| /*------------------------------------------------------------------------- |
| * drawElements Quality Program Tester Core |
| * ---------------------------------------- |
| * |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief Texture lookup simulator that is capable of verifying generic |
| * lookup results based on accuracy parameters. |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "tcuTexLookupVerifier.hpp" |
| #include "tcuTexVerifierUtil.hpp" |
| #include "tcuVectorUtil.hpp" |
| #include "tcuTextureUtil.hpp" |
| #include "deMath.h" |
| |
| namespace tcu |
| { |
| |
| using namespace TexVerifierUtil; |
| |
| // Generic utilities |
| |
| #if defined(DE_DEBUG) |
| static bool isSamplerSupported (const Sampler& sampler) |
| { |
| return sampler.compare == Sampler::COMPAREMODE_NONE && |
| isWrapModeSupported(sampler.wrapS) && |
| isWrapModeSupported(sampler.wrapT) && |
| isWrapModeSupported(sampler.wrapR); |
| } |
| #endif // DE_DEBUG |
| |
| // Color read & compare utilities |
| |
| static inline bool coordsInBounds (const ConstPixelBufferAccess& access, int x, int y, int z) |
| { |
| return de::inBounds(x, 0, access.getWidth()) && de::inBounds(y, 0, access.getHeight()) && de::inBounds(z, 0, access.getDepth()); |
| } |
| |
| template<typename ScalarType> |
| inline Vector<ScalarType, 4> lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k) |
| { |
| if (coordsInBounds(access, i, j, k)) |
| return access.getPixelT<ScalarType>(i, j, k); |
| else |
| return sampleTextureBorder<ScalarType>(access.getFormat(), sampler); |
| } |
| |
| template<> |
| inline Vector<float, 4> lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k) |
| { |
| // Specialization for float lookups: sRGB conversion is performed as specified in format. |
| if (coordsInBounds(access, i, j, k)) |
| { |
| const Vec4 p = access.getPixel(i, j, k); |
| return isSRGB(access.getFormat()) ? sRGBToLinear(p) : p; |
| } |
| else |
| return sampleTextureBorder<float>(access.getFormat(), sampler); |
| } |
| |
| static inline bool isColorValid (const LookupPrecision& prec, const Vec4& ref, const Vec4& result) |
| { |
| const Vec4 diff = abs(ref - result); |
| return boolAll(logicalOr(lessThanEqual(diff, prec.colorThreshold), logicalNot(prec.colorMask))); |
| } |
| |
| static inline bool isColorValid (const IntLookupPrecision& prec, const IVec4& ref, const IVec4& result) |
| { |
| return boolAll(logicalOr(lessThanEqual(absDiff(ref, result).asUint(), prec.colorThreshold), logicalNot(prec.colorMask))); |
| } |
| |
| static inline bool isColorValid (const IntLookupPrecision& prec, const UVec4& ref, const UVec4& result) |
| { |
| return boolAll(logicalOr(lessThanEqual(absDiff(ref, result), prec.colorThreshold), logicalNot(prec.colorMask))); |
| } |
| |
| struct ColorQuad |
| { |
| Vec4 p00; //!< (0, 0) |
| Vec4 p01; //!< (1, 0) |
| Vec4 p10; //!< (0, 1) |
| Vec4 p11; //!< (1, 1) |
| }; |
| |
| static void lookupQuad (ColorQuad& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y0, int y1, int z) |
| { |
| dst.p00 = lookup<float>(level, sampler, x0, y0, z); |
| dst.p10 = lookup<float>(level, sampler, x1, y0, z); |
| dst.p01 = lookup<float>(level, sampler, x0, y1, z); |
| dst.p11 = lookup<float>(level, sampler, x1, y1, z); |
| } |
| |
| struct ColorLine |
| { |
| Vec4 p0; //!< 0 |
| Vec4 p1; //!< 1 |
| }; |
| |
| static void lookupLine (ColorLine& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y) |
| { |
| dst.p0 = lookup<float>(level, sampler, x0, y, 0); |
| dst.p1 = lookup<float>(level, sampler, x1, y, 0); |
| } |
| |
| template<typename T, int Size> |
| static T minComp (const Vector<T, Size>& vec) |
| { |
| T minVal = vec[0]; |
| for (int ndx = 1; ndx < Size; ndx++) |
| minVal = de::min(minVal, vec[ndx]); |
| return minVal; |
| } |
| |
| template<typename T, int Size> |
| static T maxComp (const Vector<T, Size>& vec) |
| { |
| T maxVal = vec[0]; |
| for (int ndx = 1; ndx < Size; ndx++) |
| maxVal = de::max(maxVal, vec[ndx]); |
| return maxVal; |
| } |
| |
| static float computeBilinearSearchStepFromFloatLine (const LookupPrecision& prec, |
| const ColorLine& line) |
| { |
| DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); |
| |
| const int maxSteps = 1<<16; |
| const Vec4 d = abs(line.p1 - line.p0); |
| const Vec4 stepCount = d / prec.colorThreshold; |
| const Vec4 minStep = 1.0f / (stepCount + 1.0f); |
| const float step = de::max(minComp(minStep), 1.0f / float(maxSteps)); |
| |
| return step; |
| } |
| |
| static float computeBilinearSearchStepFromFloatQuad (const LookupPrecision& prec, |
| const ColorQuad& quad) |
| { |
| DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); |
| |
| const int maxSteps = 1<<16; |
| const Vec4 d0 = abs(quad.p10 - quad.p00); |
| const Vec4 d1 = abs(quad.p01 - quad.p00); |
| const Vec4 d2 = abs(quad.p11 - quad.p10); |
| const Vec4 d3 = abs(quad.p11 - quad.p01); |
| const Vec4 maxD = max(d0, max(d1, max(d2, d3))); |
| const Vec4 stepCount = maxD / prec.colorThreshold; |
| const Vec4 minStep = 1.0f / (stepCount + 1.0f); |
| const float step = de::max(minComp(minStep), 1.0f / float(maxSteps)); |
| |
| return step; |
| } |
| |
| static float computeBilinearSearchStepForUnorm (const LookupPrecision& prec) |
| { |
| DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); |
| |
| const Vec4 stepCount = 1.0f / prec.colorThreshold; |
| const Vec4 minStep = 1.0f / (stepCount + 1.0f); |
| const float step = minComp(minStep); |
| |
| return step; |
| } |
| |
| static float computeBilinearSearchStepForSnorm (const LookupPrecision& prec) |
| { |
| DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); |
| |
| const Vec4 stepCount = 2.0f / prec.colorThreshold; |
| const Vec4 minStep = 1.0f / (stepCount + 1.0f); |
| const float step = minComp(minStep); |
| |
| return step; |
| } |
| |
| static inline Vec4 min (const ColorLine& line) |
| { |
| return min(line.p0, line.p1); |
| } |
| |
| static inline Vec4 max (const ColorLine& line) |
| { |
| return max(line.p0, line.p1); |
| } |
| |
| static inline Vec4 min (const ColorQuad& quad) |
| { |
| return min(quad.p00, min(quad.p10, min(quad.p01, quad.p11))); |
| } |
| |
| static inline Vec4 max (const ColorQuad& quad) |
| { |
| return max(quad.p00, max(quad.p10, max(quad.p01, quad.p11))); |
| } |
| |
| static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad, const Vec4& result) |
| { |
| const tcu::Vec4 minVal = min(quad) - prec.colorThreshold; |
| const tcu::Vec4 maxVal = max(quad) + prec.colorThreshold; |
| return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); |
| } |
| |
| static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad0, const ColorQuad& quad1, const Vec4& result) |
| { |
| const tcu::Vec4 minVal = min(min(quad0), min(quad1)) - prec.colorThreshold; |
| const tcu::Vec4 maxVal = max(max(quad0), max(quad1)) + prec.colorThreshold; |
| return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); |
| } |
| |
| static bool isInColorBounds (const LookupPrecision& prec, const ColorLine& line0, const ColorLine& line1, const Vec4& result) |
| { |
| const tcu::Vec4 minVal = min(min(line0), min(line1)) - prec.colorThreshold; |
| const tcu::Vec4 maxVal = max(max(line0), max(line1)) + prec.colorThreshold; |
| return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); |
| } |
| |
| static bool isInColorBounds (const LookupPrecision& prec, |
| const ColorQuad& quad00, |
| const ColorQuad& quad01, |
| const ColorQuad& quad10, |
| const ColorQuad& quad11, |
| const Vec4& result) |
| { |
| const tcu::Vec4 minVal = min(min(quad00), min(min(quad01), min(min(quad10), min(quad11)))) - prec.colorThreshold; |
| const tcu::Vec4 maxVal = max(max(quad00), max(max(quad01), max(max(quad10), max(quad11)))) + prec.colorThreshold; |
| return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); |
| } |
| |
| // Range search utilities |
| |
| static bool isLinearRangeValid (const LookupPrecision& prec, |
| const Vec4& c0, |
| const Vec4& c1, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| // This is basically line segment - AABB test. Valid interpolation line is checked |
| // against result AABB constructed by applying threshold. |
| |
| const Vec4 i0 = c0*(1.0f - fBounds[0]) + c1*fBounds[0]; |
| const Vec4 i1 = c0*(1.0f - fBounds[1]) + c1*fBounds[1]; |
| const Vec4 rMin = result - prec.colorThreshold; |
| const Vec4 rMax = result + prec.colorThreshold; |
| bool allIntersect = true; |
| |
| // Algorithm: For each component check whether segment endpoints are inside, or intersect with slab. |
| // If all intersect or are inside, line segment intersects the whole 4D AABB. |
| for (int compNdx = 0; compNdx < 4; compNdx++) |
| { |
| if (!prec.colorMask[compNdx]) |
| continue; |
| |
| // Signs for both bounds: false = left, true = right. |
| const bool sMin0 = i0[compNdx] >= rMin[compNdx]; |
| const bool sMin1 = i1[compNdx] >= rMin[compNdx]; |
| const bool sMax0 = i0[compNdx] > rMax[compNdx]; |
| const bool sMax1 = i1[compNdx] > rMax[compNdx]; |
| |
| // If all signs are equal, line segment is outside bounds. |
| if (sMin0 == sMin1 && sMin1 == sMax0 && sMax0 == sMax1) |
| { |
| allIntersect = false; |
| break; |
| } |
| } |
| |
| return allIntersect; |
| } |
| |
| static bool isBilinearRangeValid (const LookupPrecision& prec, |
| const ColorQuad& quad, |
| const Vec2& xBounds, |
| const Vec2& yBounds, |
| const float searchStep, |
| const Vec4& result) |
| { |
| DE_ASSERT(xBounds.x() <= xBounds.y()); |
| DE_ASSERT(yBounds.x() <= yBounds.y()); |
| DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0 |
| DE_ASSERT(xBounds.y() + searchStep > xBounds.y()); |
| |
| if (!isInColorBounds(prec, quad, result)) |
| return false; |
| |
| for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep) |
| { |
| const float a = de::min(x, xBounds.y()); |
| const Vec4 c0 = quad.p00*(1.0f - a) + quad.p10*a; |
| const Vec4 c1 = quad.p01*(1.0f - a) + quad.p11*a; |
| |
| if (isLinearRangeValid(prec, c0, c1, yBounds, result)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isTrilinearRangeValid (const LookupPrecision& prec, |
| const ColorQuad& quad0, |
| const ColorQuad& quad1, |
| const Vec2& xBounds, |
| const Vec2& yBounds, |
| const Vec2& zBounds, |
| const float searchStep, |
| const Vec4& result) |
| { |
| DE_ASSERT(xBounds.x() <= xBounds.y()); |
| DE_ASSERT(yBounds.x() <= yBounds.y()); |
| DE_ASSERT(zBounds.x() <= zBounds.y()); |
| DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0 |
| DE_ASSERT(xBounds.y() + searchStep > xBounds.y()); |
| DE_ASSERT(yBounds.x() + searchStep > yBounds.x()); |
| DE_ASSERT(yBounds.y() + searchStep > yBounds.y()); |
| |
| if (!isInColorBounds(prec, quad0, quad1, result)) |
| return false; |
| |
| for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep) |
| { |
| for (float y = yBounds.x(); y < yBounds.y()+searchStep; y += searchStep) |
| { |
| const float a = de::min(x, xBounds.y()); |
| const float b = de::min(y, yBounds.y()); |
| const Vec4 c0 = quad0.p00*(1.0f-a)*(1.0f-b) + quad0.p10*a*(1.0f-b) + quad0.p01*(1.0f-a)*b + quad0.p11*a*b; |
| const Vec4 c1 = quad1.p00*(1.0f-a)*(1.0f-b) + quad1.p10*a*(1.0f-b) + quad1.p01*(1.0f-a)*b + quad1.p11*a*b; |
| |
| if (isLinearRangeValid(prec, c0, c1, zBounds, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isReductionValid (const LookupPrecision& prec, |
| const Vec4& c0, |
| const Vec4& c1, |
| tcu::Sampler::ReductionMode reductionMode, |
| const Vec4& result) |
| { |
| DE_ASSERT(reductionMode == tcu::Sampler::MIN || reductionMode == tcu::Sampler::MAX); |
| |
| const Vec4 color = (reductionMode == tcu::Sampler::MIN ? tcu::min(c0, c1) : tcu::max(c0, c1)); |
| |
| return isColorValid(prec, color, result); |
| } |
| |
| static bool isReductionValid (const LookupPrecision& prec, |
| const ColorQuad& quad, |
| tcu::Sampler::ReductionMode reductionMode, |
| const Vec4& result) |
| { |
| DE_ASSERT(reductionMode == tcu::Sampler::MIN || reductionMode == tcu::Sampler::MAX); |
| |
| const Vec4 c0 = (reductionMode == tcu::Sampler::MIN ? tcu::min(quad.p00, quad.p01) : tcu::max(quad.p00, quad.p01)); |
| const Vec4 c1 = (reductionMode == tcu::Sampler::MIN ? tcu::min(quad.p10, quad.p11) : tcu::max(quad.p10, quad.p11)); |
| |
| return isReductionValid(prec, c0, c1, reductionMode, result); |
| } |
| |
| static bool isReductionValid (const LookupPrecision& prec, |
| const ColorQuad& quad0, |
| const ColorQuad& quad1, |
| tcu::Sampler::ReductionMode reductionMode, |
| const Vec4& result) |
| { |
| DE_ASSERT(reductionMode == tcu::Sampler::MIN || reductionMode == tcu::Sampler::MAX); |
| |
| const ColorQuad quad = |
| { |
| reductionMode == tcu::Sampler::MIN ? tcu::min(quad0.p00, quad1.p00) : tcu::max(quad0.p00, quad1.p00), // p00 |
| reductionMode == tcu::Sampler::MIN ? tcu::min(quad0.p01, quad1.p01) : tcu::max(quad0.p01, quad1.p01), // p01 |
| reductionMode == tcu::Sampler::MIN ? tcu::min(quad0.p10, quad1.p10) : tcu::max(quad0.p10, quad1.p10), // p10 |
| reductionMode == tcu::Sampler::MIN ? tcu::min(quad0.p11, quad1.p11) : tcu::max(quad0.p11, quad1.p11), // p11 |
| }; |
| |
| return isReductionValid(prec, quad, reductionMode, result); |
| } |
| |
| static bool is1DTrilinearFilterResultValid (const LookupPrecision& prec, |
| const ColorLine& line0, |
| const ColorLine& line1, |
| const Vec2& xBounds0, |
| const Vec2& xBounds1, |
| const Vec2& zBounds, |
| const float searchStep, |
| const Vec4& result) |
| { |
| DE_ASSERT(xBounds0.x() <= xBounds0.y()); |
| DE_ASSERT(xBounds1.x() <= xBounds1.y()); |
| DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 |
| DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); |
| DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); |
| DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); |
| |
| if (!isInColorBounds(prec, line0, line1, result)) |
| return false; |
| |
| for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) |
| { |
| const float a0 = de::min(x0, xBounds0.y()); |
| const Vec4 c0 = line0.p0*(1.0f-a0) + line0.p1*a0; |
| |
| for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep) |
| { |
| const float a1 = de::min(x1, xBounds1.y()); |
| const Vec4 c1 = line1.p0*(1.0f-a1) + line1.p1*a1; |
| |
| if (isLinearRangeValid(prec, c0, c1, zBounds, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool is2DTrilinearFilterResultValid (const LookupPrecision& prec, |
| const ColorQuad& quad0, |
| const ColorQuad& quad1, |
| const Vec2& xBounds0, |
| const Vec2& yBounds0, |
| const Vec2& xBounds1, |
| const Vec2& yBounds1, |
| const Vec2& zBounds, |
| const float searchStep, |
| const Vec4& result) |
| { |
| DE_ASSERT(xBounds0.x() <= xBounds0.y()); |
| DE_ASSERT(yBounds0.x() <= yBounds0.y()); |
| DE_ASSERT(xBounds1.x() <= xBounds1.y()); |
| DE_ASSERT(yBounds1.x() <= yBounds1.y()); |
| DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 |
| DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); |
| DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x()); |
| DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y()); |
| DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); |
| DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); |
| DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x()); |
| DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y()); |
| |
| if (!isInColorBounds(prec, quad0, quad1, result)) |
| return false; |
| |
| for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) |
| { |
| for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep) |
| { |
| const float a0 = de::min(x0, xBounds0.y()); |
| const float b0 = de::min(y0, yBounds0.y()); |
| const Vec4 c0 = quad0.p00*(1.0f-a0)*(1.0f-b0) + quad0.p10*a0*(1.0f-b0) + quad0.p01*(1.0f-a0)*b0 + quad0.p11*a0*b0; |
| |
| for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep) |
| { |
| for (float y1 = yBounds1.x(); y1 <= yBounds1.y(); y1 += searchStep) |
| { |
| const float a1 = de::min(x1, xBounds1.y()); |
| const float b1 = de::min(y1, yBounds1.y()); |
| const Vec4 c1 = quad1.p00*(1.0f-a1)*(1.0f-b1) + quad1.p10*a1*(1.0f-b1) + quad1.p01*(1.0f-a1)*b1 + quad1.p11*a1*b1; |
| |
| if (isLinearRangeValid(prec, c0, c1, zBounds, result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool is3DTrilinearFilterResultValid (const LookupPrecision& prec, |
| const ColorQuad& quad00, |
| const ColorQuad& quad01, |
| const ColorQuad& quad10, |
| const ColorQuad& quad11, |
| const Vec2& xBounds0, |
| const Vec2& yBounds0, |
| const Vec2& zBounds0, |
| const Vec2& xBounds1, |
| const Vec2& yBounds1, |
| const Vec2& zBounds1, |
| const Vec2& wBounds, |
| const float searchStep, |
| const Vec4& result) |
| { |
| DE_ASSERT(xBounds0.x() <= xBounds0.y()); |
| DE_ASSERT(yBounds0.x() <= yBounds0.y()); |
| DE_ASSERT(zBounds0.x() <= zBounds0.y()); |
| DE_ASSERT(xBounds1.x() <= xBounds1.y()); |
| DE_ASSERT(yBounds1.x() <= yBounds1.y()); |
| DE_ASSERT(zBounds1.x() <= zBounds1.y()); |
| DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 |
| DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); |
| DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x()); |
| DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y()); |
| DE_ASSERT(zBounds0.x() + searchStep > zBounds0.x()); |
| DE_ASSERT(zBounds0.y() + searchStep > zBounds0.y()); |
| DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); |
| DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); |
| DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x()); |
| DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y()); |
| DE_ASSERT(zBounds1.x() + searchStep > zBounds1.x()); |
| DE_ASSERT(zBounds1.y() + searchStep > zBounds1.y()); |
| |
| if (!isInColorBounds(prec, quad00, quad01, quad10, quad11, result)) |
| return false; |
| |
| for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) |
| { |
| for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep) |
| { |
| const float a0 = de::min(x0, xBounds0.y()); |
| const float b0 = de::min(y0, yBounds0.y()); |
| const Vec4 c00 = quad00.p00*(1.0f-a0)*(1.0f-b0) + quad00.p10*a0*(1.0f-b0) + quad00.p01*(1.0f-a0)*b0 + quad00.p11*a0*b0; |
| const Vec4 c01 = quad01.p00*(1.0f-a0)*(1.0f-b0) + quad01.p10*a0*(1.0f-b0) + quad01.p01*(1.0f-a0)*b0 + quad01.p11*a0*b0; |
| |
| for (float z0 = zBounds0.x(); z0 < zBounds0.y()+searchStep; z0 += searchStep) |
| { |
| const float c0 = de::min(z0, zBounds0.y()); |
| const Vec4 cz0 = c00*(1.0f-c0) + c01*c0; |
| |
| for (float x1 = xBounds1.x(); x1 < xBounds1.y()+searchStep; x1 += searchStep) |
| { |
| for (float y1 = yBounds1.x(); y1 < yBounds1.y()+searchStep; y1 += searchStep) |
| { |
| const float a1 = de::min(x1, xBounds1.y()); |
| const float b1 = de::min(y1, yBounds1.y()); |
| const Vec4 c10 = quad10.p00*(1.0f-a1)*(1.0f-b1) + quad10.p10*a1*(1.0f-b1) + quad10.p01*(1.0f-a1)*b1 + quad10.p11*a1*b1; |
| const Vec4 c11 = quad11.p00*(1.0f-a1)*(1.0f-b1) + quad11.p10*a1*(1.0f-b1) + quad11.p01*(1.0f-a1)*b1 + quad11.p11*a1*b1; |
| |
| for (float z1 = zBounds1.x(); z1 < zBounds1.y()+searchStep; z1 += searchStep) |
| { |
| const float c1 = de::min(z1, zBounds1.y()); |
| const Vec4 cz1 = c10*(1.0f - c1) + c11*c1; |
| |
| if (isLinearRangeValid(prec, cz0, cz1, wBounds, result)) |
| return true; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| template<typename PrecType, typename ScalarType> |
| static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const PrecType& prec, |
| const float coordX, |
| const int coordY, |
| const Vector<ScalarType, 4>& result) |
| { |
| DE_ASSERT(level.getDepth() == 1); |
| |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coordX, prec.coordBits.x(), prec.uvwBits.x()); |
| |
| const int minI = deFloorFloatToInt32(uBounds.x()); |
| const int maxI = deFloorFloatToInt32(uBounds.y()); |
| |
| for (int i = minI; i <= maxI; i++) |
| { |
| const int x = wrap(sampler.wrapS, i, level.getWidth()); |
| const Vector<ScalarType, 4> color = lookup<ScalarType>(level, sampler, x, coordY, 0); |
| |
| if (isColorValid(prec, color, result)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template<typename PrecType, typename ScalarType> |
| static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const PrecType& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vector<ScalarType, 4>& result) |
| { |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI = deFloorFloatToInt32(uBounds.x()); |
| const int maxI = deFloorFloatToInt32(uBounds.y()); |
| const int minJ = deFloorFloatToInt32(vBounds.x()); |
| const int maxJ = deFloorFloatToInt32(vBounds.y()); |
| |
| // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. |
| |
| for (int j = minJ; j <= maxJ; j++) |
| { |
| for (int i = minI; i <= maxI; i++) |
| { |
| const int x = wrap(sampler.wrapS, i, level.getWidth()); |
| const int y = wrap(sampler.wrapT, j, level.getHeight()); |
| const Vector<ScalarType, 4> color = lookup<ScalarType>(level, sampler, x, y, coordZ); |
| |
| if (isColorValid(prec, color, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template<typename PrecType, typename ScalarType> |
| static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const PrecType& prec, |
| const Vec3& coord, |
| const Vector<ScalarType, 4>& result) |
| { |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 wBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(), coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI = deFloorFloatToInt32(uBounds.x()); |
| const int maxI = deFloorFloatToInt32(uBounds.y()); |
| const int minJ = deFloorFloatToInt32(vBounds.x()); |
| const int maxJ = deFloorFloatToInt32(vBounds.y()); |
| const int minK = deFloorFloatToInt32(wBounds.x()); |
| const int maxK = deFloorFloatToInt32(wBounds.y()); |
| |
| // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. |
| |
| for (int k = minK; k <= maxK; k++) |
| { |
| for (int j = minJ; j <= maxJ; j++) |
| { |
| for (int i = minI; i <= maxI; i++) |
| { |
| const int x = wrap(sampler.wrapS, i, level.getWidth()); |
| const int y = wrap(sampler.wrapT, j, level.getHeight()); |
| const int z = wrap(sampler.wrapR, k, level.getDepth()); |
| const Vector<ScalarType, 4> color = lookup<ScalarType>(level, sampler, x, y, z); |
| |
| if (isColorValid(prec, color, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const float coordX, |
| const int coordY, |
| const Vec4& result) |
| { |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coordX, prec.coordBits.x(), prec.uvwBits.x()); |
| |
| const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); |
| const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); |
| |
| const int w = level.getWidth(); |
| |
| const TextureFormat format = level.getFormat(); |
| const TextureChannelClass texClass = getTextureChannelClass(format.type); |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| DE_UNREF(texClass); |
| DE_UNREF(format); |
| |
| for (int i = minI; i <= maxI; i++) |
| { |
| // Wrapped coordinates |
| const int x0 = wrap(sampler.wrapS, i , w); |
| const int x1 = wrap(sampler.wrapS, i+1, w); |
| |
| // Bounds for filtering factors |
| const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); |
| const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); |
| |
| const Vec4 colorA = lookup<float>(level, sampler, x0, coordY, 0); |
| const Vec4 colorB = lookup<float>(level, sampler, x1, coordY, 0); |
| |
| if (sampler.reductionMode == Sampler::WEIGHTED_AVERAGE) |
| { |
| if (isLinearRangeValid(prec, colorA, colorB, Vec2(minA, maxA), result)) |
| return true; |
| } |
| else |
| { |
| if (isReductionValid(prec, colorA, colorB, sampler.reductionMode, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vec4& result) |
| { |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinate bounds for (x0,y0) - without wrap mode |
| const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); |
| const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); |
| const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); |
| const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); |
| |
| const int w = level.getWidth(); |
| const int h = level.getHeight(); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(level.getFormat().type); |
| float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. |
| |
| for (int j = minJ; j <= maxJ; j++) |
| { |
| for (int i = minI; i <= maxI; i++) |
| { |
| // Wrapped coordinates |
| const int x0 = wrap(sampler.wrapS, i , w); |
| const int x1 = wrap(sampler.wrapS, i+1, w); |
| const int y0 = wrap(sampler.wrapT, j , h); |
| const int y1 = wrap(sampler.wrapT, j+1, h); |
| |
| // Bounds for filtering factors |
| const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); |
| const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); |
| const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); |
| const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); |
| |
| ColorQuad quad; |
| lookupQuad(quad, level, sampler, x0, x1, y0, y1, coordZ); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad); |
| |
| if (sampler.reductionMode == Sampler::WEIGHTED_AVERAGE) |
| { |
| if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result)) |
| return true; |
| } |
| else |
| { |
| if (isReductionValid(prec, quad, sampler.reductionMode, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec3& coord, |
| const Vec4& result) |
| { |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 wBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(), coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| |
| // Integer coordinate bounds for (x0,y0) - without wrap mode |
| const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); |
| const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); |
| const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); |
| const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); |
| const int minK = deFloorFloatToInt32(wBounds.x()-0.5f); |
| const int maxK = deFloorFloatToInt32(wBounds.y()-0.5f); |
| |
| const int w = level.getWidth(); |
| const int h = level.getHeight(); |
| const int d = level.getDepth(); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(level.getFormat().type); |
| float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. |
| |
| for (int k = minK; k <= maxK; k++) |
| { |
| for (int j = minJ; j <= maxJ; j++) |
| { |
| for (int i = minI; i <= maxI; i++) |
| { |
| // Wrapped coordinates |
| const int x0 = wrap(sampler.wrapS, i , w); |
| const int x1 = wrap(sampler.wrapS, i+1, w); |
| const int y0 = wrap(sampler.wrapT, j , h); |
| const int y1 = wrap(sampler.wrapT, j+1, h); |
| const int z0 = wrap(sampler.wrapR, k , d); |
| const int z1 = wrap(sampler.wrapR, k+1, d); |
| |
| // Bounds for filtering factors |
| const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); |
| const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); |
| const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); |
| const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); |
| const float minC = de::clamp((wBounds.x()-0.5f)-float(k), 0.0f, 1.0f); |
| const float maxC = de::clamp((wBounds.y()-0.5f)-float(k), 0.0f, 1.0f); |
| |
| ColorQuad quad0, quad1; |
| lookupQuad(quad0, level, sampler, x0, x1, y0, y1, z0); |
| lookupQuad(quad1, level, sampler, x0, x1, y0, y1, z1); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad0), computeBilinearSearchStepFromFloatQuad(prec, quad1)); |
| |
| if (sampler.reductionMode == Sampler::WEIGHTED_AVERAGE) |
| { |
| if (isTrilinearRangeValid(prec, quad0, quad1, Vec2(minA, maxA), Vec2(minB, maxB), Vec2(minC, maxC), searchStep, result)) |
| return true; |
| } |
| else |
| { |
| if (isReductionValid(prec, quad0, quad1, sampler.reductionMode, result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const float coord, |
| const int coordY, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord, prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord, prec.coordBits.x(), prec.uvwBits.x()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()); |
| |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| const Vec4 c0 = lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), coordY, 0); |
| const Vec4 c1 = lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), coordY, 0); |
| |
| if (isLinearRangeValid(prec, c0, c1, fBounds, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| const int h0 = level0.getHeight(); |
| const int h1 = level1.getHeight(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()); |
| const int minJ0 = deFloorFloatToInt32(vBounds0.x()); |
| const int maxJ0 = deFloorFloatToInt32(vBounds0.y()); |
| const int minJ1 = deFloorFloatToInt32(vBounds1.x()); |
| const int maxJ1 = deFloorFloatToInt32(vBounds1.y()); |
| |
| for (int j0 = minJ0; j0 <= maxJ0; j0++) |
| { |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| for (int j1 = minJ1; j1 <= maxJ1; j1++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| const Vec4 c0 = lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), coordZ); |
| const Vec4 c1 = lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), coordZ); |
| |
| if (isLinearRangeValid(prec, c0, c1, fBounds, result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec3& coord, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| const int h0 = level0.getHeight(); |
| const int h1 = level1.getHeight(); |
| const int d0 = level0.getDepth(); |
| const int d1 = level1.getDepth(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 wBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| const Vec2 wBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()); |
| const int minJ0 = deFloorFloatToInt32(vBounds0.x()); |
| const int maxJ0 = deFloorFloatToInt32(vBounds0.y()); |
| const int minJ1 = deFloorFloatToInt32(vBounds1.x()); |
| const int maxJ1 = deFloorFloatToInt32(vBounds1.y()); |
| const int minK0 = deFloorFloatToInt32(wBounds0.x()); |
| const int maxK0 = deFloorFloatToInt32(wBounds0.y()); |
| const int minK1 = deFloorFloatToInt32(wBounds1.x()); |
| const int maxK1 = deFloorFloatToInt32(wBounds1.y()); |
| |
| for (int k0 = minK0; k0 <= maxK0; k0++) |
| { |
| for (int j0 = minJ0; j0 <= maxJ0; j0++) |
| { |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| for (int k1 = minK1; k1 <= maxK1; k1++) |
| { |
| for (int j1 = minJ1; j1 <= maxJ1; j1++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| const Vec4 c0 = lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), wrap(sampler.wrapR, k0, d0)); |
| const Vec4 c1 = lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), wrap(sampler.wrapR, k1, d1)); |
| |
| if (isLinearRangeValid(prec, c0, c1, fBounds, result)) |
| return true; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const float coordX, |
| const int coordY, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. |
| // Right now this allows pairing any two valid bilinear quads. |
| |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coordX, prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coordX, prec.coordBits.x(), prec.uvwBits.x()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); |
| const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| ColorLine line0; |
| float searchStep0; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i0 , w0); |
| const int x1 = wrap(sampler.wrapS, i0+1, w0); |
| lookupLine(line0, level0, sampler, x0, x1, coordY); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep0 = computeBilinearSearchStepFromFloatLine(prec, line0); |
| else |
| searchStep0 = cSearchStep; |
| } |
| |
| const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); |
| |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| ColorLine line1; |
| float searchStep1; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i1 , w1); |
| const int x1 = wrap(sampler.wrapS, i1+1, w1); |
| lookupLine(line1, level1, sampler, x0, x1, coordY); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep1 = computeBilinearSearchStepFromFloatLine(prec, line1); |
| else |
| searchStep1 = cSearchStep; |
| } |
| |
| const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); |
| |
| if (is1DTrilinearFilterResultValid(prec, line0, line1, Vec2(minA0, maxA0), Vec2(minA1, maxA1), fBounds, de::min(searchStep0, searchStep1), result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. |
| // Right now this allows pairing any two valid bilinear quads. |
| |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| const int h0 = level0.getHeight(); |
| const int h1 = level1.getHeight(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); |
| const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); |
| const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); |
| const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); |
| const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); |
| const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| for (int j0 = minJ0; j0 <= maxJ0; j0++) |
| { |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| ColorQuad quad0; |
| float searchStep0; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i0 , w0); |
| const int x1 = wrap(sampler.wrapS, i0+1, w0); |
| const int y0 = wrap(sampler.wrapT, j0 , h0); |
| const int y1 = wrap(sampler.wrapT, j0+1, h0); |
| lookupQuad(quad0, level0, sampler, x0, x1, y0, y1, coordZ); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0); |
| else |
| searchStep0 = cSearchStep; |
| } |
| |
| const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); |
| const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); |
| |
| for (int j1 = minJ1; j1 <= maxJ1; j1++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| ColorQuad quad1; |
| float searchStep1; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i1 , w1); |
| const int x1 = wrap(sampler.wrapS, i1+1, w1); |
| const int y0 = wrap(sampler.wrapT, j1 , h1); |
| const int y1 = wrap(sampler.wrapT, j1+1, h1); |
| lookupQuad(quad1, level1, sampler, x0, x1, y0, y1, coordZ); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1); |
| else |
| searchStep1 = cSearchStep; |
| } |
| |
| const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); |
| const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); |
| |
| if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1), |
| fBounds, de::min(searchStep0, searchStep1), result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const Vec3& coord, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. |
| // Right now this allows pairing any two valid bilinear quads. |
| |
| const int w0 = level0.getWidth(); |
| const int w1 = level1.getWidth(); |
| const int h0 = level0.getHeight(); |
| const int h1 = level1.getHeight(); |
| const int d0 = level0.getDepth(); |
| const int d1 = level1.getDepth(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 wBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| const Vec2 wBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); |
| const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); |
| const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); |
| const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); |
| const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); |
| const int minK0 = deFloorFloatToInt32(wBounds0.x()-0.5f); |
| const int maxK0 = deFloorFloatToInt32(wBounds0.y()-0.5f); |
| const int minK1 = deFloorFloatToInt32(wBounds1.x()-0.5f); |
| const int maxK1 = deFloorFloatToInt32(wBounds1.y()-0.5f); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); |
| const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| for (int k0 = minK0; k0 <= maxK0; k0++) |
| { |
| for (int j0 = minJ0; j0 <= maxJ0; j0++) |
| { |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| ColorQuad quad00, quad01; |
| float searchStep0; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i0 , w0); |
| const int x1 = wrap(sampler.wrapS, i0+1, w0); |
| const int y0 = wrap(sampler.wrapT, j0 , h0); |
| const int y1 = wrap(sampler.wrapT, j0+1, h0); |
| const int z0 = wrap(sampler.wrapR, k0 , d0); |
| const int z1 = wrap(sampler.wrapR, k0+1, d0); |
| lookupQuad(quad00, level0, sampler, x0, x1, y0, y1, z0); |
| lookupQuad(quad01, level0, sampler, x0, x1, y0, y1, z1); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep0 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad00), computeBilinearSearchStepFromFloatQuad(prec, quad01)); |
| else |
| searchStep0 = cSearchStep; |
| } |
| |
| const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); |
| const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); |
| const float minC0 = de::clamp((wBounds0.x()-0.5f)-float(k0), 0.0f, 1.0f); |
| const float maxC0 = de::clamp((wBounds0.y()-0.5f)-float(k0), 0.0f, 1.0f); |
| |
| for (int k1 = minK1; k1 <= maxK1; k1++) |
| { |
| for (int j1 = minJ1; j1 <= maxJ1; j1++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| ColorQuad quad10, quad11; |
| float searchStep1; |
| |
| { |
| const int x0 = wrap(sampler.wrapS, i1 , w1); |
| const int x1 = wrap(sampler.wrapS, i1+1, w1); |
| const int y0 = wrap(sampler.wrapT, j1 , h1); |
| const int y1 = wrap(sampler.wrapT, j1+1, h1); |
| const int z0 = wrap(sampler.wrapR, k1 , d1); |
| const int z1 = wrap(sampler.wrapR, k1+1, d1); |
| lookupQuad(quad10, level1, sampler, x0, x1, y0, y1, z0); |
| lookupQuad(quad11, level1, sampler, x0, x1, y0, y1, z1); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep1 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad10), computeBilinearSearchStepFromFloatQuad(prec, quad11)); |
| else |
| searchStep1 = cSearchStep; |
| } |
| |
| const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); |
| const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); |
| const float minC1 = de::clamp((wBounds1.x()-0.5f)-float(k1), 0.0f, 1.0f); |
| const float maxC1 = de::clamp((wBounds1.y()-0.5f)-float(k1), 0.0f, 1.0f); |
| |
| if (is3DTrilinearFilterResultValid(prec, quad00, quad01, quad10, quad11, |
| Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minC0, maxC0), |
| Vec2(minA1, maxA1), Vec2(minB1, maxB1), Vec2(minC1, maxC1), |
| fBounds, de::min(searchStep0, searchStep1), result)) |
| return true; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const Sampler::FilterMode filterMode, |
| const LookupPrecision& prec, |
| const float coordX, |
| const int coordY, |
| const Vec4& result) |
| { |
| if (filterMode == Sampler::LINEAR) |
| return isLinearSampleResultValid(level, sampler, prec, coordX, coordY, result); |
| else |
| return isNearestSampleResultValid(level, sampler, prec, coordX, coordY, result); |
| } |
| |
| static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const Sampler::FilterMode filterMode, |
| const LookupPrecision& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vec4& result) |
| { |
| if (filterMode == Sampler::LINEAR) |
| return isLinearSampleResultValid(level, sampler, prec, coord, coordZ, result); |
| else |
| return isNearestSampleResultValid(level, sampler, prec, coord, coordZ, result); |
| } |
| |
| static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const Sampler::FilterMode levelFilter, |
| const LookupPrecision& prec, |
| const float coordX, |
| const int coordY, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| if (levelFilter == Sampler::LINEAR) |
| return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result); |
| else |
| return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result); |
| } |
| |
| static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const Sampler::FilterMode levelFilter, |
| const LookupPrecision& prec, |
| const Vec2& coord, |
| const int coordZ, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| if (levelFilter == Sampler::LINEAR) |
| return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result); |
| else |
| return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result); |
| } |
| |
| bool isLookupResultValid (const Texture2DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| if (canBeMagnified) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); |
| |
| if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result)) |
| return true; |
| } |
| } |
| else |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool isLookupResultValid (const Texture1DView& texture, const Sampler& sampler, const LookupPrecision& prec, const float coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| if (canBeMagnified) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); |
| |
| if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result)) |
| return true; |
| } |
| } |
| else |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isSeamlessLinearSampleResultValid (const ConstPixelBufferAccess (&faces)[CUBEFACE_LAST], |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const CubeFaceFloatCoords& coords, |
| const Vec4& result) |
| { |
| const int size = faces[coords.face].getWidth(); |
| |
| const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.s, prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.t, prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinate bounds for (x0,y0) - without wrap mode |
| const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); |
| const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); |
| const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); |
| const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(faces[coords.face].getFormat().type); |
| float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| for (int j = minJ; j <= maxJ; j++) |
| { |
| for (int i = minI; i <= maxI; i++) |
| { |
| const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+0)), size); |
| const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+0)), size); |
| const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+1)), size); |
| const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+1)), size); |
| |
| // If any of samples is out of both edges, implementations can do pretty much anything according to spec. |
| // \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color. |
| if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) |
| return true; |
| |
| // Bounds for filtering factors |
| const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); |
| const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); |
| const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); |
| const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); |
| |
| ColorQuad quad; |
| quad.p00 = lookup<float>(faces[c00.face], sampler, c00.s, c00.t, 0); |
| quad.p10 = lookup<float>(faces[c10.face], sampler, c10.s, c10.t, 0); |
| quad.p01 = lookup<float>(faces[c01.face], sampler, c01.s, c01.t, 0); |
| quad.p11 = lookup<float>(faces[c11.face], sampler, c11.s, c11.t, 0); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad); |
| |
| if (sampler.reductionMode == Sampler::WEIGHTED_AVERAGE) |
| { |
| if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result)) |
| return true; |
| } |
| else |
| { |
| if (isReductionValid(prec, quad, sampler.reductionMode, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isSeamplessLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess (&faces0)[CUBEFACE_LAST], |
| const ConstPixelBufferAccess (&faces1)[CUBEFACE_LAST], |
| const Sampler& sampler, |
| const LookupPrecision& prec, |
| const CubeFaceFloatCoords& coords, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. |
| // Right now this allows pairing any two valid bilinear quads. |
| |
| const int size0 = faces0[coords.face].getWidth(); |
| const int size1 = faces1[coords.face].getWidth(); |
| |
| const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0, coords.s, prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1, coords.s, prec.coordBits.x(), prec.uvwBits.x()); |
| const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0, coords.t, prec.coordBits.y(), prec.uvwBits.y()); |
| const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1, coords.t, prec.coordBits.y(), prec.uvwBits.y()); |
| |
| // Integer coordinates - without wrap mode |
| const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); |
| const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); |
| const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); |
| const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); |
| const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); |
| const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); |
| const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); |
| const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); |
| |
| const TextureChannelClass texClass = getTextureChannelClass(faces0[coords.face].getFormat().type); |
| const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : |
| 0.0f; // Step is computed for floating-point quads based on texel values. |
| |
| DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || |
| texClass == TEXTURECHANNELCLASS_FLOATING_POINT || |
| sampler.reductionMode != Sampler::WEIGHTED_AVERAGE); |
| |
| for (int j0 = minJ0; j0 <= maxJ0; j0++) |
| { |
| for (int i0 = minI0; i0 <= maxI0; i0++) |
| { |
| ColorQuad quad0; |
| float searchStep0; |
| |
| { |
| const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+0)), size0); |
| const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+0)), size0); |
| const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+1)), size0); |
| const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+1)), size0); |
| |
| // If any of samples is out of both edges, implementations can do pretty much anything according to spec. |
| // \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color. |
| if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) |
| return true; |
| |
| quad0.p00 = lookup<float>(faces0[c00.face], sampler, c00.s, c00.t, 0); |
| quad0.p10 = lookup<float>(faces0[c10.face], sampler, c10.s, c10.t, 0); |
| quad0.p01 = lookup<float>(faces0[c01.face], sampler, c01.s, c01.t, 0); |
| quad0.p11 = lookup<float>(faces0[c11.face], sampler, c11.s, c11.t, 0); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0); |
| else |
| searchStep0 = cSearchStep; |
| } |
| |
| const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); |
| const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); |
| const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); |
| |
| for (int j1 = minJ1; j1 <= maxJ1; j1++) |
| { |
| for (int i1 = minI1; i1 <= maxI1; i1++) |
| { |
| ColorQuad quad1; |
| float searchStep1; |
| |
| { |
| const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+0)), size1); |
| const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+0)), size1); |
| const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+1)), size1); |
| const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+1)), size1); |
| |
| if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) |
| return true; |
| |
| quad1.p00 = lookup<float>(faces1[c00.face], sampler, c00.s, c00.t, 0); |
| quad1.p10 = lookup<float>(faces1[c10.face], sampler, c10.s, c10.t, 0); |
| quad1.p01 = lookup<float>(faces1[c01.face], sampler, c01.s, c01.t, 0); |
| quad1.p11 = lookup<float>(faces1[c11.face], sampler, c11.s, c11.t, 0); |
| |
| if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) |
| searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1); |
| else |
| searchStep1 = cSearchStep; |
| } |
| |
| const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); |
| const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); |
| const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); |
| |
| if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1), |
| fBounds, de::min(searchStep0, searchStep1), result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isCubeLevelSampleResultValid (const ConstPixelBufferAccess (&level)[CUBEFACE_LAST], |
| const Sampler& sampler, |
| const Sampler::FilterMode filterMode, |
| const LookupPrecision& prec, |
| const CubeFaceFloatCoords& coords, |
| const Vec4& result) |
| { |
| if (filterMode == Sampler::LINEAR) |
| { |
| if (sampler.seamlessCubeMap) |
| return isSeamlessLinearSampleResultValid(level, sampler, prec, coords, result); |
| else |
| return isLinearSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result); |
| } |
| else |
| return isNearestSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result); |
| } |
| |
| static bool isCubeMipmapLinearSampleResultValid (const ConstPixelBufferAccess (&faces0)[CUBEFACE_LAST], |
| const ConstPixelBufferAccess (&faces1)[CUBEFACE_LAST], |
| const Sampler& sampler, |
| const Sampler::FilterMode levelFilter, |
| const LookupPrecision& prec, |
| const CubeFaceFloatCoords& coords, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| if (levelFilter == Sampler::LINEAR) |
| { |
| if (sampler.seamlessCubeMap) |
| return isSeamplessLinearMipmapLinearSampleResultValid(faces0, faces1, sampler, prec, coords, fBounds, result); |
| else |
| return isLinearMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result); |
| } |
| else |
| return isNearestMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result); |
| } |
| |
| static void getCubeLevelFaces (const TextureCubeView& texture, const int levelNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST]) |
| { |
| for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++) |
| out[faceNdx] = texture.getLevelFace(levelNdx, (CubeFace)faceNdx); |
| } |
| |
| bool isLookupResultValid (const TextureCubeView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| int numPossibleFaces = 0; |
| CubeFace possibleFaces[CUBEFACE_LAST]; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| getPossibleCubeFaces(coord, prec.coordBits, &possibleFaces[0], numPossibleFaces); |
| |
| if (numPossibleFaces == 0) |
| return true; // Result is undefined. |
| |
| for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++) |
| { |
| const CubeFaceFloatCoords faceCoords (possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], coord)); |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| if (canBeMagnified) |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeLevelFaces(texture, 0, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) |
| { |
| const float minF = de::clamp(minLod - float(levelNdx), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f); |
| |
| ConstPixelBufferAccess faces0[CUBEFACE_LAST]; |
| ConstPixelBufferAccess faces1[CUBEFACE_LAST]; |
| |
| getCubeLevelFaces(texture, levelNdx, faces0); |
| getCubeLevelFaces(texture, levelNdx + 1, faces1); |
| |
| if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeLevelFaces(texture, levelNdx, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result)) |
| return true; |
| } |
| } |
| else |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeLevelFaces(texture, 0, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static inline IVec2 computeLayerRange (int numLayers, int numCoordBits, float layerCoord) |
| { |
| const float err = computeFloatingPointError(layerCoord, numCoordBits); |
| const int minL = (int)deFloatFloor(layerCoord - err + 0.5f); // Round down |
| const int maxL = (int)deFloatCeil(layerCoord + err + 0.5f) - 1; // Round up |
| |
| DE_ASSERT(minL <= maxL); |
| |
| return IVec2(de::clamp(minL, 0, numLayers-1), de::clamp(maxL, 0, numLayers-1)); |
| } |
| |
| bool isLookupResultValid (const Texture1DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.y(), coord.y()); |
| const float coordX = coord.x(); |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| for (int layer = layerRange.x(); layer <= layerRange.y(); layer++) |
| { |
| if (canBeMagnified) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordX, layer, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); |
| |
| if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, result)) |
| return true; |
| } |
| } |
| else |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordX, layer, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool isLookupResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.z(), coord.z()); |
| const Vec2 coordXY = coord.swizzle(0,1); |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| for (int layer = layerRange.x(); layer <= layerRange.y(); layer++) |
| { |
| if (canBeMagnified) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordXY, layer, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); |
| |
| if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, result)) |
| return true; |
| } |
| } |
| else |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordXY, layer, result)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, |
| const Sampler& sampler, |
| const Sampler::FilterMode filterMode, |
| const LookupPrecision& prec, |
| const Vec3& coord, |
| const Vec4& result) |
| { |
| if (filterMode == Sampler::LINEAR) |
| return isLinearSampleResultValid(level, sampler, prec, coord, result); |
| else |
| return isNearestSampleResultValid(level, sampler, prec, coord, result); |
| } |
| |
| static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, |
| const ConstPixelBufferAccess& level1, |
| const Sampler& sampler, |
| const Sampler::FilterMode levelFilter, |
| const LookupPrecision& prec, |
| const Vec3& coord, |
| const Vec2& fBounds, |
| const Vec4& result) |
| { |
| if (levelFilter == Sampler::LINEAR) |
| return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result); |
| else |
| return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result); |
| } |
| |
| bool isLookupResultValid (const Texture3DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| if (canBeMagnified) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); |
| |
| if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int level = minLevel; level <= maxLevel; level++) |
| { |
| if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, result)) |
| return true; |
| } |
| } |
| else |
| { |
| if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, result)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void getCubeArrayLevelFaces (const TextureCubeArrayView& texture, const int levelNdx, const int layerNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST]) |
| { |
| const ConstPixelBufferAccess& level = texture.getLevel(levelNdx); |
| const int layerDepth = layerNdx * 6; |
| |
| for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++) |
| { |
| const CubeFace face = (CubeFace)faceNdx; |
| out[faceNdx] = getSubregion(level, 0, 0, layerDepth + getCubeArrayFaceIndex(face), level.getWidth(), level.getHeight(), 1); |
| } |
| } |
| |
| bool isLookupResultValid (const TextureCubeArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const IVec4& coordBits, const Vec4& coord, const Vec2& lodBounds, const Vec4& result) |
| { |
| const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), coordBits.w(), coord.w()); |
| const Vec3 layerCoord = coord.toWidth<3>(); |
| int numPossibleFaces = 0; |
| CubeFace possibleFaces[CUBEFACE_LAST]; |
| |
| DE_ASSERT(isSamplerSupported(sampler)); |
| |
| getPossibleCubeFaces(layerCoord, prec.coordBits, &possibleFaces[0], numPossibleFaces); |
| |
| if (numPossibleFaces == 0) |
| return true; // Result is undefined. |
| |
| for (int layerNdx = layerRange.x(); layerNdx <= layerRange.y(); layerNdx++) |
| { |
| for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++) |
| { |
| const CubeFaceFloatCoords faceCoords (possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], layerCoord)); |
| const float minLod = lodBounds.x(); |
| const float maxLod = lodBounds.y(); |
| const bool canBeMagnified = minLod <= sampler.lodThreshold; |
| const bool canBeMinified = maxLod > sampler.lodThreshold; |
| |
| if (canBeMagnified) |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeArrayLevelFaces(texture, 0, layerNdx, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result)) |
| return true; |
| } |
| |
| if (canBeMinified) |
| { |
| const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); |
| const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); |
| const int minTexLevel = 0; |
| const int maxTexLevel = texture.getNumLevels()-1; |
| |
| DE_ASSERT(minTexLevel <= maxTexLevel); |
| |
| if (isLinearMipmap && minTexLevel < maxTexLevel) |
| { |
| const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) |
| { |
| const float minF = de::clamp(minLod - float(levelNdx), 0.0f, 1.0f); |
| const float maxF = de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f); |
| |
| ConstPixelBufferAccess faces0[CUBEFACE_LAST]; |
| ConstPixelBufferAccess faces1[CUBEFACE_LAST]; |
| |
| getCubeArrayLevelFaces(texture, levelNdx, layerNdx, faces0); |
| getCubeArrayLevelFaces(texture, levelNdx + 1, layerNdx, faces1); |
| |
| if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result)) |
| return true; |
| } |
| } |
| else if (isNearestMipmap) |
| { |
| // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made |
| // decision to allow floor(lod + 0.5) as well. |
| const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); |
| const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); |
| |
| DE_ASSERT(minLevel <= maxLevel); |
| |
| for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeArrayLevelFaces(texture, levelNdx, layerNdx, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result)) |
| return true; |
| } |
| } |
| else |
| { |
| ConstPixelBufferAccess faces[CUBEFACE_LAST]; |
| getCubeArrayLevelFaces(texture, 0, layerNdx, faces); |
| |
| if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result)) |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| Vec4 computeFixedPointThreshold (const IVec4& bits) |
| { |
| return computeFixedPointError(bits); |
| } |
| |
| Vec4 computeFloatingPointThreshold (const IVec4& bits, const Vec4& value) |
| { |
| return computeFloatingPointError(value, bits); |
| } |
| |
| Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dwdx, const float dudy, const float dvdy, const float dwdy, const LodPrecision& prec) |
| { |
| const float mux = deFloatAbs(dudx); |
| const float mvx = deFloatAbs(dvdx); |
| const float mwx = deFloatAbs(dwdx); |
| const float muy = deFloatAbs(dudy); |
| const float mvy = deFloatAbs(dvdy); |
| const float mwy = deFloatAbs(dwdy); |
| |
| // Ideal: |
| // px = deFloatSqrt2(mux*mux + mvx*mvx + mwx*mwx); |
| // py = deFloatSqrt2(muy*muy + mvy*mvy + mwy*mwy); |
| |
| // fx, fy estimate lower bounds |
| const float fxMin = de::max(de::max(mux, mvx), mwx); |
| const float fyMin = de::max(de::max(muy, mvy), mwy); |
| |
| // fx, fy estimate upper bounds |
| const float sqrt2 = deFloatSqrt(2.0f); |
| const float fxMax = sqrt2 * (mux + mvx + mwx); |
| const float fyMax = sqrt2 * (muy + mvy + mwy); |
| |
| // p = max(px, py) (isotropic filtering) |
| const float pMin = de::max(fxMin, fyMin); |
| const float pMax = de::max(fxMax, fyMax); |
| |
| // error terms |
| const float pMinErr = computeFloatingPointError(pMin, prec.derivateBits); |
| const float pMaxErr = computeFloatingPointError(pMax, prec.derivateBits); |
| |
| const float minLod = deFloatLog2(pMin-pMinErr); |
| const float maxLod = deFloatLog2(pMax+pMaxErr); |
| const float lodErr = computeFixedPointError(prec.lodBits); |
| |
| DE_ASSERT(minLod <= maxLod); |
| return Vec2(minLod-lodErr, maxLod+lodErr); |
| } |
| |
| Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dudy, const float dvdy, const LodPrecision& prec) |
| { |
| return computeLodBoundsFromDerivates(dudx, dvdx, 0.0f, dudy, dvdy, 0.0f, prec); |
| } |
| |
| Vec2 computeLodBoundsFromDerivates (const float dudx, const float dudy, const LodPrecision& prec) |
| { |
| return computeLodBoundsFromDerivates(dudx, 0.0f, 0.0f, dudy, 0.0f, 0.0f, prec); |
| } |
| |
| Vec2 computeCubeLodBoundsFromDerivates (const Vec3& coord, const Vec3& coordDx, const Vec3& coordDy, const int faceSize, const LodPrecision& prec) |
| { |
| const bool allowBrokenEdgeDerivate = false; |
| const CubeFace face = selectCubeFace(coord); |
| int maNdx = 0; |
| int sNdx = 0; |
| int tNdx = 0; |
| |
| // \note Derivate signs don't matter when computing lod |
| switch (face) |
| { |
| case CUBEFACE_NEGATIVE_X: |
| case CUBEFACE_POSITIVE_X: maNdx = 0; sNdx = 2; tNdx = 1; break; |
| case CUBEFACE_NEGATIVE_Y: |
| case CUBEFACE_POSITIVE_Y: maNdx = 1; sNdx = 0; tNdx = 2; break; |
| case CUBEFACE_NEGATIVE_Z: |
| case CUBEFACE_POSITIVE_Z: maNdx = 2; sNdx = 0; tNdx = 1; break; |
| default: |
| DE_ASSERT(DE_FALSE); |
| } |
| |
| { |
| const float sc = coord[sNdx]; |
| const float tc = coord[tNdx]; |
| const float ma = de::abs(coord[maNdx]); |
| const float scdx = coordDx[sNdx]; |
| const float tcdx = coordDx[tNdx]; |
| const float madx = de::abs(coordDx[maNdx]); |
| const float scdy = coordDy[sNdx]; |
| const float tcdy = coordDy[tNdx]; |
| const float mady = de::abs(coordDy[maNdx]); |
| const float dudx = float(faceSize) * 0.5f * (scdx*ma - sc*madx) / (ma*ma); |
| const float dvdx = float(faceSize) * 0.5f * (tcdx*ma - tc*madx) / (ma*ma); |
| const float dudy = float(faceSize) * 0.5f * (scdy*ma - sc*mady) / (ma*ma); |
| const float dvdy = float(faceSize) * 0.5f * (tcdy*ma - tc*mady) / (ma*ma); |
| const Vec2 bounds = computeLodBoundsFromDerivates(dudx, dvdx, dudy, dvdy, prec); |
| |
| // Implementations may compute derivate from projected (s, t) resulting in incorrect values at edges. |
| if (allowBrokenEdgeDerivate) |
| { |
| const Vec3 dxErr = computeFloatingPointError(coordDx, IVec3(prec.derivateBits)); |
| const Vec3 dyErr = computeFloatingPointError(coordDy, IVec3(prec.derivateBits)); |
| const Vec3 xoffs = abs(coordDx) + dxErr; |
| const Vec3 yoffs = abs(coordDy) + dyErr; |
| |
| if (selectCubeFace(coord + xoffs) != face || |
| selectCubeFace(coord - xoffs) != face || |
| selectCubeFace(coord + yoffs) != face || |
| selectCubeFace(coord - yoffs) != face) |
| { |
| return Vec2(bounds.x(), 1000.0f); |
| } |
| } |
| |
| return bounds |