blob: 75743ee8eaf72b15227aff81bffdfb9ee0a433bf [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2020 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Basic cmdTraceRays* tests.
*//*--------------------------------------------------------------------*/
#include "vktRayTracingTraceRaysTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkRayTracingUtil.hpp"
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace vkt;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
constexpr deUint32 kClearColorValue = 0xFFu;
constexpr deUint32 kHitColorValue = 2u;
constexpr deUint32 kMissColorValue = 1u;
enum class TraceType
{
DIRECT = 0,
INDIRECT_CPU = 1,
INDIRECT_GPU = 2,
};
struct TestParams
{
TraceType traceType;
VkTraceRaysIndirectCommandKHR traceDimensions; // Note: to be used for both direct and indirect variants.
};
deUint32 getShaderGroupSize (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
bool isNullTrace (const VkTraceRaysIndirectCommandKHR& cmd)
{
return (cmd.width == 0u || cmd.height == 0u || cmd.depth == 0u);
}
VkExtent3D getImageExtent (const VkTraceRaysIndirectCommandKHR& cmd)
{
return (isNullTrace(cmd) ? makeExtent3D(8u, 8u, 1u) : makeExtent3D(cmd.width, cmd.height, cmd.depth));
}
VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, deUint32 depth, VkFormat format)
{
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkImageCreateFlags)0u, // VkImageCreateFlags flags;
VK_IMAGE_TYPE_3D, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(width, height, depth), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
class RayTracingTraceRaysIndirectTestCase : public TestCase
{
public:
RayTracingTraceRaysIndirectTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data);
~RayTracingTraceRaysIndirectTestCase (void);
virtual void checkSupport (Context& context) const;
virtual void initPrograms (SourceCollections& programCollection) const;
virtual TestInstance* createInstance (Context& context) const;
private:
TestParams m_data;
};
class RayTracingTraceRaysIndirectTestInstance : public TestInstance
{
public:
RayTracingTraceRaysIndirectTestInstance (Context& context, const TestParams& data);
~RayTracingTraceRaysIndirectTestInstance (void);
tcu::TestStatus iterate (void);
protected:
std::vector<de::SharedPtr<BottomLevelAccelerationStructure>> initBottomAccelerationStructures (VkCommandBuffer cmdBuffer);
de::MovePtr<TopLevelAccelerationStructure> initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures);
de::MovePtr<BufferWithMemory> runTest ();
private:
TestParams m_data;
const VkExtent3D m_imageExtent;
};
RayTracingTraceRaysIndirectTestCase::RayTracingTraceRaysIndirectTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data)
: vkt::TestCase (context, name, desc)
, m_data (data)
{
}
RayTracingTraceRaysIndirectTestCase::~RayTracingTraceRaysIndirectTestCase (void)
{
}
void RayTracingTraceRaysIndirectTestCase::checkSupport(Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE )
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
if (rayTracingPipelineFeaturesKHR.rayTracingPipelineTraceRaysIndirect == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipelineTraceRaysIndirect");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
}
void RayTracingTraceRaysIndirectTestCase::initPrograms (SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
{
std::stringstream css;
css <<
"#version 460 core\n"
"struct TraceRaysIndirectCommand\n"
"{\n"
" uint width;\n"
" uint height;\n"
" uint depth;\n"
"};\n"
"layout(binding = 0) uniform IndirectCommandsUBO\n"
"{\n"
" TraceRaysIndirectCommand indirectCommands;\n"
"} ubo;\n"
"layout(binding = 1) buffer IndirectCommandsSBO\n"
"{\n"
" TraceRaysIndirectCommand indirectCommands;\n"
"};\n"
"void main()\n"
"{\n"
" indirectCommands.width = ubo.indirectCommands.width;\n"
" indirectCommands.height = ubo.indirectCommands.height;\n"
" indirectCommands.depth = ubo.indirectCommands.depth;\n"
"}\n";
programCollection.glslSources.add("compute_indirect_command") << glu::ComputeSource(css.str()) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadEXT uvec4 hitValue;\n"
"layout(r32ui, set = 0, binding = 0) uniform uimage3D result;\n"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n"
"\n"
"void main()\n"
"{\n"
" float tmin = 0.0;\n"
" float tmax = 1.0;\n"
" vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5f, float(gl_LaunchIDEXT.y) + 0.5f, float(gl_LaunchIDEXT.z + 0.5f));\n"
" vec3 direct = vec3(0.0, 0.0, -1.0);\n"
" hitValue = uvec4(0,0,0,0);\n"
" traceRayEXT(topLevelAS, 0, 0xFF, 0, 0, 0, origin, tmin, direct, tmax, 0);\n"
" imageStore(result, ivec3(gl_LaunchIDEXT), hitValue);\n"
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = uvec4(" << kHitColorValue << ",0,0,1);\n"
"}\n";
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n"
"void main()\n"
"{\n"
" hitValue = uvec4(" << kMissColorValue << ",0,0,1);\n"
"}\n";
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
}
TestInstance* RayTracingTraceRaysIndirectTestCase::createInstance (Context& context) const
{
return new RayTracingTraceRaysIndirectTestInstance(context, m_data);
}
RayTracingTraceRaysIndirectTestInstance::RayTracingTraceRaysIndirectTestInstance (Context& context, const TestParams& data)
: vkt::TestInstance (context)
, m_data (data)
, m_imageExtent (getImageExtent(data.traceDimensions))
{
}
RayTracingTraceRaysIndirectTestInstance::~RayTracingTraceRaysIndirectTestInstance (void)
{
}
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > RayTracingTraceRaysIndirectTestInstance::initBottomAccelerationStructures (VkCommandBuffer cmdBuffer)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > result;
tcu::Vec3 v0(0.0, 1.0, 0.0);
tcu::Vec3 v1(0.0, 0.0, 0.0);
tcu::Vec3 v2(1.0, 1.0, 0.0);
tcu::Vec3 v3(1.0, 0.0, 0.0);
for (deUint32 z = 0; z < m_imageExtent.depth; ++z)
for (deUint32 y = 0; y < m_imageExtent.height; ++y)
for (deUint32 x = 0; x < m_imageExtent.width; ++x)
{
// let's build a 3D chessboard of geometries
if (((x + y + z) % 2) == 0)
continue;
tcu::Vec3 xyz((float)x, (float)y, (float)z);
std::vector<tcu::Vec3> geometryData;
de::MovePtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure = makeBottomLevelAccelerationStructure();
bottomLevelAccelerationStructure->setGeometryCount(1u);
geometryData.push_back(xyz + v0);
geometryData.push_back(xyz + v1);
geometryData.push_back(xyz + v2);
geometryData.push_back(xyz + v2);
geometryData.push_back(xyz + v1);
geometryData.push_back(xyz + v3);
bottomLevelAccelerationStructure->addGeometry(geometryData, true);
bottomLevelAccelerationStructure->createAndBuild(vkd, device, cmdBuffer, allocator);
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(bottomLevelAccelerationStructure.release()));
}
return result;
}
de::MovePtr<TopLevelAccelerationStructure> RayTracingTraceRaysIndirectTestInstance::initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 instanceCount = m_imageExtent.depth * m_imageExtent.height * m_imageExtent.width / 2;
de::MovePtr<TopLevelAccelerationStructure> result = makeTopLevelAccelerationStructure();
result->setInstanceCount(instanceCount);
deUint32 currentInstanceIndex = 0;
for (deUint32 z = 0; z < m_imageExtent.depth; ++z)
for (deUint32 y = 0; y < m_imageExtent.height; ++y)
for (deUint32 x = 0; x < m_imageExtent.width; ++x)
{
if (((x + y + z) % 2) == 0)
continue;
result->addInstance(bottomLevelAccelerationStructures[currentInstanceIndex++]);
}
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return result;
}
de::MovePtr<BufferWithMemory> RayTracingTraceRaysIndirectTestInstance::runTest()
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 pixelCount = m_imageExtent.depth * m_imageExtent.height * m_imageExtent.width;
const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice);
const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice);
Move<VkDescriptorSetLayout> computeDescriptorSetLayout;
Move<VkDescriptorPool> computeDescriptorPool;
Move<VkDescriptorSet> computeDescriptorSet;
Move<VkPipelineLayout> computePipelineLayout;
Move<VkShaderModule> computeShader;
Move<VkPipeline> computePipeline;
if (m_data.traceType == TraceType::INDIRECT_GPU)
{
computeDescriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
.build(vkd, device);
computeDescriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
computeDescriptorSet = makeDescriptorSet(vkd, device, *computeDescriptorPool, *computeDescriptorSetLayout);
computePipelineLayout = makePipelineLayout(vkd, device, computeDescriptorSetLayout.get());
computeShader = createShaderModule(vkd, device, m_context.getBinaryCollection().get("compute_indirect_command"), 0);
const VkPipelineShaderStageCreateInfo pipelineShaderStageParams =
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
VkPipelineShaderStageCreateFlags(0u), // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_COMPUTE_BIT, // VkShaderStageFlagBits stage;
*computeShader, // VkShaderModule module;
"main", // const char* pName;
DE_NULL, // const VkSpecializationInfo* pSpecializationInfo;
};
const VkComputePipelineCreateInfo pipelineCreateInfo =
{
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
VkPipelineCreateFlags(0u), // VkPipelineCreateFlags flags;
pipelineShaderStageParams, // VkPipelineShaderStageCreateInfo stage;
*computePipelineLayout, // VkPipelineLayout layout;
DE_NULL, // VkPipeline basePipelineHandle;
0, // deInt32 basePipelineIndex;
};
computePipeline = vk::createComputePipeline(vkd, device, (VkPipelineCache)0u, &pipelineCreateInfo);
}
const Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const Move<VkDescriptorSet> descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get());
de::MovePtr<RayTracingPipeline> rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0), 0);
rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, m_context.getBinaryCollection().get("chit"), 0), 1);
rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, m_context.getBinaryCollection().get("miss"), 0), 2);
Move<VkPipeline> pipeline = rayTracingPipeline->createPipeline(vkd, device, *pipelineLayout);
const de::MovePtr<BufferWithMemory> raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 );
const de::MovePtr<BufferWithMemory> hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, 1 );
const de::MovePtr<BufferWithMemory> missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2, 1 );
const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion= makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
const VkFormat imageFormat = VK_FORMAT_R32_UINT;
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_imageExtent.width, m_imageExtent.height, m_imageExtent.depth, imageFormat);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_3D, imageFormat, imageSubresourceRange);
const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers resultBufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u);
const VkBufferImageCopy resultBufferImageRegion = makeBufferImageCopy(m_imageExtent, resultBufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> resultBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
// create indirect command buffer and fill it with parameter values
de::MovePtr<BufferWithMemory> indirectBuffer;
de::MovePtr<BufferWithMemory> uniformBuffer;
if (m_data.traceType != TraceType::DIRECT)
{
const bool indirectGpu = (m_data.traceType == TraceType::INDIRECT_GPU);
VkBufferUsageFlags indirectBufferUsageFlags = VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | ( indirectGpu ? VK_BUFFER_USAGE_STORAGE_BUFFER_BIT : VK_BUFFER_USAGE_TRANSFER_DST_BIT );
const VkBufferCreateInfo indirectBufferCreateInfo = makeBufferCreateInfo(sizeof(VkTraceRaysIndirectCommandKHR), indirectBufferUsageFlags);
vk::MemoryRequirement indirectBufferMemoryRequirement = MemoryRequirement::DeviceAddress | ( indirectGpu ? MemoryRequirement::Any : MemoryRequirement::HostVisible );
indirectBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, indirectBufferCreateInfo, indirectBufferMemoryRequirement));
}
if (m_data.traceType == TraceType::INDIRECT_GPU)
{
const VkBufferCreateInfo uniformBufferCreateInfo = makeBufferCreateInfo(sizeof(VkTraceRaysIndirectCommandKHR), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
uniformBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, uniformBufferCreateInfo, MemoryRequirement::HostVisible));
deMemcpy(uniformBuffer->getAllocation().getHostPtr(), &m_data.traceDimensions, sizeof(VkTraceRaysIndirectCommandKHR));
flushMappedMemoryRange(vkd, device, uniformBuffer->getAllocation().getMemory(), uniformBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
}
else if (m_data.traceType == TraceType::INDIRECT_CPU)
{
deMemcpy(indirectBuffer->getAllocation().getHostPtr(), &m_data.traceDimensions, sizeof(VkTraceRaysIndirectCommandKHR));
flushMappedMemoryRange(vkd, device, indirectBuffer->getAllocation().getMemory(), indirectBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
}
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > bottomLevelAccelerationStructures;
de::MovePtr<TopLevelAccelerationStructure> topLevelAccelerationStructure;
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
**image, imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
const VkClearValue clearValue = makeClearValueColorU32(kClearColorValue, 0u, 0u, 0u);
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
**image, imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier);
bottomLevelAccelerationStructures = initBottomAccelerationStructures(*cmdBuffer);
topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructures);
if (m_data.traceType == TraceType::INDIRECT_GPU)
{
const VkDescriptorBufferInfo uniformBufferDescriptorInfo = makeDescriptorBufferInfo(uniformBuffer->get(), 0ull, sizeof(VkTraceRaysIndirectCommandKHR));
const VkDescriptorBufferInfo indirectBufferDescriptorInfo = makeDescriptorBufferInfo(indirectBuffer->get(), 0ull, sizeof(VkTraceRaysIndirectCommandKHR));
DescriptorSetUpdateBuilder()
.writeSingle(*computeDescriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &uniformBufferDescriptorInfo)
.writeSingle(*computeDescriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &indirectBufferDescriptorInfo)
.update(vkd, device);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipelineLayout, 0u, 1u, &computeDescriptorSet.get(), 0u, DE_NULL);
vkd.cmdDispatch(*cmdBuffer, 1, 1, 1);
const VkBufferMemoryBarrier fillIndirectBufferMemoryBarrier = makeBufferMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
indirectBuffer->get(), 0ull, sizeof(VkTraceRaysIndirectCommandKHR));
cmdPipelineBufferMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, &fillIndirectBufferMemoryBarrier);
}
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get();
VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline);
// Both calls should give the same results.
if (m_data.traceType == TraceType::DIRECT)
{
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
m_data.traceDimensions.width, m_data.traceDimensions.height, m_data.traceDimensions.depth);
}
else
{
cmdTraceRaysIndirect(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
getBufferDeviceAddress(vkd, device, indirectBuffer->get(), 0));
}
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **resultBuffer, 1u, &resultBufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateMappedMemoryRange(vkd, device, resultBuffer->getAllocation().getMemory(), resultBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
return resultBuffer;
}
tcu::TestStatus RayTracingTraceRaysIndirectTestInstance::iterate (void)
{
// run test using arrays of pointers
const de::MovePtr<BufferWithMemory> buffer = runTest();
const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr();
const bool noWrites = isNullTrace(m_data.traceDimensions);
deUint32 failures = 0;
deUint32 pos = 0;
// verify results
for (deUint32 z = 0; z < m_imageExtent.depth; ++z)
for (deUint32 y = 0; y < m_imageExtent.height; ++y)
for (deUint32 x = 0; x < m_imageExtent.width; ++x)
{
const deUint32 expectedResult = (noWrites ? kClearColorValue : (((x + y + z) % 2) ? kHitColorValue : kMissColorValue));
if (bufferPtr[pos] != expectedResult)
failures++;
++pos;
}
if (failures == 0)
return tcu::TestStatus::pass("Pass");
else
return tcu::TestStatus::fail("Fail (failures=" + de::toString(failures) + ")");
}
std::string makeDimensionsName (const VkTraceRaysIndirectCommandKHR& cmd)
{
std::ostringstream name;
name << cmd.width << "_" << cmd.height << "_" << cmd.depth;
return name.str();
}
} // anonymous
tcu::TestCaseGroup* createTraceRaysTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "trace_rays_cmds", "Tests veryfying vkCmdTraceRays* commands"));
struct BufferSourceTypeData
{
TraceType traceType;
const char* name;
} bufferSourceTypes[] =
{
{ TraceType::DIRECT, "direct" },
{ TraceType::INDIRECT_CPU, "indirect_cpu" },
{ TraceType::INDIRECT_GPU, "indirect_gpu" },
};
const VkTraceRaysIndirectCommandKHR traceDimensions[] =
{
{ 0, 0, 0 },
{ 0, 1, 1 },
{ 1, 0, 1 },
{ 1, 1, 0 },
{ 8, 1, 1 },
{ 8, 8, 1 },
{ 8, 8, 8 },
{ 11, 1, 1 },
{ 11, 13, 1 },
{ 11, 13, 5 },
};
for (size_t bufferSourceNdx = 0; bufferSourceNdx < DE_LENGTH_OF_ARRAY(bufferSourceTypes); ++bufferSourceNdx)
{
de::MovePtr<tcu::TestCaseGroup> bufferSourceGroup(new tcu::TestCaseGroup(group->getTestContext(), bufferSourceTypes[bufferSourceNdx].name, ""));
for (size_t traceDimensionsIdx = 0; traceDimensionsIdx < DE_LENGTH_OF_ARRAY(traceDimensions); ++traceDimensionsIdx)
{
TestParams testParams
{
bufferSourceTypes[bufferSourceNdx].traceType,
traceDimensions[traceDimensionsIdx],
};
const auto testName = makeDimensionsName(traceDimensions[traceDimensionsIdx]);
bufferSourceGroup->addChild(new RayTracingTraceRaysIndirectTestCase(group->getTestContext(), testName.c_str(), "", testParams));
}
group->addChild(bufferSourceGroup.release());
}
return group.release();
}
} // RayTracing
} // vkt