %loop_merge %loop_body ${CONTROL}\n"
" OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
"%loop_body = OpLabel\n"
"%outval = OpLoad %f32 %outloc\n"
"%addf1 = OpFAdd %f32 %outval %constf1\n"
" OpStore %outloc %addf1\n"
"%new_i = OpIAdd %u32 %i_val %one\n"
" OpStore %i %new_i\n"
" OpBranch %loop_entry\n"
"%loop_merge = OpLabel\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("none", "None"));
cases.push_back(CaseParameter("unroll", "Unroll"));
cases.push_back(CaseParameter("dont_unroll", "DontUnroll"));
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats[ndx] + 4.f;
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["CONTROL"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
group->addChild(new SpvAsmLoopControlDependencyLengthCase(testCtx, "dependency_length", "dependency_length"));
group->addChild(new SpvAsmLoopControlDependencyInfiniteCase(testCtx, "dependency_infinite", "dependency_infinite"));
return group.release();
}
// Assembly code used for testing selection control is based on GLSL source code:
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// float val = input_data.elements[x];
// if (val > 10.f)
// output_data.elements[x] = val + 1.f;
// else
// output_data.elements[x] = val - 1.f;
// }
tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%constf1 = OpConstant %f32 1.0\n"
"%constf10 = OpConstant %f32 10.0\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
"%cmp_gt = OpFOrdGreaterThan %bool %inval %constf10\n"
" OpSelectionMerge %if_end ${CONTROL}\n"
" OpBranchConditional %cmp_gt %if_true %if_false\n"
"%if_true = OpLabel\n"
"%addf1 = OpFAdd %f32 %inval %constf1\n"
" OpStore %outloc %addf1\n"
" OpBranch %if_end\n"
"%if_false = OpLabel\n"
"%subf1 = OpFSub %f32 %inval %constf1\n"
" OpStore %outloc %subf1\n"
" OpBranch %if_end\n"
"%if_end = OpLabel\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("none", "None"));
cases.push_back(CaseParameter("flatten", "Flatten"));
cases.push_back(CaseParameter("dont_flatten", "DontFlatten"));
cases.push_back(CaseParameter("flatten_dont_flatten", "DontFlatten|Flatten"));
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["CONTROL"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
// Assembly code used for testing function control is based on GLSL source code:
//
// #version 430
//
// layout(std140, set = 0, binding = 0) readonly buffer Input {
// float elements[];
// } input_data;
// layout(std140, set = 0, binding = 1) writeonly buffer Output {
// float elements[];
// } output_data;
//
// float const10() { return 10.f; }
//
// void main() {
// uint x = gl_GlobalInvocationID.x;
// output_data.elements[x] = input_data.elements[x] + const10();
// }
tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %func_const10 \"const10(\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%f32f = OpTypeFunction %f32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%constf10 = OpConstant %f32 10.0\n"
"%main = OpFunction %void None %voidf\n"
"%entry = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%ret_10 = OpFunctionCall %f32 %func_const10\n"
"%fadd = OpFAdd %f32 %inval %ret_10\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %fadd\n"
" OpReturn\n"
" OpFunctionEnd\n"
"%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
"%label = OpLabel\n"
" OpReturnValue %constf10\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("none", "None"));
cases.push_back(CaseParameter("inline", "Inline"));
cases.push_back(CaseParameter("dont_inline", "DontInline"));
cases.push_back(CaseParameter("pure", "Pure"));
cases.push_back(CaseParameter("const", "Const"));
cases.push_back(CaseParameter("inline_pure", "Inline|Pure"));
cases.push_back(CaseParameter("const_dont_inline", "Const|DontInline"));
cases.push_back(CaseParameter("inline_dont_inline", "Inline|DontInline"));
cases.push_back(CaseParameter("pure_inline_dont_inline", "Pure|Inline|DontInline"));
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
// CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
floorAll(inputFloats);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats[ndx] + 10.f;
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["CONTROL"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> inputFloats (numElements, 0);
vector<float> outputFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
"%f32ptr_f = OpTypePointer Function %f32\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%four = OpConstant %i32 4\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%copy = OpVariable %f32ptr_f Function\n"
"%idval = OpLoad %uvec3 %id ${ACCESS}\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpCopyMemory %copy %inloc ${ACCESS}\n"
"%val1 = OpLoad %f32 %copy\n"
"%val2 = OpLoad %f32 %inloc\n"
"%add = OpFAdd %f32 %val1 %val2\n"
" OpStore %outloc %add ${ACCESS}\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("null", ""));
cases.push_back(CaseParameter("none", "None"));
cases.push_back(CaseParameter("volatile", "Volatile"));
cases.push_back(CaseParameter("aligned", "Aligned 4"));
cases.push_back(CaseParameter("nontemporal", "Nontemporal"));
cases.push_back(CaseParameter("aligned_nontemporal", "Aligned|Nontemporal 4"));
cases.push_back(CaseParameter("aligned_volatile", "Volatile|Aligned 4"));
fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["ACCESS"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
// Checks that we can get undefined values for various types, without exercising a computation with it.
tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
vector<CaseParameter> cases;
de::Random rnd (deStringHash(group->getName()));
const int numElements = 100;
vector<float> positiveFloats (numElements, 0);
vector<float> negativeFloats (numElements, 0);
const StringTemplate shaderTemplate (
string(getComputeAsmShaderPreamble()) +
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
+ string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
"%uvec2 = OpTypeVector %u32 2\n"
"%fvec4 = OpTypeVector %f32 4\n"
"%fmat33 = OpTypeMatrix %fvec3 3\n"
"%image = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
"%sampler = OpTypeSampler\n"
"%simage = OpTypeSampledImage %image\n"
"%const100 = OpConstant %u32 100\n"
"%uarr100 = OpTypeArray %i32 %const100\n"
"%struct = OpTypeStruct %f32 %i32 %u32\n"
"%pointer = OpTypePointer Function %i32\n"
+ string(getComputeAsmInputOutputBuffer()) +
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%undef = OpUndef ${TYPE}\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %f32ptr %indata %zero %x\n"
"%inval = OpLoad %f32 %inloc\n"
"%neg = OpFNegate %f32 %inval\n"
"%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
" OpStore %outloc %neg\n"
" OpReturn\n"
" OpFunctionEnd\n");
cases.push_back(CaseParameter("bool", "%bool"));
cases.push_back(CaseParameter("sint32", "%i32"));
cases.push_back(CaseParameter("uint32", "%u32"));
cases.push_back(CaseParameter("float32", "%f32"));
cases.push_back(CaseParameter("vec4float32", "%fvec4"));
cases.push_back(CaseParameter("vec2uint32", "%uvec2"));
cases.push_back(CaseParameter("matrix", "%fmat33"));
cases.push_back(CaseParameter("image", "%image"));
cases.push_back(CaseParameter("sampler", "%sampler"));
cases.push_back(CaseParameter("sampledimage", "%simage"));
cases.push_back(CaseParameter("array", "%uarr100"));
cases.push_back(CaseParameter("runtimearray", "%f32arr"));
cases.push_back(CaseParameter("struct", "%struct"));
cases.push_back(CaseParameter("pointer", "%pointer"));
fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
for (size_t ndx = 0; ndx < numElements; ++ndx)
negativeFloats[ndx] = -positiveFloats[ndx];
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
ComputeShaderSpec spec;
specializations["TYPE"] = cases[caseNdx].param;
spec.assembly = shaderTemplate.specialize(specializations);
spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
spec.numWorkGroups = IVec3(numElements, 1, 1);
group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
}
return group.release();
}
} // anonymous
tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
{
struct NameCodePair { string name, code; };
RGBA defaultColors[4];
de::MovePtr<tcu::TestCaseGroup> opSourceTests (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
const std::string opsourceGLSLWithFile = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
map<string, string> fragments = passthruFragments();
const NameCodePair tests[] =
{
{"unknown", "OpSource Unknown 321"},
{"essl", "OpSource ESSL 310"},
{"glsl", "OpSource GLSL 450"},
{"opencl_cpp", "OpSource OpenCL_CPP 120"},
{"opencl_c", "OpSource OpenCL_C 120"},
{"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
{"file", opsourceGLSLWithFile},
{"source", opsourceGLSLWithFile + "\"void main(){}\""},
// Longest possible source string: SPIR-V limits instructions to 65535
// words, of which the first 4 are opsourceGLSLWithFile; the rest will
// contain 65530 UTF8 characters (one word each) plus one last word
// containing 3 ASCII characters and \0.
{"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
};
getDefaultColors(defaultColors);
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
{
fragments["debug"] = tests[testNdx].code;
createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
}
return opSourceTests.release();
}
tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
{
struct NameCodePair { string name, code; };
RGBA defaultColors[4];
de::MovePtr<tcu::TestCaseGroup> opSourceTests (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
map<string, string> fragments = passthruFragments();
const std::string opsource = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
const NameCodePair tests[] =
{
{"empty", opsource + "OpSourceContinued \"\""},
{"short", opsource + "OpSourceContinued \"abcde\""},
{"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
// Longest possible source string: SPIR-V limits instructions to 65535
// words, of which the first one is OpSourceContinued/length; the rest
// will contain 65533 UTF8 characters (one word each) plus one last word
// containing 3 ASCII characters and \0.
{"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
};
getDefaultColors(defaultColors);
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
{
fragments["debug"] = tests[testNdx].code;
createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
}
return opSourceTests.release();
}
tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
{
RGBA defaultColors[4];
de::MovePtr<tcu::TestCaseGroup> opLineTests (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
map<string, string> fragments;
getDefaultColors(defaultColors);
fragments["debug"] =
"%name = OpString \"name\"\n";
fragments["pre_main"] =
"OpNoLine\n"
"OpNoLine\n"
"OpLine %name 1 1\n"
"OpNoLine\n"
"OpLine %name 1 1\n"
"OpLine %name 1 1\n"
"%second_function = OpFunction %v4f32 None %v4f32_function\n"
"OpNoLine\n"
"OpLine %name 1 1\n"
"OpNoLine\n"
"OpLine %name 1 1\n"
"OpLine %name 1 1\n"
"%second_param1 = OpFunctionParameter %v4f32\n"
"OpNoLine\n"
"OpNoLine\n"
"%label_secondfunction = OpLabel\n"
"OpNoLine\n"
"OpReturnValue %second_param1\n"
"OpFunctionEnd\n"
"OpNoLine\n"
"OpNoLine\n";
fragments["testfun"] =
// A %test_code function that returns its argument unchanged.
"OpNoLine\n"
"OpNoLine\n"
"OpLine %name 1 1\n"
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"OpNoLine\n"
"%param1 = OpFunctionParameter %v4f32\n"
"OpNoLine\n"
"OpNoLine\n"
"%label_testfun = OpLabel\n"
"OpNoLine\n"
"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
"OpReturnValue %val1\n"
"OpFunctionEnd\n"
"OpLine %name 1 1\n"
"OpNoLine\n";
createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
return opLineTests.release();
}
tcu::TestCaseGroup* createOpModuleProcessedTests(tcu::TestContext& testCtx)
{
RGBA defaultColors[4];
de::MovePtr<tcu::TestCaseGroup> opModuleProcessedTests (new tcu::TestCaseGroup(testCtx, "opmoduleprocessed", "OpModuleProcessed instruction"));
map<string, string> fragments;
std::vector<std::string> noExtensions;
GraphicsResources resources;
getDefaultColors(defaultColors);
resources.verifyBinary = veryfiBinaryShader;
resources.spirvVersion = SPIRV_VERSION_1_3;
fragments["moduleprocessed"] =
"OpModuleProcessed \"VULKAN CTS\"\n"
"OpModuleProcessed \"Negative values\"\n"
"OpModuleProcessed \"Date: 2017/09/21\"\n";
fragments["pre_main"] =
"%second_function = OpFunction %v4f32 None %v4f32_function\n"
"%second_param1 = OpFunctionParameter %v4f32\n"
"%label_secondfunction = OpLabel\n"
"OpReturnValue %second_param1\n"
"OpFunctionEnd\n";
fragments["testfun"] =
// A %test_code function that returns its argument unchanged.
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
"OpReturnValue %val1\n"
"OpFunctionEnd\n";
createTestsForAllStages ("opmoduleprocessed", defaultColors, defaultColors, fragments, resources, noExtensions, opModuleProcessedTests.get());
return opModuleProcessedTests.release();
}
tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
{
RGBA defaultColors[4];
de::MovePtr<tcu::TestCaseGroup> opLineTests (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
map<string, string> fragments;
std::vector<std::pair<std::string, std::string> > problemStrings;
problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
getDefaultColors(defaultColors);
fragments["debug"] =
"%other_name = OpString \"other_name\"\n";
fragments["pre_main"] =
"OpLine %file_name 32 0\n"
"OpLine %file_name 32 32\n"
"OpLine %file_name 32 40\n"
"OpLine %other_name 32 40\n"
"OpLine %other_name 0 100\n"
"OpLine %other_name 0 4294967295\n"
"OpLine %other_name 4294967295 0\n"
"OpLine %other_name 32 40\n"
"OpLine %file_name 0 0\n"
"%second_function = OpFunction %v4f32 None %v4f32_function\n"
"OpLine %file_name 1 0\n"
"%second_param1 = OpFunctionParameter %v4f32\n"
"OpLine %file_name 1 3\n"
"OpLine %file_name 1 2\n"
"%label_secondfunction = OpLabel\n"
"OpLine %file_name 0 2\n"
"OpReturnValue %second_param1\n"
"OpFunctionEnd\n"
"OpLine %file_name 0 2\n"
"OpLine %file_name 0 2\n";
fragments["testfun"] =
// A %test_code function that returns its argument unchanged.
"OpLine %file_name 1 0\n"
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"OpLine %file_name 16 330\n"
"%param1 = OpFunctionParameter %v4f32\n"
"OpLine %file_name 14 442\n"
"%label_testfun = OpLabel\n"
"OpLine %file_name 11 1024\n"
"%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
"OpLine %file_name 2 97\n"
"OpReturnValue %val1\n"
"OpFunctionEnd\n"
"OpLine %file_name 5 32\n";
for (size_t i = 0; i < problemStrings.size(); ++i)
{
map<string, string> testFragments = fragments;
testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
}
return opLineTests.release();
}
tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> opConstantNullTests (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
RGBA colors[4];
const char functionStart[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n";
const char functionEnd[] =
"OpReturnValue %transformed_param\n"
"OpFunctionEnd\n";
struct NameConstantsCode
{
string name;
string constants;
string code;
};
NameConstantsCode tests[] =
{
{
"vec4",
"%cnull = OpConstantNull %v4f32\n",
"%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
},
{
"float",
"%cnull = OpConstantNull %f32\n",
"%vp = OpVariable %fp_v4f32 Function\n"
"%v = OpLoad %v4f32 %vp\n"
"%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
"%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
"%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
"%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
"%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
},
{
"bool",
"%cnull = OpConstantNull %bool\n",
"%v = OpVariable %fp_v4f32 Function\n"
" OpStore %v %param1\n"
" OpSelectionMerge %false_label None\n"
" OpBranchConditional %cnull %true_label %false_label\n"
"%true_label = OpLabel\n"
" OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
" OpBranch %false_label\n"
"%false_label = OpLabel\n"
"%transformed_param = OpLoad %v4f32 %v\n"
},
{
"i32",
"%cnull = OpConstantNull %i32\n",
"%v = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
"%b = OpIEqual %bool %cnull %c_i32_0\n"
" OpSelectionMerge %false_label None\n"
" OpBranchConditional %b %true_label %false_label\n"
"%true_label = OpLabel\n"
" OpStore %v %param1\n"
" OpBranch %false_label\n"
"%false_label = OpLabel\n"
"%transformed_param = OpLoad %v4f32 %v\n"
},
{
"struct",
"%stype = OpTypeStruct %f32 %v4f32\n"
"%fp_stype = OpTypePointer Function %stype\n"
"%cnull = OpConstantNull %stype\n",
"%v = OpVariable %fp_stype Function %cnull\n"
"%f = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
"%f_val = OpLoad %v4f32 %f\n"
"%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
},
{
"array",
"%a4_v4f32 = OpTypeArray %v4f32 %c_u32_4\n"
"%fp_a4_v4f32 = OpTypePointer Function %a4_v4f32\n"
"%cnull = OpConstantNull %a4_v4f32\n",
"%v = OpVariable %fp_a4_v4f32 Function %cnull\n"
"%f = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
"%f1 = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
"%f2 = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
"%f3 = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
"%f_val = OpLoad %v4f32 %f\n"
"%f1_val = OpLoad %v4f32 %f1\n"
"%f2_val = OpLoad %v4f32 %f2\n"
"%f3_val = OpLoad %v4f32 %f3\n"
"%t0 = OpFAdd %v4f32 %param1 %f_val\n"
"%t1 = OpFAdd %v4f32 %t0 %f1_val\n"
"%t2 = OpFAdd %v4f32 %t1 %f2_val\n"
"%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
},
{
"matrix",
"%mat4x4_f32 = OpTypeMatrix %v4f32 4\n"
"%cnull = OpConstantNull %mat4x4_f32\n",
// Our null matrix * any vector should result in a zero vector.
"%v = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
"%transformed_param = OpFAdd %v4f32 %param1 %v\n"
}
};
getHalfColorsFullAlpha(colors);
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
{
map<string, string> fragments;
fragments["pre_main"] = tests[testNdx].constants;
fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
}
return opConstantNullTests.release();
}
tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
RGBA inputColors[4];
RGBA outputColors[4];
const char functionStart[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n";
const char functionEnd[] =
"OpReturnValue %transformed_param\n"
"OpFunctionEnd\n";
struct NameConstantsCode
{
string name;
string constants;
string code;
};
NameConstantsCode tests[] =
{
{
"vec4",
"%cval = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
"%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
},
{
"struct",
"%stype = OpTypeStruct %v4f32 %f32\n"
"%fp_stype = OpTypePointer Function %stype\n"
"%f32_n_1 = OpConstant %f32 -1.0\n"
"%f32_1_5 = OpConstant %f32 !0x3fc00000\n" // +1.5
"%cvec = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
"%cval = OpConstantComposite %stype %cvec %f32_n_1\n",
"%v = OpVariable %fp_stype Function %cval\n"
"%vec_ptr = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
"%f32_ptr = OpAccessChain %fp_f32 %v %c_u32_1\n"
"%vec_val = OpLoad %v4f32 %vec_ptr\n"
"%f32_val = OpLoad %f32 %f32_ptr\n"
"%tmp1 = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
"%tmp2 = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
"%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
},
{
// [1|0|0|0.5] [x] = x + 0.5
// [0|1|0|0.5] [y] = y + 0.5
// [0|0|1|0.5] [z] = z + 0.5
// [0|0|0|1 ] [1] = 1
"matrix",
"%mat4x4_f32 = OpTypeMatrix %v4f32 4\n"
"%v4f32_1_0_0_0 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
"%v4f32_0_1_0_0 = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
"%v4f32_0_0_1_0 = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
"%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
"%cval = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
"%transformed_param = OpMatrixTimesVector %v4f32 %cval %param1\n"
},
{
"array",
"%c_v4f32_1_1_1_0 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
"%fp_a4f32 = OpTypePointer Function %a4f32\n"
"%f32_n_1 = OpConstant %f32 -1.0\n"
"%f32_1_5 = OpConstant %f32 !0x3fc00000\n" // +1.5
"%carr = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
"%v = OpVariable %fp_a4f32 Function %carr\n"
"%f = OpAccessChain %fp_f32 %v %c_u32_0\n"
"%f1 = OpAccessChain %fp_f32 %v %c_u32_1\n"
"%f2 = OpAccessChain %fp_f32 %v %c_u32_2\n"
"%f3 = OpAccessChain %fp_f32 %v %c_u32_3\n"
"%f_val = OpLoad %f32 %f\n"
"%f1_val = OpLoad %f32 %f1\n"
"%f2_val = OpLoad %f32 %f2\n"
"%f3_val = OpLoad %f32 %f3\n"
"%ftot1 = OpFAdd %f32 %f_val %f1_val\n"
"%ftot2 = OpFAdd %f32 %ftot1 %f2_val\n"
"%ftot3 = OpFAdd %f32 %ftot2 %f3_val\n" // 0 - 1 + 1.5 + 0
"%add_vec = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
"%transformed_param = OpFAdd %v4f32 %param1 %add_vec\n"
},
{
//
// [
// {
// 0.0,
// [ 1.0, 1.0, 1.0, 1.0]
// },
// {
// 1.0,
// [ 0.0, 0.5, 0.0, 0.0]
// }, // ^^^
// {
// 0.0,
// [ 1.0, 1.0, 1.0, 1.0]
// }
// ]
"array_of_struct_of_array",
"%c_v4f32_1_1_1_0 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
"%fp_a4f32 = OpTypePointer Function %a4f32\n"
"%stype = OpTypeStruct %f32 %a4f32\n"
"%a3stype = OpTypeArray %stype %c_u32_3\n"
"%fp_a3stype = OpTypePointer Function %a3stype\n"
"%ca4f32_0 = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
"%ca4f32_1 = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
"%cstype1 = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
"%cstype2 = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
"%carr = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
"%v = OpVariable %fp_a3stype Function %carr\n"
"%f = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
"%f_l = OpLoad %f32 %f\n"
"%add_vec = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
"%transformed_param = OpFAdd %v4f32 %param1 %add_vec\n"
}
};
getHalfColorsFullAlpha(inputColors);
outputColors[0] = RGBA(255, 255, 255, 255);
outputColors[1] = RGBA(255, 127, 127, 255);
outputColors[2] = RGBA(127, 255, 127, 255);
outputColors[3] = RGBA(127, 127, 255, 255);
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
{
map<string, string> fragments;
fragments["pre_main"] = tests[testNdx].constants;
fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
}
return opConstantCompositeTests.release();
}
tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
RGBA inputColors[4];
RGBA outputColors[4];
map<string, string> fragments;
// vec4 test_code(vec4 param) {
// vec4 result = param;
// for (int i = 0; i < 4; ++i) {
// if (i == 0) result[i] = 0.;
// else result[i] = 1. - result[i];
// }
// return result;
// }
const char function[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n"
"%iptr = OpVariable %fp_i32 Function\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %iptr %c_i32_0\n"
" OpStore %result %param1\n"
" OpBranch %loop\n"
// Loop entry block.
"%loop = OpLabel\n"
"%ival = OpLoad %i32 %iptr\n"
"%lt_4 = OpSLessThan %bool %ival %c_i32_4\n"
" OpLoopMerge %exit %if_entry None\n"
" OpBranchConditional %lt_4 %if_entry %exit\n"
// Merge block for loop.
"%exit = OpLabel\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
// If-statement entry block.
"%if_entry = OpLabel\n"
"%loc = OpAccessChain %fp_f32 %result %ival\n"
"%eq_0 = OpIEqual %bool %ival %c_i32_0\n"
" OpSelectionMerge %if_exit None\n"
" OpBranchConditional %eq_0 %if_true %if_false\n"
// False branch for if-statement.
"%if_false = OpLabel\n"
"%val = OpLoad %f32 %loc\n"
"%sub = OpFSub %f32 %c_f32_1 %val\n"
" OpStore %loc %sub\n"
" OpBranch %if_exit\n"
// Merge block for if-statement.
"%if_exit = OpLabel\n"
"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
" OpStore %iptr %ival_next\n"
" OpBranch %loop\n"
// True branch for if-statement.
"%if_true = OpLabel\n"
" OpStore %loc %c_f32_0\n"
" OpBranch %if_exit\n"
" OpFunctionEnd\n";
fragments["testfun"] = function;
inputColors[0] = RGBA(127, 127, 127, 0);
inputColors[1] = RGBA(127, 0, 0, 0);
inputColors[2] = RGBA(0, 127, 0, 0);
inputColors[3] = RGBA(0, 0, 127, 0);
outputColors[0] = RGBA(0, 128, 128, 255);
outputColors[1] = RGBA(0, 255, 255, 255);
outputColors[2] = RGBA(0, 128, 255, 255);
outputColors[3] = RGBA(0, 255, 128, 255);
createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
return group.release();
}
tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
RGBA inputColors[4];
RGBA outputColors[4];
map<string, string> fragments;
const char typesAndConstants[] =
"%c_f32_p2 = OpConstant %f32 0.2\n"
"%c_f32_p4 = OpConstant %f32 0.4\n"
"%c_f32_p6 = OpConstant %f32 0.6\n"
"%c_f32_p8 = OpConstant %f32 0.8\n";
// vec4 test_code(vec4 param) {
// vec4 result = param;
// for (int i = 0; i < 4; ++i) {
// switch (i) {
// case 0: result[i] += .2; break;
// case 1: result[i] += .6; break;
// case 2: result[i] += .4; break;
// case 3: result[i] += .8; break;
// default: break; // unreachable
// }
// }
// return result;
// }
const char function[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n"
"%iptr = OpVariable %fp_i32 Function\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %iptr %c_i32_0\n"
" OpStore %result %param1\n"
" OpBranch %loop\n"
// Loop entry block.
"%loop = OpLabel\n"
"%ival = OpLoad %i32 %iptr\n"
"%lt_4 = OpSLessThan %bool %ival %c_i32_4\n"
" OpLoopMerge %exit %switch_exit None\n"
" OpBranchConditional %lt_4 %switch_entry %exit\n"
// Merge block for loop.
"%exit = OpLabel\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
// Switch-statement entry block.
"%switch_entry = OpLabel\n"
"%loc = OpAccessChain %fp_f32 %result %ival\n"
"%val = OpLoad %f32 %loc\n"
" OpSelectionMerge %switch_exit None\n"
" OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
"%case2 = OpLabel\n"
"%addp4 = OpFAdd %f32 %val %c_f32_p4\n"
" OpStore %loc %addp4\n"
" OpBranch %switch_exit\n"
"%switch_default = OpLabel\n"
" OpUnreachable\n"
"%case3 = OpLabel\n"
"%addp8 = OpFAdd %f32 %val %c_f32_p8\n"
" OpStore %loc %addp8\n"
" OpBranch %switch_exit\n"
"%case0 = OpLabel\n"
"%addp2 = OpFAdd %f32 %val %c_f32_p2\n"
" OpStore %loc %addp2\n"
" OpBranch %switch_exit\n"
// Merge block for switch-statement.
"%switch_exit = OpLabel\n"
"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
" OpStore %iptr %ival_next\n"
" OpBranch %loop\n"
"%case1 = OpLabel\n"
"%addp6 = OpFAdd %f32 %val %c_f32_p6\n"
" OpStore %loc %addp6\n"
" OpBranch %switch_exit\n"
" OpFunctionEnd\n";
fragments["pre_main"] = typesAndConstants;
fragments["testfun"] = function;
inputColors[0] = RGBA(127, 27, 127, 51);
inputColors[1] = RGBA(127, 0, 0, 51);
inputColors[2] = RGBA(0, 27, 0, 51);
inputColors[3] = RGBA(0, 0, 127, 51);
outputColors[0] = RGBA(178, 180, 229, 255);
outputColors[1] = RGBA(178, 153, 102, 255);
outputColors[2] = RGBA(51, 180, 102, 255);
outputColors[3] = RGBA(51, 153, 229, 255);
createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
return group.release();
}
tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
RGBA inputColors[4];
RGBA outputColors[4];
map<string, string> fragments;
const char decorations[] =
"OpDecorate %array_group ArrayStride 4\n"
"OpDecorate %struct_member_group Offset 0\n"
"%array_group = OpDecorationGroup\n"
"%struct_member_group = OpDecorationGroup\n"
"OpDecorate %group1 RelaxedPrecision\n"
"OpDecorate %group3 RelaxedPrecision\n"
"OpDecorate %group3 Invariant\n"
"OpDecorate %group3 Restrict\n"
"%group0 = OpDecorationGroup\n"
"%group1 = OpDecorationGroup\n"
"%group3 = OpDecorationGroup\n";
const char typesAndConstants[] =
"%a3f32 = OpTypeArray %f32 %c_u32_3\n"
"%struct1 = OpTypeStruct %a3f32\n"
"%struct2 = OpTypeStruct %a3f32\n"
"%fp_struct1 = OpTypePointer Function %struct1\n"
"%fp_struct2 = OpTypePointer Function %struct2\n"
"%c_f32_2 = OpConstant %f32 2.\n"
"%c_f32_n2 = OpConstant %f32 -2.\n"
"%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
"%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
"%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
"%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
const char function[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%result = OpVariable %fp_v4f32 Function\n"
"%v_struct1 = OpVariable %fp_struct1 Function\n"
"%v_struct2 = OpVariable %fp_struct2 Function\n"
" OpStore %result %param\n"
" OpStore %v_struct1 %c_struct1\n"
" OpStore %v_struct2 %c_struct2\n"
"%ptr1 = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
"%val1 = OpLoad %f32 %ptr1\n"
"%ptr2 = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
"%val2 = OpLoad %f32 %ptr2\n"
"%addvalues = OpFAdd %f32 %val1 %val2\n"
"%ptr = OpAccessChain %fp_f32 %result %c_i32_1\n"
"%val = OpLoad %f32 %ptr\n"
"%addresult = OpFAdd %f32 %addvalues %val\n"
" OpStore %ptr %addresult\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
struct CaseNameDecoration
{
string name;
string decoration;
};
CaseNameDecoration tests[] =
{
{
"same_decoration_group_on_multiple_types",
"OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
},
{
"empty_decoration_group",
"OpGroupDecorate %group0 %a3f32\n"
"OpGroupDecorate %group0 %result\n"
},
{
"one_element_decoration_group",
"OpGroupDecorate %array_group %a3f32\n"
},
{
"multiple_elements_decoration_group",
"OpGroupDecorate %group3 %v_struct1\n"
},
{
"multiple_decoration_groups_on_same_variable",
"OpGroupDecorate %group0 %v_struct2\n"
"OpGroupDecorate %group1 %v_struct2\n"
"OpGroupDecorate %group3 %v_struct2\n"
},
{
"same_decoration_group_multiple_times",
"OpGroupDecorate %group1 %addvalues\n"
"OpGroupDecorate %group1 %addvalues\n"
"OpGroupDecorate %group1 %addvalues\n"
},
};
getHalfColorsFullAlpha(inputColors);
getHalfColorsFullAlpha(outputColors);
for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
{
fragments["decoration"] = decorations + tests[idx].decoration;
fragments["pre_main"] = typesAndConstants;
fragments["testfun"] = function;
createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
}
return group.release();
}
struct SpecConstantTwoIntGraphicsCase
{
const char* caseName;
const char* scDefinition0;
const char* scDefinition1;
const char* scResultType;
const char* scOperation;
deInt32 scActualValue0;
deInt32 scActualValue1;
const char* resultOperation;
RGBA expectedColors[4];
SpecConstantTwoIntGraphicsCase (const char* name,
const char* definition0,
const char* definition1,
const char* resultType,
const char* operation,
deInt32 value0,
deInt32 value1,
const char* resultOp,
const RGBA (&output)[4])
: caseName (name)
, scDefinition0 (definition0)
, scDefinition1 (definition1)
, scResultType (resultType)
, scOperation (operation)
, scActualValue0 (value0)
, scActualValue1 (value1)
, resultOperation (resultOp)
{
expectedColors[0] = output[0];
expectedColors[1] = output[1];
expectedColors[2] = output[2];
expectedColors[3] = output[3];
}
};
tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
vector<SpecConstantTwoIntGraphicsCase> cases;
RGBA inputColors[4];
RGBA outputColors0[4];
RGBA outputColors1[4];
RGBA outputColors2[4];
const char decorations1[] =
"OpDecorate %sc_0 SpecId 0\n"
"OpDecorate %sc_1 SpecId 1\n";
const char typesAndConstants1[] =
"${OPTYPE_DEFINITIONS:opt}"
"%sc_0 = OpSpecConstant${SC_DEF0}\n"
"%sc_1 = OpSpecConstant${SC_DEF1}\n"
"%sc_op = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
const char function1[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%label = OpLabel\n"
"${TYPE_CONVERT:opt}"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %result %param\n"
"%gen = ${GEN_RESULT}\n"
"%index = OpIAdd %i32 %gen %c_i32_1\n"
"%loc = OpAccessChain %fp_f32 %result %index\n"
"%val = OpLoad %f32 %loc\n"
"%add = OpFAdd %f32 %val %c_f32_0_5\n"
" OpStore %loc %add\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
inputColors[0] = RGBA(127, 127, 127, 255);
inputColors[1] = RGBA(127, 0, 0, 255);
inputColors[2] = RGBA(0, 127, 0, 255);
inputColors[3] = RGBA(0, 0, 127, 255);
// Derived from inputColors[x] by adding 128 to inputColors[x][0].
outputColors0[0] = RGBA(255, 127, 127, 255);
outputColors0[1] = RGBA(255, 0, 0, 255);
outputColors0[2] = RGBA(128, 127, 0, 255);
outputColors0[3] = RGBA(128, 0, 127, 255);
// Derived from inputColors[x] by adding 128 to inputColors[x][1].
outputColors1[0] = RGBA(127, 255, 127, 255);
outputColors1[1] = RGBA(127, 128, 0, 255);
outputColors1[2] = RGBA(0, 255, 0, 255);
outputColors1[3] = RGBA(0, 128, 127, 255);
// Derived from inputColors[x] by adding 128 to inputColors[x][2].
outputColors2[0] = RGBA(127, 127, 255, 255);
outputColors2[1] = RGBA(127, 0, 128, 255);
outputColors2[2] = RGBA(0, 127, 128, 255);
outputColors2[3] = RGBA(0, 0, 255, 255);
const char addZeroToSc[] = "OpIAdd %i32 %c_i32_0 %sc_op";
const char addZeroToSc32[] = "OpIAdd %i32 %c_i32_0 %sc_op32";
const char selectTrueUsingSc[] = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
cases.push_back(SpecConstantTwoIntGraphicsCase("iadd", " %i32 0", " %i32 0", "%i32", "IAdd %sc_0 %sc_1", 19, -20, addZeroToSc, outputColors0));
cases.push_back(SpecConstantTwoIntGraphicsCase("isub", " %i32 0", " %i32 0", "%i32", "ISub %sc_0 %sc_1", 19, 20, addZeroToSc, outputColors0));
cases.push_back(SpecConstantTwoIntGraphicsCase("imul", " %i32 0", " %i32 0", "%i32", "IMul %sc_0 %sc_1", -1, -1, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv", " %i32 0", " %i32 0", "%i32", "SDiv %sc_0 %sc_1", -126, 126, addZeroToSc, outputColors0));
cases.push_back(SpecConstantTwoIntGraphicsCase("udiv", " %i32 0", " %i32 0", "%i32", "UDiv %sc_0 %sc_1", 126, 126, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("srem", " %i32 0", " %i32 0", "%i32", "SRem %sc_0 %sc_1", 3, 2, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("smod", " %i32 0", " %i32 0", "%i32", "SMod %sc_0 %sc_1", 3, 2, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("umod", " %i32 0", " %i32 0", "%i32", "UMod %sc_0 %sc_1", 1001, 500, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand", " %i32 0", " %i32 0", "%i32", "BitwiseAnd %sc_0 %sc_1", 0x33, 0x0d, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor", " %i32 0", " %i32 0", "%i32", "BitwiseOr %sc_0 %sc_1", 0, 1, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor", " %i32 0", " %i32 0", "%i32", "BitwiseXor %sc_0 %sc_1", 0x2e, 0x2f, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical", " %i32 0", " %i32 0", "%i32", "ShiftRightLogical %sc_0 %sc_1", 2, 1, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic", " %i32 0", " %i32 0", "%i32", "ShiftRightArithmetic %sc_0 %sc_1", -4, 2, addZeroToSc, outputColors0));
cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical", " %i32 0", " %i32 0", "%i32", "ShiftLeftLogical %sc_0 %sc_1", 1, 0, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan", " %i32 0", " %i32 0", "%bool", "SLessThan %sc_0 %sc_1", -20, -10, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan", " %i32 0", " %i32 0", "%bool", "ULessThan %sc_0 %sc_1", 10, 20, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan", " %i32 0", " %i32 0", "%bool", "SGreaterThan %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan", " %i32 0", " %i32 0", "%bool", "UGreaterThan %sc_0 %sc_1", 10, 5, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal", " %i32 0", " %i32 0", "%bool", "SLessThanEqual %sc_0 %sc_1", -10, -10, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal", " %i32 0", " %i32 0", "%bool", "ULessThanEqual %sc_0 %sc_1", 50, 100, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal", " %i32 0", " %i32 0", "%bool", "SGreaterThanEqual %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal", " %i32 0", " %i32 0", "%bool", "UGreaterThanEqual %sc_0 %sc_1", 10, 10, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("iequal", " %i32 0", " %i32 0", "%bool", "IEqual %sc_0 %sc_1", 42, 24, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland", "True %bool", "True %bool", "%bool", "LogicalAnd %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor", "False %bool", "False %bool", "%bool", "LogicalOr %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal", "True %bool", "True %bool", "%bool", "LogicalEqual %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal", "False %bool", "False %bool", "%bool", "LogicalNotEqual %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("snegate", " %i32 0", " %i32 0", "%i32", "SNegate %sc_0", -1, 0, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("not", " %i32 0", " %i32 0", "%i32", "Not %sc_0", -2, 0, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot", "False %bool", "False %bool", "%bool", "LogicalNot %sc_0", 1, 0, selectFalseUsingSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("select", "False %bool", " %i32 0", "%i32", "Select %sc_0 %sc_1 %c_i32_0", 1, 1, addZeroToSc, outputColors2));
cases.push_back(SpecConstantTwoIntGraphicsCase("sconvert", " %i32 0", " %i32 0", "%i16", "SConvert %sc_0", -1, 0, addZeroToSc32, outputColors0));
// -1082130432 stored as 32-bit two's complement is the binary representation of -1 as IEEE-754 Float
cases.push_back(SpecConstantTwoIntGraphicsCase("fconvert", " %f32 0", " %f32 0", "%f64", "FConvert %sc_0", -1082130432, 0, addZeroToSc32, outputColors0));
// \todo[2015-12-1 antiagainst] OpQuantizeToF16
for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
{
map<string, string> specializations;
map<string, string> fragments;
vector<deInt32> specConstants;
vector<string> features;
PushConstants noPushConstants;
GraphicsResources noResources;
GraphicsInterfaces noInterfaces;
std::vector<std::string> noExtensions;
// Special SPIR-V code for SConvert-case
if (strcmp(cases[caseNdx].caseName, "sconvert") == 0)
{
features.push_back("shaderInt16");
fragments["capability"] = "OpCapability Int16\n"; // Adds 16-bit integer capability
specializations["OPTYPE_DEFINITIONS"] = "%i16 = OpTypeInt 16 1\n"; // Adds 16-bit integer type
specializations["TYPE_CONVERT"] = "%sc_op32 = OpSConvert %i32 %sc_op\n"; // Converts 16-bit integer to 32-bit integer
}
// Special SPIR-V code for FConvert-case
if (strcmp(cases[caseNdx].caseName, "fconvert") == 0)
{
features.push_back("shaderFloat64");
fragments["capability"] = "OpCapability Float64\n"; // Adds 64-bit float capability
specializations["OPTYPE_DEFINITIONS"] = "%f64 = OpTypeFloat 64\n"; // Adds 64-bit float type
specializations["TYPE_CONVERT"] = "%sc_op32 = OpConvertFToS %i32 %sc_op\n"; // Converts 64-bit float to 32-bit integer
}
specializations["SC_DEF0"] = cases[caseNdx].scDefinition0;
specializations["SC_DEF1"] = cases[caseNdx].scDefinition1;
specializations["SC_RESULT_TYPE"] = cases[caseNdx].scResultType;
specializations["SC_OP"] = cases[caseNdx].scOperation;
specializations["GEN_RESULT"] = cases[caseNdx].resultOperation;
fragments["decoration"] = tcu::StringTemplate(decorations1).specialize(specializations);
fragments["pre_main"] = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
fragments["testfun"] = tcu::StringTemplate(function1).specialize(specializations);
specConstants.push_back(cases[caseNdx].scActualValue0);
specConstants.push_back(cases[caseNdx].scActualValue1);
createTestsForAllStages(
cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants,
noPushConstants, noResources, noInterfaces, noExtensions, features, VulkanFeatures(), group.get());
}
const char decorations2[] =
"OpDecorate %sc_0 SpecId 0\n"
"OpDecorate %sc_1 SpecId 1\n"
"OpDecorate %sc_2 SpecId 2\n";
const char typesAndConstants2[] =
"%vec3_0 = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
"%vec3_undef = OpUndef %v3i32\n"
"%sc_0 = OpSpecConstant %i32 0\n"
"%sc_1 = OpSpecConstant %i32 0\n"
"%sc_2 = OpSpecConstant %i32 0\n"
"%sc_vec3_0 = OpSpecConstantOp %v3i32 CompositeInsert %sc_0 %vec3_0 0\n" // (sc_0, 0, 0)
"%sc_vec3_1 = OpSpecConstantOp %v3i32 CompositeInsert %sc_1 %vec3_0 1\n" // (0, sc_1, 0)
"%sc_vec3_2 = OpSpecConstantOp %v3i32 CompositeInsert %sc_2 %vec3_0 2\n" // (0, 0, sc_2)
"%sc_vec3_0_s = OpSpecConstantOp %v3i32 VectorShuffle %sc_vec3_0 %vec3_undef 0 0xFFFFFFFF 2\n" // (sc_0, ???, 0)
"%sc_vec3_1_s = OpSpecConstantOp %v3i32 VectorShuffle %sc_vec3_1 %vec3_undef 0xFFFFFFFF 1 0\n" // (???, sc_1, 0)
"%sc_vec3_2_s = OpSpecConstantOp %v3i32 VectorShuffle %vec3_undef %sc_vec3_2 5 0xFFFFFFFF 5\n" // (sc_2, ???, sc_2)
"%sc_vec3_01 = OpSpecConstantOp %v3i32 VectorShuffle %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n" // (0, sc_0, sc_1)
"%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle %sc_vec3_01 %sc_vec3_2_s 5 1 2\n" // (sc_2, sc_0, sc_1)
"%sc_ext_0 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 0\n" // sc_2
"%sc_ext_1 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 1\n" // sc_0
"%sc_ext_2 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 2\n" // sc_1
"%sc_sub = OpSpecConstantOp %i32 ISub %sc_ext_0 %sc_ext_1\n" // (sc_2 - sc_0)
"%sc_final = OpSpecConstantOp %i32 IMul %sc_sub %sc_ext_2\n"; // (sc_2 - sc_0) * sc_1
const char function2[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%label = OpLabel\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %result %param\n"
"%loc = OpAccessChain %fp_f32 %result %sc_final\n"
"%val = OpLoad %f32 %loc\n"
"%add = OpFAdd %f32 %val %c_f32_0_5\n"
" OpStore %loc %add\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
map<string, string> fragments;
vector<deInt32> specConstants;
fragments["decoration"] = decorations2;
fragments["pre_main"] = typesAndConstants2;
fragments["testfun"] = function2;
specConstants.push_back(56789);
specConstants.push_back(-2);
specConstants.push_back(56788);
createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
return group.release();
}
tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
RGBA inputColors[4];
RGBA outputColors1[4];
RGBA outputColors2[4];
RGBA outputColors3[4];
map<string, string> fragments1;
map<string, string> fragments2;
map<string, string> fragments3;
const char typesAndConstants1[] =
"%c_f32_p2 = OpConstant %f32 0.2\n"
"%c_f32_p4 = OpConstant %f32 0.4\n"
"%c_f32_p5 = OpConstant %f32 0.5\n"
"%c_f32_p8 = OpConstant %f32 0.8\n";
// vec4 test_code(vec4 param) {
// vec4 result = param;
// for (int i = 0; i < 4; ++i) {
// float operand;
// switch (i) {
// case 0: operand = .2; break;
// case 1: operand = .5; break;
// case 2: operand = .4; break;
// case 3: operand = .0; break;
// default: break; // unreachable
// }
// result[i] += operand;
// }
// return result;
// }
const char function1[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n"
"%iptr = OpVariable %fp_i32 Function\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %iptr %c_i32_0\n"
" OpStore %result %param1\n"
" OpBranch %loop\n"
"%loop = OpLabel\n"
"%ival = OpLoad %i32 %iptr\n"
"%lt_4 = OpSLessThan %bool %ival %c_i32_4\n"
" OpLoopMerge %exit %phi None\n"
" OpBranchConditional %lt_4 %entry %exit\n"
"%entry = OpLabel\n"
"%loc = OpAccessChain %fp_f32 %result %ival\n"
"%val = OpLoad %f32 %loc\n"
" OpSelectionMerge %phi None\n"
" OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
"%case0 = OpLabel\n"
" OpBranch %phi\n"
"%case1 = OpLabel\n"
" OpBranch %phi\n"
"%case2 = OpLabel\n"
" OpBranch %phi\n"
"%case3 = OpLabel\n"
" OpBranch %phi\n"
"%default = OpLabel\n"
" OpUnreachable\n"
"%phi = OpLabel\n"
"%operand = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
"%add = OpFAdd %f32 %val %operand\n"
" OpStore %loc %add\n"
"%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
" OpStore %iptr %ival_next\n"
" OpBranch %loop\n"
"%exit = OpLabel\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
fragments1["pre_main"] = typesAndConstants1;
fragments1["testfun"] = function1;
getHalfColorsFullAlpha(inputColors);
outputColors1[0] = RGBA(178, 255, 229, 255);
outputColors1[1] = RGBA(178, 127, 102, 255);
outputColors1[2] = RGBA(51, 255, 102, 255);
outputColors1[3] = RGBA(51, 127, 229, 255);
createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
const char typesAndConstants2[] =
"%c_f32_p2 = OpConstant %f32 0.2\n";
// Add .4 to the second element of the given parameter.
const char function2[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %result %param\n"
"%loc = OpAccessChain %fp_f32 %result %c_i32_1\n"
"%val = OpLoad %f32 %loc\n"
" OpBranch %phi\n"
"%phi = OpLabel\n"
"%step = OpPhi %i32 %c_i32_0 %entry %step_next %phi\n"
"%accum = OpPhi %f32 %val %entry %accum_next %phi\n"
"%step_next = OpIAdd %i32 %step %c_i32_1\n"
"%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
"%still_loop = OpSLessThan %bool %step %c_i32_2\n"
" OpLoopMerge %exit %phi None\n"
" OpBranchConditional %still_loop %phi %exit\n"
"%exit = OpLabel\n"
" OpStore %loc %accum\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
fragments2["pre_main"] = typesAndConstants2;
fragments2["testfun"] = function2;
outputColors2[0] = RGBA(127, 229, 127, 255);
outputColors2[1] = RGBA(127, 102, 0, 255);
outputColors2[2] = RGBA(0, 229, 0, 255);
outputColors2[3] = RGBA(0, 102, 127, 255);
createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
const char typesAndConstants3[] =
"%true = OpConstantTrue %bool\n"
"%false = OpConstantFalse %bool\n"
"%c_f32_p2 = OpConstant %f32 0.2\n";
// Swap the second and the third element of the given parameter.
const char function3[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%result = OpVariable %fp_v4f32 Function\n"
" OpStore %result %param\n"
"%a_loc = OpAccessChain %fp_f32 %result %c_i32_1\n"
"%a_init = OpLoad %f32 %a_loc\n"
"%b_loc = OpAccessChain %fp_f32 %result %c_i32_2\n"
"%b_init = OpLoad %f32 %b_loc\n"
" OpBranch %phi\n"
"%phi = OpLabel\n"
"%still_loop = OpPhi %bool %true %entry %false %phi\n"
"%a_next = OpPhi %f32 %a_init %entry %b_next %phi\n"
"%b_next = OpPhi %f32 %b_init %entry %a_next %phi\n"
" OpLoopMerge %exit %phi None\n"
" OpBranchConditional %still_loop %phi %exit\n"
"%exit = OpLabel\n"
" OpStore %a_loc %a_next\n"
" OpStore %b_loc %b_next\n"
"%ret = OpLoad %v4f32 %result\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
fragments3["pre_main"] = typesAndConstants3;
fragments3["testfun"] = function3;
outputColors3[0] = RGBA(127, 127, 127, 255);
outputColors3[1] = RGBA(127, 0, 0, 255);
outputColors3[2] = RGBA(0, 0, 127, 255);
outputColors3[3] = RGBA(0, 127, 0, 255);
createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
return group.release();
}
tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
RGBA inputColors[4];
RGBA outputColors[4];
// With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
// For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
// only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
// On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
const char constantsAndTypes[] =
"%c_vec4_0 = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
"%c_vec4_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
"%c_f32_1pl2_23 = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
"%c_f32_1mi2_23 = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
"%c_f32_n1pn24 = OpConstant %f32 -0x1p-24\n";
const char function[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param = OpFunctionParameter %v4f32\n"
"%label = OpLabel\n"
"%var1 = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
"%var2 = OpVariable %fp_f32 Function\n"
"%red = OpCompositeExtract %f32 %param 0\n"
"%plus_red = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
" OpStore %var2 %plus_red\n"
"%val1 = OpLoad %f32 %var1\n"
"%val2 = OpLoad %f32 %var2\n"
"%mul = OpFMul %f32 %val1 %val2\n"
"%add = OpFAdd %f32 %mul %c_f32_n1\n"
"%is0 = OpFOrdEqual %bool %add %c_f32_0\n"
"%isn1n24 = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
"%success = OpLogicalOr %bool %is0 %isn1n24\n"
"%v4success = OpCompositeConstruct %v4bool %success %success %success %success\n"
"%ret = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
" OpReturnValue %ret\n"
" OpFunctionEnd\n";
struct CaseNameDecoration
{
string name;
string decoration;
};
CaseNameDecoration tests[] = {
{"multiplication", "OpDecorate %mul NoContraction"},
{"addition", "OpDecorate %add NoContraction"},
{"both", "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
};
getHalfColorsFullAlpha(inputColors);
for (deUint8 idx = 0; idx < 4; ++idx)
{
inputColors[idx].setRed(0);
outputColors[idx] = RGBA(0, 0, 0, 255);
}
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
{
map<string, string> fragments;
fragments["decoration"] = tests[testNdx].decoration;
fragments["pre_main"] = constantsAndTypes;
fragments["testfun"] = function;
createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
}
return group.release();
}
tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
RGBA colors[4];
const char constantsAndTypes[] =
"%c_a2f32_1 = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
"%fp_a2f32 = OpTypePointer Function %a2f32\n"
"%stype = OpTypeStruct %v4f32 %a2f32 %f32\n"
"%fp_stype = OpTypePointer Function %stype\n";
const char function[] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%lbl = OpLabel\n"
"%v1 = OpVariable %fp_v4f32 Function\n"
"%v2 = OpVariable %fp_a2f32 Function\n"
"%v3 = OpVariable %fp_f32 Function\n"
"%v = OpVariable %fp_stype Function\n"
"%vv = OpVariable %fp_stype Function\n"
"%vvv = OpVariable %fp_f32 Function\n"
" OpStore %v1 %c_v4f32_1_1_1_1\n"
" OpStore %v2 %c_a2f32_1\n"
" OpStore %v3 %c_f32_1\n"
"%p_v4f32 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
"%p_a2f32 = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
"%p_f32 = OpAccessChain %fp_f32 %v %c_u32_2\n"
"%v1_v = OpLoad %v4f32 %v1 ${access_type}\n"
"%v2_v = OpLoad %a2f32 %v2 ${access_type}\n"
"%v3_v = OpLoad %f32 %v3 ${access_type}\n"
" OpStore %p_v4f32 %v1_v ${access_type}\n"
" OpStore %p_a2f32 %v2_v ${access_type}\n"
" OpStore %p_f32 %v3_v ${access_type}\n"
" OpCopyMemory %vv %v ${access_type}\n"
" OpCopyMemory %vvv %p_f32 ${access_type}\n"
"%p_f32_2 = OpAccessChain %fp_f32 %vv %c_u32_2\n"
"%v_f32_2 = OpLoad %f32 %p_f32_2\n"
"%v_f32_3 = OpLoad %f32 %vvv\n"
"%ret1 = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
"%ret2 = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
" OpReturnValue %ret2\n"
" OpFunctionEnd\n";
struct NameMemoryAccess
{
string name;
string accessType;
};
NameMemoryAccess tests[] =
{
{ "none", "" },
{ "volatile", "Volatile" },
{ "aligned", "Aligned 1" },
{ "volatile_aligned", "Volatile|Aligned 1" },
{ "nontemporal_aligned", "Nontemporal|Aligned 1" },
{ "volatile_nontemporal", "Volatile|Nontemporal" },
{ "volatile_nontermporal_aligned", "Volatile|Nontemporal|Aligned 1" },
};
getHalfColorsFullAlpha(colors);
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
{
map<string, string> fragments;
map<string, string> memoryAccess;
memoryAccess["access_type"] = tests[testNdx].accessType;
fragments["pre_main"] = constantsAndTypes;
fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
}
return memoryAccessTests.release();
}
tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> opUndefTests (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
RGBA defaultColors[4];
map<string, string> fragments;
getDefaultColors(defaultColors);
// First, simple cases that don't do anything with the OpUndef result.
struct NameCodePair { string name, decl, type; };
const NameCodePair tests[] =
{
{"bool", "", "%bool"},
{"vec2uint32", "", "%v2u32"},
{"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown", "%type"},
{"sampler", "%type = OpTypeSampler", "%type"},
{"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img", "%type"},
{"pointer", "", "%fp_i32"},
{"runtimearray", "%type = OpTypeRuntimeArray %f32", "%type"},
{"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100", "%type"},
{"struct", "%type = OpTypeStruct %f32 %i32 %u32", "%type"}};
for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
{
fragments["undef_type"] = tests[testNdx].type;
fragments["testfun"] = StringTemplate(
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef ${undef_type}\n"
"OpReturnValue %param1\n"
"OpFunctionEnd\n").specialize(fragments);
fragments["pre_main"] = tests[testNdx].decl;
createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
}
fragments.clear();
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef %f32\n"
"%zero = OpFMul %f32 %undef %c_f32_0\n"
"%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
"%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"%b = OpFAdd %f32 %a %actually_zero\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef %i32\n"
"%zero = OpIMul %i32 %undef %c_i32_0\n"
"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef %u32\n"
"%zero = OpIMul %u32 %undef %c_i32_0\n"
"%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef %v4f32\n"
"%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
"%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
"%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
"%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
"%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
"%is_nan_0 = OpIsNan %bool %zero_0\n"
"%is_nan_1 = OpIsNan %bool %zero_1\n"
"%is_nan_2 = OpIsNan %bool %zero_2\n"
"%is_nan_3 = OpIsNan %bool %zero_3\n"
"%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
"%actually_zero_1 = OpSelect %f32 %is_nan_1 %c_f32_0 %zero_1\n"
"%actually_zero_2 = OpSelect %f32 %is_nan_2 %c_f32_0 %zero_2\n"
"%actually_zero_3 = OpSelect %f32 %is_nan_3 %c_f32_0 %zero_3\n"
"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
"%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
"%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
"%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
"%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
fragments["pre_main"] =
"%m2x2f32 = OpTypeMatrix %v2f32 2\n";
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%undef = OpUndef %m2x2f32\n"
"%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
"%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
"%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
"%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
"%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
"%is_nan_0 = OpIsNan %bool %zero_0\n"
"%is_nan_1 = OpIsNan %bool %zero_1\n"
"%is_nan_2 = OpIsNan %bool %zero_2\n"
"%is_nan_3 = OpIsNan %bool %zero_3\n"
"%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
"%actually_zero_1 = OpSelect %f32 %is_nan_1 %c_f32_0 %zero_1\n"
"%actually_zero_2 = OpSelect %f32 %is_nan_2 %c_f32_0 %zero_2\n"
"%actually_zero_3 = OpSelect %f32 %is_nan_3 %c_f32_0 %zero_3\n"
"%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
"%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
"%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
"%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
"%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
"%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
"%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
"%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
"%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
"%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
"%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
return opUndefTests.release();
}
void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
{
const RGBA inputColors[4] =
{
RGBA(0, 0, 0, 255),
RGBA(0, 0, 255, 255),
RGBA(0, 255, 0, 255),
RGBA(0, 255, 255, 255)
};
const RGBA expectedColors[4] =
{
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255)
};
const struct SingleFP16Possibility
{
const char* name;
const char* constant; // Value to assign to %test_constant.
float valueAsFloat;
const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
} tests[] =
{
{
"negative",
"-0x1.3p1\n",
-constructNormalizedFloat(1, 0x300000),
"%cond = OpFOrdEqual %bool %c %test_constant\n"
}, // -19
{
"positive",
"0x1.0p7\n",
constructNormalizedFloat(7, 0x000000),
"%cond = OpFOrdEqual %bool %c %test_constant\n"
}, // +128
// SPIR-V requires that OpQuantizeToF16 flushes
// any numbers that would end up denormalized in F16 to zero.
{
"denorm",
"0x0.0006p-126\n",
std::ldexp(1.5f, -140),
"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
}, // denorm
{
"negative_denorm",
"-0x0.0006p-126\n",
-std::ldexp(1.5f, -140),
"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
}, // -denorm
{
"too_small",
"0x1.0p-16\n",
std::ldexp(1.0f, -16),
"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
}, // too small positive
{
"negative_too_small",
"-0x1.0p-32\n",
-std::ldexp(1.0f, -32),
"%cond = OpFOrdEqual %bool %c %c_f32_0\n"
}, // too small negative
{
"negative_inf",
"-0x1.0p128\n",
-std::ldexp(1.0f, 128),
"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
"%inf = OpIsInf %bool %c\n"
"%cond = OpLogicalAnd %bool %gz %inf\n"
}, // -inf to -inf
{
"inf",
"0x1.0p128\n",
std::ldexp(1.0f, 128),
"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
"%inf = OpIsInf %bool %c\n"
"%cond = OpLogicalAnd %bool %gz %inf\n"
}, // +inf to +inf
{
"round_to_negative_inf",
"-0x1.0p32\n",
-std::ldexp(1.0f, 32),
"%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
"%inf = OpIsInf %bool %c\n"
"%cond = OpLogicalAnd %bool %gz %inf\n"
}, // round to -inf
{
"round_to_inf",
"0x1.0p16\n",
std::ldexp(1.0f, 16),
"%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
"%inf = OpIsInf %bool %c\n"
"%cond = OpLogicalAnd %bool %gz %inf\n"
}, // round to +inf
{
"nan",
"0x1.1p128\n",
std::numeric_limits<float>::quiet_NaN(),
// Test for any NaN value, as NaNs are not preserved
"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
"%cond = OpIsNan %bool %direct_quant\n"
}, // nan
{
"negative_nan",
"-0x1.0001p128\n",
std::numeric_limits<float>::quiet_NaN(),
// Test for any NaN value, as NaNs are not preserved
"%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
"%cond = OpIsNan %bool %direct_quant\n"
} // -nan
};
const char* constants =
"%test_constant = OpConstant %f32 "; // The value will be test.constant.
StringTemplate function (
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"%b = OpFAdd %f32 %test_constant %a\n"
"%c = OpQuantizeToF16 %f32 %b\n"
"${condition}\n"
"%v4cond = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
"%retval = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
" OpReturnValue %retval\n"
"OpFunctionEnd\n"
);
const char* specDecorations = "OpDecorate %test_constant SpecId 0\n";
const char* specConstants =
"%test_constant = OpSpecConstant %f32 0.\n"
"%c = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
StringTemplate specConstantFunction(
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"${condition}\n"
"%v4cond = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
"%retval = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
" OpReturnValue %retval\n"
"OpFunctionEnd\n"
);
for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
{
map<string, string> codeSpecialization;
map<string, string> fragments;
codeSpecialization["condition"] = tests[idx].condition;
fragments["testfun"] = function.specialize(codeSpecialization);
fragments["pre_main"] = string(constants) + tests[idx].constant + "\n";
createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
}
for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
{
map<string, string> codeSpecialization;
map<string, string> fragments;
vector<deInt32> passConstants;
deInt32 specConstant;
codeSpecialization["condition"] = tests[idx].condition;
fragments["testfun"] = specConstantFunction.specialize(codeSpecialization);
fragments["decoration"] = specDecorations;
fragments["pre_main"] = specConstants;
memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
passConstants.push_back(specConstant);
createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
}
}
void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
{
RGBA inputColors[4] = {
RGBA(0, 0, 0, 255),
RGBA(0, 0, 255, 255),
RGBA(0, 255, 0, 255),
RGBA(0, 255, 255, 255)
};
RGBA expectedColors[4] =
{
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255),
RGBA(255, 0, 0, 255)
};
struct DualFP16Possibility
{
const char* name;
const char* input;
float inputAsFloat;
const char* possibleOutput1;
const char* possibleOutput2;
} tests[] = {
{
"positive_round_up_or_round_down",
"0x1.3003p8",
constructNormalizedFloat(8, 0x300300),
"0x1.304p8",
"0x1.3p8"
},
{
"negative_round_up_or_round_down",
"-0x1.6008p-7",
-constructNormalizedFloat(-7, 0x600800),
"-0x1.6p-7",
"-0x1.604p-7"
},
{
"carry_bit",
"0x1.01ep2",
constructNormalizedFloat(2, 0x01e000),
"0x1.01cp2",
"0x1.02p2"
},
{
"carry_to_exponent",
"0x1.ffep1",
constructNormalizedFloat(1, 0xffe000),
"0x1.ffcp1",
"0x1.0p2"
},
};
StringTemplate constants (
"%input_const = OpConstant %f32 ${input}\n"
"%possible_solution1 = OpConstant %f32 ${output1}\n"
"%possible_solution2 = OpConstant %f32 ${output2}\n"
);
StringTemplate specConstants (
"%input_const = OpSpecConstant %f32 0.\n"
"%possible_solution1 = OpConstant %f32 ${output1}\n"
"%possible_solution2 = OpConstant %f32 ${output2}\n"
);
const char* specDecorations = "OpDecorate %input_const SpecId 0\n";
const char* function =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
// For the purposes of this test we assume that 0.f will always get
// faithfully passed through the pipeline stages.
"%b = OpFAdd %f32 %input_const %a\n"
"%c = OpQuantizeToF16 %f32 %b\n"
"%eq_1 = OpFOrdEqual %bool %c %possible_solution1\n"
"%eq_2 = OpFOrdEqual %bool %c %possible_solution2\n"
"%cond = OpLogicalOr %bool %eq_1 %eq_2\n"
"%v4cond = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
"%retval = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
" OpReturnValue %retval\n"
"OpFunctionEnd\n";
for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
map<string, string> fragments;
map<string, string> constantSpecialization;
constantSpecialization["input"] = tests[idx].input;
constantSpecialization["output1"] = tests[idx].possibleOutput1;
constantSpecialization["output2"] = tests[idx].possibleOutput2;
fragments["testfun"] = function;
fragments["pre_main"] = constants.specialize(constantSpecialization);
createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
}
for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
map<string, string> fragments;
map<string, string> constantSpecialization;
vector<deInt32> passConstants;
deInt32 specConstant;
constantSpecialization["output1"] = tests[idx].possibleOutput1;
constantSpecialization["output2"] = tests[idx].possibleOutput2;
fragments["testfun"] = function;
fragments["decoration"] = specDecorations;
fragments["pre_main"] = specConstants.specialize(constantSpecialization);
memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
passConstants.push_back(specConstant);
createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
}
}
tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
createOpQuantizeSingleOptionTests(opQuantizeTests.get());
createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
return opQuantizeTests.release();
}
struct ShaderPermutation
{
deUint8 vertexPermutation;
deUint8 geometryPermutation;
deUint8 tesscPermutation;
deUint8 tessePermutation;
deUint8 fragmentPermutation;
};
ShaderPermutation getShaderPermutation(deUint8 inputValue)
{
ShaderPermutation permutation =
{
static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
};
return permutation;
}
tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
{
RGBA defaultColors[4];
RGBA invertedColors[4];
de::MovePtr<tcu::TestCaseGroup> moduleTests (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
const ShaderElement combinedPipeline[] =
{
ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
};
getDefaultColors(defaultColors);
getInvertedDefaultColors(invertedColors);
addFunctionCaseWithPrograms<InstanceContext>(
moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline,
createInstanceContext(combinedPipeline, map<string, string>()));
const char* numbers[] =
{
"1", "2"
};
for (deInt8 idx = 0; idx < 32; ++idx)
{
ShaderPermutation permutation = getShaderPermutation(idx);
string name = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
const ShaderElement pipeline[] =
{
ShaderElement("vert", string("vert") + numbers[permutation.vertexPermutation], VK_SHADER_STAGE_VERTEX_BIT),
ShaderElement("geom", string("geom") + numbers[permutation.geometryPermutation], VK_SHADER_STAGE_GEOMETRY_BIT),
ShaderElement("tessc", string("tessc") + numbers[permutation.tesscPermutation], VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
ShaderElement("tesse", string("tesse") + numbers[permutation.tessePermutation], VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
ShaderElement("frag", string("frag") + numbers[permutation.fragmentPermutation], VK_SHADER_STAGE_FRAGMENT_BIT)
};
// If there are an even number of swaps, then it should be no-op.
// If there are an odd number, the color should be flipped.
if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
{
addFunctionCaseWithPrograms<InstanceContext>(
moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
}
else
{
addFunctionCaseWithPrograms<InstanceContext>(
moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
}
}
return moduleTests.release();
}
tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
RGBA defaultColors[4];
getDefaultColors(defaultColors);
map<string, string> fragments;
fragments["pre_main"] =
"%c_f32_5 = OpConstant %f32 5.\n";
// A loop with a single block. The Continue Target is the loop block
// itself. In SPIR-V terms, the "loop construct" contains no blocks at all
// -- the "continue construct" forms the entire loop.
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";adds and subtracts 1.0 to %val in alternate iterations\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
"%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
"%val = OpFAdd %f32 %val1 %delta\n"
"%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpLoopMerge %exit %loop None\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n";
createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
// Body comprised of multiple basic blocks.
const StringTemplate multiBlock(
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";adds and subtracts 1.0 to %val in alternate iterations\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
"%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
"%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
// There are several possibilities for the Continue Target below. Each
// will be specialized into a separate test case.
"OpLoopMerge %exit ${continue_target} None\n"
"OpBranch %if\n"
"%if = OpLabel\n"
";delta_next = (delta > 0) ? -1 : 1;\n"
"%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
"OpSelectionMerge %gather DontFlatten\n"
"OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
"%odd = OpLabel\n"
"OpBranch %gather\n"
"%even = OpLabel\n"
"OpBranch %gather\n"
"%gather = OpLabel\n"
"%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
"%val = OpFAdd %f32 %val1 %delta\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n");
map<string, string> continue_target;
// The Continue Target is the loop block itself.
continue_target["continue_target"] = "%loop";
fragments["testfun"] = multiBlock.specialize(continue_target);
createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
// The Continue Target is at the end of the loop.
continue_target["continue_target"] = "%gather";
fragments["testfun"] = multiBlock.specialize(continue_target);
createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
// A loop with continue statement.
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";adds 4, 3, and 1 to %val0 (skips 2)\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
"%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
"OpLoopMerge %exit %continue None\n"
"OpBranch %if\n"
"%if = OpLabel\n"
";skip if %count==2\n"
"%eq2 = OpIEqual %bool %count %c_i32_2\n"
"OpSelectionMerge %continue DontFlatten\n"
"OpBranchConditional %eq2 %continue %body\n"
"%body = OpLabel\n"
"%fcount = OpConvertSToF %f32 %count\n"
"%val2 = OpFAdd %f32 %val1 %fcount\n"
"OpBranch %continue\n"
"%continue = OpLabel\n"
"%val = OpPhi %f32 %val2 %body %val1 %if\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
"%same = OpFSub %f32 %val %c_f32_8\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n";
createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
// A loop with break.
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
";param1 components are between 0 and 1, so dot product is 4 or less\n"
"%dot = OpDot %f32 %param1 %param1\n"
"%div = OpFDiv %f32 %dot %c_f32_5\n"
"%zero = OpConvertFToU %u32 %div\n"
"%two = OpIAdd %i32 %zero %c_i32_2\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";adds 4 and 3 to %val0 (exits early)\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
"OpLoopMerge %exit %continue None\n"
"OpBranch %if\n"
"%if = OpLabel\n"
";end loop if %count==%two\n"
"%above2 = OpSGreaterThan %bool %count %two\n"
"OpSelectionMerge %continue DontFlatten\n"
"OpBranchConditional %above2 %body %exit\n"
"%body = OpLabel\n"
"%fcount = OpConvertSToF %f32 %count\n"
"%val2 = OpFAdd %f32 %val1 %fcount\n"
"OpBranch %continue\n"
"%continue = OpLabel\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
"%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
"%same = OpFSub %f32 %val_post %c_f32_7\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n";
createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
// A loop with return.
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
";param1 components are between 0 and 1, so dot product is 4 or less\n"
"%dot = OpDot %f32 %param1 %param1\n"
"%div = OpFDiv %f32 %dot %c_f32_5\n"
"%zero = OpConvertFToU %u32 %div\n"
"%two = OpIAdd %i32 %zero %c_i32_2\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";returns early without modifying %param1\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
"%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
"OpLoopMerge %exit %continue None\n"
"OpBranch %if\n"
"%if = OpLabel\n"
";return if %count==%two\n"
"%above2 = OpSGreaterThan %bool %count %two\n"
"OpSelectionMerge %continue DontFlatten\n"
"OpBranchConditional %above2 %body %early_exit\n"
"%early_exit = OpLabel\n"
"OpReturnValue %param1\n"
"%body = OpLabel\n"
"%fcount = OpConvertSToF %f32 %count\n"
"%val2 = OpFAdd %f32 %val1 %fcount\n"
"OpBranch %continue\n"
"%continue = OpLabel\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
";should never get here, so return an incorrect result\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n";
createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
// Continue inside a switch block to break to enclosing loop's merge block.
// Matches roughly the following GLSL code:
// for (; keep_going; keep_going = false)
// {
// switch (int(param1.x))
// {
// case 0: continue;
// case 1: continue;
// default: continue;
// }
// dead code: modify return value to invalid result.
// }
fragments["pre_main"] =
"%fp_bool = OpTypePointer Function %bool\n"
"%true = OpConstantTrue %bool\n"
"%false = OpConstantFalse %bool\n";
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%keep_going = OpVariable %fp_bool Function\n"
"%val_ptr = OpVariable %fp_f32 Function\n"
"%param1_x = OpCompositeExtract %f32 %param1 0\n"
"OpStore %keep_going %true\n"
"OpBranch %forloop_begin\n"
"%forloop_begin = OpLabel\n"
"OpLoopMerge %forloop_merge %forloop_continue None\n"
"OpBranch %forloop\n"
"%forloop = OpLabel\n"
"%for_condition = OpLoad %bool %keep_going\n"
"OpBranchConditional %for_condition %forloop_body %forloop_merge\n"
"%forloop_body = OpLabel\n"
"OpStore %val_ptr %param1_x\n"
"%param1_x_int = OpConvertFToS %i32 %param1_x\n"
"OpSelectionMerge %switch_merge None\n"
"OpSwitch %param1_x_int %default 0 %case_0 1 %case_1\n"
"%case_0 = OpLabel\n"
"OpBranch %forloop_continue\n"
"%case_1 = OpLabel\n"
"OpBranch %forloop_continue\n"
"%default = OpLabel\n"
"OpBranch %forloop_continue\n"
"%switch_merge = OpLabel\n"
";should never get here, so change the return value to invalid result\n"
"OpStore %val_ptr %c_f32_1\n"
"OpBranch %forloop_continue\n"
"%forloop_continue = OpLabel\n"
"OpStore %keep_going %false\n"
"OpBranch %forloop_begin\n"
"%forloop_merge = OpLabel\n"
"%val = OpLoad %f32 %val_ptr\n"
"%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
"OpReturnValue %result\n"
"OpFunctionEnd\n";
createTestsForAllStages("switch_continue", defaultColors, defaultColors, fragments, testGroup.get());
return testGroup.release();
}
// A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
map<string, string> fragments;
// A barrier inside a function body.
fragments["pre_main"] =
"%Workgroup = OpConstant %i32 2\n"
"%SequentiallyConsistent = OpConstant %i32 0x10\n";
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"OpReturnValue %param1\n"
"OpFunctionEnd\n";
addTessCtrlTest(testGroup.get(), "in_function", fragments);
// Common setup code for the following tests.
fragments["pre_main"] =
"%Workgroup = OpConstant %i32 2\n"
"%SequentiallyConsistent = OpConstant %i32 0x10\n"
"%c_f32_5 = OpConstant %f32 5.\n";
const string setupPercentZero = // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
";param1 components are between 0 and 1, so dot product is 4 or less\n"
"%dot = OpDot %f32 %param1 %param1\n"
"%div = OpFDiv %f32 %dot %c_f32_5\n"
"%zero = OpConvertFToU %u32 %div\n";
// Barriers inside OpSwitch branches.
fragments["testfun"] =
setupPercentZero +
"OpSelectionMerge %switch_exit None\n"
"OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
"%case1 = OpLabel\n"
";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
"OpBranch %switch_exit\n"
"%switch_default = OpLabel\n"
"%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"OpBranch %switch_exit\n"
"%case0 = OpLabel\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"OpBranch %switch_exit\n"
"%switch_exit = OpLabel\n"
"%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
addTessCtrlTest(testGroup.get(), "in_switch", fragments);
// Barriers inside if-then-else.
fragments["testfun"] =
setupPercentZero +
"%eq0 = OpIEqual %bool %zero %c_u32_0\n"
"OpSelectionMerge %exit DontFlatten\n"
"OpBranchConditional %eq0 %then %else\n"
"%else = OpLabel\n"
";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
"OpBranch %exit\n"
"%then = OpLabel\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"OpBranch %exit\n"
"%exit = OpLabel\n"
"%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
addTessCtrlTest(testGroup.get(), "in_if", fragments);
// A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
// http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
fragments["testfun"] =
setupPercentZero +
"%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
"%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
"OpSelectionMerge %exit DontFlatten\n"
"OpBranchConditional %thread0 %then %else\n"
"%else = OpLabel\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %exit\n"
"%then = OpLabel\n"
"%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
"OpBranch %exit\n"
"%exit = OpLabel\n"
"%val = OpPhi %f32 %val0 %else %val1 %then\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
// A barrier inside a loop.
fragments["pre_main"] =
"%Workgroup = OpConstant %i32 2\n"
"%SequentiallyConsistent = OpConstant %i32 0x10\n"
"%c_f32_10 = OpConstant %f32 10.\n";
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%entry = OpLabel\n"
"%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"OpBranch %loop\n"
";adds 4, 3, 2, and 1 to %val0\n"
"%loop = OpLabel\n"
"%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
"%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
"OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
"%fcount = OpConvertSToF %f32 %count\n"
"%val = OpFAdd %f32 %val1 %fcount\n"
"%count__ = OpISub %i32 %count %c_i32_1\n"
"%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
"OpLoopMerge %exit %loop None\n"
"OpBranchConditional %again %loop %exit\n"
"%exit = OpLabel\n"
"%same = OpFSub %f32 %val %c_f32_10\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
addTessCtrlTest(testGroup.get(), "in_loop", fragments);
return testGroup.release();
}
// Test for the OpFRem instruction.
tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
map<string, string> fragments;
RGBA inputColors[4];
RGBA outputColors[4];
fragments["pre_main"] =
"%c_f32_3 = OpConstant %f32 3.0\n"
"%c_f32_n3 = OpConstant %f32 -3.0\n"
"%c_f32_4 = OpConstant %f32 4.0\n"
"%c_f32_p75 = OpConstant %f32 0.75\n"
"%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
"%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
"%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
// The test does the following.
// vec4 result = (param1 * 8.0) - 4.0;
// return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
"%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
"%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
"%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
"%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
"%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
"OpReturnValue %xy_0_1\n"
"OpFunctionEnd\n";
inputColors[0] = RGBA(16, 16, 0, 255);
inputColors[1] = RGBA(232, 232, 0, 255);
inputColors[2] = RGBA(232, 16, 0, 255);
inputColors[3] = RGBA(16, 232, 0, 255);
outputColors[0] = RGBA(64, 64, 0, 255);
outputColors[1] = RGBA(255, 255, 0, 255);
outputColors[2] = RGBA(255, 64, 0, 255);
outputColors[3] = RGBA(64, 255, 0, 255);
createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
return testGroup.release();
}
// Test for the OpSRem instruction.
tcu::TestCaseGroup* createOpSRemGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "srem", "OpSRem"));
map<string, string> fragments;
fragments["pre_main"] =
"%c_f32_255 = OpConstant %f32 255.0\n"
"%c_i32_128 = OpConstant %i32 128\n"
"%c_i32_255 = OpConstant %i32 255\n"
"%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
"%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
"%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
// The test does the following.
// ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
// ivec4 result = ivec4(srem(ints.x, ints.y), srem(ints.y, ints.z), srem(ints.z, ints.x), 255);
// return float(result + 128) / 255.0;
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
"%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
"%uints_in = OpConvertFToS %v4i32 %add0_5\n"
"%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
"%x_in = OpCompositeExtract %i32 %ints_in 0\n"
"%y_in = OpCompositeExtract %i32 %ints_in 1\n"
"%z_in = OpCompositeExtract %i32 %ints_in 2\n"
"%x_out = OpSRem %i32 %x_in %y_in\n"
"%y_out = OpSRem %i32 %y_in %z_in\n"
"%z_out = OpSRem %i32 %z_in %x_in\n"
"%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
"%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
"%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
"%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
"OpReturnValue %float_out\n"
"OpFunctionEnd\n";
const struct CaseParams
{
const char* name;
const char* failMessageTemplate; // customized status message
qpTestResult failResult; // override status on failure
int operands[4][3]; // four (x, y, z) vectors of operands
int results[4][3]; // four (x, y, z) vectors of results
} cases[] =
{
{
"positive",
"${reason}",
QP_TEST_RESULT_FAIL,
{ { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } }, // operands
{ { 5, 12, 2 }, { 0, 5, 2 }, { 3, 8, 6 }, { 25, 60, 0 } }, // results
},
{
"all",
"Inconsistent results, but within specification: ${reason}",
negFailResult, // negative operands, not required by the spec
{ { 5, 12, -17 }, { -5, -5, 7 }, { 75, 8, -81 }, { 25, -60, 100 } }, // operands
{ { 5, 12, -2 }, { 0, -5, 2 }, { 3, 8, -6 }, { 25, -60, 0 } }, // results
},
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
RGBA inputColors[4];
RGBA outputColors[4];
for (int i = 0; i < 4; ++i)
{
inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
}
createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
}
return testGroup.release();
}
// Test for the OpSMod instruction.
tcu::TestCaseGroup* createOpSModGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
{
de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "smod", "OpSMod"));
map<string, string> fragments;
fragments["pre_main"] =
"%c_f32_255 = OpConstant %f32 255.0\n"
"%c_i32_128 = OpConstant %i32 128\n"
"%c_i32_255 = OpConstant %i32 255\n"
"%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
"%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
"%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
// The test does the following.
// ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
// ivec4 result = ivec4(smod(ints.x, ints.y), smod(ints.y, ints.z), smod(ints.z, ints.x), 255);
// return float(result + 128) / 255.0;
fragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
"%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
"%uints_in = OpConvertFToS %v4i32 %add0_5\n"
"%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
"%x_in = OpCompositeExtract %i32 %ints_in 0\n"
"%y_in = OpCompositeExtract %i32 %ints_in 1\n"
"%z_in = OpCompositeExtract %i32 %ints_in 2\n"
"%x_out = OpSMod %i32 %x_in %y_in\n"
"%y_out = OpSMod %i32 %y_in %z_in\n"
"%z_out = OpSMod %i32 %z_in %x_in\n"
"%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
"%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
"%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
"%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
"OpReturnValue %float_out\n"
"OpFunctionEnd\n";
const struct CaseParams
{
const char* name;
const char* failMessageTemplate; // customized status message
qpTestResult failResult; // override status on failure
int operands[4][3]; // four (x, y, z) vectors of operands
int results[4][3]; // four (x, y, z) vectors of results
} cases[] =
{
{
"positive",
"${reason}",
QP_TEST_RESULT_FAIL,
{ { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } }, // operands
{ { 5, 12, 2 }, { 0, 5, 2 }, { 3, 8, 6 }, { 25, 60, 0 } }, // results
},
{
"all",
"Inconsistent results, but within specification: ${reason}",
negFailResult, // negative operands, not required by the spec
{ { 5, 12, -17 }, { -5, -5, 7 }, { 75, 8, -81 }, { 25, -60, 100 } }, // operands
{ { 5, -5, 3 }, { 0, 2, -3 }, { 3, -73, 69 }, { -35, 40, 0 } }, // results
},
};
// If either operand is negative the result is undefined. Some implementations may still return correct values.
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
{
const CaseParams& params = cases[caseNdx];
RGBA inputColors[4];
RGBA outputColors[4];
for (int i = 0; i < 4; ++i)
{
inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
}
createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
}
return testGroup.release();
}
enum IntegerType
{
INTEGER_TYPE_SIGNED_16,
INTEGER_TYPE_SIGNED_32,
INTEGER_TYPE_SIGNED_64,
INTEGER_TYPE_UNSIGNED_16,
INTEGER_TYPE_UNSIGNED_32,
INTEGER_TYPE_UNSIGNED_64,
};
const string getBitWidthStr (IntegerType type)
{
switch (type)
{
case INTEGER_TYPE_SIGNED_16:
case INTEGER_TYPE_UNSIGNED_16: return "16";
case INTEGER_TYPE_SIGNED_32:
case INTEGER_TYPE_UNSIGNED_32: return "32";
case INTEGER_TYPE_SIGNED_64:
case INTEGER_TYPE_UNSIGNED_64: return "64";
default: DE_ASSERT(false);
return "";
}
}
const string getByteWidthStr (IntegerType type)
{
switch (type)
{
case INTEGER_TYPE_SIGNED_16:
case INTEGER_TYPE_UNSIGNED_16: return "2";
case INTEGER_TYPE_SIGNED_32:
case INTEGER_TYPE_UNSIGNED_32: return "4";
case INTEGER_TYPE_SIGNED_64:
case INTEGER_TYPE_UNSIGNED_64: return "8";
default: DE_ASSERT(false);
return "";
}
}
bool isSigned (IntegerType type)
{
return (type <= INTEGER_TYPE_SIGNED_64);
}
const string getTypeName (IntegerType type)
{
string prefix = isSigned(type) ? "" : "u";
return prefix + "int" + getBitWidthStr(type);
}
const string getTestName (IntegerType from, IntegerType to)
{
return getTypeName(from) + "_to_" + getTypeName(to);
}
const string getAsmTypeDeclaration (IntegerType type)
{
string sign = isSigned(type) ? " 1" : " 0";
return "OpTypeInt " + getBitWidthStr(type) + sign;
}
const string getAsmTypeName (IntegerType type)
{
const string prefix = isSigned(type) ? "%i" : "%u";
return prefix + getBitWidthStr(type);
}
template<typename T>
BufferSp getSpecializedBuffer (deInt64 number)
{
return BufferSp(new Buffer<T>(vector<T>(1, (T)number)));
}
BufferSp getBuffer (IntegerType type, deInt64 number)
{
switch (type)
{
case INTEGER_TYPE_SIGNED_16: return getSpecializedBuffer<deInt16>(number);
case INTEGER_TYPE_SIGNED_32: return getSpecializedBuffer<deInt32>(number);
case INTEGER_TYPE_SIGNED_64: return getSpecializedBuffer<deInt64>(number);
case INTEGER_TYPE_UNSIGNED_16: return getSpecializedBuffer<deUint16>(number);
case INTEGER_TYPE_UNSIGNED_32: return getSpecializedBuffer<deUint32>(number);
case INTEGER_TYPE_UNSIGNED_64: return getSpecializedBuffer<deUint64>(number);
default: DE_ASSERT(false);
return BufferSp(new Buffer<deInt32>(vector<deInt32>(1, 0)));
}
}
bool usesInt16 (IntegerType from, IntegerType to)
{
return (from == INTEGER_TYPE_SIGNED_16 || from == INTEGER_TYPE_UNSIGNED_16
|| to == INTEGER_TYPE_SIGNED_16 || to == INTEGER_TYPE_UNSIGNED_16);
}
bool usesInt64 (IntegerType from, IntegerType to)
{
return (from == INTEGER_TYPE_SIGNED_64 || from == INTEGER_TYPE_UNSIGNED_64
|| to == INTEGER_TYPE_SIGNED_64 || to == INTEGER_TYPE_UNSIGNED_64);
}
ComputeTestFeatures getConversionUsedFeatures (IntegerType from, IntegerType to)
{
if (usesInt16(from, to))
{
if (usesInt64(from, to))
{
return COMPUTE_TEST_USES_INT16_INT64;
}
else
{
return COMPUTE_TEST_USES_INT16;
}
}
else
{
return COMPUTE_TEST_USES_INT64;
}
}
struct ConvertCase
{
ConvertCase (IntegerType from, IntegerType to, deInt64 number)
: m_fromType (from)
, m_toType (to)
, m_features (getConversionUsedFeatures(from, to))
, m_name (getTestName(from, to))
, m_inputBuffer (getBuffer(from, number))
, m_outputBuffer (getBuffer(to, number))
{
m_asmTypes["inputType"] = getAsmTypeName(from);
m_asmTypes["outputType"] = getAsmTypeName(to);
if (m_features == COMPUTE_TEST_USES_INT16)
{
m_asmTypes["int_capabilities"] = "OpCapability Int16\n"
"OpCapability StorageUniformBufferBlock16\n";
m_asmTypes["int_additional_decl"] = "%i16 = OpTypeInt 16 1\n"
"%u16 = OpTypeInt 16 0\n";
m_asmTypes["int_extensions"] = "OpExtension \"SPV_KHR_16bit_storage\"\n";
}
else if (m_features == COMPUTE_TEST_USES_INT64)
{
m_asmTypes["int_capabilities"] = "OpCapability Int64\n";
m_asmTypes["int_additional_decl"] = "%i64 = OpTypeInt 64 1\n"
"%u64 = OpTypeInt 64 0\n";
m_asmTypes["int_extensions"] = "";
}
else if (m_features == COMPUTE_TEST_USES_INT16_INT64)
{
m_asmTypes["int_capabilities"] = "OpCapability Int16\n"
"OpCapability StorageUniformBufferBlock16\n"
"OpCapability Int64\n";
m_asmTypes["int_additional_decl"] = "%i16 = OpTypeInt 16 1\n"
"%u16 = OpTypeInt 16 0\n"
"%i64 = OpTypeInt 64 1\n"
"%u64 = OpTypeInt 64 0\n";
m_asmTypes["int_extensions"] = "OpExtension \"SPV_KHR_16bit_storage\"\n";
}
else
{
DE_ASSERT(false);
}
}
IntegerType m_fromType;
IntegerType m_toType;
ComputeTestFeatures m_features;
string m_name;
map<string, string> m_asmTypes;
BufferSp m_inputBuffer;
BufferSp m_outputBuffer;
};
const string getConvertCaseShaderStr (const string& instruction, const ConvertCase& convertCase)
{
map<string, string> params = convertCase.m_asmTypes;
params["instruction"] = instruction;
params["inDecorator"] = getByteWidthStr(convertCase.m_fromType);
params["outDecorator"] = getByteWidthStr(convertCase.m_toType);
const StringTemplate shader (
"OpCapability Shader\n"
"${int_capabilities}"
"${int_extensions}"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
// Decorators
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %indata DescriptorSet 0\n"
"OpDecorate %indata Binding 0\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 1\n"
"OpDecorate %in_arr ArrayStride ${inDecorator}\n"
"OpDecorate %out_arr ArrayStride ${outDecorator}\n"
"OpDecorate %in_buf BufferBlock\n"
"OpDecorate %out_buf BufferBlock\n"
"OpMemberDecorate %in_buf 0 Offset 0\n"
"OpMemberDecorate %out_buf 0 Offset 0\n"
// Base types
"%void = OpTypeVoid\n"
"%voidf = OpTypeFunction %void\n"
"%u32 = OpTypeInt 32 0\n"
"%i32 = OpTypeInt 32 1\n"
"${int_additional_decl}"
"%uvec3 = OpTypeVector %u32 3\n"
"%uvec3ptr = OpTypePointer Input %uvec3\n"
// Derived types
"%in_ptr = OpTypePointer Uniform ${inputType}\n"
"%out_ptr = OpTypePointer Uniform ${outputType}\n"
"%in_arr = OpTypeRuntimeArray ${inputType}\n"
"%out_arr = OpTypeRuntimeArray ${outputType}\n"
"%in_buf = OpTypeStruct %in_arr\n"
"%out_buf = OpTypeStruct %out_arr\n"
"%in_bufptr = OpTypePointer Uniform %in_buf\n"
"%out_bufptr = OpTypePointer Uniform %out_buf\n"
"%indata = OpVariable %in_bufptr Uniform\n"
"%outdata = OpVariable %out_bufptr Uniform\n"
"%inputptr = OpTypePointer Input ${inputType}\n"
"%id = OpVariable %uvec3ptr Input\n"
// Constants
"%zero = OpConstant %i32 0\n"
// Main function
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %in_ptr %indata %zero %x\n"
"%outloc = OpAccessChain %out_ptr %outdata %zero %x\n"
"%inval = OpLoad ${inputType} %inloc\n"
"%conv = ${instruction} ${outputType} %inval\n"
" OpStore %outloc %conv\n"
" OpReturn\n"
" OpFunctionEnd\n"
);
return shader.specialize(params);
}
void createSConvertCases (vector<ConvertCase>& testCases)
{
// Convert int to int
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_32, 14669));
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_64, 3341));
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_SIGNED_64, 973610259));
// Convert int to unsigned int
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_32, 9288));
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_64, 15460));
testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_UNSIGNED_64, 346213461));
}
// Test for the OpSConvert instruction.
tcu::TestCaseGroup* createSConvertTests (tcu::TestContext& testCtx)
{
const string instruction ("OpSConvert");
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "sconvert", "OpSConvert"));
vector<ConvertCase> testCases;
createSConvertCases(testCases);
for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
{
ComputeShaderSpec spec;
spec.assembly = getConvertCaseShaderStr(instruction, *test);
spec.inputs.push_back(test->m_inputBuffer);
spec.outputs.push_back(test->m_outputBuffer);
spec.numWorkGroups = IVec3(1, 1, 1);
if (test->m_features == COMPUTE_TEST_USES_INT16 || test->m_features == COMPUTE_TEST_USES_INT16_INT64)
{
spec.extensions.push_back("VK_KHR_16bit_storage");
spec.requestedVulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
}
group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpSConvert.", spec, test->m_features));
}
return group.release();
}
void createUConvertCases (vector<ConvertCase>& testCases)
{
// Convert unsigned int to unsigned int
testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16, INTEGER_TYPE_UNSIGNED_32, 60653));
testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16, INTEGER_TYPE_UNSIGNED_64, 17991));
testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32, INTEGER_TYPE_UNSIGNED_64, 904256275));
}
// Test for the OpUConvert instruction.
tcu::TestCaseGroup* createUConvertTests (tcu::TestContext& testCtx)
{
const string instruction ("OpUConvert");
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "uconvert", "OpUConvert"));
vector<ConvertCase> testCases;
createUConvertCases(testCases);
for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
{
ComputeShaderSpec spec;
spec.assembly = getConvertCaseShaderStr(instruction, *test);
spec.inputs.push_back(test->m_inputBuffer);
spec.outputs.push_back(test->m_outputBuffer);
spec.numWorkGroups = IVec3(1, 1, 1);
if (test->m_features == COMPUTE_TEST_USES_INT16 || test->m_features == COMPUTE_TEST_USES_INT16_INT64)
{
spec.extensions.push_back("VK_KHR_16bit_storage");
spec.requestedVulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
}
group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpUConvert.", spec, test->m_features));
}
return group.release();
}
const string getNumberTypeName (const NumberType type)
{
if (type == NUMBERTYPE_INT32)
{
return "int";
}
else if (type == NUMBERTYPE_UINT32)
{
return "uint";
}
else if (type == NUMBERTYPE_FLOAT32)
{
return "float";
}
else
{
DE_ASSERT(false);
return "";
}
}
deInt32 getInt(de::Random& rnd)
{
return rnd.getInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
}
const string repeatString (const string& str, int times)
{
string filler;
for (int i = 0; i < times; ++i)
{
filler += str;
}
return filler;
}
const string getRandomConstantString (const NumberType type, de::Random& rnd)
{
if (type == NUMBERTYPE_INT32)
{
return numberToString<deInt32>(getInt(rnd));
}
else if (type == NUMBERTYPE_UINT32)
{
return numberToString<deUint32>(rnd.getUint32());
}
else if (type == NUMBERTYPE_FLOAT32)
{
return numberToString<float>(rnd.getFloat());
}
else
{
DE_ASSERT(false);
return "";
}
}
void createVectorCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
{
map<string, string> params;
// Vec2 to Vec4
for (int width = 2; width <= 4; ++width)
{
const string randomConst = numberToString(getInt(rnd));
const string widthStr = numberToString(width);
const string composite_type = "${customType}vec" + widthStr;
const int index = rnd.getInt(0, width-1);
params["type"] = "vec";
params["name"] = params["type"] + "_" + widthStr;
params["compositeDecl"] = composite_type + " = OpTypeVector ${customType} " + widthStr +"\n";
params["compositeType"] = composite_type;
params["filler"] = string("%filler = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
params["compositeConstruct"] = "%instance = OpCompositeConstruct " + composite_type + repeatString(" %filler", width) + "\n";
params["indexes"] = numberToString(index);
testCases.push_back(params);
}
}
void createArrayCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
{
const int limit = 10;
map<string, string> params;
for (int width = 2; width <= limit; ++width)
{
string randomConst = numberToString(getInt(rnd));
string widthStr = numberToString(width);
int index = rnd.getInt(0, width-1);
params["type"] = "array";
params["name"] = params["type"] + "_" + widthStr;
params["compositeDecl"] = string("%arraywidth = OpConstant %u32 " + widthStr + "\n")
+ "%composite = OpTypeArray ${customType} %arraywidth\n";
params["compositeType"] = "%composite";
params["filler"] = string("%filler = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
params["compositeConstruct"] = "%instance = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
params["indexes"] = numberToString(index);
testCases.push_back(params);
}
}
void createStructCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
{
const int limit = 10;
map<string, string> params;
for (int width = 2; width <= limit; ++width)
{
string randomConst = numberToString(getInt(rnd));
int index = rnd.getInt(0, width-1);
params["type"] = "struct";
params["name"] = params["type"] + "_" + numberToString(width);
params["compositeDecl"] = "%composite = OpTypeStruct" + repeatString(" ${customType}", width) + "\n";
params["compositeType"] = "%composite";
params["filler"] = string("%filler = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
params["compositeConstruct"] = "%instance = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
params["indexes"] = numberToString(index);
testCases.push_back(params);
}
}
void createMatrixCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
{
map<string, string> params;
// Vec2 to Vec4
for (int width = 2; width <= 4; ++width)
{
string widthStr = numberToString(width);
for (int column = 2 ; column <= 4; ++column)
{
int index_0 = rnd.getInt(0, column-1);
int index_1 = rnd.getInt(0, width-1);
string columnStr = numberToString(column);
params["type"] = "matrix";
params["name"] = params["type"] + "_" + widthStr + "x" + columnStr;
params["compositeDecl"] = string("%vectype = OpTypeVector ${customType} " + widthStr + "\n")
+ "%composite = OpTypeMatrix %vectype " + columnStr + "\n";
params["compositeType"] = "%composite";
params["filler"] = string("%filler = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n"
+ "%fillerVec = OpConstantComposite %vectype" + repeatString(" %filler", width) + "\n";
params["compositeConstruct"] = "%instance = OpCompositeConstruct %composite" + repeatString(" %fillerVec", column) + "\n";
params["indexes"] = numberToString(index_0) + " " + numberToString(index_1);
testCases.push_back(params);
}
}
}
void createCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
{
createVectorCompositeCases(testCases, rnd, type);
createArrayCompositeCases(testCases, rnd, type);
createStructCompositeCases(testCases, rnd, type);
// Matrix only supports float types
if (type == NUMBERTYPE_FLOAT32)
{
createMatrixCompositeCases(testCases, rnd, type);
}
}
const string getAssemblyTypeDeclaration (const NumberType type)
{
switch (type)
{
case NUMBERTYPE_INT32: return "OpTypeInt 32 1";
case NUMBERTYPE_UINT32: return "OpTypeInt 32 0";
case NUMBERTYPE_FLOAT32: return "OpTypeFloat 32";
default: DE_ASSERT(false); return "";
}
}
const string getAssemblyTypeName (const NumberType type)
{
switch (type)
{
case NUMBERTYPE_INT32: return "%i32";
case NUMBERTYPE_UINT32: return "%u32";
case NUMBERTYPE_FLOAT32: return "%f32";
default: DE_ASSERT(false); return "";
}
}
const string specializeCompositeInsertShaderTemplate (const NumberType type, const map<string, string>& params)
{
map<string, string> parameters(params);
const string customType = getAssemblyTypeName(type);
map<string, string> substCustomType;
substCustomType["customType"] = customType;
parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
parameters["customType"] = customType;
parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
if (parameters.at("compositeType") != "%u32vec3")
{
parameters["u32vec3Decl"] = "%u32vec3 = OpTypeVector %u32 3\n";
}
return StringTemplate(
"OpCapability Shader\n"
"OpCapability Matrix\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
// Decorators
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata DescriptorSet 0\n"
"OpDecorate %indata Binding 0\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 1\n"
"OpDecorate %customarr ArrayStride 4\n"
"${compositeDecorator}"
"OpMemberDecorate %buf 0 Offset 0\n"
// General types
"%void = OpTypeVoid\n"
"%voidf = OpTypeFunction %void\n"
"%u32 = OpTypeInt 32 0\n"
"%i32 = OpTypeInt 32 1\n"
"%f32 = OpTypeFloat 32\n"
// Composite declaration
"${compositeDecl}"
// Constants
"${filler}"
"${u32vec3Decl:opt}"
"%uvec3ptr = OpTypePointer Input %u32vec3\n"
// Inherited from custom
"%customptr = OpTypePointer Uniform ${customType}\n"
"%customarr = OpTypeRuntimeArray ${customType}\n"
"%buf = OpTypeStruct %customarr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %i32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%idval = OpLoad %u32vec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %customptr %indata %zero %x\n"
"%outloc = OpAccessChain %customptr %outdata %zero %x\n"
// Read the input value
"%inval = OpLoad ${customType} %inloc\n"
// Create the composite and fill it
"${compositeConstruct}"
// Insert the input value to a place
"%instance2 = OpCompositeInsert ${compositeType} %inval %instance ${indexes}\n"
// Read back the value from the position
"%out_val = OpCompositeExtract ${customType} %instance2 ${indexes}\n"
// Store it in the output position
" OpStore %outloc %out_val\n"
" OpReturn\n"
" OpFunctionEnd\n"
).specialize(parameters);
}
template<typename T>
BufferSp createCompositeBuffer(T number)
{
return BufferSp(new Buffer<T>(vector<T>(1, number)));
}
tcu::TestCaseGroup* createOpCompositeInsertGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opcompositeinsert", "Test the OpCompositeInsert instruction"));
de::Random rnd (deStringHash(group->getName()));
for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
{
NumberType numberType = NumberType(type);
const string typeName = getNumberTypeName(numberType);
const string description = "Test the OpCompositeInsert instruction with " + typeName + "s";
de::MovePtr<tcu::TestCaseGroup> subGroup (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
vector<map<string, string> > testCases;
createCompositeCases(testCases, rnd, numberType);
for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
{
ComputeShaderSpec spec;
spec.assembly = specializeCompositeInsertShaderTemplate(numberType, *test);
switch (numberType)
{
case NUMBERTYPE_INT32:
{
deInt32 number = getInt(rnd);
spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
break;
}
case NUMBERTYPE_UINT32:
{
deUint32 number = rnd.getUint32();
spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
break;
}
case NUMBERTYPE_FLOAT32:
{
float number = rnd.getFloat();
spec.inputs.push_back(createCompositeBuffer<float>(number));
spec.outputs.push_back(createCompositeBuffer<float>(number));
break;
}
default:
DE_ASSERT(false);
}
spec.numWorkGroups = IVec3(1, 1, 1);
subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpCompositeInsert test", spec));
}
group->addChild(subGroup.release());
}
return group.release();
}
struct AssemblyStructInfo
{
AssemblyStructInfo (const deUint32 comp, const deUint32 idx)
: components (comp)
, index (idx)
{}
deUint32 components;
deUint32 index;
};
const string specializeInBoundsShaderTemplate (const NumberType type, const AssemblyStructInfo& structInfo, const map<string, string>& params)
{
// Create the full index string
string fullIndex = numberToString(structInfo.index) + " " + params.at("indexes");
// Convert it to list of indexes
vector<string> indexes = de::splitString(fullIndex, ' ');
map<string, string> parameters (params);
parameters["structType"] = repeatString(" ${compositeType}", structInfo.components);
parameters["structConstruct"] = repeatString(" %instance", structInfo.components);
parameters["insertIndexes"] = fullIndex;
// In matrix cases the last two index is the CompositeExtract indexes
const deUint32 extractIndexes = (parameters["type"] == "matrix") ? 2 : 1;
// Construct the extractIndex
for (vector<string>::const_iterator index = indexes.end() - extractIndexes; index != indexes.end(); ++index)
{
parameters["extractIndexes"] += " " + *index;
}
// Remove the last 1 or 2 element depends on matrix case or not
indexes.erase(indexes.end() - extractIndexes, indexes.end());
deUint32 id = 0;
// Generate AccessChain index expressions (except for the last one, because we use ptr to the composite)
for (vector<string>::const_iterator index = indexes.begin(); index != indexes.end(); ++index)
{
string indexId = "%index_" + numberToString(id++);
parameters["accessChainConstDeclaration"] += indexId + " = OpConstant %u32 " + *index + "\n";
parameters["accessChainIndexes"] += " " + indexId;
}
parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
const string customType = getAssemblyTypeName(type);
map<string, string> substCustomType;
substCustomType["customType"] = customType;
parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
parameters["customType"] = customType;
const string compositeType = parameters.at("compositeType");
map<string, string> substCompositeType;
substCompositeType["compositeType"] = compositeType;
parameters["structType"] = StringTemplate(parameters.at("structType")).specialize(substCompositeType);
if (compositeType != "%u32vec3")
{
parameters["u32vec3Decl"] = "%u32vec3 = OpTypeVector %u32 3\n";
}
return StringTemplate(
"OpCapability Shader\n"
"OpCapability Matrix\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
// Decorators
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %buf BufferBlock\n"
"OpDecorate %indata DescriptorSet 0\n"
"OpDecorate %indata Binding 0\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 1\n"
"OpDecorate %customarr ArrayStride 4\n"
"${compositeDecorator}"
"OpMemberDecorate %buf 0 Offset 0\n"
// General types
"%void = OpTypeVoid\n"
"%voidf = OpTypeFunction %void\n"
"%i32 = OpTypeInt 32 1\n"
"%u32 = OpTypeInt 32 0\n"
"%f32 = OpTypeFloat 32\n"
// Custom types
"${compositeDecl}"
// %u32vec3 if not already declared in ${compositeDecl}
"${u32vec3Decl:opt}"
"%uvec3ptr = OpTypePointer Input %u32vec3\n"
// Inherited from composite
"%composite_p = OpTypePointer Function ${compositeType}\n"
"%struct_t = OpTypeStruct${structType}\n"
"%struct_p = OpTypePointer Function %struct_t\n"
// Constants
"${filler}"
"${accessChainConstDeclaration}"
// Inherited from custom
"%customptr = OpTypePointer Uniform ${customType}\n"
"%customarr = OpTypeRuntimeArray ${customType}\n"
"%buf = OpTypeStruct %customarr\n"
"%bufptr = OpTypePointer Uniform %buf\n"
"%indata = OpVariable %bufptr Uniform\n"
"%outdata = OpVariable %bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%zero = OpConstant %u32 0\n"
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%struct_v = OpVariable %struct_p Function\n"
"%idval = OpLoad %u32vec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
// Create the input/output type
"%inloc = OpInBoundsAccessChain %customptr %indata %zero %x\n"
"%outloc = OpInBoundsAccessChain %customptr %outdata %zero %x\n"
// Read the input value
"%inval = OpLoad ${customType} %inloc\n"
// Create the composite and fill it
"${compositeConstruct}"
// Create the struct and fill it with the composite
"%struct = OpCompositeConstruct %struct_t${structConstruct}\n"
// Insert the value
"%comp_obj = OpCompositeInsert %struct_t %inval %struct ${insertIndexes}\n"
// Store the object
" OpStore %struct_v %comp_obj\n"
// Get deepest possible composite pointer
"%inner_ptr = OpInBoundsAccessChain %composite_p %struct_v${accessChainIndexes}\n"
"%read_obj = OpLoad ${compositeType} %inner_ptr\n"
// Read back the stored value
"%read_val = OpCompositeExtract ${customType} %read_obj${extractIndexes}\n"
" OpStore %outloc %read_val\n"
" OpReturn\n"
" OpFunctionEnd\n"
).specialize(parameters);
}
tcu::TestCaseGroup* createOpInBoundsAccessChainGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opinboundsaccesschain", "Test the OpInBoundsAccessChain instruction"));
de::Random rnd (deStringHash(group->getName()));
for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
{
NumberType numberType = NumberType(type);
const string typeName = getNumberTypeName(numberType);
const string description = "Test the OpInBoundsAccessChain instruction with " + typeName + "s";
de::MovePtr<tcu::TestCaseGroup> subGroup (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
vector<map<string, string> > testCases;
createCompositeCases(testCases, rnd, numberType);
for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
{
ComputeShaderSpec spec;
// Number of components inside of a struct
deUint32 structComponents = rnd.getInt(2, 8);
// Component index value
deUint32 structIndex = rnd.getInt(0, structComponents - 1);
AssemblyStructInfo structInfo(structComponents, structIndex);
spec.assembly = specializeInBoundsShaderTemplate(numberType, structInfo, *test);
switch (numberType)
{
case NUMBERTYPE_INT32:
{
deInt32 number = getInt(rnd);
spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
break;
}
case NUMBERTYPE_UINT32:
{
deUint32 number = rnd.getUint32();
spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
break;
}
case NUMBERTYPE_FLOAT32:
{
float number = rnd.getFloat();
spec.inputs.push_back(createCompositeBuffer<float>(number));
spec.outputs.push_back(createCompositeBuffer<float>(number));
break;
}
default:
DE_ASSERT(false);
}
spec.numWorkGroups = IVec3(1, 1, 1);
subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpInBoundsAccessChain test", spec));
}
group->addChild(subGroup.release());
}
return group.release();
}
// If the params missing, uninitialized case
const string specializeDefaultOutputShaderTemplate (const NumberType type, const map<string, string>& params = map<string, string>())
{
map<string, string> parameters(params);
parameters["customType"] = getAssemblyTypeName(type);
// Declare the const value, and use it in the initializer
if (params.find("constValue") != params.end())
{
parameters["variableInitializer"] = " %const";
}
// Uninitialized case
else
{
parameters["commentDecl"] = ";";
}
return StringTemplate(
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"OpSource GLSL 430\n"
"OpName %main \"main\"\n"
"OpName %id \"gl_GlobalInvocationID\"\n"
// Decorators
"OpDecorate %id BuiltIn GlobalInvocationId\n"
"OpDecorate %indata DescriptorSet 0\n"
"OpDecorate %indata Binding 0\n"
"OpDecorate %outdata DescriptorSet 0\n"
"OpDecorate %outdata Binding 1\n"
"OpDecorate %in_arr ArrayStride 4\n"
"OpDecorate %in_buf BufferBlock\n"
"OpMemberDecorate %in_buf 0 Offset 0\n"
// Base types
"%void = OpTypeVoid\n"
"%voidf = OpTypeFunction %void\n"
"%u32 = OpTypeInt 32 0\n"
"%i32 = OpTypeInt 32 1\n"
"%f32 = OpTypeFloat 32\n"
"%uvec3 = OpTypeVector %u32 3\n"
"%uvec3ptr = OpTypePointer Input %uvec3\n"
"${commentDecl:opt}%const = OpConstant ${customType} ${constValue:opt}\n"
// Derived types
"%in_ptr = OpTypePointer Uniform ${customType}\n"
"%in_arr = OpTypeRuntimeArray ${customType}\n"
"%in_buf = OpTypeStruct %in_arr\n"
"%in_bufptr = OpTypePointer Uniform %in_buf\n"
"%indata = OpVariable %in_bufptr Uniform\n"
"%outdata = OpVariable %in_bufptr Uniform\n"
"%id = OpVariable %uvec3ptr Input\n"
"%var_ptr = OpTypePointer Function ${customType}\n"
// Constants
"%zero = OpConstant %i32 0\n"
// Main function
"%main = OpFunction %void None %voidf\n"
"%label = OpLabel\n"
"%out_var = OpVariable %var_ptr Function${variableInitializer:opt}\n"
"%idval = OpLoad %uvec3 %id\n"
"%x = OpCompositeExtract %u32 %idval 0\n"
"%inloc = OpAccessChain %in_ptr %indata %zero %x\n"
"%outloc = OpAccessChain %in_ptr %outdata %zero %x\n"
"%outval = OpLoad ${customType} %out_var\n"
" OpStore %outloc %outval\n"
" OpReturn\n"
" OpFunctionEnd\n"
).specialize(parameters);
}
bool compareFloats (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
{
DE_ASSERT(outputAllocs.size() != 0);
DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
// Use custom epsilon because of the float->string conversion
const float epsilon = 0.00001f;
for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
{
vector<deUint8> expectedBytes;
float expected;
float actual;
expectedOutputs[outputNdx]->getBytes(expectedBytes);
memcpy(&expected, &expectedBytes.front(), expectedBytes.size());
memcpy(&actual, outputAllocs[outputNdx]->getHostPtr(), expectedBytes.size());
// Test with epsilon
if (fabs(expected - actual) > epsilon)
{
log << TestLog::Message << "Error: The actual and expected values not matching."
<< " Expected: " << expected << " Actual: " << actual << " Epsilon: " << epsilon << TestLog::EndMessage;
return false;
}
}
return true;
}
// Checks if the driver crash with uninitialized cases
bool passthruVerify (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
{
DE_ASSERT(outputAllocs.size() != 0);
DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
// Copy and discard the result.
for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
{
vector<deUint8> expectedBytes;
expectedOutputs[outputNdx]->getBytes(expectedBytes);
const size_t width = expectedBytes.size();
vector<char> data (width);
memcpy(&data[0], outputAllocs[outputNdx]->getHostPtr(), width);
}
return true;
}
tcu::TestCaseGroup* createShaderDefaultOutputGroup (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "shader_default_output", "Test shader default output."));
de::Random rnd (deStringHash(group->getName()));
for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
{
NumberType numberType = NumberType(type);
const string typeName = getNumberTypeName(numberType);
const string description = "Test the OpVariable initializer with " + typeName + ".";
de::MovePtr<tcu::TestCaseGroup> subGroup (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
// 2 similar subcases (initialized and uninitialized)
for (int subCase = 0; subCase < 2; ++subCase)
{
ComputeShaderSpec spec;
spec.numWorkGroups = IVec3(1, 1, 1);
map<string, string> params;
switch (numberType)
{
case NUMBERTYPE_INT32:
{
deInt32 number = getInt(rnd);
spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
params["constValue"] = numberToString(number);
break;
}
case NUMBERTYPE_UINT32:
{
deUint32 number = rnd.getUint32();
spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
params["constValue"] = numberToString(number);
break;
}
case NUMBERTYPE_FLOAT32:
{
float number = rnd.getFloat();
spec.inputs.push_back(createCompositeBuffer<float>(number));
spec.outputs.push_back(createCompositeBuffer<float>(number));
spec.verifyIO = &compareFloats;
params["constValue"] = numberToString(number);
break;
}
default:
DE_ASSERT(false);
}
// Initialized subcase
if (!subCase)
{
spec.assembly = specializeDefaultOutputShaderTemplate(numberType, params);
subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "initialized", "OpVariable initializer tests.", spec));
}
// Uninitialized subcase
else
{
spec.assembly = specializeDefaultOutputShaderTemplate(numberType);
spec.verifyIO = &passthruVerify;
subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "uninitialized", "OpVariable initializer tests.", spec));
}
}
group->addChild(subGroup.release());
}
return group.release();
}
tcu::TestCaseGroup* createOpNopTests (tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> testGroup (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
RGBA defaultColors[4];
map<string, string> opNopFragments;
getDefaultColors(defaultColors);
opNopFragments["testfun"] =
"%test_code = OpFunction %v4f32 None %v4f32_function\n"
"%param1 = OpFunctionParameter %v4f32\n"
"%label_testfun = OpLabel\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"OpNop\n"
"%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
"%b = OpFAdd %f32 %a %a\n"
"OpNop\n"
"%c = OpFSub %f32 %b %a\n"
"%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
"OpNop\n"
"OpNop\n"
"OpReturnValue %ret\n"
"OpFunctionEnd\n";
createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, testGroup.get());
return testGroup.release();
}
tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
{
const bool testComputePipeline = true;
de::MovePtr<tcu::TestCaseGroup> instructionTests (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
de::MovePtr<tcu::TestCaseGroup> computeTests (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
de::MovePtr<tcu::TestCaseGroup> graphicsTests (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
computeTests->addChild(createSpivVersionCheckTests(testCtx, testComputePipeline));
computeTests->addChild(createLocalSizeGroup(testCtx));
computeTests->addChild(createOpNopGroup(testCtx));
computeTests->addChild(createOpFUnordGroup(testCtx));
computeTests->addChild(createOpAtomicGroup(testCtx, false));
computeTests->addChild(createOpAtomicGroup(testCtx, true)); // Using new StorageBuffer decoration
computeTests->addChild(createOpLineGroup(testCtx));
computeTests->addChild(createOpModuleProcessedGroup(testCtx));
computeTests->addChild(createOpNoLineGroup(testCtx));
computeTests->addChild(createOpConstantNullGroup(testCtx));
computeTests->addChild(createOpConstantCompositeGroup(testCtx));
computeTests->addChild(createOpConstantUsageGroup(testCtx));
computeTests->addChild(createSpecConstantGroup(testCtx));
computeTests->addChild(createOpSourceGroup(testCtx));
computeTests->addChild(createOpSourceExtensionGroup(testCtx));
computeTests->addChild(createDecorationGroupGroup(testCtx));
computeTests->addChild(createOpPhiGroup(testCtx));
computeTests->addChild(createLoopControlGroup(testCtx));
computeTests->addChild(createFunctionControlGroup(testCtx));
computeTests->addChild(createSelectionControlGroup(testCtx));
computeTests->addChild(createBlockOrderGroup(testCtx));
computeTests->addChild(createMultipleShaderGroup(testCtx));
computeTests->addChild(createMemoryAccessGroup(testCtx));
computeTests->addChild(createOpCopyMemoryGroup(testCtx));
computeTests->addChild(createOpCopyObjectGroup(testCtx));
computeTests->addChild(createNoContractionGroup(testCtx));
computeTests->addChild(createOpUndefGroup(testCtx));
computeTests->addChild(createOpUnreachableGroup(testCtx));
computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
computeTests ->addChild(createOpFRemGroup(testCtx));
computeTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_PASS));
computeTests->addChild(createOpSRemComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
computeTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_PASS));
computeTests->addChild(createOpSModComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
computeTests->addChild(createSConvertTests(testCtx));
computeTests->addChild(createUConvertTests(testCtx));
computeTests->addChild(createOpCompositeInsertGroup(testCtx));
computeTests->addChild(createOpInBoundsAccessChainGroup(testCtx));
computeTests->addChild(createShaderDefaultOutputGroup(testCtx));
computeTests->addChild(createOpNMinGroup(testCtx));
computeTests->addChild(createOpNMaxGroup(testCtx));
computeTests->addChild(createOpNClampGroup(testCtx));
{
de::MovePtr<tcu::TestCaseGroup> computeAndroidTests (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
computeAndroidTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
computeAndroidTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
computeTests->addChild(computeAndroidTests.release());
}
computeTests->addChild(create8BitStorageComputeGroup(testCtx));
computeTests->addChild(create16BitStorageComputeGroup(testCtx));
computeTests->addChild(createUboMatrixPaddingComputeGroup(testCtx));
computeTests->addChild(createConditionalBranchComputeGroup(testCtx));
computeTests->addChild(createIndexingComputeGroup(testCtx));
computeTests->addChild(createVariablePointersComputeGroup(testCtx));
computeTests->addChild(createImageSamplerComputeGroup(testCtx));
graphicsTests->addChild(createSpivVersionCheckTests(testCtx, !testComputePipeline));
graphicsTests->addChild(createOpNopTests(testCtx));
graphicsTests->addChild(createOpSourceTests(testCtx));
graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
graphicsTests->addChild(createOpModuleProcessedTests(testCtx));
graphicsTests->addChild(createOpLineTests(testCtx));
graphicsTests->addChild(createOpNoLineTests(testCtx));
graphicsTests->addChild(createOpConstantNullTests(testCtx));
graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
graphicsTests->addChild(createMemoryAccessTests(testCtx));
graphicsTests->addChild(createOpUndefTests(testCtx));
graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
graphicsTests->addChild(createModuleTests(testCtx));
graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
graphicsTests->addChild(createOpPhiTests(testCtx));
graphicsTests->addChild(createNoContractionTests(testCtx));
graphicsTests->addChild(createOpQuantizeTests(testCtx));
graphicsTests->addChild(createLoopTests(testCtx));
graphicsTests->addChild(createSpecConstantTests(testCtx));
graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
graphicsTests->addChild(createBarrierTests(testCtx));
graphicsTests->addChild(createDecorationGroupTests(testCtx));
graphicsTests->addChild(createFRemTests(testCtx));
graphicsTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
graphicsTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
{
de::MovePtr<tcu::TestCaseGroup> graphicsAndroidTests (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
graphicsAndroidTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
graphicsAndroidTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
graphicsTests->addChild(graphicsAndroidTests.release());
}
graphicsTests->addChild(create8BitStorageGraphicsGroup(testCtx));
graphicsTests->addChild(create16BitStorageGraphicsGroup(testCtx));
graphicsTests->addChild(createUboMatrixPaddingGraphicsGroup(testCtx));
graphicsTests->addChild(createConditionalBranchGraphicsGroup(testCtx));
graphicsTests->addChild(createIndexingGraphicsGroup(testCtx));
graphicsTests->addChild(createVariablePointersGraphicsGroup(testCtx));
graphicsTests->addChild(createImageSamplerGraphicsGroup(testCtx));
instructionTests->addChild(computeTests.release());
instructionTests->addChild(graphicsTests.release());
return instructionTests.release();
}
} // SpirVAssembly
} // vkt