blob: d32af1cfb0b98a47aba5ba797643e8e78864ddf9 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file vktSparseResourcesBufferSparseBinding.cpp
* \brief Buffer Sparse Binding tests
*//*--------------------------------------------------------------------*/
#include "vktSparseResourcesBufferSparseBinding.hpp"
#include "vktSparseResourcesTestsUtil.hpp"
#include "vktSparseResourcesBase.hpp"
#include "vktTestCaseUtil.hpp"
#include "vkDefs.hpp"
#include "vkRef.hpp"
#include "vkRefUtil.hpp"
#include "vkPlatform.hpp"
#include "vkPrograms.hpp"
#include "vkMemUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkImageUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkCmdUtil.hpp"
#include "deUniquePtr.hpp"
#include "deStringUtil.hpp"
#include <string>
#include <vector>
using namespace vk;
namespace vkt
{
namespace sparse
{
namespace
{
class BufferSparseBindingCase : public TestCase
{
public:
BufferSparseBindingCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const deUint32 bufferSize,
const bool useDeviceGroups);
TestInstance* createInstance (Context& context) const;
virtual void checkSupport (Context& context) const;
private:
const deUint32 m_bufferSize;
const bool m_useDeviceGroups;
};
BufferSparseBindingCase::BufferSparseBindingCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const deUint32 bufferSize,
const bool useDeviceGroups)
: TestCase (testCtx, name, description)
, m_bufferSize (bufferSize)
, m_useDeviceGroups (useDeviceGroups)
{
}
void BufferSparseBindingCase::checkSupport (Context& context) const
{
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
}
class BufferSparseBindingInstance : public SparseResourcesBaseInstance
{
public:
BufferSparseBindingInstance (Context& context,
const deUint32 bufferSize,
const bool useDeviceGroups);
tcu::TestStatus iterate (void);
private:
const deUint32 m_bufferSize;
const deUint32 m_useDeviceGroups;
};
BufferSparseBindingInstance::BufferSparseBindingInstance (Context& context,
const deUint32 bufferSize,
const bool useDeviceGroups)
: SparseResourcesBaseInstance (context, useDeviceGroups)
, m_bufferSize (bufferSize)
, m_useDeviceGroups (useDeviceGroups)
{
}
tcu::TestStatus BufferSparseBindingInstance::iterate (void)
{
const InstanceInterface& instance = m_context.getInstanceInterface();
{
// Create logical device supporting both sparse and compute operations
QueueRequirementsVec queueRequirements;
queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
createDeviceSupportingQueues(queueRequirements);
}
const vk::VkPhysicalDevice& physicalDevice = getPhysicalDevice();
const DeviceInterface& deviceInterface = getDeviceInterface();
const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
// Go through all physical devices
for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
{
const deUint32 firstDeviceID = physDevID;
const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
VkBufferCreateInfo bufferCreateInfo;
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; // VkStructureType sType;
bufferCreateInfo.pNext = DE_NULL; // const void* pNext;
bufferCreateInfo.flags = VK_BUFFER_CREATE_SPARSE_BINDING_BIT; // VkBufferCreateFlags flags;
bufferCreateInfo.size = m_bufferSize; // VkDeviceSize size;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT; // VkBufferUsageFlags usage;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; // VkSharingMode sharingMode;
bufferCreateInfo.queueFamilyIndexCount = 0u; // deUint32 queueFamilyIndexCount;
bufferCreateInfo.pQueueFamilyIndices = DE_NULL; // const deUint32* pQueueFamilyIndices;
const deUint32 queueFamilyIndices[] = { sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex };
if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex)
{
bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; // VkSharingMode sharingMode;
bufferCreateInfo.queueFamilyIndexCount = 2u; // deUint32 queueFamilyIndexCount;
bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices; // const deUint32* pQueueFamilyIndices;
}
// Create sparse buffer
const Unique<VkBuffer> sparseBuffer(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
// Create sparse buffer memory bind semaphore
const Unique<VkSemaphore> bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
const VkMemoryRequirements bufferMemRequirement = getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBuffer);
if (bufferMemRequirement.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits");
DE_ASSERT((bufferMemRequirement.size % bufferMemRequirement.alignment) == 0);
Move<VkDeviceMemory> sparseMemoryAllocation;
{
std::vector<VkSparseMemoryBind> sparseMemoryBinds;
const deUint32 numSparseBinds = static_cast<deUint32>(bufferMemRequirement.size / bufferMemRequirement.alignment);
const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), bufferMemRequirement, MemoryRequirement::Any);
if (memoryType == NO_MATCH_FOUND)
return tcu::TestStatus::fail("No matching memory type found");
if (firstDeviceID != secondDeviceID)
{
VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
{
TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
}
}
{
const VkMemoryAllocateInfo allocateInfo =
{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
bufferMemRequirement.size, // VkDeviceSize allocationSize;
memoryType, // uint32_t memoryTypeIndex;
};
sparseMemoryAllocation = allocateMemory(deviceInterface, getDevice(), &allocateInfo);
}
for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
{
const VkSparseMemoryBind sparseMemoryBind =
{
bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize resourceOffset;
bufferMemRequirement.alignment, // VkDeviceSize size;
*sparseMemoryAllocation, // VkDeviceMemory memory;
bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize memoryOffset;
(VkSparseMemoryBindFlags)0, // VkSparseMemoryBindFlags flags;
};
sparseMemoryBinds.push_back(sparseMemoryBind);
}
const VkSparseBufferMemoryBindInfo sparseBufferBindInfo = makeSparseBufferMemoryBindInfo(*sparseBuffer, numSparseBinds, &sparseMemoryBinds[0]);
const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
{
VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType;
DE_NULL, //const void* pNext;
firstDeviceID, //deUint32 resourceDeviceIndex;
secondDeviceID, //deUint32 memoryDeviceIndex;
};
const VkBindSparseInfo bindSparseInfo =
{
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
0u, //deUint32 waitSemaphoreCount;
DE_NULL, //const VkSemaphore* pWaitSemaphores;
1u, //deUint32 bufferBindCount;
&sparseBufferBindInfo, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
0u, //deUint32 imageOpaqueBindCount;
DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
0u, //deUint32 imageBindCount;
DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
1u, //deUint32 signalSemaphoreCount;
&bufferMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
};
// Submit sparse bind commands for execution
VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
}
// Create command buffer for transfer oparations
const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
// Start recording transfer commands
beginCommandBuffer(deviceInterface, *commandBuffer);
const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
const Unique<VkBuffer> inputBuffer(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
const de::UniquePtr<Allocation> inputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
std::vector<deUint8> referenceData;
referenceData.resize(m_bufferSize);
for (deUint32 valueNdx = 0; valueNdx < m_bufferSize; ++valueNdx)
{
referenceData[valueNdx] = static_cast<deUint8>((valueNdx % bufferMemRequirement.alignment) + 1u);
}
deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], m_bufferSize);
flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
{
const VkBufferMemoryBarrier inputBufferBarrier
= makeBufferMemoryBarrier(VK_ACCESS_HOST_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
*inputBuffer,
0u,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
}
{
const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize);
deviceInterface.cmdCopyBuffer(*commandBuffer, *inputBuffer, *sparseBuffer, 1u, &bufferCopy);
}
{
const VkBufferMemoryBarrier sparseBufferBarrier
= makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
*sparseBuffer,
0u,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &sparseBufferBarrier, 0u, DE_NULL);
}
const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const Unique<VkBuffer> outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
const de::UniquePtr<Allocation> outputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
{
const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize);
deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBuffer, *outputBuffer, 1u, &bufferCopy);
}
{
const VkBufferMemoryBarrier outputBufferBarrier
= makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
*outputBuffer,
0u,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
}
// End recording transfer commands
endCommandBuffer(deviceInterface, *commandBuffer);
const VkPipelineStageFlags waitStageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
// Submit transfer commands for execution and wait for completion
// In case of device groups, submit on the physical device with the resource
submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &bufferMemoryBindSemaphore.get(),
waitStageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
// Retrieve data from output buffer to host memory
invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
// Wait for sparse queue to become idle
deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
// Compare output data with reference data
if (deMemCmp(&referenceData[0], outputData, m_bufferSize) != 0)
return tcu::TestStatus::fail("Failed");
}
return tcu::TestStatus::pass("Passed");
}
TestInstance* BufferSparseBindingCase::createInstance (Context& context) const
{
return new BufferSparseBindingInstance(context, m_bufferSize, m_useDeviceGroups);
}
} // anonymous ns
void addBufferSparseBindingTests (tcu::TestCaseGroup* group, const bool useDeviceGroups)
{
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_10", "", 1 << 10, useDeviceGroups));
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_12", "", 1 << 12, useDeviceGroups));
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_16", "", 1 << 16, useDeviceGroups));
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_17", "", 1 << 17, useDeviceGroups));
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_20", "", 1 << 20, useDeviceGroups));
group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_24", "", 1 << 24, useDeviceGroups));
}
} // sparse
} // vkt