blob: 8e4f147a1c34959a4357b28654566f552341110b [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2016 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file vktSparseResourcesBufferSparseResidency.cpp
* \brief Sparse partially resident buffers tests
*//*--------------------------------------------------------------------*/
#include "vktSparseResourcesBufferSparseResidency.hpp"
#include "vktSparseResourcesTestsUtil.hpp"
#include "vktSparseResourcesBase.hpp"
#include "vktTestCaseUtil.hpp"
#include "vkDefs.hpp"
#include "vkRef.hpp"
#include "vkRefUtil.hpp"
#include "vkPlatform.hpp"
#include "vkPrograms.hpp"
#include "vkRefUtil.hpp"
#include "vkMemUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkTypeUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "deStringUtil.hpp"
#include "deUniquePtr.hpp"
#include <string>
#include <vector>
using namespace vk;
namespace vkt
{
namespace sparse
{
namespace
{
enum ShaderParameters
{
SIZE_OF_UINT_IN_SHADER = 4u,
};
class BufferSparseResidencyCase : public TestCase
{
public:
BufferSparseResidencyCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const deUint32 bufferSize,
const glu::GLSLVersion glslVersion,
const bool useDeviceGroups);
void initPrograms (SourceCollections& sourceCollections) const;
TestInstance* createInstance (Context& context) const;
private:
const deUint32 m_bufferSize;
const glu::GLSLVersion m_glslVersion;
const bool m_useDeviceGroups;
};
BufferSparseResidencyCase::BufferSparseResidencyCase (tcu::TestContext& testCtx,
const std::string& name,
const std::string& description,
const deUint32 bufferSize,
const glu::GLSLVersion glslVersion,
const bool useDeviceGroups)
: TestCase (testCtx, name, description)
, m_bufferSize (bufferSize)
, m_glslVersion (glslVersion)
, m_useDeviceGroups (useDeviceGroups)
{
}
void BufferSparseResidencyCase::initPrograms (SourceCollections& sourceCollections) const
{
const char* const versionDecl = glu::getGLSLVersionDeclaration(m_glslVersion);
const deUint32 iterationsCount = m_bufferSize / SIZE_OF_UINT_IN_SHADER;
std::ostringstream src;
src << versionDecl << "\n"
<< "layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;\n"
<< "layout(set = 0, binding = 0, std430) readonly buffer Input\n"
<< "{\n"
<< " uint data[];\n"
<< "} sb_in;\n"
<< "\n"
<< "layout(set = 0, binding = 1, std430) writeonly buffer Output\n"
<< "{\n"
<< " uint result[];\n"
<< "} sb_out;\n"
<< "\n"
<< "void main (void)\n"
<< "{\n"
<< " for(int i=0; i<" << iterationsCount << "; ++i) \n"
<< " {\n"
<< " sb_out.result[i] = sb_in.data[i];"
<< " }\n"
<< "}\n";
sourceCollections.glslSources.add("comp") << glu::ComputeSource(src.str());
}
class BufferSparseResidencyInstance : public SparseResourcesBaseInstance
{
public:
BufferSparseResidencyInstance (Context& context,
const deUint32 bufferSize,
const bool useDeviceGroups);
tcu::TestStatus iterate (void);
private:
const deUint32 m_bufferSize;
};
BufferSparseResidencyInstance::BufferSparseResidencyInstance (Context& context,
const deUint32 bufferSize,
const bool useDeviceGroups)
: SparseResourcesBaseInstance (context, useDeviceGroups)
, m_bufferSize (bufferSize)
{
}
tcu::TestStatus BufferSparseResidencyInstance::iterate (void)
{
const InstanceInterface& instance = m_context.getInstanceInterface();
{
// Create logical device supporting both sparse and compute operations
QueueRequirementsVec queueRequirements;
queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
createDeviceSupportingQueues(queueRequirements);
}
const VkPhysicalDevice physicalDevice = getPhysicalDevice();
const VkPhysicalDeviceProperties physicalDeviceProperties = getPhysicalDeviceProperties(instance, physicalDevice);
if (!getPhysicalDeviceFeatures(instance, physicalDevice).sparseResidencyBuffer)
TCU_THROW(NotSupportedError, "Sparse partially resident buffers not supported");
const DeviceInterface& deviceInterface = getDeviceInterface();
const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
// Go through all physical devices
for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
{
const deUint32 firstDeviceID = physDevID;
const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
VkBufferCreateInfo bufferCreateInfo =
{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT, // VkBufferCreateFlags flags;
m_bufferSize, // VkDeviceSize size;
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT, // VkBufferUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL // const deUint32* pQueueFamilyIndices;
};
const deUint32 queueFamilyIndices[] = { sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex };
if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex)
{
bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
bufferCreateInfo.queueFamilyIndexCount = 2u;
bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
}
// Create sparse buffer
const Unique<VkBuffer> sparseBuffer(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
// Create sparse buffer memory bind semaphore
const Unique<VkSemaphore> bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
const VkMemoryRequirements bufferMemRequirements = getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBuffer);
if (bufferMemRequirements.size > physicalDeviceProperties.limits.sparseAddressSpaceSize)
TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits");
DE_ASSERT((bufferMemRequirements.size % bufferMemRequirements.alignment) == 0);
const deUint32 numSparseSlots = static_cast<deUint32>(bufferMemRequirements.size / bufferMemRequirements.alignment);
std::vector<DeviceMemorySp> deviceMemUniquePtrVec;
{
std::vector<VkSparseMemoryBind> sparseMemoryBinds;
const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), bufferMemRequirements, MemoryRequirement::Any);
if (memoryType == NO_MATCH_FOUND)
return tcu::TestStatus::fail("No matching memory type found");
if (firstDeviceID != secondDeviceID)
{
VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT) == 0))
{
TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and GENERIC_DST");
}
}
for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseSlots; sparseBindNdx += 2)
{
const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), bufferMemRequirements.alignment, memoryType, bufferMemRequirements.alignment * sparseBindNdx);
deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
sparseMemoryBinds.push_back(sparseMemoryBind);
}
const VkSparseBufferMemoryBindInfo sparseBufferBindInfo = makeSparseBufferMemoryBindInfo(*sparseBuffer, static_cast<deUint32>(sparseMemoryBinds.size()), &sparseMemoryBinds[0]);
const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
{
VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType;
DE_NULL, //const void* pNext;
firstDeviceID, //deUint32 resourceDeviceIndex;
secondDeviceID, //deUint32 memoryDeviceIndex;
};
const VkBindSparseInfo bindSparseInfo =
{
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
usingDeviceGroups() ? &devGroupBindSparseInfo : DE_NULL,//const void* pNext;
0u, //deUint32 waitSemaphoreCount;
DE_NULL, //const VkSemaphore* pWaitSemaphores;
1u, //deUint32 bufferBindCount;
&sparseBufferBindInfo, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
0u, //deUint32 imageOpaqueBindCount;
DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
0u, //deUint32 imageBindCount;
DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
1u, //deUint32 signalSemaphoreCount;
&bufferMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
};
VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
}
// Create input buffer
const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
std::vector<deUint8> referenceData;
referenceData.resize(m_bufferSize);
for (deUint32 valueNdx = 0; valueNdx < m_bufferSize; ++valueNdx)
{
referenceData[valueNdx] = static_cast<deUint8>((valueNdx % bufferMemRequirements.alignment) + 1u);
}
deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], m_bufferSize);
flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
// Create output buffer
const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
// Create command buffer for compute and data transfer operations
const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
// Start recording compute and transfer commands
beginCommandBuffer(deviceInterface, *commandBuffer);
// Create descriptor set
const Unique<VkDescriptorSetLayout> descriptorSetLayout(
DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
.build(deviceInterface, getDevice()));
// Create compute pipeline
const Unique<VkShaderModule> shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("comp"), DE_NULL));
const Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
const Unique<VkPipeline> computePipeline(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline);
const Unique<VkDescriptorPool> descriptorPool(
DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2u)
.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u));
const Unique<VkDescriptorSet> descriptorSet(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
{
const VkDescriptorBufferInfo inputBufferInfo = makeDescriptorBufferInfo(*inputBuffer, 0ull, m_bufferSize);
const VkDescriptorBufferInfo sparseBufferInfo = makeDescriptorBufferInfo(*sparseBuffer, 0ull, m_bufferSize);
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &inputBufferInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &sparseBufferInfo)
.update(deviceInterface, getDevice());
}
deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet.get(), 0u, DE_NULL);
{
const VkBufferMemoryBarrier inputBufferBarrier
= makeBufferMemoryBarrier( VK_ACCESS_HOST_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
*inputBuffer,
0ull,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
}
deviceInterface.cmdDispatch(*commandBuffer, 1u, 1u, 1u);
{
const VkBufferMemoryBarrier sparseBufferBarrier
= makeBufferMemoryBarrier( VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
*sparseBuffer,
0ull,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &sparseBufferBarrier, 0u, DE_NULL);
}
{
const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize);
deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBuffer, *outputBuffer, 1u, &bufferCopy);
}
{
const VkBufferMemoryBarrier outputBufferBarrier
= makeBufferMemoryBarrier( VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
*outputBuffer,
0ull,
m_bufferSize);
deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
}
// End recording compute and transfer commands
endCommandBuffer(deviceInterface, *commandBuffer);
const VkPipelineStageFlags waitStageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
// Submit transfer commands for execution and wait for completion
submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &bufferMemoryBindSemaphore.get(),
waitStageBits, 0, DE_NULL, usingDeviceGroups(), firstDeviceID);
// Retrieve data from output buffer to host memory
invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
// Wait for sparse queue to become idle
deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
// Compare output data with reference data
for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseSlots; ++sparseBindNdx)
{
const deUint32 alignment = static_cast<deUint32>(bufferMemRequirements.alignment);
const deUint32 offset = alignment * sparseBindNdx;
const deUint32 size = sparseBindNdx == (numSparseSlots - 1) ? m_bufferSize % alignment : alignment;
if (sparseBindNdx % 2u == 0u)
{
if (deMemCmp(&referenceData[offset], outputData + offset, size) != 0)
return tcu::TestStatus::fail("Failed");
}
else if (physicalDeviceProperties.sparseProperties.residencyNonResidentStrict)
{
deMemset(&referenceData[offset], 0u, size);
if (deMemCmp(&referenceData[offset], outputData + offset, size) != 0)
return tcu::TestStatus::fail("Failed");
}
}
}
return tcu::TestStatus::pass("Passed");
}
TestInstance* BufferSparseResidencyCase::createInstance (Context& context) const
{
return new BufferSparseResidencyInstance(context, m_bufferSize, m_useDeviceGroups);
}
} // anonymous ns
void addBufferSparseResidencyTests(tcu::TestCaseGroup* group, const bool useDeviceGroups)
{
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_10", "", 1 << 10, glu::GLSL_VERSION_440, useDeviceGroups));
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_12", "", 1 << 12, glu::GLSL_VERSION_440, useDeviceGroups));
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_16", "", 1 << 16, glu::GLSL_VERSION_440, useDeviceGroups));
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_17", "", 1 << 17, glu::GLSL_VERSION_440, useDeviceGroups));
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_20", "", 1 << 20, glu::GLSL_VERSION_440, useDeviceGroups));
group->addChild(new BufferSparseResidencyCase(group->getTestContext(), "buffer_size_2_24", "", 1 << 24, glu::GLSL_VERSION_440, useDeviceGroups));
}
} // sparse
} // vkt