blob: b02d804d2ccc20754da7c00e0d3da01faff9ddea [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2020 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Test procedural geometry with complex bouding box sets
*//*--------------------------------------------------------------------*/
#include "vktRayTracingProceduralGeometryTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkImageUtil.hpp"
#include "vkRayTracingUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuTexture.hpp"
#include "tcuTestLog.hpp"
#include "tcuImageCompare.hpp"
#include "tcuFloat.hpp"
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace vkt;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
enum class TestType
{
OBJECT_BEHIND_BOUNDING_BOX = 0,
TRIANGLE_IN_BETWEEN
};
class RayTracingProceduralGeometryTestBase : public TestInstance
{
public:
RayTracingProceduralGeometryTestBase (Context& context);
~RayTracingProceduralGeometryTestBase (void) = default;
tcu::TestStatus iterate (void) override;
protected:
virtual void setupRayTracingPipeline() = 0;
virtual void setupAccelerationStructures() = 0;
private:
VkWriteDescriptorSetAccelerationStructureKHR makeASWriteDescriptorSet (const VkAccelerationStructureKHR* pAccelerationStructure);
void clearBuffer (de::SharedPtr<BufferWithMemory> buffer, VkDeviceSize bufferSize);
protected:
de::MovePtr<RayTracingPipeline> m_rayTracingPipeline;
Move<VkPipelineLayout> m_pipelineLayout;
Move<VkPipeline> m_pipeline;
de::MovePtr<BufferWithMemory> m_rgenShaderBT;
de::MovePtr<BufferWithMemory> m_chitShaderBT;
de::MovePtr<BufferWithMemory> m_missShaderBT;
Move<VkDescriptorSetLayout> m_descriptorSetLayout;
Move<VkCommandPool> m_cmdPool;
Move<VkCommandBuffer> m_cmdBuffer;
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > m_blasVect;
de::SharedPtr<TopLevelAccelerationStructure> m_referenceTLAS;
de::SharedPtr<TopLevelAccelerationStructure> m_resultTLAS;
};
RayTracingProceduralGeometryTestBase::RayTracingProceduralGeometryTestBase(Context& context)
: vkt::TestInstance (context)
, m_referenceTLAS (makeTopLevelAccelerationStructure().release())
, m_resultTLAS (makeTopLevelAccelerationStructure().release())
{
}
tcu::TestStatus RayTracingProceduralGeometryTestBase::iterate(void)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 sgHandleSize = m_context.getRayTracingPipelineProperties().shaderGroupHandleSize;
const deUint32 imageSize = 64u;
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 2u)
.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2u)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 2u);
m_descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) // as with single/four aabb's
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, ALL_RAY_TRACING_STAGES) // ssbo with result/reference values
.build(vkd, device);
const Move<VkDescriptorSet> referenceDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *m_descriptorSetLayout);
const Move<VkDescriptorSet> resultDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *m_descriptorSetLayout);
const VkDeviceSize resultBufferSize = imageSize * imageSize * sizeof(int);
const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(resultBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
de::SharedPtr<BufferWithMemory> referenceBuffer = de::SharedPtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
de::SharedPtr<BufferWithMemory> resultBuffer = de::SharedPtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
m_rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
setupRayTracingPipeline();
const VkStridedDeviceAddressRegionKHR rgenSBTR = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, m_rgenShaderBT->get(), 0), sgHandleSize, sgHandleSize);
const VkStridedDeviceAddressRegionKHR chitSBTR = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, m_chitShaderBT->get(), 0), sgHandleSize, sgHandleSize);
const VkStridedDeviceAddressRegionKHR missSBTR = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, m_missShaderBT->get(), 0), sgHandleSize, sgHandleSize);
const VkStridedDeviceAddressRegionKHR callableSBTR = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
m_cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
m_cmdBuffer = allocateCommandBuffer(vkd, device, *m_cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
// clear result and reference buffers
clearBuffer(resultBuffer, resultBufferSize);
clearBuffer(referenceBuffer, resultBufferSize);
beginCommandBuffer(vkd, *m_cmdBuffer, 0u);
{
setupAccelerationStructures();
// update descriptor sets
{
typedef DescriptorSetUpdateBuilder::Location DSL;
const VkWriteDescriptorSetAccelerationStructureKHR referenceAS = makeASWriteDescriptorSet(m_referenceTLAS->getPtr());
const VkDescriptorBufferInfo referenceSSBO = makeDescriptorBufferInfo(**referenceBuffer, 0u, VK_WHOLE_SIZE);
DescriptorSetUpdateBuilder()
.writeSingle(*referenceDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &referenceAS)
.writeSingle(*referenceDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &referenceSSBO)
.update(vkd, device);
const VkWriteDescriptorSetAccelerationStructureKHR resultAS = makeASWriteDescriptorSet(m_resultTLAS->getPtr());
const VkDescriptorBufferInfo resultSSBO = makeDescriptorBufferInfo(**resultBuffer, 0u, VK_WHOLE_SIZE);
DescriptorSetUpdateBuilder()
.writeSingle(*resultDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &resultAS)
.writeSingle(*resultDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &resultSSBO)
.update(vkd, device);
}
// wait for data transfers
const VkMemoryBarrier bufferUploadBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, &bufferUploadBarrier, 1u);
// wait for as build
const VkMemoryBarrier asBuildBarrier = makeMemoryBarrier(VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, &asBuildBarrier, 1u);
vkd.cmdBindPipeline(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *m_pipeline);
// generate reference
vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *m_pipelineLayout, 0, 1, &referenceDescriptorSet.get(), 0, DE_NULL);
cmdTraceRays(vkd, *m_cmdBuffer, &rgenSBTR, &missSBTR, &chitSBTR, &callableSBTR, imageSize, imageSize, 1);
// generate result
vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *m_pipelineLayout, 0, 1, &resultDescriptorSet.get(), 0, DE_NULL);
cmdTraceRays(vkd, *m_cmdBuffer, &rgenSBTR, &missSBTR, &chitSBTR, &callableSBTR, imageSize, imageSize, 1);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
}
endCommandBuffer(vkd, *m_cmdBuffer);
submitCommandsAndWait(vkd, device, queue, m_cmdBuffer.get());
// verify result buffer
auto referenceAllocation = referenceBuffer->getAllocation();
invalidateMappedMemoryRange(vkd, device, referenceAllocation.getMemory(), referenceAllocation.getOffset(), resultBufferSize);
auto resultAllocation = resultBuffer->getAllocation();
invalidateMappedMemoryRange(vkd, device, resultAllocation.getMemory(), resultAllocation.getOffset(), resultBufferSize);
tcu::TextureFormat imageFormat (vk::mapVkFormat(VK_FORMAT_R8G8B8A8_UNORM));
tcu::PixelBufferAccess referenceAccess (imageFormat, imageSize, imageSize, 1, referenceAllocation.getHostPtr());
tcu::PixelBufferAccess resultAccess (imageFormat, imageSize, imageSize, 1, resultAllocation.getHostPtr());
if (tcu::intThresholdCompare(m_context.getTestContext().getLog(), "Result comparison", "", referenceAccess, resultAccess, tcu::UVec4(0), tcu::COMPARE_LOG_EVERYTHING))
return tcu::TestStatus::pass("Pass");
return tcu::TestStatus::fail("Fail");
}
VkWriteDescriptorSetAccelerationStructureKHR RayTracingProceduralGeometryTestBase::makeASWriteDescriptorSet(const VkAccelerationStructureKHR* pAccelerationStructure)
{
return
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType
DE_NULL, // const void* pNext
1u, // deUint32 accelerationStructureCount
pAccelerationStructure // const VkAccelerationStructureKHR* pAccelerationStructures
};
}
void RayTracingProceduralGeometryTestBase::clearBuffer(de::SharedPtr<BufferWithMemory> buffer, VkDeviceSize bufferSize)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
auto& bufferAlloc = buffer->getAllocation();
void* bufferPtr = bufferAlloc.getHostPtr();
deMemset(bufferPtr, 1, static_cast<size_t>(bufferSize));
vk::flushAlloc(vkd, device, bufferAlloc);
}
class ObjectBehindBoundingBoxInstance : public RayTracingProceduralGeometryTestBase
{
public:
ObjectBehindBoundingBoxInstance(Context& context);
void setupRayTracingPipeline() override;
void setupAccelerationStructures() override;
};
ObjectBehindBoundingBoxInstance::ObjectBehindBoundingBoxInstance(Context& context)
: RayTracingProceduralGeometryTestBase(context)
{
}
void ObjectBehindBoundingBoxInstance::setupRayTracingPipeline()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
vk::BinaryCollection& bc = m_context.getBinaryCollection();
const deUint32 sgHandleSize = m_context.getRayTracingPipelineProperties().shaderGroupHandleSize;
const deUint32 sgBaseAlignment = m_context.getRayTracingPipelineProperties().shaderGroupBaseAlignment;
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, bc.get("rgen"), 0), 0);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR, createShaderModule(vkd, device, bc.get("isec"), 0), 1);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, bc.get("chit"), 0), 1);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, bc.get("miss"), 0), 2);
m_pipelineLayout = makePipelineLayout(vkd, device, m_descriptorSetLayout.get());
m_pipeline = m_rayTracingPipeline->createPipeline(vkd, device, *m_pipelineLayout);
m_rgenShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 0, 1);
m_chitShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 1, 1);
m_missShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 2, 1);
}
void ObjectBehindBoundingBoxInstance::setupAccelerationStructures()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
// build reference acceleration structure - single aabb big enough to fit whole procedural geometry
de::SharedPtr<BottomLevelAccelerationStructure> referenceBLAS(makeBottomLevelAccelerationStructure().release());
referenceBLAS->setGeometryData(
{
{ 0.0, 0.0, -64.0 },
{ 64.0, 64.0, -16.0 },
},
false,
0
);
referenceBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(referenceBLAS);
m_referenceTLAS->setInstanceCount(1);
m_referenceTLAS->addInstance(m_blasVect.back());
m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
// build result acceleration structure - wall of 4 aabb's and generated object is actualy behind it (as it is just 1.0 unit thick)
de::SharedPtr<BottomLevelAccelerationStructure> resultBLAS(makeBottomLevelAccelerationStructure().release());
resultBLAS->setGeometryData(
{
{ 0.0, 0.0, 0.0 }, // | |
{ 32.0, 32.0, 1.0 }, // |* |
{ 32.0, 0.0, 0.0 }, // | |
{ 64.0, 32.0, 1.0 }, // | *|
{ 0.0, 32.0, 0.0 }, // |* |
{ 32.0, 64.0, 1.0 }, // | |
{ 32.0, 32.0, 0.0 }, // | *|
{ 64.0, 64.0, 1.0 }, // | |
},
false,
0
);
resultBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(resultBLAS);
m_resultTLAS->setInstanceCount(1);
m_resultTLAS->addInstance(m_blasVect.back());
m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
}
class TriangleInBeteenInstance : public RayTracingProceduralGeometryTestBase
{
public:
TriangleInBeteenInstance(Context& context);
void setupRayTracingPipeline() override;
void setupAccelerationStructures() override;
};
TriangleInBeteenInstance::TriangleInBeteenInstance(Context& context)
: RayTracingProceduralGeometryTestBase(context)
{
}
void TriangleInBeteenInstance::setupRayTracingPipeline()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
vk::BinaryCollection& bc = m_context.getBinaryCollection();
const deUint32 sgHandleSize = m_context.getRayTracingPipelineProperties().shaderGroupHandleSize;
const deUint32 sgBaseAlignment = m_context.getRayTracingPipelineProperties().shaderGroupBaseAlignment;
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, bc.get("rgen"), 0), 0);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR, createShaderModule(vkd, device, bc.get("isec"), 0), 1);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, bc.get("chit"), 0), 1);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, bc.get("chit_triangle"), 0), 2);
m_rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, bc.get("miss"), 0), 3);
m_pipelineLayout = makePipelineLayout(vkd, device, m_descriptorSetLayout.get());
m_pipeline = m_rayTracingPipeline->createPipeline(vkd, device, *m_pipelineLayout);
m_rgenShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 0, 1);
m_chitShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 1, 2);
m_missShaderBT = m_rayTracingPipeline->createShaderBindingTable(vkd, device, *m_pipeline, allocator, sgHandleSize, sgBaseAlignment, 3, 1);
}
void TriangleInBeteenInstance::setupAccelerationStructures()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::SharedPtr<BottomLevelAccelerationStructure> triangleBLAS(makeBottomLevelAccelerationStructure().release());
triangleBLAS->setGeometryData(
{
{ 16.0, 16.0, -8.0 },
{ 56.0, 32.0, -8.0 },
{ 32.0, 48.0, -8.0 },
},
true,
VK_GEOMETRY_OPAQUE_BIT_KHR
);
triangleBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(triangleBLAS);
de::SharedPtr<BottomLevelAccelerationStructure> fullElipsoidBLAS(makeBottomLevelAccelerationStructure().release());
fullElipsoidBLAS->setGeometryData(
{
{ 0.0, 0.0, -64.0 },
{ 64.0, 64.0, -16.0 },
},
false,
0
);
fullElipsoidBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(fullElipsoidBLAS);
// build reference acceleration structure - triangle and a single aabb big enough to fit whole procedural geometry
m_referenceTLAS->setInstanceCount(2);
m_referenceTLAS->addInstance(fullElipsoidBLAS);
m_referenceTLAS->addInstance(triangleBLAS);
m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
de::SharedPtr<BottomLevelAccelerationStructure> elipsoidWallBLAS(makeBottomLevelAccelerationStructure().release());
elipsoidWallBLAS->setGeometryData(
{
{ 0.0, 0.0, 0.0 }, // |* |
{ 20.0, 64.0, 1.0 },
{ 20.0, 0.0, 0.0 }, // | * |
{ 44.0, 64.0, 1.0 },
{ 44.0, 0.0, 0.0 }, // | *|
{ 64.0, 64.0, 1.0 },
},
false,
0
);
elipsoidWallBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(elipsoidWallBLAS);
// build result acceleration structure - triangle and a three aabb's (they are in front of triangle but generate intersections behind it)
m_resultTLAS->setInstanceCount(2);
m_resultTLAS->addInstance(elipsoidWallBLAS);
m_resultTLAS->addInstance(triangleBLAS);
m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
}
class RayTracingProceduralGeometryTestCase : public TestCase
{
public:
RayTracingProceduralGeometryTestCase (tcu::TestContext& context, const char* name, TestType testType);
~RayTracingProceduralGeometryTestCase (void) = default;
void checkSupport (Context& context) const override;
void initPrograms (SourceCollections& programCollection) const override;
TestInstance* createInstance (Context& context) const override;
protected:
TestType m_testType;
};
RayTracingProceduralGeometryTestCase::RayTracingProceduralGeometryTestCase(tcu::TestContext& context, const char* name, TestType testType)
: TestCase (context, name, "")
, m_testType (testType)
{
}
void RayTracingProceduralGeometryTestCase::checkSupport(Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
if (!context.getRayTracingPipelineFeatures().rayTracingPipeline)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
if (!context.getAccelerationStructureFeatures().accelerationStructure)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
}
void RayTracingProceduralGeometryTestCase::initPrograms(SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions glslBuildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
std::string rgenSource =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadEXT int payload;\n"
"layout(set = 0, binding = 0) uniform accelerationStructureEXT tlas;\n"
"layout(set = 0, binding = 1, std430) writeonly buffer Result {\n"
" int value[];\n"
"} result;\n"
"void main()\n"
"{\n"
" float tmin = 0.0;\n"
" float tmax = 50.0;\n"
" vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5f, float(gl_LaunchIDEXT.y) + 0.5f, 2.0);\n"
" vec3 direction = vec3(0.0,0.0,-1.0);\n"
" uint resultIndex = gl_LaunchIDEXT.x + gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x;\n"
" traceRayEXT(tlas, gl_RayFlagsCullBackFacingTrianglesEXT, 0xFF, 0, 0, 0, origin, tmin, direction, tmax, 0);\n"
// to be able to display result in cherry this is interpreated as r8g8b8a8 during verification
// we are using only red but we need to add alpha (note: r and a may be swapped depending on endianness)
" result.value[resultIndex] = payload + 0xFF000000;\n"
"};\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(rgenSource) << glslBuildOptions;
std::string isecSource =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"void main()\n"
"{\n"
// note: same elipsoid center and radii are also defined in chit shader
" vec3 center = vec3(32.0, 32.0, -30.0);\n"
" vec3 radii = vec3(30.0, 15.0, 5.0);\n"
// simplify to ray sphere intersection
" vec3 eliDir = gl_WorldRayOriginEXT - center;\n"
" vec3 eliS = eliDir / radii;\n"
" vec3 rayS = gl_WorldRayDirectionEXT / radii;\n"
" float a = dot(rayS, rayS);\n"
" float b = dot(eliS, rayS);\n"
" float c = dot(eliS, eliS);\n"
" float h = b * b - a * (c - 1.0);\n"
" if (h < 0.0)\n"
" return;\n"
" reportIntersectionEXT((-b - sqrt(h)) / a, 0);\n"
"}\n";
programCollection.glslSources.add("isec") << glu::IntersectionSource(isecSource) << glslBuildOptions;
std::string chitSource =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT int payload;\n"
"\n"
"void main()\n"
"{\n"
// note: same elipsoid center and radii are also defined in chit shader
" vec3 center = vec3(32.0, 32.0, -30.0);\n"
" vec3 radii = vec3(30.0, 15.0, 5.0);\n"
" vec3 lightDir = normalize(vec3(0.0, 0.0, 1.0));\n"
" vec3 hitPos = gl_WorldRayOriginEXT + gl_HitTEXT * gl_WorldRayDirectionEXT;\n"
" vec3 hitNormal = normalize((hitPos - center) / radii);\n"
" payload = 50 + int(200.0 * clamp(dot(hitNormal, lightDir), 0.0, 1.0));\n"
"}\n";
programCollection.glslSources.add("chit") << glu::ClosestHitSource(chitSource) << glslBuildOptions;
if (m_testType == TestType::TRIANGLE_IN_BETWEEN)
{
std::string chitTriangleSource =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT int payload;\n"
"\n"
"void main()\n"
"{\n"
" payload = 250;\n"
"}\n";
programCollection.glslSources.add("chit_triangle") << glu::ClosestHitSource(chitTriangleSource) << glslBuildOptions;
}
std::string missSource =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT int payload;\n"
"void main()\n"
"{\n"
" payload = 30;\n"
"}\n";
programCollection.glslSources.add("miss") << glu::MissSource(missSource) << glslBuildOptions;
}
TestInstance* RayTracingProceduralGeometryTestCase::createInstance(Context& context) const
{
if (m_testType == TestType::TRIANGLE_IN_BETWEEN)
return new TriangleInBeteenInstance(context);
// TestType::OBJECT_BEHIND_BOUNDING_BOX
return new ObjectBehindBoundingBoxInstance(context);
}
} // anonymous
tcu::TestCaseGroup* createProceduralGeometryTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "procedural_geometry", "Test procedural geometry with complex bouding box sets"));
group->addChild(new RayTracingProceduralGeometryTestCase(testCtx, "object_behind_bounding_boxes", TestType::OBJECT_BEHIND_BOUNDING_BOX));
group->addChild(new RayTracingProceduralGeometryTestCase(testCtx, "triangle_in_between", TestType::TRIANGLE_IN_BETWEEN));
return group.release();
}
} // RayTracing
} // vkt