| /*------------------------------------------------------------------------- |
| * Vulkan Conformance Tests |
| * ------------------------ |
| * |
| * Copyright (c) 2015 Google Inc. |
| * Copyright (c) 2016 The Khronos Group Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand) |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "vktSpvAsmInstructionTests.hpp" |
| |
| #include "tcuCommandLine.hpp" |
| #include "tcuFormatUtil.hpp" |
| #include "tcuFloat.hpp" |
| #include "tcuRGBA.hpp" |
| #include "tcuStringTemplate.hpp" |
| #include "tcuTestLog.hpp" |
| #include "tcuVectorUtil.hpp" |
| |
| #include "vkDefs.hpp" |
| #include "vkDeviceUtil.hpp" |
| #include "vkMemUtil.hpp" |
| #include "vkPlatform.hpp" |
| #include "vkPrograms.hpp" |
| #include "vkQueryUtil.hpp" |
| #include "vkRef.hpp" |
| #include "vkRefUtil.hpp" |
| #include "vkStrUtil.hpp" |
| #include "vkTypeUtil.hpp" |
| |
| #include "deRandom.hpp" |
| #include "deStringUtil.hpp" |
| #include "deUniquePtr.hpp" |
| #include "tcuStringTemplate.hpp" |
| |
| #include "vktSpvAsm16bitStorageTests.hpp" |
| #include "vktSpvAsmComputeShaderCase.hpp" |
| #include "vktSpvAsmComputeShaderTestUtil.hpp" |
| #include "vktSpvAsmGraphicsShaderTestUtil.hpp" |
| #include "vktSpvAsmVariablePointersTests.hpp" |
| #include "vktTestCaseUtil.hpp" |
| |
| #include <cmath> |
| #include <limits> |
| #include <map> |
| #include <string> |
| #include <sstream> |
| #include <utility> |
| |
| namespace vkt |
| { |
| namespace SpirVAssembly |
| { |
| |
| namespace |
| { |
| |
| using namespace vk; |
| using std::map; |
| using std::string; |
| using std::vector; |
| using tcu::IVec3; |
| using tcu::IVec4; |
| using tcu::RGBA; |
| using tcu::TestLog; |
| using tcu::TestStatus; |
| using tcu::Vec4; |
| using de::UniquePtr; |
| using tcu::StringTemplate; |
| using tcu::Vec4; |
| |
| template<typename T> |
| static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0) |
| { |
| T* const typedPtr = (T*)dst; |
| for (int ndx = 0; ndx < numValues; ndx++) |
| typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue); |
| } |
| |
| // Filter is a function that returns true if a value should pass, false otherwise. |
| template<typename T, typename FilterT> |
| static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, FilterT filter, int offset = 0) |
| { |
| T* const typedPtr = (T*)dst; |
| T value; |
| for (int ndx = 0; ndx < numValues; ndx++) |
| { |
| do |
| value = randomScalar<T>(rnd, minValue, maxValue); |
| while (!filter(value)); |
| |
| typedPtr[offset + ndx] = value; |
| } |
| } |
| |
| static void floorAll (vector<float>& values) |
| { |
| for (size_t i = 0; i < values.size(); i++) |
| values[i] = deFloatFloor(values[i]); |
| } |
| |
| static void floorAll (vector<Vec4>& values) |
| { |
| for (size_t i = 0; i < values.size(); i++) |
| values[i] = floor(values[i]); |
| } |
| |
| struct CaseParameter |
| { |
| const char* name; |
| string param; |
| |
| CaseParameter (const char* case_, const string& param_) : name(case_), param(param_) {} |
| }; |
| |
| // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code: |
| // |
| // #version 430 |
| // |
| // layout(std140, set = 0, binding = 0) readonly buffer Input { |
| // float elements[]; |
| // } input_data; |
| // layout(std140, set = 0, binding = 1) writeonly buffer Output { |
| // float elements[]; |
| // } output_data; |
| // |
| // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in; |
| // |
| // void main() { |
| // uint x = gl_GlobalInvocationID.x; |
| // output_data.elements[x] = -input_data.elements[x]; |
| // } |
| |
| tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) |
| |
| + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| |
| " OpNop\n" // Inside a function body |
| |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec)); |
| |
| return group.release(); |
| } |
| |
| bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log) |
| { |
| if (outputAllocs.size() != 1) |
| return false; |
| |
| const BufferSp& expectedOutput = expectedOutputs[0]; |
| const deInt32* expectedOutputAsInt = static_cast<const deInt32*>(expectedOutputs[0]->data()); |
| const deInt32* outputAsInt = static_cast<const deInt32*>(outputAllocs[0]->getHostPtr()); |
| const float* input1AsFloat = static_cast<const float*>(inputs[0]->data()); |
| const float* input2AsFloat = static_cast<const float*>(inputs[1]->data()); |
| bool returnValue = true; |
| |
| for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(deInt32); ++idx) |
| { |
| if (outputAsInt[idx] != expectedOutputAsInt[idx]) |
| { |
| log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage; |
| returnValue = false; |
| } |
| } |
| return returnValue; |
| } |
| |
| typedef VkBool32 (*compareFuncType) (float, float); |
| |
| struct OpFUnordCase |
| { |
| const char* name; |
| const char* opCode; |
| compareFuncType compareFunc; |
| |
| OpFUnordCase (const char* _name, const char* _opCode, compareFuncType _compareFunc) |
| : name (_name) |
| , opCode (_opCode) |
| , compareFunc (_compareFunc) {} |
| }; |
| |
| #define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \ |
| do { \ |
| struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \ |
| cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \ |
| } while (deGetFalse()) |
| |
| tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes")); |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<OpFUnordCase> cases; |
| |
| const StringTemplate shaderTemplate ( |
| |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| "OpDecorate %buf BufferBlock\n" |
| "OpDecorate %buf2 BufferBlock\n" |
| "OpDecorate %indata1 DescriptorSet 0\n" |
| "OpDecorate %indata1 Binding 0\n" |
| "OpDecorate %indata2 DescriptorSet 0\n" |
| "OpDecorate %indata2 Binding 1\n" |
| "OpDecorate %outdata DescriptorSet 0\n" |
| "OpDecorate %outdata Binding 2\n" |
| "OpDecorate %f32arr ArrayStride 4\n" |
| "OpDecorate %i32arr ArrayStride 4\n" |
| "OpMemberDecorate %buf 0 Offset 0\n" |
| "OpMemberDecorate %buf2 0 Offset 0\n" |
| |
| + string(getComputeAsmCommonTypes()) + |
| |
| "%buf = OpTypeStruct %f32arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata1 = OpVariable %bufptr Uniform\n" |
| "%indata2 = OpVariable %bufptr Uniform\n" |
| |
| "%buf2 = OpTypeStruct %i32arr\n" |
| "%buf2ptr = OpTypePointer Uniform %buf2\n" |
| "%outdata = OpVariable %buf2ptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%consti1 = OpConstant %i32 1\n" |
| "%constf1 = OpConstant %f32 1.0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| |
| "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n" |
| "%inval1 = OpLoad %f32 %inloc1\n" |
| "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n" |
| "%inval2 = OpLoad %f32 %inloc2\n" |
| "%outloc = OpAccessChain %i32ptr %outdata %zero %x\n" |
| |
| "%result = ${OPCODE} %bool %inval1 %inval2\n" |
| "%int_res = OpSelect %i32 %result %consti1 %zero\n" |
| " OpStore %outloc %int_res\n" |
| |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==); |
| ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <); |
| ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=); |
| ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >); |
| ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=); |
| ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=); |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| const float NaN = std::numeric_limits<float>::quiet_NaN(); |
| vector<float> inputFloats1 (numElements, 0); |
| vector<float> inputFloats2 (numElements, 0); |
| vector<deInt32> expectedInts (numElements, 0); |
| |
| specializations["OPCODE"] = cases[caseNdx].opCode; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements); |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| switch (ndx % 6) |
| { |
| case 0: inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break; |
| case 1: inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break; |
| case 2: inputFloats2[ndx] = inputFloats1[ndx]; break; |
| case 3: inputFloats2[ndx] = NaN; break; |
| case 4: inputFloats2[ndx] = inputFloats1[ndx]; inputFloats1[ndx] = NaN; break; |
| case 5: inputFloats2[ndx] = NaN; inputFloats1[ndx] = NaN; break; |
| } |
| expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]); |
| } |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2))); |
| spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| spec.verifyIO = &compareFUnord; |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| struct OpAtomicCase |
| { |
| const char* name; |
| const char* assembly; |
| void (*calculateExpected)(deInt32&, deInt32); |
| deInt32 numOutputElements; |
| |
| OpAtomicCase (const char* _name, const char* _assembly, void (*_calculateExpected)(deInt32&, deInt32), deInt32 _numOutputElements) |
| : name (_name) |
| , assembly (_assembly) |
| , calculateExpected (_calculateExpected) |
| , numOutputElements (_numOutputElements) {} |
| }; |
| |
| tcu::TestCaseGroup* createOpAtomicGroup (tcu::TestContext& testCtx, bool useStorageBuffer) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, |
| useStorageBuffer ? "opatomic_storage_buffer" : "opatomic", |
| "Test the OpAtomic* opcodes")); |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 1000000; |
| vector<OpAtomicCase> cases; |
| |
| const StringTemplate shaderTemplate ( |
| |
| string("OpCapability Shader\n") + |
| (useStorageBuffer ? "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n" : "") + |
| "OpMemoryModel Logical GLSL450\n" |
| "OpEntryPoint GLCompute %main \"main\" %id\n" |
| "OpExecutionMode %main LocalSize 1 1 1\n" + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| "OpDecorate %buf ${BLOCK_DECORATION}\n" |
| "OpDecorate %indata DescriptorSet 0\n" |
| "OpDecorate %indata Binding 0\n" |
| "OpDecorate %i32arr ArrayStride 4\n" |
| "OpMemberDecorate %buf 0 Offset 0\n" |
| |
| "OpDecorate %sumbuf ${BLOCK_DECORATION}\n" |
| "OpDecorate %sum DescriptorSet 0\n" |
| "OpDecorate %sum Binding 1\n" |
| "OpMemberDecorate %sumbuf 0 Coherent\n" |
| "OpMemberDecorate %sumbuf 0 Offset 0\n" |
| |
| "%void = OpTypeVoid\n" |
| "%voidf = OpTypeFunction %void\n" |
| "%u32 = OpTypeInt 32 0\n" |
| "%i32 = OpTypeInt 32 1\n" |
| "%uvec3 = OpTypeVector %u32 3\n" |
| "%uvec3ptr = OpTypePointer Input %uvec3\n" |
| "%i32ptr = OpTypePointer ${BLOCK_POINTER_TYPE} %i32\n" |
| "%i32arr = OpTypeRuntimeArray %i32\n" |
| |
| "%buf = OpTypeStruct %i32arr\n" |
| "%bufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %buf\n" |
| "%indata = OpVariable %bufptr ${BLOCK_POINTER_TYPE}\n" |
| |
| "%sumbuf = OpTypeStruct %i32arr\n" |
| "%sumbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %sumbuf\n" |
| "%sum = OpVariable %sumbufptr ${BLOCK_POINTER_TYPE}\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%minusone = OpConstant %i32 -1\n" |
| "%zero = OpConstant %i32 0\n" |
| "%one = OpConstant %u32 1\n" |
| "%two = OpConstant %i32 2\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| |
| "%inloc = OpAccessChain %i32ptr %indata %zero %x\n" |
| "%inval = OpLoad %i32 %inloc\n" |
| |
| "%outloc = OpAccessChain %i32ptr %sum %zero ${INDEX}\n" |
| "${INSTRUCTION}" |
| |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| #define ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, NUM_OUTPUT_ELEMENTS) \ |
| do { \ |
| DE_STATIC_ASSERT((NUM_OUTPUT_ELEMENTS) == 1 || (NUM_OUTPUT_ELEMENTS) == numElements); \ |
| struct calculateExpected_##NAME { static void calculateExpected(deInt32& expected, deInt32 input) CALCULATE_EXPECTED }; /* NOLINT(CALCULATE_EXPECTED) */ \ |
| cases.push_back(OpAtomicCase(#NAME, ASSEMBLY, calculateExpected_##NAME::calculateExpected, NUM_OUTPUT_ELEMENTS)); \ |
| } while (deGetFalse()) |
| #define ADD_OPATOMIC_CASE_1(NAME, ASSEMBLY, CALCULATE_EXPECTED) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, 1) |
| #define ADD_OPATOMIC_CASE_N(NAME, ASSEMBLY, CALCULATE_EXPECTED) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, numElements) |
| |
| ADD_OPATOMIC_CASE_1(iadd, "%unused = OpAtomicIAdd %i32 %outloc %one %zero %inval\n", { expected += input; } ); |
| ADD_OPATOMIC_CASE_1(isub, "%unused = OpAtomicISub %i32 %outloc %one %zero %inval\n", { expected -= input; } ); |
| ADD_OPATOMIC_CASE_1(iinc, "%unused = OpAtomicIIncrement %i32 %outloc %one %zero\n", { ++expected; (void)input;} ); |
| ADD_OPATOMIC_CASE_1(idec, "%unused = OpAtomicIDecrement %i32 %outloc %one %zero\n", { --expected; (void)input;} ); |
| ADD_OPATOMIC_CASE_N(load, "%inval2 = OpAtomicLoad %i32 %inloc %zero %zero\n" |
| " OpStore %outloc %inval2\n", { expected = input;} ); |
| ADD_OPATOMIC_CASE_N(store, " OpAtomicStore %outloc %zero %zero %inval\n", { expected = input;} ); |
| ADD_OPATOMIC_CASE_N(compex, "%even = OpSMod %i32 %inval %two\n" |
| " OpStore %outloc %even\n" |
| "%unused = OpAtomicCompareExchange %i32 %outloc %one %zero %zero %minusone %zero\n", { expected = (input % 2) == 0 ? -1 : 1;} ); |
| |
| #undef ADD_OPATOMIC_CASE |
| #undef ADD_OPATOMIC_CASE_1 |
| #undef ADD_OPATOMIC_CASE_N |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| vector<deInt32> inputInts (numElements, 0); |
| vector<deInt32> expected (cases[caseNdx].numOutputElements, -1); |
| |
| specializations["INDEX"] = (cases[caseNdx].numOutputElements == 1) ? "%zero" : "%x"; |
| specializations["INSTRUCTION"] = cases[caseNdx].assembly; |
| specializations["BLOCK_DECORATION"] = useStorageBuffer ? "Block" : "BufferBlock"; |
| specializations["BLOCK_POINTER_TYPE"] = useStorageBuffer ? "StorageBuffer" : "Uniform"; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| |
| if (useStorageBuffer) |
| spec.extensions.push_back("VK_KHR_storage_buffer_storage_class"); |
| |
| fillRandomScalars(rnd, 1, 100, &inputInts[0], numElements); |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| cases[caseNdx].calculateExpected((cases[caseNdx].numOutputElements == 1) ? expected[0] : expected[ndx], inputInts[ndx]); |
| } |
| |
| spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts))); |
| spec.outputs.push_back(BufferSp(new Int32Buffer(expected))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "%fname1 = OpString \"negateInputs.comp\"\n" |
| "%fname2 = OpString \"negateInputs\"\n" |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + |
| |
| "OpLine %fname1 0 0\n" // At the earliest possible position |
| |
| + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "OpLine %fname1 0 1\n" // Multiple OpLines in sequence |
| "OpLine %fname2 1 0\n" // Different filenames |
| "OpLine %fname1 1000 100000\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "OpLine %fname1 1 1\n" // Before a function |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| |
| "OpLine %fname1 1 1\n" // In a function |
| |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec)); |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "%fname = OpString \"negateInputs.comp\"\n" |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + |
| |
| "OpNoLine\n" // At the earliest possible position, without preceding OpLine |
| |
| + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "OpLine %fname 0 1\n" |
| "OpNoLine\n" // Immediately following a preceding OpLine |
| |
| "OpLine %fname 1000 1\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "OpNoLine\n" // Contents after the previous OpLine |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| |
| "OpNoLine\n" // Multiple OpNoLine |
| "OpNoLine\n" |
| "OpNoLine\n" |
| |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec)); |
| |
| return group.release(); |
| } |
| |
| // Compare instruction for the contraction compute case. |
| // Returns true if the output is what is expected from the test case. |
| bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&) |
| { |
| if (outputAllocs.size() != 1) |
| return false; |
| |
| // We really just need this for size because we are not comparing the exact values. |
| const BufferSp& expectedOutput = expectedOutputs[0]; |
| const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());; |
| |
| for(size_t i = 0; i < expectedOutput->getNumBytes() / sizeof(float); ++i) { |
| if (outputAsFloat[i] != 0.f && |
| outputAsFloat[i] != -ldexp(1, -24)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration")); |
| vector<CaseParameter> cases; |
| const int numElements = 100; |
| vector<float> inputFloats1 (numElements, 0); |
| vector<float> inputFloats2 (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| "${DECORATION}\n" |
| |
| "OpDecorate %buf BufferBlock\n" |
| "OpDecorate %indata1 DescriptorSet 0\n" |
| "OpDecorate %indata1 Binding 0\n" |
| "OpDecorate %indata2 DescriptorSet 0\n" |
| "OpDecorate %indata2 Binding 1\n" |
| "OpDecorate %outdata DescriptorSet 0\n" |
| "OpDecorate %outdata Binding 2\n" |
| "OpDecorate %f32arr ArrayStride 4\n" |
| "OpMemberDecorate %buf 0 Offset 0\n" |
| |
| + string(getComputeAsmCommonTypes()) + |
| |
| "%buf = OpTypeStruct %f32arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata1 = OpVariable %bufptr Uniform\n" |
| "%indata2 = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%c_f_m1 = OpConstant %f32 -1.\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n" |
| "%inval1 = OpLoad %f32 %inloc1\n" |
| "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n" |
| "%inval2 = OpLoad %f32 %inloc2\n" |
| "%mul = OpFMul %f32 %inval1 %inval2\n" |
| "%add = OpFAdd %f32 %mul %c_f_m1\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %add\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction")); |
| cases.push_back(CaseParameter("addition", "OpDecorate %add NoContraction")); |
| cases.push_back(CaseParameter("both", "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction")); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| inputFloats1[ndx] = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23. |
| inputFloats2[ndx] = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23. |
| // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be |
| // conducted separately and the result is rounded to 1, or 0x1.fffffcp-1 |
| // So the final result will be 0.f or 0x1p-24. |
| // If the operation is combined into a precise fused multiply-add, then the result would be |
| // 2^-46 (0xa8800000). |
| outputFloats[ndx] = 0.f; |
| } |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["DECORATION"] = cases[caseNdx].param; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| // Check against the two possible answers based on rounding mode. |
| spec.verifyIO = &compareNoContractCase; |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| return group.release(); |
| } |
| |
| bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&) |
| { |
| if (outputAllocs.size() != 1) |
| return false; |
| |
| const BufferSp& expectedOutput = expectedOutputs[0]; |
| const float *expectedOutputAsFloat = static_cast<const float*>(expectedOutput->data()); |
| const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());; |
| |
| for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx) |
| { |
| const float f0 = expectedOutputAsFloat[idx]; |
| const float f1 = outputAsFloat[idx]; |
| // \todo relative error needs to be fairly high because FRem may be implemented as |
| // (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now. |
| if (deFloatAbs((f1 - f0) / f0) > 0.02) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 200; |
| vector<float> inputFloats1 (numElements, 0); |
| vector<float> inputFloats2 (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements); |
| fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| // Guard against divisors near zero. |
| if (std::fabs(inputFloats2[ndx]) < 1e-3) |
| inputFloats2[ndx] = 8.f; |
| |
| // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd. |
| outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]); |
| } |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| "OpDecorate %buf BufferBlock\n" |
| "OpDecorate %indata1 DescriptorSet 0\n" |
| "OpDecorate %indata1 Binding 0\n" |
| "OpDecorate %indata2 DescriptorSet 0\n" |
| "OpDecorate %indata2 Binding 1\n" |
| "OpDecorate %outdata DescriptorSet 0\n" |
| "OpDecorate %outdata Binding 2\n" |
| "OpDecorate %f32arr ArrayStride 4\n" |
| "OpMemberDecorate %buf 0 Offset 0\n" |
| |
| + string(getComputeAsmCommonTypes()) + |
| |
| "%buf = OpTypeStruct %f32arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata1 = OpVariable %bufptr Uniform\n" |
| "%indata2 = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n" |
| "%inval1 = OpLoad %f32 %inloc1\n" |
| "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n" |
| "%inval2 = OpLoad %f32 %inloc2\n" |
| "%rem = OpFRem %f32 %inval1 %inval2\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %rem\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| spec.verifyIO = &compareFRem; |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec)); |
| |
| return group.release(); |
| } |
| |
| // Copy contents in the input buffer to the output buffer. |
| tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction")); |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| |
| // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer. |
| ComputeShaderSpec spec1; |
| vector<Vec4> inputFloats1 (numElements); |
| vector<Vec4> outputFloats1 (numElements); |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4); |
| |
| // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences. |
| floorAll(inputFloats1); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f); |
| |
| spec1.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpDecorate %vec4arr ArrayStride 16\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%vec4 = OpTypeVector %f32 4\n" |
| "%vec4ptr_u = OpTypePointer Uniform %vec4\n" |
| "%vec4ptr_f = OpTypePointer Function %vec4\n" |
| "%vec4arr = OpTypeRuntimeArray %vec4\n" |
| "%buf = OpTypeStruct %vec4arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%c_f_0 = OpConstant %f32 0.\n" |
| "%c_f_0_5 = OpConstant %f32 0.5\n" |
| "%c_f_1_5 = OpConstant %f32 1.5\n" |
| "%c_f_2_5 = OpConstant %f32 2.5\n" |
| "%c_vec4 = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%v_vec4 = OpVariable %vec4ptr_f Function\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %vec4ptr_u %indata %zero %x\n" |
| "%outloc = OpAccessChain %vec4ptr_u %outdata %zero %x\n" |
| " OpCopyMemory %v_vec4 %inloc\n" |
| "%v_vec4_val = OpLoad %vec4 %v_vec4\n" |
| "%add = OpFAdd %vec4 %v_vec4_val %c_vec4\n" |
| " OpStore %outloc %add\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| |
| spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1))); |
| spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1))); |
| spec1.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1)); |
| |
| // The following case copies a float[100] variable from the input buffer to the output buffer. |
| ComputeShaderSpec spec2; |
| vector<float> inputFloats2 (numElements); |
| vector<float> outputFloats2 (numElements); |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats2[ndx] = inputFloats2[ndx]; |
| |
| spec2.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpDecorate %f32arr100 ArrayStride 4\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%hundred = OpConstant %u32 100\n" |
| "%f32arr100 = OpTypeArray %f32 %hundred\n" |
| "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n" |
| "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n" |
| "%buf = OpTypeStruct %f32arr100\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%var = OpVariable %f32arr100ptr_f Function\n" |
| "%inarr = OpAccessChain %f32arr100ptr_u %indata %zero\n" |
| "%outarr = OpAccessChain %f32arr100ptr_u %outdata %zero\n" |
| " OpCopyMemory %var %inarr\n" |
| " OpCopyMemory %outarr %var\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| |
| spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2))); |
| spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2))); |
| spec2.numWorkGroups = IVec3(1, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2)); |
| |
| // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer. |
| ComputeShaderSpec spec3; |
| vector<float> inputFloats3 (16); |
| vector<float> outputFloats3 (16); |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16); |
| |
| for (size_t ndx = 0; ndx < 16; ++ndx) |
| outputFloats3[ndx] = inputFloats3[ndx]; |
| |
| spec3.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpMemberDecorate %buf 0 Offset 0\n" |
| "OpMemberDecorate %buf 1 Offset 16\n" |
| "OpMemberDecorate %buf 2 Offset 32\n" |
| "OpMemberDecorate %buf 3 Offset 48\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%vec4 = OpTypeVector %f32 4\n" |
| "%buf = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| "%vec4stptr = OpTypePointer Function %buf\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%var = OpVariable %vec4stptr Function\n" |
| " OpCopyMemory %var %indata\n" |
| " OpCopyMemory %outdata %var\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| |
| spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3))); |
| spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3))); |
| spec3.numWorkGroups = IVec3(1, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3)); |
| |
| // The following case negates multiple float variables from the input buffer and stores the results to the output buffer. |
| ComputeShaderSpec spec4; |
| vector<float> inputFloats4 (numElements); |
| vector<float> outputFloats4 (numElements); |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats4[ndx] = -inputFloats4[ndx]; |
| |
| spec4.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%f32ptr_f = OpTypePointer Function %f32\n" |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%var = OpVariable %f32ptr_f Function\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpCopyMemory %var %inloc\n" |
| "%val = OpLoad %f32 %var\n" |
| "%neg = OpFNegate %f32 %val\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| |
| spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4))); |
| spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4))); |
| spec4.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4)); |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements); |
| |
| // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences. |
| floorAll(inputFloats); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats[ndx] = inputFloats[ndx] + 7.5f; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%fmat = OpTypeMatrix %fvec3 3\n" |
| "%three = OpConstant %u32 3\n" |
| "%farr = OpTypeArray %f32 %three\n" |
| "%fst = OpTypeStruct %f32 %f32\n" |
| |
| + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%c_f = OpConstant %f32 1.5\n" |
| "%c_fvec3 = OpConstantComposite %fvec3 %c_f %c_f %c_f\n" |
| "%c_fmat = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n" |
| "%c_farr = OpConstantComposite %farr %c_f %c_f %c_f\n" |
| "%c_fst = OpConstantComposite %fst %c_f %c_f\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%c_f_copy = OpCopyObject %f32 %c_f\n" |
| "%c_fvec3_copy = OpCopyObject %fvec3 %c_fvec3\n" |
| "%c_fmat_copy = OpCopyObject %fmat %c_fmat\n" |
| "%c_farr_copy = OpCopyObject %farr %c_farr\n" |
| "%c_fst_copy = OpCopyObject %fst %c_fst\n" |
| "%fvec3_elem = OpCompositeExtract %f32 %c_fvec3_copy 0\n" |
| "%fmat_elem = OpCompositeExtract %f32 %c_fmat_copy 1 2\n" |
| "%farr_elem = OpCompositeExtract %f32 %c_farr_copy 2\n" |
| "%fst_elem = OpCompositeExtract %f32 %c_fst_copy 1\n" |
| // Add up. 1.5 * 5 = 7.5. |
| "%add1 = OpFAdd %f32 %c_f_copy %fvec3_elem\n" |
| "%add2 = OpFAdd %f32 %add1 %fmat_elem\n" |
| "%add3 = OpFAdd %f32 %add2 %farr_elem\n" |
| "%add4 = OpFAdd %f32 %add3 %fst_elem\n" |
| |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%add = OpFAdd %f32 %add4 %inval\n" |
| " OpStore %outloc %add\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec)); |
| |
| return group.release(); |
| } |
| // Assembly code used for testing OpUnreachable is based on GLSL source code: |
| // |
| // #version 430 |
| // |
| // layout(std140, set = 0, binding = 0) readonly buffer Input { |
| // float elements[]; |
| // } input_data; |
| // layout(std140, set = 0, binding = 1) writeonly buffer Output { |
| // float elements[]; |
| // } output_data; |
| // |
| // void not_called_func() { |
| // // place OpUnreachable here |
| // } |
| // |
| // uint modulo4(uint val) { |
| // switch (val % uint(4)) { |
| // case 0: return 3; |
| // case 1: return 2; |
| // case 2: return 1; |
| // case 3: return 0; |
| // default: return 100; // place OpUnreachable here |
| // } |
| // } |
| // |
| // uint const5() { |
| // return 5; |
| // // place OpUnreachable here |
| // } |
| // |
| // void main() { |
| // uint x = gl_GlobalInvocationID.x; |
| // if (const5() > modulo4(1000)) { |
| // output_data.elements[x] = -input_data.elements[x]; |
| // } else { |
| // // place OpUnreachable here |
| // output_data.elements[x] = input_data.elements[x]; |
| // } |
| // } |
| |
| tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %func_not_called_func \"not_called_func(\"\n" |
| "OpName %func_modulo4 \"modulo4(u1;\"\n" |
| "OpName %func_const5 \"const5(\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%u32ptr = OpTypePointer Function %u32\n" |
| "%uintfuint = OpTypeFunction %u32 %u32ptr\n" |
| "%unitf = OpTypeFunction %u32\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %u32 0\n" |
| "%one = OpConstant %u32 1\n" |
| "%two = OpConstant %u32 2\n" |
| "%three = OpConstant %u32 3\n" |
| "%four = OpConstant %u32 4\n" |
| "%five = OpConstant %u32 5\n" |
| "%hundred = OpConstant %u32 100\n" |
| "%thousand = OpConstant %u32 1000\n" |
| |
| + string(getComputeAsmInputOutputBuffer()) + |
| |
| // Main() |
| "%main = OpFunction %void None %voidf\n" |
| "%main_entry = OpLabel\n" |
| "%v_thousand = OpVariable %u32ptr Function %thousand\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%ret_const5 = OpFunctionCall %u32 %func_const5\n" |
| "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n" |
| "%cmp_gt = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n" |
| " OpSelectionMerge %if_end None\n" |
| " OpBranchConditional %cmp_gt %if_true %if_false\n" |
| "%if_true = OpLabel\n" |
| "%negate = OpFNegate %f32 %inval\n" |
| " OpStore %outloc %negate\n" |
| " OpBranch %if_end\n" |
| "%if_false = OpLabel\n" |
| " OpUnreachable\n" // Unreachable else branch for if statement |
| "%if_end = OpLabel\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n" |
| |
| // not_called_function() |
| "%func_not_called_func = OpFunction %void None %voidf\n" |
| "%not_called_func_entry = OpLabel\n" |
| " OpUnreachable\n" // Unreachable entry block in not called static function |
| " OpFunctionEnd\n" |
| |
| // modulo4() |
| "%func_modulo4 = OpFunction %u32 None %uintfuint\n" |
| "%valptr = OpFunctionParameter %u32ptr\n" |
| "%modulo4_entry = OpLabel\n" |
| "%val = OpLoad %u32 %valptr\n" |
| "%modulo = OpUMod %u32 %val %four\n" |
| " OpSelectionMerge %switch_merge None\n" |
| " OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n" |
| "%case0 = OpLabel\n" |
| " OpReturnValue %three\n" |
| "%case1 = OpLabel\n" |
| " OpReturnValue %two\n" |
| "%case2 = OpLabel\n" |
| " OpReturnValue %one\n" |
| "%case3 = OpLabel\n" |
| " OpReturnValue %zero\n" |
| "%default = OpLabel\n" |
| " OpUnreachable\n" // Unreachable default case for switch statement |
| "%switch_merge = OpLabel\n" |
| " OpUnreachable\n" // Unreachable merge block for switch statement |
| " OpFunctionEnd\n" |
| |
| // const5() |
| "%func_const5 = OpFunction %u32 None %unitf\n" |
| "%const5_entry = OpLabel\n" |
| " OpReturnValue %five\n" |
| "%unreachable = OpLabel\n" |
| " OpUnreachable\n" // Unreachable block in function |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec)); |
| |
| return group.release(); |
| } |
| |
| // Assembly code used for testing decoration group is based on GLSL source code: |
| // |
| // #version 430 |
| // |
| // layout(std140, set = 0, binding = 0) readonly buffer Input0 { |
| // float elements[]; |
| // } input_data0; |
| // layout(std140, set = 0, binding = 1) readonly buffer Input1 { |
| // float elements[]; |
| // } input_data1; |
| // layout(std140, set = 0, binding = 2) readonly buffer Input2 { |
| // float elements[]; |
| // } input_data2; |
| // layout(std140, set = 0, binding = 3) readonly buffer Input3 { |
| // float elements[]; |
| // } input_data3; |
| // layout(std140, set = 0, binding = 4) readonly buffer Input4 { |
| // float elements[]; |
| // } input_data4; |
| // layout(std140, set = 0, binding = 5) writeonly buffer Output { |
| // float elements[]; |
| // } output_data; |
| // |
| // void main() { |
| // uint x = gl_GlobalInvocationID.x; |
| // output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x]; |
| // } |
| tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats0 (numElements, 0); |
| vector<float> inputFloats1 (numElements, 0); |
| vector<float> inputFloats2 (numElements, 0); |
| vector<float> inputFloats3 (numElements, 0); |
| vector<float> inputFloats4 (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements); |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements); |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements); |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements); |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements); |
| |
| // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences. |
| floorAll(inputFloats0); |
| floorAll(inputFloats1); |
| floorAll(inputFloats2); |
| floorAll(inputFloats3); |
| floorAll(inputFloats4); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx]; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| // Not using group decoration on variable. |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| // Not using group decoration on type. |
| "OpDecorate %f32arr ArrayStride 4\n" |
| |
| "OpDecorate %groups BufferBlock\n" |
| "OpDecorate %groupm Offset 0\n" |
| "%groups = OpDecorationGroup\n" |
| "%groupm = OpDecorationGroup\n" |
| |
| // Group decoration on multiple structs. |
| "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n" |
| // Group decoration on multiple struct members. |
| "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n" |
| |
| "OpDecorate %group1 DescriptorSet 0\n" |
| "OpDecorate %group3 DescriptorSet 0\n" |
| "OpDecorate %group3 NonWritable\n" |
| "OpDecorate %group3 Restrict\n" |
| "%group0 = OpDecorationGroup\n" |
| "%group1 = OpDecorationGroup\n" |
| "%group3 = OpDecorationGroup\n" |
| |
| // Applying the same decoration group multiple times. |
| "OpGroupDecorate %group1 %outdata\n" |
| "OpGroupDecorate %group1 %outdata\n" |
| "OpGroupDecorate %group1 %outdata\n" |
| "OpDecorate %outdata DescriptorSet 0\n" |
| "OpDecorate %outdata Binding 5\n" |
| // Applying decoration group containing nothing. |
| "OpGroupDecorate %group0 %indata0\n" |
| "OpDecorate %indata0 DescriptorSet 0\n" |
| "OpDecorate %indata0 Binding 0\n" |
| // Applying decoration group containing one decoration. |
| "OpGroupDecorate %group1 %indata1\n" |
| "OpDecorate %indata1 Binding 1\n" |
| // Applying decoration group containing multiple decorations. |
| "OpGroupDecorate %group3 %indata2 %indata3\n" |
| "OpDecorate %indata2 Binding 2\n" |
| "OpDecorate %indata3 Binding 3\n" |
| // Applying multiple decoration groups (with overlapping). |
| "OpGroupDecorate %group0 %indata4\n" |
| "OpGroupDecorate %group1 %indata4\n" |
| "OpGroupDecorate %group3 %indata4\n" |
| "OpDecorate %indata4 Binding 4\n" |
| |
| + string(getComputeAsmCommonTypes()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%outbuf = OpTypeStruct %f32arr\n" |
| "%outbufptr = OpTypePointer Uniform %outbuf\n" |
| "%outdata = OpVariable %outbufptr Uniform\n" |
| "%inbuf0 = OpTypeStruct %f32arr\n" |
| "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n" |
| "%indata0 = OpVariable %inbuf0ptr Uniform\n" |
| "%inbuf1 = OpTypeStruct %f32arr\n" |
| "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n" |
| "%indata1 = OpVariable %inbuf1ptr Uniform\n" |
| "%inbuf2 = OpTypeStruct %f32arr\n" |
| "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n" |
| "%indata2 = OpVariable %inbuf2ptr Uniform\n" |
| "%inbuf3 = OpTypeStruct %f32arr\n" |
| "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n" |
| "%indata3 = OpVariable %inbuf3ptr Uniform\n" |
| "%inbuf4 = OpTypeStruct %f32arr\n" |
| "%inbufptr = OpTypePointer Uniform %inbuf4\n" |
| "%indata4 = OpVariable %inbufptr Uniform\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n" |
| "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n" |
| "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n" |
| "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n" |
| "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%inval0 = OpLoad %f32 %inloc0\n" |
| "%inval1 = OpLoad %f32 %inloc1\n" |
| "%inval2 = OpLoad %f32 %inloc2\n" |
| "%inval3 = OpLoad %f32 %inloc3\n" |
| "%inval4 = OpLoad %f32 %inloc4\n" |
| "%add0 = OpFAdd %f32 %inval0 %inval1\n" |
| "%add1 = OpFAdd %f32 %add0 %inval2\n" |
| "%add2 = OpFAdd %f32 %add1 %inval3\n" |
| "%add = OpFAdd %f32 %add2 %inval4\n" |
| " OpStore %outloc %add\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3))); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec)); |
| |
| return group.release(); |
| } |
| |
| struct SpecConstantTwoIntCase |
| { |
| const char* caseName; |
| const char* scDefinition0; |
| const char* scDefinition1; |
| const char* scResultType; |
| const char* scOperation; |
| deInt32 scActualValue0; |
| deInt32 scActualValue1; |
| const char* resultOperation; |
| vector<deInt32> expectedOutput; |
| |
| SpecConstantTwoIntCase (const char* name, |
| const char* definition0, |
| const char* definition1, |
| const char* resultType, |
| const char* operation, |
| deInt32 value0, |
| deInt32 value1, |
| const char* resultOp, |
| const vector<deInt32>& output) |
| : caseName (name) |
| , scDefinition0 (definition0) |
| , scDefinition1 (definition1) |
| , scResultType (resultType) |
| , scOperation (operation) |
| , scActualValue0 (value0) |
| , scActualValue1 (value1) |
| , resultOperation (resultOp) |
| , expectedOutput (output) {} |
| }; |
| |
| tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction")); |
| vector<SpecConstantTwoIntCase> cases; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<deInt32> inputInts (numElements, 0); |
| vector<deInt32> outputInts1 (numElements, 0); |
| vector<deInt32> outputInts2 (numElements, 0); |
| vector<deInt32> outputInts3 (numElements, 0); |
| vector<deInt32> outputInts4 (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpDecorate %sc_0 SpecId 0\n" |
| "OpDecorate %sc_1 SpecId 1\n" |
| "OpDecorate %i32arr ArrayStride 4\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%buf = OpTypeStruct %i32arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%sc_0 = OpSpecConstant${SC_DEF0}\n" |
| "%sc_1 = OpSpecConstant${SC_DEF1}\n" |
| "%sc_final = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %i32ptr %indata %zero %x\n" |
| "%inval = OpLoad %i32 %inloc\n" |
| "%final = ${GEN_RESULT}\n" |
| "%outloc = OpAccessChain %i32ptr %outdata %zero %x\n" |
| " OpStore %outloc %final\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| outputInts1[ndx] = inputInts[ndx] + 42; |
| outputInts2[ndx] = inputInts[ndx]; |
| outputInts3[ndx] = inputInts[ndx] - 11200; |
| outputInts4[ndx] = inputInts[ndx] + 1; |
| } |
| |
| const char addScToInput[] = "OpIAdd %i32 %inval %sc_final"; |
| const char selectTrueUsingSc[] = "OpSelect %i32 %sc_final %inval %zero"; |
| const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval"; |
| |
| cases.push_back(SpecConstantTwoIntCase("iadd", " %i32 0", " %i32 0", "%i32", "IAdd %sc_0 %sc_1", 62, -20, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("isub", " %i32 0", " %i32 0", "%i32", "ISub %sc_0 %sc_1", 100, 58, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("imul", " %i32 0", " %i32 0", "%i32", "IMul %sc_0 %sc_1", -2, -21, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("sdiv", " %i32 0", " %i32 0", "%i32", "SDiv %sc_0 %sc_1", -126, -3, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("udiv", " %i32 0", " %i32 0", "%i32", "UDiv %sc_0 %sc_1", 126, 3, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("srem", " %i32 0", " %i32 0", "%i32", "SRem %sc_0 %sc_1", 7, 3, addScToInput, outputInts4)); |
| cases.push_back(SpecConstantTwoIntCase("smod", " %i32 0", " %i32 0", "%i32", "SMod %sc_0 %sc_1", 7, 3, addScToInput, outputInts4)); |
| cases.push_back(SpecConstantTwoIntCase("umod", " %i32 0", " %i32 0", "%i32", "UMod %sc_0 %sc_1", 342, 50, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("bitwiseand", " %i32 0", " %i32 0", "%i32", "BitwiseAnd %sc_0 %sc_1", 42, 63, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("bitwiseor", " %i32 0", " %i32 0", "%i32", "BitwiseOr %sc_0 %sc_1", 34, 8, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("bitwisexor", " %i32 0", " %i32 0", "%i32", "BitwiseXor %sc_0 %sc_1", 18, 56, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("shiftrightlogical", " %i32 0", " %i32 0", "%i32", "ShiftRightLogical %sc_0 %sc_1", 168, 2, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic", " %i32 0", " %i32 0", "%i32", "ShiftRightArithmetic %sc_0 %sc_1", 168, 2, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("shiftleftlogical", " %i32 0", " %i32 0", "%i32", "ShiftLeftLogical %sc_0 %sc_1", 21, 1, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("slessthan", " %i32 0", " %i32 0", "%bool", "SLessThan %sc_0 %sc_1", -20, -10, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("ulessthan", " %i32 0", " %i32 0", "%bool", "ULessThan %sc_0 %sc_1", 10, 20, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("sgreaterthan", " %i32 0", " %i32 0", "%bool", "SGreaterThan %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("ugreaterthan", " %i32 0", " %i32 0", "%bool", "UGreaterThan %sc_0 %sc_1", 10, 5, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("slessthanequal", " %i32 0", " %i32 0", "%bool", "SLessThanEqual %sc_0 %sc_1", -10, -10, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("ulessthanequal", " %i32 0", " %i32 0", "%bool", "ULessThanEqual %sc_0 %sc_1", 50, 100, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal", " %i32 0", " %i32 0", "%bool", "SGreaterThanEqual %sc_0 %sc_1", -1000, 50, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal", " %i32 0", " %i32 0", "%bool", "UGreaterThanEqual %sc_0 %sc_1", 10, 10, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("iequal", " %i32 0", " %i32 0", "%bool", "IEqual %sc_0 %sc_1", 42, 24, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("logicaland", "True %bool", "True %bool", "%bool", "LogicalAnd %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("logicalor", "False %bool", "False %bool", "%bool", "LogicalOr %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("logicalequal", "True %bool", "True %bool", "%bool", "LogicalEqual %sc_0 %sc_1", 0, 1, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("logicalnotequal", "False %bool", "False %bool", "%bool", "LogicalNotEqual %sc_0 %sc_1", 1, 0, selectTrueUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("snegate", " %i32 0", " %i32 0", "%i32", "SNegate %sc_0", -42, 0, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("not", " %i32 0", " %i32 0", "%i32", "Not %sc_0", -43, 0, addScToInput, outputInts1)); |
| cases.push_back(SpecConstantTwoIntCase("logicalnot", "False %bool", "False %bool", "%bool", "LogicalNot %sc_0", 1, 0, selectFalseUsingSc, outputInts2)); |
| cases.push_back(SpecConstantTwoIntCase("select", "False %bool", " %i32 0", "%i32", "Select %sc_0 %sc_1 %zero", 1, 42, addScToInput, outputInts1)); |
| // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths. |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["SC_DEF0"] = cases[caseNdx].scDefinition0; |
| specializations["SC_DEF1"] = cases[caseNdx].scDefinition1; |
| specializations["SC_RESULT_TYPE"] = cases[caseNdx].scResultType; |
| specializations["SC_OP"] = cases[caseNdx].scOperation; |
| specializations["GEN_RESULT"] = cases[caseNdx].resultOperation; |
| |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts))); |
| spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| spec.specConstants.push_back(cases[caseNdx].scActualValue0); |
| spec.specConstants.push_back(cases[caseNdx].scActualValue1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec)); |
| } |
| |
| ComputeShaderSpec spec; |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpDecorate %sc_0 SpecId 0\n" |
| "OpDecorate %sc_1 SpecId 1\n" |
| "OpDecorate %sc_2 SpecId 2\n" |
| "OpDecorate %i32arr ArrayStride 4\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%ivec3 = OpTypeVector %i32 3\n" |
| "%buf = OpTypeStruct %i32arr\n" |
| "%bufptr = OpTypePointer Uniform %buf\n" |
| "%indata = OpVariable %bufptr Uniform\n" |
| "%outdata = OpVariable %bufptr Uniform\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%ivec3_0 = OpConstantComposite %ivec3 %zero %zero %zero\n" |
| |
| "%sc_0 = OpSpecConstant %i32 0\n" |
| "%sc_1 = OpSpecConstant %i32 0\n" |
| "%sc_2 = OpSpecConstant %i32 0\n" |
| "%sc_vec3_0 = OpSpecConstantOp %ivec3 CompositeInsert %sc_0 %ivec3_0 0\n" // (sc_0, 0, 0) |
| "%sc_vec3_1 = OpSpecConstantOp %ivec3 CompositeInsert %sc_1 %ivec3_0 1\n" // (0, sc_1, 0) |
| "%sc_vec3_2 = OpSpecConstantOp %ivec3 CompositeInsert %sc_2 %ivec3_0 2\n" // (0, 0, sc_2) |
| "%sc_vec3_01 = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_0 %sc_vec3_1 1 0 4\n" // (0, sc_0, sc_1) |
| "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle %sc_vec3_01 %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1) |
| "%sc_ext_0 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 0\n" // sc_2 |
| "%sc_ext_1 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 1\n" // sc_0 |
| "%sc_ext_2 = OpSpecConstantOp %i32 CompositeExtract %sc_vec3_012 2\n" // sc_1 |
| "%sc_sub = OpSpecConstantOp %i32 ISub %sc_ext_0 %sc_ext_1\n" // (sc_2 - sc_0) |
| "%sc_final = OpSpecConstantOp %i32 IMul %sc_sub %sc_ext_2\n" // (sc_2 - sc_0) * sc_1 |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %i32ptr %indata %zero %x\n" |
| "%inval = OpLoad %i32 %inloc\n" |
| "%final = OpIAdd %i32 %inval %sc_final\n" |
| "%outloc = OpAccessChain %i32ptr %outdata %zero %x\n" |
| " OpStore %outloc %final\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts))); |
| spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| spec.specConstants.push_back(123); |
| spec.specConstants.push_back(56); |
| spec.specConstants.push_back(-77); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec)); |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction")); |
| ComputeShaderSpec spec1; |
| ComputeShaderSpec spec2; |
| ComputeShaderSpec spec3; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats (numElements, 0); |
| vector<float> outputFloats1 (numElements, 0); |
| vector<float> outputFloats2 (numElements, 0); |
| vector<float> outputFloats3 (numElements, 0); |
| |
| fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements); |
| |
| // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences. |
| floorAll(inputFloats); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| switch (ndx % 3) |
| { |
| case 0: outputFloats1[ndx] = inputFloats[ndx] + 5.5f; break; |
| case 1: outputFloats1[ndx] = inputFloats[ndx] + 20.5f; break; |
| case 2: outputFloats1[ndx] = inputFloats[ndx] + 1.75f; break; |
| default: break; |
| } |
| outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3; |
| outputFloats3[ndx] = 8.5f - inputFloats[ndx]; |
| } |
| |
| spec1.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%three = OpConstant %u32 3\n" |
| "%constf5p5 = OpConstant %f32 5.5\n" |
| "%constf20p5 = OpConstant %f32 20.5\n" |
| "%constf1p75 = OpConstant %f32 1.75\n" |
| "%constf8p5 = OpConstant %f32 8.5\n" |
| "%constf6p5 = OpConstant %f32 6.5\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%entry = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%selector = OpUMod %u32 %x %three\n" |
| " OpSelectionMerge %phi None\n" |
| " OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n" |
| |
| // Case 1 before OpPhi. |
| "%case1 = OpLabel\n" |
| " OpBranch %phi\n" |
| |
| "%default = OpLabel\n" |
| " OpUnreachable\n" |
| |
| "%phi = OpLabel\n" |
| "%operand = OpPhi %f32 %constf1p75 %case2 %constf20p5 %case1 %constf5p5 %case0\n" // not in the order of blocks |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%add = OpFAdd %f32 %inval %operand\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %add\n" |
| " OpReturn\n" |
| |
| // Case 0 after OpPhi. |
| "%case0 = OpLabel\n" |
| " OpBranch %phi\n" |
| |
| |
| // Case 2 after OpPhi. |
| "%case2 = OpLabel\n" |
| " OpBranch %phi\n" |
| |
| " OpFunctionEnd\n"; |
| spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1))); |
| spec1.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1)); |
| |
| spec2.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%one = OpConstant %i32 1\n" |
| "%three = OpConstant %i32 3\n" |
| "%constf6p5 = OpConstant %f32 6.5\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%entry = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| " OpBranch %phi\n" |
| |
| "%phi = OpLabel\n" |
| "%step = OpPhi %i32 %zero %entry %step_next %phi\n" |
| "%accum = OpPhi %f32 %inval %entry %accum_next %phi\n" |
| "%step_next = OpIAdd %i32 %step %one\n" |
| "%accum_next = OpFAdd %f32 %accum %constf6p5\n" |
| "%still_loop = OpSLessThan %bool %step %three\n" |
| " OpLoopMerge %exit %phi None\n" |
| " OpBranchConditional %still_loop %phi %exit\n" |
| |
| "%exit = OpLabel\n" |
| " OpStore %outloc %accum\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2))); |
| spec2.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2)); |
| |
| spec3.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%f32ptr_f = OpTypePointer Function %f32\n" |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%true = OpConstantTrue %bool\n" |
| "%false = OpConstantFalse %bool\n" |
| "%zero = OpConstant %i32 0\n" |
| "%constf8p5 = OpConstant %f32 8.5\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%entry = OpLabel\n" |
| "%b = OpVariable %f32ptr_f Function %constf8p5\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%a_init = OpLoad %f32 %inloc\n" |
| "%b_init = OpLoad %f32 %b\n" |
| " OpBranch %phi\n" |
| |
| "%phi = OpLabel\n" |
| "%still_loop = OpPhi %bool %true %entry %false %phi\n" |
| "%a_next = OpPhi %f32 %a_init %entry %b_next %phi\n" |
| "%b_next = OpPhi %f32 %b_init %entry %a_next %phi\n" |
| " OpLoopMerge %exit %phi None\n" |
| " OpBranchConditional %still_loop %phi %exit\n" |
| |
| "%exit = OpLabel\n" |
| "%sub = OpFSub %f32 %a_next %b_next\n" |
| " OpStore %outloc %sub\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"; |
| spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3))); |
| spec3.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3)); |
| |
| return group.release(); |
| } |
| |
| // Assembly code used for testing block order is based on GLSL source code: |
| // |
| // #version 430 |
| // |
| // layout(std140, set = 0, binding = 0) readonly buffer Input { |
| // float elements[]; |
| // } input_data; |
| // layout(std140, set = 0, binding = 1) writeonly buffer Output { |
| // float elements[]; |
| // } output_data; |
| // |
| // void main() { |
| // uint x = gl_GlobalInvocationID.x; |
| // output_data.elements[x] = input_data.elements[x]; |
| // if (x > uint(50)) { |
| // switch (x % uint(3)) { |
| // case 0: output_data.elements[x] += 1.5f; break; |
| // case 1: output_data.elements[x] += 42.f; break; |
| // case 2: output_data.elements[x] -= 27.f; break; |
| // default: break; |
| // } |
| // } else { |
| // output_data.elements[x] = -input_data.elements[x]; |
| // } |
| // } |
| tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders")); |
| ComputeShaderSpec spec; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| |
| fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements); |
| |
| // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences. |
| floorAll(inputFloats); |
| |
| for (size_t ndx = 0; ndx <= 50; ++ndx) |
| outputFloats[ndx] = -inputFloats[ndx]; |
| |
| for (size_t ndx = 51; ndx < numElements; ++ndx) |
| { |
| switch (ndx % 3) |
| { |
| case 0: outputFloats[ndx] = inputFloats[ndx] + 1.5f; break; |
| case 1: outputFloats[ndx] = inputFloats[ndx] + 42.f; break; |
| case 2: outputFloats[ndx] = inputFloats[ndx] - 27.f; break; |
| default: break; |
| } |
| } |
| |
| spec.assembly = |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| |
| "%u32ptr = OpTypePointer Function %u32\n" |
| "%u32ptr_input = OpTypePointer Input %u32\n" |
| |
| + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%const3 = OpConstant %u32 3\n" |
| "%const50 = OpConstant %u32 50\n" |
| "%constf1p5 = OpConstant %f32 1.5\n" |
| "%constf27 = OpConstant %f32 27.0\n" |
| "%constf42 = OpConstant %f32 42.0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| |
| // entry block. |
| "%entry = OpLabel\n" |
| |
| // Create a temporary variable to hold the value of gl_GlobalInvocationID.x. |
| "%xvar = OpVariable %u32ptr Function\n" |
| "%xptr = OpAccessChain %u32ptr_input %id %zero\n" |
| "%x = OpLoad %u32 %xptr\n" |
| " OpStore %xvar %x\n" |
| |
| "%cmp = OpUGreaterThan %bool %x %const50\n" |
| " OpSelectionMerge %if_merge None\n" |
| " OpBranchConditional %cmp %if_true %if_false\n" |
| |
| // False branch for if-statement: placed in the middle of switch cases and before true branch. |
| "%if_false = OpLabel\n" |
| "%x_f = OpLoad %u32 %xvar\n" |
| "%inloc_f = OpAccessChain %f32ptr %indata %zero %x_f\n" |
| "%inval_f = OpLoad %f32 %inloc_f\n" |
| "%negate = OpFNegate %f32 %inval_f\n" |
| "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n" |
| " OpStore %outloc_f %negate\n" |
| " OpBranch %if_merge\n" |
| |
| // Merge block for if-statement: placed in the middle of true and false branch. |
| "%if_merge = OpLabel\n" |
| " OpReturn\n" |
| |
| // True branch for if-statement: placed in the middle of swtich cases and after the false branch. |
| "%if_true = OpLabel\n" |
| "%xval_t = OpLoad %u32 %xvar\n" |
| "%mod = OpUMod %u32 %xval_t %const3\n" |
| " OpSelectionMerge %switch_merge None\n" |
| " OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n" |
| |
| // Merge block for switch-statement: placed before the case |
| // bodies. But it must follow OpSwitch which dominates it. |
| "%switch_merge = OpLabel\n" |
| " OpBranch %if_merge\n" |
| |
| // Case 1 for switch-statement: placed before case 0. |
| // It must follow the OpSwitch that dominates it. |
| "%case1 = OpLabel\n" |
| "%x_1 = OpLoad %u32 %xvar\n" |
| "%inloc_1 = OpAccessChain %f32ptr %indata %zero %x_1\n" |
| "%inval_1 = OpLoad %f32 %inloc_1\n" |
| "%addf42 = OpFAdd %f32 %inval_1 %constf42\n" |
| "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n" |
| " OpStore %outloc_1 %addf42\n" |
| " OpBranch %switch_merge\n" |
| |
| // Case 2 for switch-statement. |
| "%case2 = OpLabel\n" |
| "%x_2 = OpLoad %u32 %xvar\n" |
| "%inloc_2 = OpAccessChain %f32ptr %indata %zero %x_2\n" |
| "%inval_2 = OpLoad %f32 %inloc_2\n" |
| "%subf27 = OpFSub %f32 %inval_2 %constf27\n" |
| "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n" |
| " OpStore %outloc_2 %subf27\n" |
| " OpBranch %switch_merge\n" |
| |
| // Default case for switch-statement: placed in the middle of normal cases. |
| "%default = OpLabel\n" |
| " OpBranch %switch_merge\n" |
| |
| // Case 0 for switch-statement: out of order. |
| "%case0 = OpLabel\n" |
| "%x_0 = OpLoad %u32 %xvar\n" |
| "%inloc_0 = OpAccessChain %f32ptr %indata %zero %x_0\n" |
| "%inval_0 = OpLoad %f32 %inloc_0\n" |
| "%addf1p5 = OpFAdd %f32 %inval_0 %constf1p5\n" |
| "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n" |
| " OpStore %outloc_0 %addf1p5\n" |
| " OpBranch %switch_merge\n" |
| |
| " OpFunctionEnd\n"; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec)); |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module")); |
| ComputeShaderSpec spec1; |
| ComputeShaderSpec spec2; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats (numElements, 0); |
| vector<float> outputFloats1 (numElements, 0); |
| vector<float> outputFloats2 (numElements, 0); |
| fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| { |
| outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx]; |
| outputFloats2[ndx] = -inputFloats[ndx]; |
| } |
| |
| const string assembly( |
| "OpCapability Shader\n" |
| "OpCapability ClipDistance\n" |
| "OpMemoryModel Logical GLSL450\n" |
| "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n" |
| "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n" |
| // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string. |
| "OpEntryPoint Vertex %vert_main \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n" |
| "OpExecutionMode %comp_main1 LocalSize 1 1 1\n" |
| "OpExecutionMode %comp_main2 LocalSize 1 1 1\n" |
| |
| "OpName %comp_main1 \"entrypoint1\"\n" |
| "OpName %comp_main2 \"entrypoint2\"\n" |
| "OpName %vert_main \"entrypoint2\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| "OpName %vert_builtin_st \"gl_PerVertex\"\n" |
| "OpName %vertexIndex \"gl_VertexIndex\"\n" |
| "OpName %instanceIndex \"gl_InstanceIndex\"\n" |
| "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n" |
| "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n" |
| "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| "OpDecorate %vertexIndex BuiltIn VertexIndex\n" |
| "OpDecorate %instanceIndex BuiltIn InstanceIndex\n" |
| "OpDecorate %vert_builtin_st Block\n" |
| "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n" |
| "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n" |
| "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%zero = OpConstant %i32 0\n" |
| "%one = OpConstant %u32 1\n" |
| "%c_f32_1 = OpConstant %f32 1\n" |
| |
| "%i32inputptr = OpTypePointer Input %i32\n" |
| "%vec4 = OpTypeVector %f32 4\n" |
| "%vec4ptr = OpTypePointer Output %vec4\n" |
| "%f32arr1 = OpTypeArray %f32 %one\n" |
| "%vert_builtin_st = OpTypeStruct %vec4 %f32 %f32arr1\n" |
| "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n" |
| "%vert_builtins = OpVariable %vert_builtin_st_ptr Output\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%vertexIndex = OpVariable %i32inputptr Input\n" |
| "%instanceIndex = OpVariable %i32inputptr Input\n" |
| "%c_vec4_1 = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n" |
| |
| // gl_Position = vec4(1.); |
| "%vert_main = OpFunction %void None %voidf\n" |
| "%vert_entry = OpLabel\n" |
| "%position = OpAccessChain %vec4ptr %vert_builtins %zero\n" |
| " OpStore %position %c_vec4_1\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n" |
| |
| // Double inputs. |
| "%comp_main1 = OpFunction %void None %voidf\n" |
| "%comp1_entry = OpLabel\n" |
| "%idval1 = OpLoad %uvec3 %id\n" |
| "%x1 = OpCompositeExtract %u32 %idval1 0\n" |
| "%inloc1 = OpAccessChain %f32ptr %indata %zero %x1\n" |
| "%inval1 = OpLoad %f32 %inloc1\n" |
| "%add = OpFAdd %f32 %inval1 %inval1\n" |
| "%outloc1 = OpAccessChain %f32ptr %outdata %zero %x1\n" |
| " OpStore %outloc1 %add\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n" |
| |
| // Negate inputs. |
| "%comp_main2 = OpFunction %void None %voidf\n" |
| "%comp2_entry = OpLabel\n" |
| "%idval2 = OpLoad %uvec3 %id\n" |
| "%x2 = OpCompositeExtract %u32 %idval2 0\n" |
| "%inloc2 = OpAccessChain %f32ptr %indata %zero %x2\n" |
| "%inval2 = OpLoad %f32 %inloc2\n" |
| "%neg = OpFNegate %f32 %inval2\n" |
| "%outloc2 = OpAccessChain %f32ptr %outdata %zero %x2\n" |
| " OpStore %outloc2 %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| spec1.assembly = assembly; |
| spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1))); |
| spec1.numWorkGroups = IVec3(numElements, 1, 1); |
| spec1.entryPoint = "entrypoint1"; |
| |
| spec2.assembly = assembly; |
| spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2))); |
| spec2.numWorkGroups = IVec3(numElements, 1, 1); |
| spec2.entryPoint = "entrypoint2"; |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1)); |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2)); |
| |
| return group.release(); |
| } |
| |
| inline std::string makeLongUTF8String (size_t num4ByteChars) |
| { |
| // An example of a longest valid UTF-8 character. Be explicit about the |
| // character type because Microsoft compilers can otherwise interpret the |
| // character string as being over wide (16-bit) characters. Ideally, we |
| // would just use a C++11 UTF-8 string literal, but we want to support older |
| // Microsoft compilers. |
| const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D"); |
| std::string longString; |
| longString.reserve(num4ByteChars * 4); |
| for (size_t count = 0; count < num4ByteChars; count++) |
| { |
| longString += earthAfrica; |
| } |
| return longString; |
| } |
| |
| tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction")); |
| vector<CaseParameter> cases; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| "OpCapability Shader\n" |
| "OpMemoryModel Logical GLSL450\n" |
| |
| "OpEntryPoint GLCompute %main \"main\" %id\n" |
| "OpExecutionMode %main LocalSize 1 1 1\n" |
| |
| "${SOURCE}\n" |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| cases.push_back(CaseParameter("unknown_source", "OpSource Unknown 0")); |
| cases.push_back(CaseParameter("wrong_source", "OpSource OpenCL_C 210")); |
| cases.push_back(CaseParameter("normal_filename", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname")); |
| cases.push_back(CaseParameter("empty_filename", "%fname = OpString \"\"\n" |
| "OpSource GLSL 430 %fname")); |
| cases.push_back(CaseParameter("normal_source_code", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"")); |
| cases.push_back(CaseParameter("empty_source_code", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"\"")); |
| cases.push_back(CaseParameter("long_source_code", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535 |
| cases.push_back(CaseParameter("utf8_source_code", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol |
| cases.push_back(CaseParameter("normal_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\nvo\"\n" |
| "OpSourceContinued \"id main() {}\"")); |
| cases.push_back(CaseParameter("empty_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n" |
| "OpSourceContinued \"\"")); |
| cases.push_back(CaseParameter("long_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n" |
| "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535 |
| cases.push_back(CaseParameter("utf8_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n" |
| "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol |
| cases.push_back(CaseParameter("multi_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"#version 430\n\"\n" |
| "OpSourceContinued \"void\"\n" |
| "OpSourceContinued \"main()\"\n" |
| "OpSourceContinued \"{}\"")); |
| cases.push_back(CaseParameter("empty_source_before_sourcecontinued", "%fname = OpString \"filename\"\n" |
| "OpSource GLSL 430 %fname \"\"\n" |
| "OpSourceContinued \"#version 430\nvoid main() {}\"")); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["SOURCE"] = cases[caseNdx].param; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction")); |
| vector<CaseParameter> cases; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> inputFloats (numElements, 0); |
| vector<float> outputFloats (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSourceExtension \"${EXTENSION}\"\n" |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| cases.push_back(CaseParameter("empty_extension", "")); |
| cases.push_back(CaseParameter("real_extension", "GL_ARB_texture_rectangle")); |
| cases.push_back(CaseParameter("fake_extension", "GL_ARB_im_the_ultimate_extension")); |
| cases.push_back(CaseParameter("utf8_extension", "GL_ARB_\xE2\x98\x82\xE2\x98\x85")); |
| cases.push_back(CaseParameter("long_extension", makeLongUTF8String(65533) + "ccc")); // word count: 65535 |
| |
| fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| outputFloats[ndx] = -inputFloats[ndx]; |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["EXTENSION"] = cases[caseNdx].param; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it. |
| tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction")); |
| vector<CaseParameter> cases; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + |
| "%uvec2 = OpTypeVector %u32 2\n" |
| "%bvec3 = OpTypeVector %bool 3\n" |
| "%fvec4 = OpTypeVector %f32 4\n" |
| "%fmat33 = OpTypeMatrix %fvec3 3\n" |
| "%const100 = OpConstant %u32 100\n" |
| "%uarr100 = OpTypeArray %i32 %const100\n" |
| "%struct = OpTypeStruct %f32 %i32 %u32\n" |
| "%pointer = OpTypePointer Function %i32\n" |
| + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%null = OpConstantNull ${TYPE}\n" |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| cases.push_back(CaseParameter("bool", "%bool")); |
| cases.push_back(CaseParameter("sint32", "%i32")); |
| cases.push_back(CaseParameter("uint32", "%u32")); |
| cases.push_back(CaseParameter("float32", "%f32")); |
| cases.push_back(CaseParameter("vec4float32", "%fvec4")); |
| cases.push_back(CaseParameter("vec3bool", "%bvec3")); |
| cases.push_back(CaseParameter("vec2uint32", "%uvec2")); |
| cases.push_back(CaseParameter("matrix", "%fmat33")); |
| cases.push_back(CaseParameter("array", "%uarr100")); |
| cases.push_back(CaseParameter("struct", "%struct")); |
| cases.push_back(CaseParameter("pointer", "%pointer")); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["TYPE"] = cases[caseNdx].param; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it. |
| tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction")); |
| vector<CaseParameter> cases; |
| de::Random rnd (deStringHash(group->getName())); |
| const int numElements = 100; |
| vector<float> positiveFloats (numElements, 0); |
| vector<float> negativeFloats (numElements, 0); |
| const StringTemplate shaderTemplate ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "${CONSTANT}\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%neg = OpFNegate %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %neg\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| cases.push_back(CaseParameter("vector", "%five = OpConstant %u32 5\n" |
| "%const = OpConstantComposite %uvec3 %five %zero %five")); |
| cases.push_back(CaseParameter("matrix", "%m3fvec3 = OpTypeMatrix %fvec3 3\n" |
| "%ten = OpConstant %f32 10.\n" |
| "%fzero = OpConstant %f32 0.\n" |
| "%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n" |
| "%mat = OpConstantComposite %m3fvec3 %vec %vec %vec")); |
| cases.push_back(CaseParameter("struct", "%m2vec3 = OpTypeMatrix %fvec3 2\n" |
| "%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n" |
| "%fzero = OpConstant %f32 0.\n" |
| "%one = OpConstant %f32 1.\n" |
| "%point5 = OpConstant %f32 0.5\n" |
| "%vec = OpConstantComposite %fvec3 %one %one %fzero\n" |
| "%mat = OpConstantComposite %m2vec3 %vec %vec\n" |
| "%const = OpConstantComposite %struct %zero %point5 %vec %mat")); |
| cases.push_back(CaseParameter("nested_struct", "%st1 = OpTypeStruct %u32 %f32\n" |
| "%st2 = OpTypeStruct %i32 %i32\n" |
| "%struct = OpTypeStruct %st1 %st2\n" |
| "%point5 = OpConstant %f32 0.5\n" |
| "%one = OpConstant %u32 1\n" |
| "%ten = OpConstant %i32 10\n" |
| "%st1val = OpConstantComposite %st1 %one %point5\n" |
| "%st2val = OpConstantComposite %st2 %ten %ten\n" |
| "%const = OpConstantComposite %struct %st1val %st2val")); |
| |
| fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements); |
| |
| for (size_t ndx = 0; ndx < numElements; ++ndx) |
| negativeFloats[ndx] = -positiveFloats[ndx]; |
| |
| for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx) |
| { |
| map<string, string> specializations; |
| ComputeShaderSpec spec; |
| |
| specializations["CONSTANT"] = cases[caseNdx].param; |
| spec.assembly = shaderTemplate.specialize(specializations); |
| spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| // Creates a floating point number with the given exponent, and significand |
| // bits set. It can only create normalized numbers. Only the least significant |
| // 24 bits of the significand will be examined. The final bit of the |
| // significand will also be ignored. This allows alignment to be written |
| // similarly to C99 hex-floats. |
| // For example if you wanted to write 0x1.7f34p-12 you would call |
| // constructNormalizedFloat(-12, 0x7f3400) |
| float constructNormalizedFloat (deInt32 exponent, deUint32 significand) |
| { |
| float f = 1.0f; |
| |
| for (deInt32 idx = 0; idx < 23; ++idx) |
| { |
| f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1)); |
| significand <<= 1; |
| } |
| |
| return std::ldexp(f, exponent); |
| } |
| |
| // Compare instruction for the OpQuantizeF16 compute exact case. |
| // Returns true if the output is what is expected from the test case. |
| bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&) |
| { |
| if (outputAllocs.size() != 1) |
| return false; |
| |
| // We really just need this for size because we cannot compare Nans. |
| const BufferSp& expectedOutput = expectedOutputs[0]; |
| const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());; |
| |
| if (expectedOutput->getNumBytes() != 4*sizeof(float)) { |
| return false; |
| } |
| |
| if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) && |
| *outputAsFloat != constructNormalizedFloat(8, 0x300000)) { |
| return false; |
| } |
| outputAsFloat++; |
| |
| if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) && |
| *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) { |
| return false; |
| } |
| outputAsFloat++; |
| |
| if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) && |
| *outputAsFloat != constructNormalizedFloat(2, 0x020000)) { |
| return false; |
| } |
| outputAsFloat++; |
| |
| if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) && |
| *outputAsFloat != constructNormalizedFloat(2, 0x000000)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Checks that every output from a test-case is a float NaN. |
| bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&) |
| { |
| if (outputAllocs.size() != 1) |
| return false; |
| |
| // We really just need this for size because we cannot compare Nans. |
| const BufferSp& expectedOutput = expectedOutputs[0]; |
| const float* output_as_float = static_cast<const float*>(outputAllocs[0]->getHostPtr());; |
| |
| for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx) |
| { |
| if (!deFloatIsNaN(output_as_float[idx])) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it. |
| tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction")); |
| |
| const std::string shader ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpSource GLSL 430\n" |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%inloc = OpAccessChain %f32ptr %indata %zero %x\n" |
| "%inval = OpLoad %f32 %inloc\n" |
| "%quant = OpQuantizeToF16 %f32 %inval\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| " OpStore %outloc %quant\n" |
| " OpReturn\n" |
| " OpFunctionEnd\n"); |
| |
| { |
| ComputeShaderSpec spec; |
| const deUint32 numElements = 100; |
| vector<float> infinities; |
| vector<float> results; |
| |
| infinities.reserve(numElements); |
| results.reserve(numElements); |
| |
| for (size_t idx = 0; idx < numElements; ++idx) |
| { |
| switch(idx % 4) |
| { |
| case 0: |
| infinities.push_back(std::numeric_limits<float>::infinity()); |
| results.push_back(std::numeric_limits<float>::infinity()); |
| break; |
| case 1: |
| infinities.push_back(-std::numeric_limits<float>::infinity()); |
| results.push_back(-std::numeric_limits<float>::infinity()); |
| break; |
| case 2: |
| infinities.push_back(std::ldexp(1.0f, 16)); |
| results.push_back(std::numeric_limits<float>::infinity()); |
| break; |
| case 3: |
| infinities.push_back(std::ldexp(-1.0f, 32)); |
| results.push_back(-std::numeric_limits<float>::infinity()); |
| break; |
| } |
| } |
| |
| spec.assembly = shader; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(infinities))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(results))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "infinities", "Check that infinities propagated and created", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| vector<float> nans; |
| const deUint32 numElements = 100; |
| |
| nans.reserve(numElements); |
| |
| for (size_t idx = 0; idx < numElements; ++idx) |
| { |
| if (idx % 2 == 0) |
| { |
| nans.push_back(std::numeric_limits<float>::quiet_NaN()); |
| } |
| else |
| { |
| nans.push_back(-std::numeric_limits<float>::quiet_NaN()); |
| } |
| } |
| |
| spec.assembly = shader; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(nans))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(nans))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| spec.verifyIO = &compareNan; |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "propagated_nans", "Check that nans are propagated", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| vector<float> small; |
| vector<float> zeros; |
| const deUint32 numElements = 100; |
| |
| small.reserve(numElements); |
| zeros.reserve(numElements); |
| |
| for (size_t idx = 0; idx < numElements; ++idx) |
| { |
| switch(idx % 6) |
| { |
| case 0: |
| small.push_back(0.f); |
| zeros.push_back(0.f); |
| break; |
| case 1: |
| small.push_back(-0.f); |
| zeros.push_back(-0.f); |
| break; |
| case 2: |
| small.push_back(std::ldexp(1.0f, -16)); |
| zeros.push_back(0.f); |
| break; |
| case 3: |
| small.push_back(std::ldexp(-1.0f, -32)); |
| zeros.push_back(-0.f); |
| break; |
| case 4: |
| small.push_back(std::ldexp(1.0f, -127)); |
| zeros.push_back(0.f); |
| break; |
| case 5: |
| small.push_back(-std::ldexp(1.0f, -128)); |
| zeros.push_back(-0.f); |
| break; |
| } |
| } |
| |
| spec.assembly = shader; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(small))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(zeros))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| vector<float> exact; |
| const deUint32 numElements = 200; |
| |
| exact.reserve(numElements); |
| |
| for (size_t idx = 0; idx < numElements; ++idx) |
| exact.push_back(static_cast<float>(static_cast<int>(idx) - 100)); |
| |
| spec.assembly = shader; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(exact))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(exact))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "exact", "Check that values exactly preserved where appropriate", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| vector<float> inputs; |
| const deUint32 numElements = 4; |
| |
| inputs.push_back(constructNormalizedFloat(8, 0x300300)); |
| inputs.push_back(-constructNormalizedFloat(-7, 0x600800)); |
| inputs.push_back(constructNormalizedFloat(2, 0x01E000)); |
| inputs.push_back(constructNormalizedFloat(1, 0xFFE000)); |
| |
| spec.assembly = shader; |
| spec.verifyIO = &compareOpQuantizeF16ComputeExactCase; |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.numWorkGroups = IVec3(numElements, 1, 1); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "rounded", "Check that are rounded when needed", spec)); |
| } |
| |
| return group.release(); |
| } |
| |
| tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx) |
| { |
| de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction")); |
| |
| const std::string shader ( |
| string(getComputeAsmShaderPreamble()) + |
| |
| "OpName %main \"main\"\n" |
| "OpName %id \"gl_GlobalInvocationID\"\n" |
| |
| "OpDecorate %id BuiltIn GlobalInvocationId\n" |
| |
| "OpDecorate %sc_0 SpecId 0\n" |
| "OpDecorate %sc_1 SpecId 1\n" |
| "OpDecorate %sc_2 SpecId 2\n" |
| "OpDecorate %sc_3 SpecId 3\n" |
| "OpDecorate %sc_4 SpecId 4\n" |
| "OpDecorate %sc_5 SpecId 5\n" |
| |
| + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) + |
| |
| "%id = OpVariable %uvec3ptr Input\n" |
| "%zero = OpConstant %i32 0\n" |
| "%c_u32_6 = OpConstant %u32 6\n" |
| |
| "%sc_0 = OpSpecConstant %f32 0.\n" |
| "%sc_1 = OpSpecConstant %f32 0.\n" |
| "%sc_2 = OpSpecConstant %f32 0.\n" |
| "%sc_3 = OpSpecConstant %f32 0.\n" |
| "%sc_4 = OpSpecConstant %f32 0.\n" |
| "%sc_5 = OpSpecConstant %f32 0.\n" |
| |
| "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n" |
| "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n" |
| "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n" |
| "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n" |
| "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n" |
| "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n" |
| |
| "%main = OpFunction %void None %voidf\n" |
| "%label = OpLabel\n" |
| "%idval = OpLoad %uvec3 %id\n" |
| "%x = OpCompositeExtract %u32 %idval 0\n" |
| "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n" |
| "%selector = OpUMod %u32 %x %c_u32_6\n" |
| " OpSelectionMerge %exit None\n" |
| " OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n" |
| |
| "%case0 = OpLabel\n" |
| " OpStore %outloc %sc_0_quant\n" |
| " OpBranch %exit\n" |
| |
| "%case1 = OpLabel\n" |
| " OpStore %outloc %sc_1_quant\n" |
| " OpBranch %exit\n" |
| |
| "%case2 = OpLabel\n" |
| " OpStore %outloc %sc_2_quant\n" |
| " OpBranch %exit\n" |
| |
| "%case3 = OpLabel\n" |
| " OpStore %outloc %sc_3_quant\n" |
| " OpBranch %exit\n" |
| |
| "%case4 = OpLabel\n" |
| " OpStore %outloc %sc_4_quant\n" |
| " OpBranch %exit\n" |
| |
| "%case5 = OpLabel\n" |
| " OpStore %outloc %sc_5_quant\n" |
| " OpBranch %exit\n" |
| |
| "%exit = OpLabel\n" |
| " OpReturn\n" |
| |
| " OpFunctionEnd\n"); |
| |
| { |
| ComputeShaderSpec spec; |
| const deUint8 numCases = 4; |
| vector<float> inputs (numCases, 0.f); |
| vector<float> outputs; |
| |
| spec.assembly = shader; |
| spec.numWorkGroups = IVec3(numCases, 1, 1); |
| |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity())); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity())); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16))); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32))); |
| |
| outputs.push_back(std::numeric_limits<float>::infinity()); |
| outputs.push_back(-std::numeric_limits<float>::infinity()); |
| outputs.push_back(std::numeric_limits<float>::infinity()); |
| outputs.push_back(-std::numeric_limits<float>::infinity()); |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputs))); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "infinities", "Check that infinities propagated and created", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| const deUint8 numCases = 2; |
| vector<float> inputs (numCases, 0.f); |
| vector<float> outputs; |
| |
| spec.assembly = shader; |
| spec.numWorkGroups = IVec3(numCases, 1, 1); |
| spec.verifyIO = &compareNan; |
| |
| outputs.push_back(std::numeric_limits<float>::quiet_NaN()); |
| outputs.push_back(-std::numeric_limits<float>::quiet_NaN()); |
| |
| for (deUint8 idx = 0; idx < numCases; ++idx) |
| spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx])); |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputs))); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "propagated_nans", "Check that nans are propagated", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| const deUint8 numCases = 6; |
| vector<float> inputs (numCases, 0.f); |
| vector<float> outputs; |
| |
| spec.assembly = shader; |
| spec.numWorkGroups = IVec3(numCases, 1, 1); |
| |
| spec.specConstants.push_back(bitwiseCast<deUint32>(0.f)); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f)); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16))); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32))); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127))); |
| spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128))); |
| |
| outputs.push_back(0.f); |
| outputs.push_back(-0.f); |
| outputs.push_back(0.f); |
| outputs.push_back(-0.f); |
| outputs.push_back(0.f); |
| outputs.push_back(-0.f); |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputs))); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec)); |
| } |
| |
| { |
| ComputeShaderSpec spec; |
| const deUint8 numCases = 6; |
| vector<float> inputs (numCases, 0.f); |
| vector<float> outputs; |
| |
| spec.assembly = shader; |
| spec.numWorkGroups = IVec3(numCases, 1, 1); |
| |
| for (deUint8 idx = 0; idx < 6; ++idx) |
| { |
| const float f = static_cast<float>(idx * 10 - 30) / 4.f; |
| spec.specConstants.push_back(bitwiseCast<deUint32>(f)); |
| outputs.push_back(f); |
| } |
| |
| spec.inputs.push_back(BufferSp(new Float32Buffer(inputs))); |
| spec.outputs.push_back(BufferSp(new Float32Buffer(outputs))); |
| |
| group->addChild(new SpvAsmComputeShaderCase( |
| testCtx, "exact", "Check that values exactly preserved where appropriate", spec)); |
| } |
| |
| { |
<