| /*------------------------------------------------------------------------- |
| * drawElements Quality Program Reference Renderer |
| * ----------------------------------------------- |
| * |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief Reference implementation for per-fragment operations. |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "rrFragmentOperations.hpp" |
| #include "tcuVectorUtil.hpp" |
| #include "tcuTextureUtil.hpp" |
| #include <limits> |
| |
| using tcu::IVec2; |
| using tcu::Vec3; |
| using tcu::Vec4; |
| using tcu::IVec4; |
| using tcu::UVec4; |
| using tcu::min; |
| using tcu::max; |
| using tcu::clamp; |
| using de::min; |
| using de::max; |
| using de::clamp; |
| |
| namespace rr |
| { |
| |
| // Return oldValue with the bits indicated by mask replaced by corresponding bits of newValue. |
| static inline int maskedBitReplace (int oldValue, int newValue, deUint32 mask) |
| { |
| return (oldValue & ~mask) | (newValue & mask); |
| } |
| |
| static inline bool isInsideRect (const IVec2& point, const WindowRectangle& rect) |
| { |
| return de::inBounds(point.x(), rect.left, rect.left + rect.width) && |
| de::inBounds(point.y(), rect.bottom, rect.bottom + rect.height); |
| } |
| |
| static inline Vec4 unpremultiply (const Vec4& v) |
| { |
| if (v.w() > 0.0f) |
| return Vec4(v.x()/v.w(), v.y()/v.w(), v.z()/v.w(), v.w()); |
| else |
| { |
| DE_ASSERT(v.x() == 0.0f && v.y() == 0.0f && v.z() == 0.0f); |
| return Vec4(0.0f, 0.0f, 0.0f, 0.0f); |
| } |
| } |
| |
| void clearMultisampleColorBuffer (const tcu::PixelBufferAccess& dst, const Vec4& v, const WindowRectangle& r) { tcu::clear(tcu::getSubregion(dst, 0, r.left, r.bottom, dst.getWidth(), r.width, r.height), v); } |
| void clearMultisampleColorBuffer (const tcu::PixelBufferAccess& dst, const IVec4& v, const WindowRectangle& r) { tcu::clear(tcu::getSubregion(dst, 0, r.left, r.bottom, dst.getWidth(), r.width, r.height), v); } |
| void clearMultisampleColorBuffer (const tcu::PixelBufferAccess& dst, const UVec4& v, const WindowRectangle& r) { tcu::clear(tcu::getSubregion(dst, 0, r.left, r.bottom, dst.getWidth(), r.width, r.height), v.cast<int>()); } |
| void clearMultisampleDepthBuffer (const tcu::PixelBufferAccess& dst, float v, const WindowRectangle& r) { tcu::clearDepth(tcu::getSubregion(dst, 0, r.left, r.bottom, dst.getWidth(), r.width, r.height), v); } |
| void clearMultisampleStencilBuffer (const tcu::PixelBufferAccess& dst, int v, const WindowRectangle& r) { tcu::clearStencil(tcu::getSubregion(dst, 0, r.left, r.bottom, dst.getWidth(), r.width, r.height), v); } |
| |
| FragmentProcessor::FragmentProcessor (void) |
| : m_sampleRegister() |
| { |
| } |
| |
| void FragmentProcessor::executeScissorTest (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const WindowRectangle& scissorRect) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragNdx = fragNdxOffset + regSampleNdx/numSamplesPerFragment; |
| |
| if (!isInsideRect(inputFragments[fragNdx].pixelCoord, scissorRect)) |
| m_sampleRegister[regSampleNdx].isAlive = false; |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeStencilCompare (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const StencilState& stencilState, int numStencilBits, const tcu::ConstPixelBufferAccess& stencilBuffer) |
| { |
| #define SAMPLE_REGISTER_STENCIL_COMPARE(COMPARE_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; \ |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; \ |
| int stencilBufferValue = stencilBuffer.getPixStencil(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| int maskedRef = stencilState.compMask & clampedStencilRef; \ |
| int maskedBuf = stencilState.compMask & stencilBufferValue; \ |
| DE_UNREF(maskedRef); \ |
| DE_UNREF(maskedBuf); \ |
| \ |
| m_sampleRegister[regSampleNdx].stencilPassed = (COMPARE_EXPRESSION); \ |
| } \ |
| } |
| |
| int clampedStencilRef = de::clamp(stencilState.ref, 0, (1<<numStencilBits)-1); |
| |
| switch (stencilState.func) |
| { |
| case TESTFUNC_NEVER: SAMPLE_REGISTER_STENCIL_COMPARE(false) break; |
| case TESTFUNC_ALWAYS: SAMPLE_REGISTER_STENCIL_COMPARE(true) break; |
| case TESTFUNC_LESS: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef < maskedBuf) break; |
| case TESTFUNC_LEQUAL: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef <= maskedBuf) break; |
| case TESTFUNC_GREATER: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef > maskedBuf) break; |
| case TESTFUNC_GEQUAL: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef >= maskedBuf) break; |
| case TESTFUNC_EQUAL: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef == maskedBuf) break; |
| case TESTFUNC_NOTEQUAL: SAMPLE_REGISTER_STENCIL_COMPARE(maskedRef != maskedBuf) break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| #undef SAMPLE_REGISTER_STENCIL_COMPARE |
| } |
| |
| void FragmentProcessor::executeStencilSFail (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const StencilState& stencilState, int numStencilBits, const tcu::PixelBufferAccess& stencilBuffer) |
| { |
| #define SAMPLE_REGISTER_SFAIL(SFAIL_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive && !m_sampleRegister[regSampleNdx].stencilPassed) \ |
| { \ |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; \ |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; \ |
| int stencilBufferValue = stencilBuffer.getPixStencil(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| \ |
| stencilBuffer.setPixStencil(maskedBitReplace(stencilBufferValue, (SFAIL_EXPRESSION), stencilState.writeMask), fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| m_sampleRegister[regSampleNdx].isAlive = false; \ |
| } \ |
| } |
| |
| int clampedStencilRef = de::clamp(stencilState.ref, 0, (1<<numStencilBits)-1); |
| |
| switch (stencilState.sFail) |
| { |
| case STENCILOP_KEEP: SAMPLE_REGISTER_SFAIL(stencilBufferValue) break; |
| case STENCILOP_ZERO: SAMPLE_REGISTER_SFAIL(0) break; |
| case STENCILOP_REPLACE: SAMPLE_REGISTER_SFAIL(clampedStencilRef) break; |
| case STENCILOP_INCR: SAMPLE_REGISTER_SFAIL(de::clamp(stencilBufferValue+1, 0, (1<<numStencilBits) - 1)) break; |
| case STENCILOP_DECR: SAMPLE_REGISTER_SFAIL(de::clamp(stencilBufferValue-1, 0, (1<<numStencilBits) - 1)) break; |
| case STENCILOP_INCR_WRAP: SAMPLE_REGISTER_SFAIL((stencilBufferValue + 1) & ((1<<numStencilBits) - 1)) break; |
| case STENCILOP_DECR_WRAP: SAMPLE_REGISTER_SFAIL((stencilBufferValue - 1) & ((1<<numStencilBits) - 1)) break; |
| case STENCILOP_INVERT: SAMPLE_REGISTER_SFAIL((~stencilBufferValue) & ((1<<numStencilBits) - 1)) break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| #undef SAMPLE_REGISTER_SFAIL |
| } |
| |
| |
| void FragmentProcessor::executeDepthBoundsTest (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const float minDepthBound, const float maxDepthBound, const tcu::ConstPixelBufferAccess& depthBuffer) |
| { |
| if (depthBuffer.getFormat().type == tcu::TextureFormat::FLOAT || depthBuffer.getFormat().type == tcu::TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; ++regSampleNdx) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| const float depthBufferValue = depthBuffer.getPixDepth(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| |
| if (!de::inRange(depthBufferValue, minDepthBound, maxDepthBound)) |
| m_sampleRegister[regSampleNdx].isAlive = false; |
| } |
| } |
| } |
| else |
| { |
| /* Convert float bounds to target buffer format for comparison */ |
| |
| deUint32 minDepthBoundUint, maxDepthBoundUint; |
| { |
| deUint32 buffer[2]; |
| DE_ASSERT(sizeof(buffer) >= (size_t)depthBuffer.getFormat().getPixelSize()); |
| |
| tcu::PixelBufferAccess access(depthBuffer.getFormat(), 1, 1, 1, &buffer); |
| access.setPixDepth(minDepthBound, 0, 0, 0); |
| minDepthBoundUint = access.getPixelUint(0, 0, 0).x(); |
| } |
| { |
| deUint32 buffer[2]; |
| |
| tcu::PixelBufferAccess access(depthBuffer.getFormat(), 1, 1, 1, &buffer); |
| access.setPixDepth(maxDepthBound, 0, 0, 0); |
| maxDepthBoundUint = access.getPixelUint(0, 0, 0).x(); |
| } |
| |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; ++regSampleNdx) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx / numSamplesPerFragment]; |
| const deUint32 depthBufferValue = depthBuffer.getPixelUint(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()).x(); |
| |
| if (!de::inRange(depthBufferValue, minDepthBoundUint, maxDepthBoundUint)) |
| m_sampleRegister[regSampleNdx].isAlive = false; |
| } |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeDepthCompare (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, TestFunc depthFunc, const tcu::ConstPixelBufferAccess& depthBuffer) |
| { |
| #define SAMPLE_REGISTER_DEPTH_COMPARE_F(COMPARE_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; \ |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; \ |
| float depthBufferValue = depthBuffer.getPixDepth(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| float sampleDepthFloat = frag.sampleDepths[fragSampleNdx]; \ |
| float sampleDepth = de::clamp(sampleDepthFloat, 0.0f, 1.0f); \ |
| \ |
| m_sampleRegister[regSampleNdx].depthPassed = (COMPARE_EXPRESSION); \ |
| \ |
| DE_UNREF(depthBufferValue); \ |
| DE_UNREF(sampleDepth); \ |
| } \ |
| } |
| |
| #define SAMPLE_REGISTER_DEPTH_COMPARE_UI(COMPARE_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; \ |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; \ |
| deUint32 depthBufferValue = depthBuffer.getPixelUint(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()).x(); \ |
| float sampleDepthFloat = frag.sampleDepths[fragSampleNdx]; \ |
| \ |
| /* Convert input float to target buffer format for comparison */ \ |
| \ |
| deUint32 buffer[2]; \ |
| \ |
| DE_ASSERT(sizeof(buffer) >= (size_t)depthBuffer.getFormat().getPixelSize()); \ |
| \ |
| tcu::PixelBufferAccess access(depthBuffer.getFormat(), 1, 1, 1, &buffer); \ |
| access.setPixDepth(sampleDepthFloat, 0, 0, 0); \ |
| deUint32 sampleDepth = access.getPixelUint(0, 0, 0).x(); \ |
| \ |
| m_sampleRegister[regSampleNdx].depthPassed = (COMPARE_EXPRESSION); \ |
| \ |
| DE_UNREF(depthBufferValue); \ |
| DE_UNREF(sampleDepth); \ |
| } \ |
| } |
| |
| if (depthBuffer.getFormat().type == tcu::TextureFormat::FLOAT || depthBuffer.getFormat().type == tcu::TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV) |
| { |
| |
| switch (depthFunc) |
| { |
| case TESTFUNC_NEVER: SAMPLE_REGISTER_DEPTH_COMPARE_F(false) break; |
| case TESTFUNC_ALWAYS: SAMPLE_REGISTER_DEPTH_COMPARE_F(true) break; |
| case TESTFUNC_LESS: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth < depthBufferValue) break; |
| case TESTFUNC_LEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth <= depthBufferValue) break; |
| case TESTFUNC_GREATER: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth > depthBufferValue) break; |
| case TESTFUNC_GEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth >= depthBufferValue) break; |
| case TESTFUNC_EQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth == depthBufferValue) break; |
| case TESTFUNC_NOTEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_F(sampleDepth != depthBufferValue) break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| } |
| else |
| { |
| switch (depthFunc) |
| { |
| case TESTFUNC_NEVER: SAMPLE_REGISTER_DEPTH_COMPARE_UI(false) break; |
| case TESTFUNC_ALWAYS: SAMPLE_REGISTER_DEPTH_COMPARE_UI(true) break; |
| case TESTFUNC_LESS: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth < depthBufferValue) break; |
| case TESTFUNC_LEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth <= depthBufferValue) break; |
| case TESTFUNC_GREATER: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth > depthBufferValue) break; |
| case TESTFUNC_GEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth >= depthBufferValue) break; |
| case TESTFUNC_EQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth == depthBufferValue) break; |
| case TESTFUNC_NOTEQUAL: SAMPLE_REGISTER_DEPTH_COMPARE_UI(sampleDepth != depthBufferValue) break; |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| |
| #undef SAMPLE_REGISTER_DEPTH_COMPARE_F |
| #undef SAMPLE_REGISTER_DEPTH_COMPARE_UI |
| } |
| |
| void FragmentProcessor::executeDepthWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const tcu::PixelBufferAccess& depthBuffer) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive && m_sampleRegister[regSampleNdx].depthPassed) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| const float clampedDepth = de::clamp(frag.sampleDepths[fragSampleNdx], 0.0f, 1.0f); |
| |
| depthBuffer.setPixDepth(clampedDepth, fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeStencilDpFailAndPass (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const StencilState& stencilState, int numStencilBits, const tcu::PixelBufferAccess& stencilBuffer) |
| { |
| #define SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive && (CONDITION)) \ |
| { \ |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; \ |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; \ |
| int stencilBufferValue = stencilBuffer.getPixStencil(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| \ |
| stencilBuffer.setPixStencil(maskedBitReplace(stencilBufferValue, (EXPRESSION), stencilState.writeMask), fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); \ |
| } \ |
| } |
| |
| #define SWITCH_DPFAIL_OR_DPPASS(OP_NAME, CONDITION) \ |
| switch (stencilState.OP_NAME) \ |
| { \ |
| case STENCILOP_KEEP: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, stencilBufferValue) break; \ |
| case STENCILOP_ZERO: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, 0) break; \ |
| case STENCILOP_REPLACE: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, clampedStencilRef) break; \ |
| case STENCILOP_INCR: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, de::clamp(stencilBufferValue+1, 0, (1<<numStencilBits) - 1)) break; \ |
| case STENCILOP_DECR: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, de::clamp(stencilBufferValue-1, 0, (1<<numStencilBits) - 1)) break; \ |
| case STENCILOP_INCR_WRAP: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, (stencilBufferValue + 1) & ((1<<numStencilBits) - 1)) break; \ |
| case STENCILOP_DECR_WRAP: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, (stencilBufferValue - 1) & ((1<<numStencilBits) - 1)) break; \ |
| case STENCILOP_INVERT: SAMPLE_REGISTER_DPFAIL_OR_DPPASS(CONDITION, (~stencilBufferValue) & ((1<<numStencilBits) - 1)) break; \ |
| default: \ |
| DE_ASSERT(false); \ |
| } |
| |
| int clampedStencilRef = de::clamp(stencilState.ref, 0, (1<<numStencilBits)-1); |
| |
| SWITCH_DPFAIL_OR_DPPASS(dpFail, !m_sampleRegister[regSampleNdx].depthPassed) |
| SWITCH_DPFAIL_OR_DPPASS(dpPass, m_sampleRegister[regSampleNdx].depthPassed) |
| |
| #undef SWITCH_DPFAIL_OR_DPPASS |
| #undef SAMPLE_REGISTER_DPFAIL_OR_DPPASS |
| } |
| |
| void FragmentProcessor::executeBlendFactorComputeRGB (const Vec4& blendColor, const BlendState& blendRGBState) |
| { |
| #define SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, FACTOR_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| const Vec4& src = m_sampleRegister[regSampleNdx].clampedBlendSrcColor; \ |
| const Vec4& src1 = m_sampleRegister[regSampleNdx].clampedBlendSrc1Color; \ |
| const Vec4& dst = m_sampleRegister[regSampleNdx].clampedBlendDstColor; \ |
| DE_UNREF(src); \ |
| DE_UNREF(src1); \ |
| DE_UNREF(dst); \ |
| \ |
| m_sampleRegister[regSampleNdx].FACTOR_NAME = (FACTOR_EXPRESSION); \ |
| } \ |
| } |
| |
| #define SWITCH_SRC_OR_DST_FACTOR_RGB(FUNC_NAME, FACTOR_NAME) \ |
| switch (blendRGBState.FUNC_NAME) \ |
| { \ |
| case BLENDFUNC_ZERO: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(0.0f)) break; \ |
| case BLENDFUNC_ONE: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f)) break; \ |
| case BLENDFUNC_SRC_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f) - src.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_DST_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, dst.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_ONE_MINUS_DST_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f) - dst.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_SRC_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(src.w())) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f - src.w())) break; \ |
| case BLENDFUNC_DST_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(dst.w())) break; \ |
| case BLENDFUNC_ONE_MINUS_DST_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f - dst.w())) break; \ |
| case BLENDFUNC_CONSTANT_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, blendColor.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_ONE_MINUS_CONSTANT_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f) - blendColor.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_CONSTANT_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(blendColor.w())) break; \ |
| case BLENDFUNC_ONE_MINUS_CONSTANT_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f - blendColor.w())) break; \ |
| case BLENDFUNC_SRC_ALPHA_SATURATE: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(de::min(src.w(), 1.0f - dst.w()))) break; \ |
| case BLENDFUNC_SRC1_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src1.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC1_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f) - src1.swizzle(0,1,2)) break; \ |
| case BLENDFUNC_SRC1_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(src1.w())) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC1_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, Vec3(1.0f - src1.w())) break; \ |
| default: \ |
| DE_ASSERT(false); \ |
| } |
| |
| SWITCH_SRC_OR_DST_FACTOR_RGB(srcFunc, blendSrcFactorRGB) |
| SWITCH_SRC_OR_DST_FACTOR_RGB(dstFunc, blendDstFactorRGB) |
| |
| #undef SWITCH_SRC_OR_DST_FACTOR_RGB |
| #undef SAMPLE_REGISTER_BLEND_FACTOR |
| } |
| |
| void FragmentProcessor::executeBlendFactorComputeA (const Vec4& blendColor, const BlendState& blendAState) |
| { |
| #define SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, FACTOR_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| const Vec4& src = m_sampleRegister[regSampleNdx].clampedBlendSrcColor; \ |
| const Vec4& src1 = m_sampleRegister[regSampleNdx].clampedBlendSrc1Color; \ |
| const Vec4& dst = m_sampleRegister[regSampleNdx].clampedBlendDstColor; \ |
| DE_UNREF(src); \ |
| DE_UNREF(src1); \ |
| DE_UNREF(dst); \ |
| \ |
| m_sampleRegister[regSampleNdx].FACTOR_NAME = (FACTOR_EXPRESSION); \ |
| } \ |
| } |
| |
| #define SWITCH_SRC_OR_DST_FACTOR_A(FUNC_NAME, FACTOR_NAME) \ |
| switch (blendAState.FUNC_NAME) \ |
| { \ |
| case BLENDFUNC_ZERO: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 0.0f) break; \ |
| case BLENDFUNC_ONE: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f) break; \ |
| case BLENDFUNC_SRC_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - src.w()) break; \ |
| case BLENDFUNC_DST_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, dst.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_DST_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - dst.w()) break; \ |
| case BLENDFUNC_SRC_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - src.w()) break; \ |
| case BLENDFUNC_DST_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, dst.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_DST_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - dst.w()) break; \ |
| case BLENDFUNC_CONSTANT_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, blendColor.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_CONSTANT_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - blendColor.w()) break; \ |
| case BLENDFUNC_CONSTANT_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, blendColor.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_CONSTANT_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - blendColor.w()) break; \ |
| case BLENDFUNC_SRC_ALPHA_SATURATE: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f) break; \ |
| case BLENDFUNC_SRC1_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src1.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC1_COLOR: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - src1.w()) break; \ |
| case BLENDFUNC_SRC1_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, src1.w()) break; \ |
| case BLENDFUNC_ONE_MINUS_SRC1_ALPHA: SAMPLE_REGISTER_BLEND_FACTOR(FACTOR_NAME, 1.0f - src1.w()) break; \ |
| default: \ |
| DE_ASSERT(false); \ |
| } |
| |
| SWITCH_SRC_OR_DST_FACTOR_A(srcFunc, blendSrcFactorA) |
| SWITCH_SRC_OR_DST_FACTOR_A(dstFunc, blendDstFactorA) |
| |
| #undef SWITCH_SRC_OR_DST_FACTOR_A |
| #undef SAMPLE_REGISTER_BLEND_FACTOR |
| } |
| |
| void FragmentProcessor::executeBlend (const BlendState& blendRGBState, const BlendState& blendAState) |
| { |
| #define SAMPLE_REGISTER_BLENDED_COLOR(COLOR_NAME, COLOR_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| SampleData& sample = m_sampleRegister[regSampleNdx]; \ |
| const Vec4& srcColor = sample.clampedBlendSrcColor; \ |
| const Vec4& dstColor = sample.clampedBlendDstColor; \ |
| \ |
| sample.COLOR_NAME = (COLOR_EXPRESSION); \ |
| } \ |
| } |
| |
| switch (blendRGBState.equation) |
| { |
| case BLENDEQUATION_ADD: SAMPLE_REGISTER_BLENDED_COLOR(blendedRGB, srcColor.swizzle(0,1,2)*sample.blendSrcFactorRGB + dstColor.swizzle(0,1,2)*sample.blendDstFactorRGB) break; |
| case BLENDEQUATION_SUBTRACT: SAMPLE_REGISTER_BLENDED_COLOR(blendedRGB, srcColor.swizzle(0,1,2)*sample.blendSrcFactorRGB - dstColor.swizzle(0,1,2)*sample.blendDstFactorRGB) break; |
| case BLENDEQUATION_REVERSE_SUBTRACT: SAMPLE_REGISTER_BLENDED_COLOR(blendedRGB, dstColor.swizzle(0,1,2)*sample.blendDstFactorRGB - srcColor.swizzle(0,1,2)*sample.blendSrcFactorRGB) break; |
| case BLENDEQUATION_MIN: SAMPLE_REGISTER_BLENDED_COLOR(blendedRGB, min(srcColor.swizzle(0,1,2), dstColor.swizzle(0,1,2))) break; |
| case BLENDEQUATION_MAX: SAMPLE_REGISTER_BLENDED_COLOR(blendedRGB, max(srcColor.swizzle(0,1,2), dstColor.swizzle(0,1,2))) break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| switch (blendAState.equation) |
| { |
| case BLENDEQUATION_ADD: SAMPLE_REGISTER_BLENDED_COLOR(blendedA, srcColor.w()*sample.blendSrcFactorA + dstColor.w()*sample.blendDstFactorA) break; |
| case BLENDEQUATION_SUBTRACT: SAMPLE_REGISTER_BLENDED_COLOR(blendedA, srcColor.w()*sample.blendSrcFactorA - dstColor.w()*sample.blendDstFactorA) break; |
| case BLENDEQUATION_REVERSE_SUBTRACT: SAMPLE_REGISTER_BLENDED_COLOR(blendedA, dstColor.w()*sample.blendDstFactorA - srcColor.w()*sample.blendSrcFactorA) break; |
| case BLENDEQUATION_MIN: SAMPLE_REGISTER_BLENDED_COLOR(blendedA, min(srcColor.w(), dstColor.w())) break; |
| case BLENDEQUATION_MAX: SAMPLE_REGISTER_BLENDED_COLOR(blendedA, max(srcColor.w(), dstColor.w())) break; |
| default: |
| DE_ASSERT(false); |
| } |
| #undef SAMPLE_REGISTER_BLENDED_COLOR |
| } |
| |
| namespace advblend |
| { |
| |
| inline float multiply (float src, float dst) { return src*dst; } |
| inline float screen (float src, float dst) { return src + dst - src*dst; } |
| inline float darken (float src, float dst) { return de::min(src, dst); } |
| inline float lighten (float src, float dst) { return de::max(src, dst); } |
| inline float difference (float src, float dst) { return de::abs(dst-src); } |
| inline float exclusion (float src, float dst) { return src + dst - 2.0f*src*dst; } |
| |
| inline float overlay (float src, float dst) |
| { |
| if (dst <= 0.5f) |
| return 2.0f*src*dst; |
| else |
| return 1.0f - 2.0f*(1.0f-src)*(1.0f-dst); |
| } |
| |
| inline float colordodge (float src, float dst) |
| { |
| if (dst <= 0.0f) |
| return 0.0f; |
| else if (src < 1.0f) |
| return de::min(1.0f, dst/(1.0f-src)); |
| else |
| return 1.0f; |
| } |
| |
| inline float colorburn (float src, float dst) |
| { |
| if (dst >= 1.0f) |
| return 1.0f; |
| else if (src > 0.0f) |
| return 1.0f - de::min(1.0f, (1.0f-dst)/src); |
| else |
| return 0.0f; |
| } |
| |
| inline float hardlight (float src, float dst) |
| { |
| if (src <= 0.5f) |
| return 2.0f*src*dst; |
| else |
| return 1.0f - 2.0f*(1.0f-src)*(1.0f-dst); |
| } |
| |
| inline float softlight (float src, float dst) |
| { |
| if (src <= 0.5f) |
| return dst - (1.0f - 2.0f*src)*dst*(1.0f-dst); |
| else if (dst <= 0.25f) |
| return dst + (2.0f*src - 1.0f)*dst*((16.0f*dst - 12.0f)*dst + 3.0f); |
| else |
| return dst + (2.0f*src - 1.0f)*(deFloatSqrt(dst)-dst); |
| } |
| |
| inline float minComp (const Vec3& v) |
| { |
| return de::min(de::min(v.x(), v.y()), v.z()); |
| } |
| |
| inline float maxComp (const Vec3& v) |
| { |
| return de::max(de::max(v.x(), v.y()), v.z()); |
| } |
| |
| inline float luminosity (const Vec3& rgb) |
| { |
| return dot(rgb, Vec3(0.3f, 0.59f, 0.11f)); |
| } |
| |
| inline float saturation (const Vec3& rgb) |
| { |
| return maxComp(rgb) - minComp(rgb); |
| } |
| |
| Vec3 setLum (const Vec3& cbase, const Vec3& clum) |
| { |
| const float lbase = luminosity(cbase); |
| const float llum = luminosity(clum); |
| const float ldiff = llum - lbase; |
| const Vec3 color = cbase + Vec3(ldiff); |
| const float minC = minComp(color); |
| const float maxC = maxComp(color); |
| |
| if (minC < 0.0f) |
| return llum + ((color-llum)*llum / (llum != minC ? (llum-minC) : 1.0f)); |
| else if (maxC > 1.0f) |
| return llum + ((color-llum)*(1.0f-llum) / (llum != maxC ? (maxC-llum) : 1.0f)); |
| else |
| return color; |
| } |
| |
| Vec3 setLumSat (const Vec3& cbase, const Vec3& csat, const Vec3& clum) |
| { |
| const float minbase = minComp(cbase); |
| const float sbase = saturation(cbase); |
| const float ssat = saturation(csat); |
| Vec3 color = Vec3(0.0f); |
| |
| if (sbase > 0.0f) |
| color = (cbase - minbase) * ssat / sbase; |
| |
| return setLum(color, clum); |
| } |
| |
| } // advblend |
| |
| void FragmentProcessor::executeAdvancedBlend (BlendEquationAdvanced equation) |
| { |
| using namespace advblend; |
| |
| #define SAMPLE_REGISTER_ADV_BLEND(FUNCTION_NAME) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| SampleData& sample = m_sampleRegister[regSampleNdx]; \ |
| const Vec4& srcColor = sample.clampedBlendSrcColor; \ |
| const Vec4& dstColor = sample.clampedBlendDstColor; \ |
| const Vec3& bias = sample.blendSrcFactorRGB; \ |
| const float p0 = sample.blendSrcFactorA; \ |
| const float r = FUNCTION_NAME(srcColor[0], dstColor[0])*p0 + bias[0]; \ |
| const float g = FUNCTION_NAME(srcColor[1], dstColor[1])*p0 + bias[1]; \ |
| const float b = FUNCTION_NAME(srcColor[2], dstColor[2])*p0 + bias[2]; \ |
| \ |
| sample.blendedRGB = Vec3(r, g, b); \ |
| } \ |
| } |
| |
| #define SAMPLE_REGISTER_ADV_BLEND_HSL(COLOR_EXPRESSION) \ |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) \ |
| { \ |
| if (m_sampleRegister[regSampleNdx].isAlive) \ |
| { \ |
| SampleData& sample = m_sampleRegister[regSampleNdx]; \ |
| const Vec3 srcColor = sample.clampedBlendSrcColor.swizzle(0,1,2); \ |
| const Vec3 dstColor = sample.clampedBlendDstColor.swizzle(0,1,2); \ |
| const Vec3& bias = sample.blendSrcFactorRGB; \ |
| const float p0 = sample.blendSrcFactorA; \ |
| \ |
| sample.blendedRGB = (COLOR_EXPRESSION)*p0 + bias; \ |
| } \ |
| } |
| |
| // Pre-compute factors & compute alpha \todo [2014-03-18 pyry] Re-using variable names. |
| // \note clampedBlend*Color contains clamped & unpremultiplied colors |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| SampleData& sample = m_sampleRegister[regSampleNdx]; |
| const Vec4& srcColor = sample.clampedBlendSrcColor; |
| const Vec4& dstColor = sample.clampedBlendDstColor; |
| const float srcA = srcColor.w(); |
| const float dstA = dstColor.w(); |
| const float p0 = srcA*dstA; |
| const float p1 = srcA*(1.0f-dstA); |
| const float p2 = dstA*(1.0f-srcA); |
| const Vec3 bias (srcColor[0]*p1 + dstColor[0]*p2, |
| srcColor[1]*p1 + dstColor[1]*p2, |
| srcColor[2]*p1 + dstColor[2]*p2); |
| |
| sample.blendSrcFactorRGB = bias; |
| sample.blendSrcFactorA = p0; |
| sample.blendedA = p0 + p1 + p2; |
| } |
| } |
| |
| switch (equation) |
| { |
| case BLENDEQUATION_ADVANCED_MULTIPLY: SAMPLE_REGISTER_ADV_BLEND(multiply); break; |
| case BLENDEQUATION_ADVANCED_SCREEN: SAMPLE_REGISTER_ADV_BLEND(screen); break; |
| case BLENDEQUATION_ADVANCED_OVERLAY: SAMPLE_REGISTER_ADV_BLEND(overlay); break; |
| case BLENDEQUATION_ADVANCED_DARKEN: SAMPLE_REGISTER_ADV_BLEND(darken); break; |
| case BLENDEQUATION_ADVANCED_LIGHTEN: SAMPLE_REGISTER_ADV_BLEND(lighten); break; |
| case BLENDEQUATION_ADVANCED_COLORDODGE: SAMPLE_REGISTER_ADV_BLEND(colordodge); break; |
| case BLENDEQUATION_ADVANCED_COLORBURN: SAMPLE_REGISTER_ADV_BLEND(colorburn); break; |
| case BLENDEQUATION_ADVANCED_HARDLIGHT: SAMPLE_REGISTER_ADV_BLEND(hardlight); break; |
| case BLENDEQUATION_ADVANCED_SOFTLIGHT: SAMPLE_REGISTER_ADV_BLEND(softlight); break; |
| case BLENDEQUATION_ADVANCED_DIFFERENCE: SAMPLE_REGISTER_ADV_BLEND(difference); break; |
| case BLENDEQUATION_ADVANCED_EXCLUSION: SAMPLE_REGISTER_ADV_BLEND(exclusion); break; |
| case BLENDEQUATION_ADVANCED_HSL_HUE: SAMPLE_REGISTER_ADV_BLEND_HSL(setLumSat(srcColor, dstColor, dstColor)); break; |
| case BLENDEQUATION_ADVANCED_HSL_SATURATION: SAMPLE_REGISTER_ADV_BLEND_HSL(setLumSat(dstColor, srcColor, dstColor)); break; |
| case BLENDEQUATION_ADVANCED_HSL_COLOR: SAMPLE_REGISTER_ADV_BLEND_HSL(setLum(srcColor, dstColor)); break; |
| case BLENDEQUATION_ADVANCED_HSL_LUMINOSITY: SAMPLE_REGISTER_ADV_BLEND_HSL(setLum(dstColor, srcColor)); break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| #undef SAMPLE_REGISTER_ADV_BLEND |
| #undef SAMPLE_REGISTER_ADV_BLEND_HSL |
| } |
| |
| void FragmentProcessor::executeColorWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, bool isSRGB, const tcu::PixelBufferAccess& colorBuffer) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| Vec4 combinedColor; |
| |
| combinedColor.xyz() = m_sampleRegister[regSampleNdx].blendedRGB; |
| combinedColor.w() = m_sampleRegister[regSampleNdx].blendedA; |
| |
| if (isSRGB) |
| combinedColor = tcu::linearToSRGB(combinedColor); |
| |
| colorBuffer.setPixel(combinedColor, fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeRGBA8ColorWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const tcu::PixelBufferAccess& colorBuffer) |
| { |
| const int fragStride = 4; |
| const int xStride = colorBuffer.getRowPitch(); |
| const int yStride = colorBuffer.getSlicePitch(); |
| deUint8* const basePtr = (deUint8*)colorBuffer.getDataPtr(); |
| |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| deUint8* dstPtr = basePtr + fragSampleNdx*fragStride + frag.pixelCoord.x()*xStride + frag.pixelCoord.y()*yStride; |
| |
| dstPtr[0] = tcu::floatToU8(m_sampleRegister[regSampleNdx].blendedRGB.x()); |
| dstPtr[1] = tcu::floatToU8(m_sampleRegister[regSampleNdx].blendedRGB.y()); |
| dstPtr[2] = tcu::floatToU8(m_sampleRegister[regSampleNdx].blendedRGB.z()); |
| dstPtr[3] = tcu::floatToU8(m_sampleRegister[regSampleNdx].blendedA); |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeMaskedColorWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const Vec4& colorMaskFactor, const Vec4& colorMaskNegationFactor, bool isSRGB, const tcu::PixelBufferAccess& colorBuffer) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| Vec4 originalColor = colorBuffer.getPixel(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| Vec4 newColor; |
| |
| newColor.xyz() = m_sampleRegister[regSampleNdx].blendedRGB; |
| newColor.w() = m_sampleRegister[regSampleNdx].blendedA; |
| |
| if (isSRGB) |
| newColor = tcu::linearToSRGB(newColor); |
| |
| newColor = colorMaskFactor*newColor + colorMaskNegationFactor*originalColor; |
| |
| colorBuffer.setPixel(newColor, fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeSignedValueWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const tcu::BVec4& colorMask, const tcu::PixelBufferAccess& colorBuffer) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| const IVec4 originalValue = colorBuffer.getPixelInt(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| |
| colorBuffer.setPixel(tcu::select(m_sampleRegister[regSampleNdx].signedValue, originalValue, colorMask), fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| } |
| } |
| } |
| |
| void FragmentProcessor::executeUnsignedValueWrite (int fragNdxOffset, int numSamplesPerFragment, const Fragment* inputFragments, const tcu::BVec4& colorMask, const tcu::PixelBufferAccess& colorBuffer) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[fragNdxOffset + regSampleNdx/numSamplesPerFragment]; |
| const UVec4 originalValue = colorBuffer.getPixelUint(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| |
| colorBuffer.setPixel(tcu::select(m_sampleRegister[regSampleNdx].unsignedValue, originalValue, colorMask), fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| } |
| } |
| } |
| |
| void FragmentProcessor::render (const rr::MultisamplePixelBufferAccess& msColorBuffer, |
| const rr::MultisamplePixelBufferAccess& msDepthBuffer, |
| const rr::MultisamplePixelBufferAccess& msStencilBuffer, |
| const Fragment* inputFragments, |
| int numFragments, |
| FaceType fragmentFacing, |
| const FragmentOperationState& state) |
| { |
| DE_ASSERT(fragmentFacing < FACETYPE_LAST); |
| DE_ASSERT(state.numStencilBits < 32); // code bitshifts numStencilBits, avoid undefined behavior |
| |
| const tcu::PixelBufferAccess& colorBuffer = msColorBuffer.raw(); |
| const tcu::PixelBufferAccess& depthBuffer = msDepthBuffer.raw(); |
| const tcu::PixelBufferAccess& stencilBuffer = msStencilBuffer.raw(); |
| |
| bool hasDepth = depthBuffer.getWidth() > 0 && depthBuffer.getHeight() > 0 && depthBuffer.getDepth() > 0; |
| bool hasStencil = stencilBuffer.getWidth() > 0 && stencilBuffer.getHeight() > 0 && stencilBuffer.getDepth() > 0; |
| bool doDepthBoundsTest = hasDepth && state.depthBoundsTestEnabled; |
| bool doDepthTest = hasDepth && state.depthTestEnabled; |
| bool doStencilTest = hasStencil && state.stencilTestEnabled; |
| |
| tcu::TextureChannelClass colorbufferClass = tcu::getTextureChannelClass(msColorBuffer.raw().getFormat().type); |
| rr::GenericVecType fragmentDataType = (colorbufferClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER) ? (rr::GENERICVECTYPE_INT32) : ((colorbufferClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER) ? (rr::GENERICVECTYPE_UINT32) : (rr::GENERICVECTYPE_FLOAT)); |
| |
| DE_ASSERT((!hasDepth || colorBuffer.getWidth() == depthBuffer.getWidth()) && (!hasStencil || colorBuffer.getWidth() == stencilBuffer.getWidth())); |
| DE_ASSERT((!hasDepth || colorBuffer.getHeight() == depthBuffer.getHeight()) && (!hasStencil || colorBuffer.getHeight() == stencilBuffer.getHeight())); |
| DE_ASSERT((!hasDepth || colorBuffer.getDepth() == depthBuffer.getDepth()) && (!hasStencil || colorBuffer.getDepth() == stencilBuffer.getDepth())); |
| |
| // Combined formats must be separated beforehand |
| DE_ASSERT(!hasDepth || (!tcu::isCombinedDepthStencilType(depthBuffer.getFormat().type) && depthBuffer.getFormat().order == tcu::TextureFormat::D)); |
| DE_ASSERT(!hasStencil || (!tcu::isCombinedDepthStencilType(stencilBuffer.getFormat().type) && stencilBuffer.getFormat().order == tcu::TextureFormat::S)); |
| |
| int numSamplesPerFragment = colorBuffer.getWidth(); |
| int totalNumSamples = numFragments*numSamplesPerFragment; |
| int numSampleGroups = (totalNumSamples - 1) / SAMPLE_REGISTER_SIZE + 1; // \note totalNumSamples/SAMPLE_REGISTER_SIZE rounded up. |
| const StencilState& stencilState = state.stencilStates[fragmentFacing]; |
| Vec4 colorMaskFactor (state.colorMask[0] ? 1.0f : 0.0f, state.colorMask[1] ? 1.0f : 0.0f, state.colorMask[2] ? 1.0f : 0.0f, state.colorMask[3] ? 1.0f : 0.0f); |
| Vec4 colorMaskNegationFactor (state.colorMask[0] ? 0.0f : 1.0f, state.colorMask[1] ? 0.0f : 1.0f, state.colorMask[2] ? 0.0f : 1.0f, state.colorMask[3] ? 0.0f : 1.0f); |
| bool sRGBTarget = state.sRGBEnabled && tcu::isSRGB(colorBuffer.getFormat()); |
| |
| DE_ASSERT(SAMPLE_REGISTER_SIZE % numSamplesPerFragment == 0); |
| |
| // Divide the fragments' samples into groups of size SAMPLE_REGISTER_SIZE, and perform |
| // the per-sample operations for one group at a time. |
| |
| for (int sampleGroupNdx = 0; sampleGroupNdx < numSampleGroups; sampleGroupNdx++) |
| { |
| // The index of the fragment of the sample at the beginning of m_sampleRegisters. |
| int groupFirstFragNdx = (sampleGroupNdx*SAMPLE_REGISTER_SIZE) / numSamplesPerFragment; |
| |
| // Initialize sample data in the sample register. |
| |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| int fragNdx = groupFirstFragNdx + regSampleNdx/numSamplesPerFragment; |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| |
| if (fragNdx < numFragments) |
| { |
| m_sampleRegister[regSampleNdx].isAlive = (inputFragments[fragNdx].coverage & (1u << fragSampleNdx)) != 0; |
| m_sampleRegister[regSampleNdx].depthPassed = true; // \note This will stay true if depth test is disabled. |
| } |
| else |
| m_sampleRegister[regSampleNdx].isAlive = false; |
| } |
| |
| // Scissor test. |
| |
| if (state.scissorTestEnabled) |
| executeScissorTest(groupFirstFragNdx, numSamplesPerFragment, inputFragments, state.scissorRectangle); |
| |
| // Depth bounds test. |
| |
| if (doDepthBoundsTest) |
| executeDepthBoundsTest(groupFirstFragNdx, numSamplesPerFragment, inputFragments, state.minDepthBound, state.maxDepthBound, depthBuffer); |
| |
| // Stencil test. |
| |
| if (doStencilTest) |
| { |
| executeStencilCompare(groupFirstFragNdx, numSamplesPerFragment, inputFragments, stencilState, state.numStencilBits, stencilBuffer); |
| executeStencilSFail(groupFirstFragNdx, numSamplesPerFragment, inputFragments, stencilState, state.numStencilBits, stencilBuffer); |
| } |
| |
| // Depth test. |
| // \note Current value of isAlive is needed for dpPass and dpFail, so it's only updated after them and not right after depth test. |
| |
| if (doDepthTest) |
| { |
| executeDepthCompare(groupFirstFragNdx, numSamplesPerFragment, inputFragments, state.depthFunc, depthBuffer); |
| |
| if (state.depthMask) |
| executeDepthWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, depthBuffer); |
| } |
| |
| // Do dpFail and dpPass stencil writes. |
| |
| if (doStencilTest) |
| executeStencilDpFailAndPass(groupFirstFragNdx, numSamplesPerFragment, inputFragments, stencilState, state.numStencilBits, stencilBuffer); |
| |
| // Kill the samples that failed depth test. |
| |
| if (doDepthTest) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| m_sampleRegister[regSampleNdx].isAlive = m_sampleRegister[regSampleNdx].isAlive && m_sampleRegister[regSampleNdx].depthPassed; |
| } |
| |
| // Paint fragments to target |
| |
| switch (fragmentDataType) |
| { |
| case rr::GENERICVECTYPE_FLOAT: |
| { |
| // Select min/max clamping values for blending factors and operands |
| Vec4 minClampValue; |
| Vec4 maxClampValue; |
| |
| if (colorbufferClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT) |
| { |
| minClampValue = Vec4(0.0f); |
| maxClampValue = Vec4(1.0f); |
| } |
| else if (colorbufferClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT) |
| { |
| minClampValue = Vec4(-1.0f); |
| maxClampValue = Vec4(1.0f); |
| } |
| else |
| { |
| // No clamping |
| minClampValue = Vec4(-std::numeric_limits<float>::infinity()); |
| maxClampValue = Vec4(std::numeric_limits<float>::infinity()); |
| } |
| |
| // Blend calculation - only if using blend. |
| if (state.blendMode == BLENDMODE_STANDARD) |
| { |
| // Put dst color to register, doing srgb-to-linear conversion if needed. |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[groupFirstFragNdx + regSampleNdx/numSamplesPerFragment]; |
| Vec4 dstColor = colorBuffer.getPixel(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| |
| m_sampleRegister[regSampleNdx].clampedBlendSrcColor = clamp(frag.value.get<float>(), minClampValue, maxClampValue); |
| m_sampleRegister[regSampleNdx].clampedBlendSrc1Color = clamp(frag.value1.get<float>(), minClampValue, maxClampValue); |
| m_sampleRegister[regSampleNdx].clampedBlendDstColor = clamp(sRGBTarget ? tcu::sRGBToLinear(dstColor) : dstColor, minClampValue, maxClampValue); |
| } |
| } |
| |
| // Calculate blend factors to register. |
| executeBlendFactorComputeRGB(state.blendColor, state.blendRGBState); |
| executeBlendFactorComputeA(state.blendColor, state.blendAState); |
| |
| // Compute blended color. |
| executeBlend(state.blendRGBState, state.blendAState); |
| } |
| else if (state.blendMode == BLENDMODE_ADVANCED) |
| { |
| // Unpremultiply colors for blending, and do sRGB->linear if necessary |
| // \todo [2014-03-17 pyry] Re-consider clampedBlend*Color var names |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| int fragSampleNdx = regSampleNdx % numSamplesPerFragment; |
| const Fragment& frag = inputFragments[groupFirstFragNdx + regSampleNdx/numSamplesPerFragment]; |
| const Vec4 srcColor = frag.value.get<float>(); |
| const Vec4 dstColor = colorBuffer.getPixel(fragSampleNdx, frag.pixelCoord.x(), frag.pixelCoord.y()); |
| |
| m_sampleRegister[regSampleNdx].clampedBlendSrcColor = unpremultiply(clamp(srcColor, minClampValue, maxClampValue)); |
| m_sampleRegister[regSampleNdx].clampedBlendDstColor = unpremultiply(clamp(sRGBTarget ? tcu::sRGBToLinear(dstColor) : dstColor, minClampValue, maxClampValue)); |
| } |
| } |
| |
| executeAdvancedBlend(state.blendEquationAdvaced); |
| } |
| else |
| { |
| // Not using blend - just put values to register as-is. |
| DE_ASSERT(state.blendMode == BLENDMODE_NONE); |
| |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const Fragment& frag = inputFragments[groupFirstFragNdx + regSampleNdx/numSamplesPerFragment]; |
| |
| m_sampleRegister[regSampleNdx].blendedRGB = frag.value.get<float>().xyz(); |
| m_sampleRegister[regSampleNdx].blendedA = frag.value.get<float>().w(); |
| } |
| } |
| } |
| |
| // Clamp result values in sample register |
| if (colorbufferClass != tcu::TEXTURECHANNELCLASS_FLOATING_POINT) |
| { |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| m_sampleRegister[regSampleNdx].blendedRGB = clamp(m_sampleRegister[regSampleNdx].blendedRGB, minClampValue.swizzle(0, 1, 2), maxClampValue.swizzle(0, 1, 2)); |
| m_sampleRegister[regSampleNdx].blendedA = clamp(m_sampleRegister[regSampleNdx].blendedA, minClampValue.w(), maxClampValue.w()); |
| } |
| } |
| } |
| |
| // Finally, write the colors to the color buffer. |
| |
| if (state.colorMask[0] && state.colorMask[1] && state.colorMask[2] && state.colorMask[3]) |
| { |
| if (colorBuffer.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8)) |
| executeRGBA8ColorWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, colorBuffer); |
| else |
| executeColorWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, sRGBTarget, colorBuffer); |
| } |
| else if (state.colorMask[0] || state.colorMask[1] || state.colorMask[2] || state.colorMask[3]) |
| executeMaskedColorWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, colorMaskFactor, colorMaskNegationFactor, sRGBTarget, colorBuffer); |
| break; |
| } |
| case rr::GENERICVECTYPE_INT32: |
| // Write fragments |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const Fragment& frag = inputFragments[groupFirstFragNdx + regSampleNdx/numSamplesPerFragment]; |
| |
| m_sampleRegister[regSampleNdx].signedValue = frag.value.get<deInt32>(); |
| } |
| } |
| |
| if (state.colorMask[0] || state.colorMask[1] || state.colorMask[2] || state.colorMask[3]) |
| executeSignedValueWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, state.colorMask, colorBuffer); |
| break; |
| |
| case rr::GENERICVECTYPE_UINT32: |
| // Write fragments |
| for (int regSampleNdx = 0; regSampleNdx < SAMPLE_REGISTER_SIZE; regSampleNdx++) |
| { |
| if (m_sampleRegister[regSampleNdx].isAlive) |
| { |
| const Fragment& frag = inputFragments[groupFirstFragNdx + regSampleNdx/numSamplesPerFragment]; |
| |
| m_sampleRegister[regSampleNdx].unsignedValue = frag.value.get<deUint32>(); |
| } |
| } |
| |
| if (state.colorMask[0] || state.colorMask[1] || state.colorMask[2] || state.colorMask[3]) |
| executeUnsignedValueWrite(groupFirstFragNdx, numSamplesPerFragment, inputFragments, state.colorMask, colorBuffer); |
| break; |
| |
| default: |
| DE_ASSERT(DE_FALSE); |
| } |
| } |
| } |
| |
| } // rr |