blob: c21ddd54d1c376909ddee58b9615a4b0c84ee3e7 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Test Executor
* ------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Test case result parser.
*//*--------------------------------------------------------------------*/
#include "xeTestResultParser.hpp"
#include "xeTestCaseResult.hpp"
#include "xeBatchResult.hpp"
#include "deString.h"
#include "deInt32.h"
#include <sstream>
#include <stdlib.h>
using std::string;
using std::vector;
namespace xe
{
static inline int toInt (const char* str)
{
return atoi(str);
}
static inline double toDouble (const char* str)
{
return atof(str);
}
static inline deInt64 toInt64 (const char* str)
{
std::istringstream s (str);
deInt64 val;
s >> val;
return val;
}
static inline bool toBool (const char* str)
{
return deStringEqual(str, "OK") || deStringEqual(str, "True");
}
static const char* stripLeadingWhitespace (const char* str)
{
int whitespaceCount = 0;
while (str[whitespaceCount] != 0 &&
(str[whitespaceCount] == ' ' ||
str[whitespaceCount] == '\t' ||
str[whitespaceCount] == '\r' ||
str[whitespaceCount] == '\n'))
whitespaceCount += 1;
return str + whitespaceCount;
}
struct EnumMapEntry
{
deUint32 hash;
const char* name;
int value;
};
static const EnumMapEntry s_statusCodeMap[] =
{
{ 0x7c8a99bc, "Pass", TESTSTATUSCODE_PASS },
{ 0x7c851ca1, "Fail", TESTSTATUSCODE_FAIL },
{ 0x10ecd324, "QualityWarning", TESTSTATUSCODE_QUALITY_WARNING },
{ 0x341ae835, "CompatibilityWarning", TESTSTATUSCODE_COMPATIBILITY_WARNING },
{ 0x058acbca, "Pending", TESTSTATUSCODE_PENDING },
{ 0xc4d74b26, "Running", TESTSTATUSCODE_RUNNING },
{ 0x6409f93c, "NotSupported", TESTSTATUSCODE_NOT_SUPPORTED },
{ 0xfa5a9ab7, "ResourceError", TESTSTATUSCODE_RESOURCE_ERROR },
{ 0xad6793ec, "InternalError", TESTSTATUSCODE_INTERNAL_ERROR },
{ 0x838f3034, "Canceled", TESTSTATUSCODE_CANCELED },
{ 0x42b6efac, "Timeout", TESTSTATUSCODE_TIMEOUT },
{ 0x0cfb98f6, "Crash", TESTSTATUSCODE_CRASH },
{ 0xe326e01d, "Disabled", TESTSTATUSCODE_DISABLED },
{ 0x77061af2, "Terminated", TESTSTATUSCODE_TERMINATED },
{ 0xd9e6b393, "Waiver", TESTSTATUSCODE_WAIVER }
};
static const EnumMapEntry s_resultItemMap[] =
{
{ 0xce8ac2e4, "Result", ri::TYPE_RESULT },
{ 0x7c8cdcea, "Text", ri::TYPE_TEXT },
{ 0xc6540c6e, "Number", ri::TYPE_NUMBER },
{ 0x0d656c88, "Image", ri::TYPE_IMAGE },
{ 0x8ac9ee14, "ImageSet", ri::TYPE_IMAGESET },
{ 0x1181fa5a, "VertexShader", ri::TYPE_SHADER },
{ 0xa93daef0, "FragmentShader", ri::TYPE_SHADER },
{ 0x8f066128, "GeometryShader", ri::TYPE_SHADER },
{ 0x235a931c, "TessControlShader", ri::TYPE_SHADER },
{ 0xa1bf7153, "TessEvaluationShader", ri::TYPE_SHADER },
{ 0x6c1415d9, "ComputeShader", ri::TYPE_SHADER },
{ 0x68738b22, "RaygenShader", ri::TYPE_SHADER },
{ 0x51d29ce9, "AnyHitShader", ri::TYPE_SHADER },
{ 0x8c64a6be, "ClosestHitShader", ri::TYPE_SHADER },
{ 0xb30ed398, "MissShader", ri::TYPE_SHADER },
{ 0x26150e53, "IntersectionShader", ri::TYPE_SHADER },
{ 0x7e50944c, "CallableShader", ri::TYPE_SHADER },
{ 0x72863a54, "ShaderProgram", ri::TYPE_SHADERPROGRAM },
{ 0xb4efc08d, "ShaderSource", ri::TYPE_SHADERSOURCE },
{ 0xaee4380a, "SpirVAssemblySource", ri::TYPE_SPIRVSOURCE },
{ 0xff265913, "InfoLog", ri::TYPE_INFOLOG },
{ 0x84159b73, "EglConfig", ri::TYPE_EGLCONFIG },
{ 0xdd34391f, "EglConfigSet", ri::TYPE_EGLCONFIGSET },
{ 0xebbb3aba, "Section", ri::TYPE_SECTION },
{ 0xa0f15677, "KernelSource", ri::TYPE_KERNELSOURCE },
{ 0x1ee9083a, "CompileInfo", ri::TYPE_COMPILEINFO },
{ 0xf1004023, "SampleList", ri::TYPE_SAMPLELIST },
{ 0xf0feae93, "SampleInfo", ri::TYPE_SAMPLEINFO },
{ 0x2aa6f14e, "ValueInfo", ri::TYPE_VALUEINFO },
{ 0xd09429e7, "Sample", ri::TYPE_SAMPLE },
{ 0x0e4a4722, "Value", ri::TYPE_SAMPLEVALUE }
};
static const EnumMapEntry s_imageFormatMap[] =
{
{ 0xcc4ffac8, "RGB888", ri::Image::FORMAT_RGB888 },
{ 0x20dcb0c1, "RGBA8888", ri::Image::FORMAT_RGBA8888 }
};
static const EnumMapEntry s_compressionMap[] =
{
{ 0x7c89bbd5, "None", ri::Image::COMPRESSION_NONE },
{ 0x0b88118a, "PNG", ri::Image::COMPRESSION_PNG }
};
static const EnumMapEntry s_shaderTypeFromTagMap[] =
{
{ 0x1181fa5a, "VertexShader", ri::Shader::SHADERTYPE_VERTEX },
{ 0xa93daef0, "FragmentShader", ri::Shader::SHADERTYPE_FRAGMENT },
{ 0x8f066128, "GeometryShader", ri::Shader::SHADERTYPE_GEOMETRY },
{ 0x235a931c, "TessControlShader", ri::Shader::SHADERTYPE_TESS_CONTROL },
{ 0xa1bf7153, "TessEvaluationShader", ri::Shader::SHADERTYPE_TESS_EVALUATION },
{ 0x6c1415d9, "ComputeShader", ri::Shader::SHADERTYPE_COMPUTE },
{ 0x68738b22, "RaygenShader", ri::Shader::SHADERTYPE_RAYGEN },
{ 0x51d29ce9, "AnyHitShader", ri::Shader::SHADERTYPE_ANY_HIT },
{ 0x8c64a6be, "ClosestHitShader", ri::Shader::SHADERTYPE_CLOSEST_HIT },
{ 0xb30ed398, "MissShader", ri::Shader::SHADERTYPE_MISS },
{ 0x26150e53, "IntersectionShader", ri::Shader::SHADERTYPE_INTERSECTION },
{ 0x7e50944c, "CallableShader", ri::Shader::SHADERTYPE_CALLABLE }
};
static const EnumMapEntry s_testTypeMap[] =
{
{ 0x7fa80959, "SelfValidate", TESTCASETYPE_SELF_VALIDATE },
{ 0xdb797567, "Capability", TESTCASETYPE_CAPABILITY },
{ 0x2ca3ec10, "Accuracy", TESTCASETYPE_ACCURACY },
{ 0xa48ac277, "Performance", TESTCASETYPE_PERFORMANCE }
};
static const EnumMapEntry s_logVersionMap[] =
{
{ 0x0b7dac93, "0.2.0", TESTLOGVERSION_0_2_0 },
{ 0x0b7db0d4, "0.3.0", TESTLOGVERSION_0_3_0 },
{ 0x0b7db0d5, "0.3.1", TESTLOGVERSION_0_3_1 },
{ 0x0b7db0d6, "0.3.2", TESTLOGVERSION_0_3_2 },
{ 0x0b7db0d7, "0.3.3", TESTLOGVERSION_0_3_3 },
{ 0x0b7db0d8, "0.3.4", TESTLOGVERSION_0_3_4 }
};
static const EnumMapEntry s_sampleValueTagMap[] =
{
{ 0xddf2d0d1, "Predictor", ri::ValueInfo::VALUETAG_PREDICTOR },
{ 0x9bee2c34, "Response", ri::ValueInfo::VALUETAG_RESPONSE },
};
#if defined(DE_DEBUG)
static void printHashes (const char* name, const EnumMapEntry* entries, int numEntries)
{
printf("%s:\n", name);
for (int ndx = 0; ndx < numEntries; ndx++)
printf("0x%08x\t%s\n", deStringHash(entries[ndx].name), entries[ndx].name);
printf("\n");
}
#define PRINT_HASHES(MAP) printHashes(#MAP, MAP, DE_LENGTH_OF_ARRAY(MAP))
void TestResultParser_printHashes (void)
{
PRINT_HASHES(s_statusCodeMap);
PRINT_HASHES(s_resultItemMap);
PRINT_HASHES(s_imageFormatMap);
PRINT_HASHES(s_compressionMap);
PRINT_HASHES(s_shaderTypeFromTagMap);
PRINT_HASHES(s_testTypeMap);
PRINT_HASHES(s_logVersionMap);
PRINT_HASHES(s_sampleValueTagMap);
}
#endif
static inline int getEnumValue (const char* enumName, const EnumMapEntry* entries, int numEntries, const char* name)
{
deUint32 hash = deStringHash(name);
for (int ndx = 0; ndx < numEntries; ndx++)
{
if (entries[ndx].hash == hash && deStringEqual(entries[ndx].name, name))
return entries[ndx].value;
}
throw TestResultParseError(string("Could not map '") + name + "' to " + enumName);
}
TestStatusCode getTestStatusCode (const char* statusCode)
{
return (TestStatusCode)getEnumValue("status code", s_statusCodeMap, DE_LENGTH_OF_ARRAY(s_statusCodeMap), statusCode);
}
static ri::Type getResultItemType (const char* elemName)
{
return (ri::Type)getEnumValue("result item type", s_resultItemMap, DE_LENGTH_OF_ARRAY(s_resultItemMap), elemName);
}
static ri::Image::Format getImageFormat (const char* imageFormat)
{
return (ri::Image::Format)getEnumValue("image format", s_imageFormatMap, DE_LENGTH_OF_ARRAY(s_imageFormatMap), imageFormat);
}
static ri::Image::Compression getImageCompression (const char* compression)
{
return (ri::Image::Compression)getEnumValue("image compression", s_compressionMap, DE_LENGTH_OF_ARRAY(s_compressionMap), compression);
}
static ri::Shader::ShaderType getShaderTypeFromTagName (const char* shaderType)
{
return (ri::Shader::ShaderType)getEnumValue("shader type", s_shaderTypeFromTagMap, DE_LENGTH_OF_ARRAY(s_shaderTypeFromTagMap), shaderType);
}
static TestCaseType getTestCaseType (const char* caseType)
{
return (TestCaseType)getEnumValue("test case type", s_testTypeMap, DE_LENGTH_OF_ARRAY(s_testTypeMap), caseType);
}
static TestLogVersion getTestLogVersion (const char* logVersion)
{
return (TestLogVersion)getEnumValue("test log version", s_logVersionMap, DE_LENGTH_OF_ARRAY(s_logVersionMap), logVersion);
}
static ri::ValueInfo::ValueTag getSampleValueTag (const char* tag)
{
return (ri::ValueInfo::ValueTag)getEnumValue("sample value tag", s_sampleValueTagMap, DE_LENGTH_OF_ARRAY(s_sampleValueTagMap), tag);
}
static TestCaseType getTestCaseTypeFromPath (const char* casePath)
{
if (deStringBeginsWith(casePath, "dEQP-GLES2."))
{
const char* group = casePath+11;
if (deStringBeginsWith(group, "capability."))
return TESTCASETYPE_CAPABILITY;
else if (deStringBeginsWith(group, "accuracy."))
return TESTCASETYPE_ACCURACY;
else if (deStringBeginsWith(group, "performance."))
return TESTCASETYPE_PERFORMANCE;
}
return TESTCASETYPE_SELF_VALIDATE;
}
static ri::NumericValue getNumericValue (const std::string& value)
{
const bool isFloat = value.find('.') != std::string::npos || value.find('e') != std::string::npos;
if (isFloat)
{
const double num = toDouble(stripLeadingWhitespace(value.c_str()));
return ri::NumericValue(num);
}
else
{
const deInt64 num = toInt64(stripLeadingWhitespace(value.c_str()));
return ri::NumericValue(num);
}
}
TestResultParser::TestResultParser (void)
: m_result (DE_NULL)
, m_state (STATE_NOT_INITIALIZED)
, m_logVersion (TESTLOGVERSION_LAST)
, m_curItemList (DE_NULL)
, m_base64DecodeOffset (0)
{
}
TestResultParser::~TestResultParser (void)
{
}
void TestResultParser::clear (void)
{
m_xmlParser.clear();
m_itemStack.clear();
m_result = DE_NULL;
m_state = STATE_NOT_INITIALIZED;
m_logVersion = TESTLOGVERSION_LAST;
m_curItemList = DE_NULL;
m_base64DecodeOffset = 0;
m_curNumValue.clear();
}
void TestResultParser::init (TestCaseResult* dstResult)
{
clear();
m_result = dstResult;
m_state = STATE_INITIALIZED;
m_curItemList = &dstResult->resultItems;
}
TestResultParser::ParseResult TestResultParser::parse (const deUint8* bytes, int numBytes)
{
DE_ASSERT(m_result && m_state != STATE_NOT_INITIALIZED);
try
{
bool resultChanged = false;
m_xmlParser.feed(bytes, numBytes);
for (;;)
{
xml::Element curElement = m_xmlParser.getElement();
if (curElement == xml::ELEMENT_INCOMPLETE ||
curElement == xml::ELEMENT_END_OF_STRING)
break;
switch (curElement)
{
case xml::ELEMENT_START: handleElementStart(); break;
case xml::ELEMENT_END: handleElementEnd(); break;
case xml::ELEMENT_DATA: handleData(); break;
default:
DE_ASSERT(false);
}
resultChanged = true;
m_xmlParser.advance();
}
if (m_xmlParser.getElement() == xml::ELEMENT_END_OF_STRING)
{
if (m_state != STATE_TEST_CASE_RESULT_ENDED)
throw TestResultParseError("Unexpected end of log data");
return PARSERESULT_COMPLETE;
}
else
return resultChanged ? PARSERESULT_CHANGED
: PARSERESULT_NOT_CHANGED;
}
catch (const TestResultParseError& e)
{
// Set error code to result.
m_result->statusCode = TESTSTATUSCODE_INTERNAL_ERROR;
m_result->statusDetails = e.what();
return PARSERESULT_ERROR;
}
catch (const xml::ParseError& e)
{
// Set error code to result.
m_result->statusCode = TESTSTATUSCODE_INTERNAL_ERROR;
m_result->statusDetails = e.what();
return PARSERESULT_ERROR;
}
}
const char* TestResultParser::getAttribute (const char* name)
{
if (!m_xmlParser.hasAttribute(name))
throw TestResultParseError(string("Missing attribute '") + name + "' in <" + m_xmlParser.getElementName() + ">");
return m_xmlParser.getAttribute(name);
}
ri::Item* TestResultParser::getCurrentItem (void)
{
return !m_itemStack.empty() ? m_itemStack.back() : DE_NULL;
}
ri::List* TestResultParser::getCurrentItemList (void)
{
DE_ASSERT(m_curItemList);
return m_curItemList;
}
void TestResultParser::updateCurrentItemList (void)
{
m_curItemList = DE_NULL;
for (vector<ri::Item*>::reverse_iterator i = m_itemStack.rbegin(); i != m_itemStack.rend(); i++)
{
ri::Item* item = *i;
ri::Type type = item->getType();
if (type == ri::TYPE_IMAGESET)
m_curItemList = &static_cast<ri::ImageSet*>(item)->images;
else if (type == ri::TYPE_SECTION)
m_curItemList = &static_cast<ri::Section*>(item)->items;
else if (type == ri::TYPE_EGLCONFIGSET)
m_curItemList = &static_cast<ri::EglConfigSet*>(item)->configs;
else if (type == ri::TYPE_SHADERPROGRAM)
m_curItemList = &static_cast<ri::ShaderProgram*>(item)->shaders;
if (m_curItemList)
break;
}
if (!m_curItemList)
m_curItemList = &m_result->resultItems;
}
void TestResultParser::pushItem (ri::Item* item)
{
m_itemStack.push_back(item);
updateCurrentItemList();
}
void TestResultParser::popItem (void)
{
m_itemStack.pop_back();
updateCurrentItemList();
}
void TestResultParser::handleElementStart (void)
{
const char* elemName = m_xmlParser.getElementName();
if (m_state == STATE_INITIALIZED)
{
// Expect TestCaseResult.
if (!deStringEqual(elemName, "TestCaseResult"))
throw TestResultParseError(string("Expected <TestCaseResult>, got <") + elemName + ">");
const char* version = getAttribute("Version");
m_logVersion = getTestLogVersion(version);
// \note Currently assumed that all known log versions are supported.
m_result->casePath = getAttribute("CasePath");
m_result->caseType = TESTCASETYPE_SELF_VALIDATE;
if (m_xmlParser.hasAttribute("CaseType"))
m_result->caseType = getTestCaseType(m_xmlParser.getAttribute("CaseType"));
else
{
// Do guess based on path for legacy log files.
if (m_logVersion >= TESTLOGVERSION_0_3_2)
throw TestResultParseError("Missing CaseType attribute in <TestCaseResult>");
m_result->caseType = getTestCaseTypeFromPath(m_result->casePath.c_str());
}
m_state = STATE_IN_TEST_CASE_RESULT;
}
else
{
ri::List* curList = getCurrentItemList();
ri::Type itemType = getResultItemType(elemName);
ri::Item* item = DE_NULL;
ri::Item* parentItem = getCurrentItem();
ri::Type parentType = parentItem ? parentItem->getType() : ri::TYPE_LAST;
switch (itemType)
{
case ri::TYPE_RESULT:
{
ri::Result* result = curList->allocItem<ri::Result>();
result->statusCode = getTestStatusCode(getAttribute("StatusCode"));
item = result;
break;
}
case ri::TYPE_TEXT:
item = curList->allocItem<ri::Text>();
break;
case ri::TYPE_SECTION:
{
ri::Section* section = curList->allocItem<ri::Section>();
section->name = getAttribute("Name");
section->description = getAttribute("Description");
item = section;
break;
}
case ri::TYPE_NUMBER:
{
ri::Number* number = curList->allocItem<ri::Number>();
number->name = getAttribute("Name");
number->description = getAttribute("Description");
number->unit = getAttribute("Unit");
if (m_xmlParser.hasAttribute("Tag"))
number->tag = m_xmlParser.getAttribute("Tag");
item = number;
m_curNumValue.clear();
break;
}
case ri::TYPE_IMAGESET:
{
ri::ImageSet* imageSet = curList->allocItem<ri::ImageSet>();
imageSet->name = getAttribute("Name");
imageSet->description = getAttribute("Description");
item = imageSet;
break;
}
case ri::TYPE_IMAGE:
{
ri::Image* image = curList->allocItem<ri::Image>();
image->name = getAttribute("Name");
image->description = getAttribute("Description");
image->width = toInt(getAttribute("Width"));
image->height = toInt(getAttribute("Height"));
image->format = getImageFormat(getAttribute("Format"));
image->compression = getImageCompression(getAttribute("CompressionMode"));
item = image;
break;
}
case ri::TYPE_SHADERPROGRAM:
{
ri::ShaderProgram* shaderProgram = curList->allocItem<ri::ShaderProgram>();
shaderProgram->linkStatus = toBool(getAttribute("LinkStatus"));
item = shaderProgram;
break;
}
case ri::TYPE_SHADER:
{
if (parentType != ri::TYPE_SHADERPROGRAM)
throw TestResultParseError(string("<") + elemName + "> outside of <ShaderProgram>");
ri::Shader* shader = curList->allocItem<ri::Shader>();
shader->shaderType = getShaderTypeFromTagName(elemName);
shader->compileStatus = toBool(getAttribute("CompileStatus"));
item = shader;
break;
}
case ri::TYPE_SPIRVSOURCE:
{
if (parentType != ri::TYPE_SHADERPROGRAM)
throw TestResultParseError(string("<") + elemName + "> outside of <ShaderProgram>");
item = curList->allocItem<ri::SpirVSource>();
break;
}
case ri::TYPE_SHADERSOURCE:
if (parentType == ri::TYPE_SHADER)
item = &static_cast<ri::Shader*>(parentItem)->source;
else
throw TestResultParseError("Unexpected <ShaderSource>");
break;
case ri::TYPE_INFOLOG:
if (parentType == ri::TYPE_SHADERPROGRAM)
item = &static_cast<ri::ShaderProgram*>(parentItem)->linkInfoLog;
else if (parentType == ri::TYPE_SHADER)
item = &static_cast<ri::Shader*>(parentItem)->infoLog;
else if (parentType == ri::TYPE_COMPILEINFO)
item = &static_cast<ri::CompileInfo*>(parentItem)->infoLog;
else
throw TestResultParseError("Unexpected <InfoLog>");
break;
case ri::TYPE_KERNELSOURCE:
item = curList->allocItem<ri::KernelSource>();
break;
case ri::TYPE_COMPILEINFO:
{
ri::CompileInfo* info = curList->allocItem<ri::CompileInfo>();
info->name = getAttribute("Name");
info->description = getAttribute("Description");
info->compileStatus = toBool(getAttribute("CompileStatus"));
item = info;
break;
}
case ri::TYPE_EGLCONFIGSET:
{
ri::EglConfigSet* set = curList->allocItem<ri::EglConfigSet>();
set->name = getAttribute("Name");
set->description = m_xmlParser.hasAttribute("Description") ? m_xmlParser.getAttribute("Description") : "";
item = set;
break;
}
case ri::TYPE_EGLCONFIG:
{
ri::EglConfig* config = curList->allocItem<ri::EglConfig>();
config->bufferSize = toInt(getAttribute("BufferSize"));
config->redSize = toInt(getAttribute("RedSize"));
config->greenSize = toInt(getAttribute("GreenSize"));
config->blueSize = toInt(getAttribute("BlueSize"));
config->luminanceSize = toInt(getAttribute("LuminanceSize"));
config->alphaSize = toInt(getAttribute("AlphaSize"));
config->alphaMaskSize = toInt(getAttribute("AlphaMaskSize"));
config->bindToTextureRGB = toBool(getAttribute("BindToTextureRGB"));
config->bindToTextureRGBA = toBool(getAttribute("BindToTextureRGBA"));
config->colorBufferType = getAttribute("ColorBufferType");
config->configCaveat = getAttribute("ConfigCaveat");
config->configID = toInt(getAttribute("ConfigID"));
config->conformant = getAttribute("Conformant");
config->depthSize = toInt(getAttribute("DepthSize"));
config->level = toInt(getAttribute("Level"));
config->maxPBufferWidth = toInt(getAttribute("MaxPBufferWidth"));
config->maxPBufferHeight = toInt(getAttribute("MaxPBufferHeight"));
config->maxPBufferPixels = toInt(getAttribute("MaxPBufferPixels"));
config->maxSwapInterval = toInt(getAttribute("MaxSwapInterval"));
config->minSwapInterval = toInt(getAttribute("MinSwapInterval"));
config->nativeRenderable = toBool(getAttribute("NativeRenderable"));
config->renderableType = getAttribute("RenderableType");
config->sampleBuffers = toInt(getAttribute("SampleBuffers"));
config->samples = toInt(getAttribute("Samples"));
config->stencilSize = toInt(getAttribute("StencilSize"));
config->surfaceTypes = getAttribute("SurfaceTypes");
config->transparentType = getAttribute("TransparentType");
config->transparentRedValue = toInt(getAttribute("TransparentRedValue"));
config->transparentGreenValue = toInt(getAttribute("TransparentGreenValue"));
config->transparentBlueValue = toInt(getAttribute("TransparentBlueValue"));
item = config;
break;
}
case ri::TYPE_SAMPLELIST:
{
ri::SampleList* list = curList->allocItem<ri::SampleList>();
list->name = getAttribute("Name");
list->description = getAttribute("Description");
item = list;
break;
}
case ri::TYPE_SAMPLEINFO:
{
if (parentType != ri::TYPE_SAMPLELIST)
throw TestResultParseError("<SampleInfo> outside of <SampleList>");
ri::SampleList* list = static_cast<ri::SampleList*>(parentItem);
ri::SampleInfo* info = &list->sampleInfo;
item = info;
break;
}
case ri::TYPE_VALUEINFO:
{
if (parentType != ri::TYPE_SAMPLEINFO)
throw TestResultParseError("<ValueInfo> outside of <SampleInfo>");
ri::SampleInfo* sampleInfo = static_cast<ri::SampleInfo*>(parentItem);
ri::ValueInfo* valueInfo = sampleInfo->valueInfos.allocItem<ri::ValueInfo>();
valueInfo->name = getAttribute("Name");
valueInfo->description = getAttribute("Description");
valueInfo->tag = getSampleValueTag(getAttribute("Tag"));
if (m_xmlParser.hasAttribute("Unit"))
valueInfo->unit = getAttribute("Unit");
item = valueInfo;
break;
}
case ri::TYPE_SAMPLE:
{
if (parentType != ri::TYPE_SAMPLELIST)
throw TestResultParseError("<Sample> outside of <SampleList>");
ri::SampleList* list = static_cast<ri::SampleList*>(parentItem);
ri::Sample* sample = list->samples.allocItem<ri::Sample>();
item = sample;
break;
}
case ri::TYPE_SAMPLEVALUE:
{
if (parentType != ri::TYPE_SAMPLE)
throw TestResultParseError("<Value> outside of <Sample>");
ri::Sample* sample = static_cast<ri::Sample*>(parentItem);
ri::SampleValue* value = sample->values.allocItem<ri::SampleValue>();
item = value;
break;
}
default:
throw TestResultParseError(string("Unsupported element '") + elemName + ("'"));
}
DE_ASSERT(item);
pushItem(item);
// Reset base64 decoding offset.
m_base64DecodeOffset = 0;
}
}
void TestResultParser::handleElementEnd (void)
{
const char* elemName = m_xmlParser.getElementName();
if (m_state != STATE_IN_TEST_CASE_RESULT)
throw TestResultParseError(string("Unexpected </") + elemName + "> outside of <TestCaseResult>");
if (deStringEqual(elemName, "TestCaseResult"))
{
// Logs from buggy test cases may contain invalid XML.
// DE_ASSERT(getCurrentItem() == DE_NULL);
// \todo [2012-11-22 pyry] Log warning.
m_state = STATE_TEST_CASE_RESULT_ENDED;
}
else
{
ri::Type itemType = getResultItemType(elemName);
ri::Item* curItem = getCurrentItem();
if (!curItem || itemType != curItem->getType())
throw TestResultParseError(string("Unexpected </") + elemName + ">");
if (itemType == ri::TYPE_RESULT)
{
ri::Result* result = static_cast<ri::Result*>(curItem);
m_result->statusCode = result->statusCode;
m_result->statusDetails = result->details;
}
else if (itemType == ri::TYPE_NUMBER)
{
// Parse value for number.
ri::Number* number = static_cast<ri::Number*>(curItem);
number->value = getNumericValue(m_curNumValue);
m_curNumValue.clear();
}
else if (itemType == ri::TYPE_SAMPLEVALUE)
{
ri::SampleValue* value = static_cast<ri::SampleValue*>(curItem);
value->value = getNumericValue(m_curNumValue);
m_curNumValue.clear();
}
popItem();
}
}
void TestResultParser::handleData (void)
{
ri::Item* curItem = getCurrentItem();
ri::Type type = curItem ? curItem->getType() : ri::TYPE_LAST;
switch (type)
{
case ri::TYPE_RESULT:
m_xmlParser.appendDataStr(static_cast<ri::Result*>(curItem)->details);
break;
case ri::TYPE_TEXT:
m_xmlParser.appendDataStr(static_cast<ri::Text*>(curItem)->text);
break;
case ri::TYPE_SHADERSOURCE:
m_xmlParser.appendDataStr(static_cast<ri::ShaderSource*>(curItem)->source);
break;
case ri::TYPE_SPIRVSOURCE:
m_xmlParser.appendDataStr(static_cast<ri::SpirVSource*>(curItem)->source);
break;
case ri::TYPE_INFOLOG:
m_xmlParser.appendDataStr(static_cast<ri::InfoLog*>(curItem)->log);
break;
case ri::TYPE_KERNELSOURCE:
m_xmlParser.appendDataStr(static_cast<ri::KernelSource*>(curItem)->source);
break;
case ri::TYPE_NUMBER:
case ri::TYPE_SAMPLEVALUE:
m_xmlParser.appendDataStr(m_curNumValue);
break;
case ri::TYPE_IMAGE:
{
ri::Image* image = static_cast<ri::Image*>(curItem);
// Base64 decode.
int numBytesIn = m_xmlParser.getDataSize();
for (int inNdx = 0; inNdx < numBytesIn; inNdx++)
{
deUint8 byte = m_xmlParser.getDataByte(inNdx);
deUint8 decodedBits = 0;
if (de::inRange<deInt8>(byte, 'A', 'Z'))
decodedBits = (deUint8)(byte - 'A');
else if (de::inRange<deInt8>(byte, 'a', 'z'))
decodedBits = (deUint8)(('Z'-'A'+1) + (byte-'a'));
else if (de::inRange<deInt8>(byte, '0', '9'))
decodedBits = (deUint8)(('Z'-'A'+1) + ('z'-'a'+1) + (byte-'0'));
else if (byte == '+')
decodedBits = ('Z'-'A'+1) + ('z'-'a'+1) + ('9'-'0'+1);
else if (byte == '/')
decodedBits = ('Z'-'A'+1) + ('z'-'a'+1) + ('9'-'0'+2);
else if (byte == '=')
{
// Padding at end - remove last byte.
if (image->data.empty())
throw TestResultParseError("Malformed base64 data");
image->data.pop_back();
continue;
}
else
continue; // Not an B64 input character.
int phase = m_base64DecodeOffset % 4;
if (phase == 0)
image->data.resize(image->data.size()+3, 0);
if ((int)image->data.size() < (m_base64DecodeOffset>>2)*3 + 3)
throw TestResultParseError("Malformed base64 data");
deUint8* outPtr = &image->data[(m_base64DecodeOffset>>2)*3];
switch (phase)
{
case 0: outPtr[0] |= (deUint8)(decodedBits<<2); break;
case 1: outPtr[0] = (deUint8)(outPtr[0] | (deUint8)(decodedBits>>4)); outPtr[1] = (deUint8)(outPtr[1] | (deUint8)((decodedBits&0xF)<<4)); break;
case 2: outPtr[1] = (deUint8)(outPtr[1] | (deUint8)(decodedBits>>2)); outPtr[2] = (deUint8)(outPtr[2] | (deUint8)((decodedBits&0x3)<<6)); break;
case 3: outPtr[2] |= decodedBits; break;
default:
DE_ASSERT(false);
}
m_base64DecodeOffset += 1;
}
break;
}
default:
// Just ignore data.
break;
}
}
//! Helper for parsing TestCaseResult from TestCaseResultData.
void parseTestCaseResultFromData (TestResultParser* parser, TestCaseResult* result, const TestCaseResultData& data)
{
DE_ASSERT(result->resultItems.getNumItems() == 0);
// Initialize status codes etc. from data.
result->casePath = data.getTestCasePath();
result->caseType = TESTCASETYPE_SELF_VALIDATE;
result->statusCode = data.getStatusCode();
result->statusDetails = data.getStatusDetails();
if (data.getDataSize() > 0)
{
parser->init(result);
const TestResultParser::ParseResult parseResult = parser->parse(data.getData(), data.getDataSize());
if (result->statusCode == TESTSTATUSCODE_LAST)
{
result->statusCode = TESTSTATUSCODE_INTERNAL_ERROR;
if (parseResult == TestResultParser::PARSERESULT_ERROR)
result->statusDetails = "Test case result parsing failed";
else if (parseResult != TestResultParser::PARSERESULT_COMPLETE)
result->statusDetails = "Incomplete test case result";
else
result->statusDetails = "Test case result is missing <Result> item";
}
}
else if (result->statusCode == TESTSTATUSCODE_LAST)
{
result->statusCode = TESTSTATUSCODE_TERMINATED;
result->statusDetails = "Empty test case result";
}
if (result->casePath.empty())
throw Error("Empty test case path in result");
if (result->caseType == TESTCASETYPE_LAST)
throw Error("Invalid test case type in result");
DE_ASSERT(result->statusCode != TESTSTATUSCODE_LAST);
}
} // xe