blob: bef7ff6bf4574a42037c7ea4295269307bd8bcf8 [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2019 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Ray Tracing Complex Control Flow tests
*//*--------------------------------------------------------------------*/
#include "vktRayTracingComplexControlFlowTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkRayTracingUtil.hpp"
#include "tcuTestLog.hpp"
#include "deRandom.hpp"
namespace vkt
{
namespace RayTracing
{
namespace
{
using namespace vk;
using namespace std;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
#if defined(DE_DEBUG)
static const deUint32 PUSH_CONSTANTS_COUNT = 6;
#endif
static const deUint32 DEFAULT_CLEAR_VALUE = 999999;
enum TestType
{
TEST_TYPE_IF = 0,
TEST_TYPE_LOOP,
TEST_TYPE_SWITCH,
TEST_TYPE_LOOP_DOUBLE_CALL,
TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE,
TEST_TYPE_NESTED_LOOP,
TEST_TYPE_NESTED_LOOP_BEFORE,
TEST_TYPE_NESTED_LOOP_AFTER,
TEST_TYPE_FUNCTION_CALL,
TEST_TYPE_NESTED_FUNCTION_CALL,
};
enum TestOp
{
TEST_OP_EXECUTE_CALLABLE = 0,
TEST_OP_TRACE_RAY,
TEST_OP_REPORT_INTERSECTION,
};
enum ShaderGroups
{
FIRST_GROUP = 0,
RAYGEN_GROUP = FIRST_GROUP,
MISS_GROUP,
HIT_GROUP,
GROUP_COUNT
};
struct CaseDef
{
TestType testType;
TestOp testOp;
VkShaderStageFlagBits stage;
deUint32 width;
deUint32 height;
};
struct PushConstants
{
deUint32 a;
deUint32 b;
deUint32 c;
deUint32 d;
deUint32 hitOfs;
deUint32 miss;
};
deUint32 getShaderGroupSize (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, deUint32 depth, VkFormat format)
{
const VkImageUsageFlags usage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkImageCreateFlags)0u, // VkImageCreateFlags flags;
VK_IMAGE_TYPE_3D, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(width, height, depth), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
usage, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
Move<VkPipelineLayout> makePipelineLayout (const DeviceInterface& vk,
const VkDevice device,
const VkDescriptorSetLayout descriptorSetLayout,
const deUint32 pushConstantsSize)
{
const VkDescriptorSetLayout* descriptorSetLayoutPtr = (descriptorSetLayout == DE_NULL) ? DE_NULL : &descriptorSetLayout;
const deUint32 setLayoutCount = (descriptorSetLayout == DE_NULL) ? 0u : 1u;
const VkPushConstantRange pushConstantRange =
{
ALL_RAY_TRACING_STAGES, // VkShaderStageFlags stageFlags;
0u, // deUint32 offset;
pushConstantsSize, // deUint32 size;
};
const VkPushConstantRange* pPushConstantRanges = (pushConstantsSize == 0) ? DE_NULL : &pushConstantRange;
const deUint32 pushConstantRangeCount = (pushConstantsSize == 0) ? 0 : 1u;
const VkPipelineLayoutCreateInfo pipelineLayoutParams =
{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineLayoutCreateFlags flags;
setLayoutCount, // deUint32 setLayoutCount;
descriptorSetLayoutPtr, // const VkDescriptorSetLayout* pSetLayouts;
pushConstantRangeCount, // deUint32 pushConstantRangeCount;
pPushConstantRanges, // const VkPushConstantRange* pPushConstantRanges;
};
return createPipelineLayout(vk, device, &pipelineLayoutParams);
}
VkBuffer getVkBuffer (const de::MovePtr<BufferWithMemory>& buffer)
{
VkBuffer result = (buffer.get() == DE_NULL) ? DE_NULL : buffer->get();
return result;
}
VkStridedDeviceAddressRegionKHR makeStridedDeviceAddressRegion (const DeviceInterface& vkd, const VkDevice device, VkBuffer buffer, deUint32 stride, deUint32 count)
{
if (buffer == DE_NULL)
{
return makeStridedDeviceAddressRegionKHR(0, 0, 0);
}
else
{
return makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, buffer, 0), stride, stride * count);
}
}
// Function replacing all occurrences of substring with string passed in last parameter.
static inline std::string replace(const std::string& str, const std::string& from, const std::string& to)
{
std::string result(str);
size_t start_pos = 0;
while((start_pos = result.find(from, start_pos)) != std::string::npos)
{
result.replace(start_pos, from.length(), to);
start_pos += to.length();
}
return result;
}
class RayTracingComplexControlFlowInstance : public TestInstance
{
public:
RayTracingComplexControlFlowInstance (Context& context, const CaseDef& data);
~RayTracingComplexControlFlowInstance (void);
tcu::TestStatus iterate (void);
protected:
void calcShaderGroup (deUint32& shaderGroupCounter,
const VkShaderStageFlags shaders1,
const VkShaderStageFlags shaders2,
const VkShaderStageFlags shaderStageFlags,
deUint32& shaderGroup,
deUint32& shaderGroupCount) const;
PushConstants getPushConstants (void) const;
std::vector<deUint32> getExpectedValues (void) const;
de::MovePtr<BufferWithMemory> runTest (void);
Move<VkPipeline> makePipeline (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
VkPipelineLayout pipelineLayout);
de::MovePtr<BufferWithMemory> createShaderBindingTable (const InstanceInterface& vki,
const DeviceInterface& vkd,
const VkDevice device,
const VkPhysicalDevice physicalDevice,
const VkPipeline pipeline,
Allocator& allocator,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
const deUint32 group,
const deUint32 groupCount = 1u);
de::MovePtr<TopLevelAccelerationStructure> initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures);
vector<de::SharedPtr<BottomLevelAccelerationStructure> > initBottomAccelerationStructures (VkCommandBuffer cmdBuffer);
de::MovePtr<BottomLevelAccelerationStructure> initBottomAccelerationStructure (VkCommandBuffer cmdBuffer,
tcu::UVec2& startPos);
private:
CaseDef m_data;
VkShaderStageFlags m_shaders;
VkShaderStageFlags m_shaders2;
deUint32 m_raygenShaderGroup;
deUint32 m_missShaderGroup;
deUint32 m_hitShaderGroup;
deUint32 m_callableShaderGroup;
deUint32 m_raygenShaderGroupCount;
deUint32 m_missShaderGroupCount;
deUint32 m_hitShaderGroupCount;
deUint32 m_callableShaderGroupCount;
deUint32 m_shaderGroupCount;
deUint32 m_depth;
PushConstants m_pushConstants;
};
RayTracingComplexControlFlowInstance::RayTracingComplexControlFlowInstance (Context& context, const CaseDef& data)
: vkt::TestInstance (context)
, m_data (data)
, m_shaders (0)
, m_shaders2 (0)
, m_raygenShaderGroup (~0u)
, m_missShaderGroup (~0u)
, m_hitShaderGroup (~0u)
, m_callableShaderGroup (~0u)
, m_raygenShaderGroupCount (0)
, m_missShaderGroupCount (0)
, m_hitShaderGroupCount (0)
, m_callableShaderGroupCount (0)
, m_shaderGroupCount (0)
, m_depth (16)
, m_pushConstants (getPushConstants())
{
const VkShaderStageFlags hitStages = VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
BinaryCollection& collection = m_context.getBinaryCollection();
deUint32 shaderCount = 0;
if (collection.contains("rgen")) m_shaders |= VK_SHADER_STAGE_RAYGEN_BIT_KHR;
if (collection.contains("ahit")) m_shaders |= VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
if (collection.contains("chit")) m_shaders |= VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
if (collection.contains("miss")) m_shaders |= VK_SHADER_STAGE_MISS_BIT_KHR;
if (collection.contains("sect")) m_shaders |= VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
if (collection.contains("call")) m_shaders |= VK_SHADER_STAGE_CALLABLE_BIT_KHR;
if (collection.contains("ahit2")) m_shaders2 |= VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
if (collection.contains("chit2")) m_shaders2 |= VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
if (collection.contains("miss2")) m_shaders2 |= VK_SHADER_STAGE_MISS_BIT_KHR;
if (collection.contains("sect2")) m_shaders2 |= VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
if (collection.contains("cal0")) m_shaders2 |= VK_SHADER_STAGE_CALLABLE_BIT_KHR;
for (BinaryCollection::Iterator it = collection.begin(); it != collection.end(); ++it)
shaderCount++;
if (shaderCount != (deUint32)dePop32(m_shaders) + (deUint32)dePop32(m_shaders2))
TCU_THROW(InternalError, "Unused shaders detected in the collection");
calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_RAYGEN_BIT_KHR, m_raygenShaderGroup, m_raygenShaderGroupCount);
calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_MISS_BIT_KHR, m_missShaderGroup, m_missShaderGroupCount);
calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, hitStages, m_hitShaderGroup, m_hitShaderGroupCount);
calcShaderGroup(m_shaderGroupCount, m_shaders, m_shaders2, VK_SHADER_STAGE_CALLABLE_BIT_KHR, m_callableShaderGroup, m_callableShaderGroupCount);
}
RayTracingComplexControlFlowInstance::~RayTracingComplexControlFlowInstance (void)
{
}
void RayTracingComplexControlFlowInstance::calcShaderGroup (deUint32& shaderGroupCounter,
const VkShaderStageFlags shaders1,
const VkShaderStageFlags shaders2,
const VkShaderStageFlags shaderStageFlags,
deUint32& shaderGroup,
deUint32& shaderGroupCount) const
{
const deUint32 shader1Count = ((shaders1 & shaderStageFlags) != 0) ? 1 : 0;
const deUint32 shader2Count = ((shaders2 & shaderStageFlags) != 0) ? 1 : 0;
shaderGroupCount = shader1Count + shader2Count;
if (shaderGroupCount != 0)
{
shaderGroup = shaderGroupCounter;
shaderGroupCounter += shaderGroupCount;
}
}
Move<VkPipeline> RayTracingComplexControlFlowInstance::makePipeline (de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
VkPipelineLayout pipelineLayout)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
vk::BinaryCollection& collection = m_context.getBinaryCollection();
if (0 != (m_shaders & VK_SHADER_STAGE_RAYGEN_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR , createShaderModule(vkd, device, collection.get("rgen"), 0), m_raygenShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("ahit"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("chit"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_MISS_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR , createShaderModule(vkd, device, collection.get("miss"), 0), m_missShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_INTERSECTION_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR , createShaderModule(vkd, device, collection.get("sect"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_CALLABLE_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR , createShaderModule(vkd, device, collection.get("call"), 0), m_callableShaderGroup + 1);
if (0 != (m_shaders2 & VK_SHADER_STAGE_CALLABLE_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR , createShaderModule(vkd, device, collection.get("cal0"), 0), m_callableShaderGroup);
if (0 != (m_shaders2 & VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("ahit2"), 0), m_hitShaderGroup + 1);
if (0 != (m_shaders2 & VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("chit2"), 0), m_hitShaderGroup + 1);
if (0 != (m_shaders2 & VK_SHADER_STAGE_MISS_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR , createShaderModule(vkd, device, collection.get("miss2"), 0), m_missShaderGroup + 1);
if (0 != (m_shaders2 & VK_SHADER_STAGE_INTERSECTION_BIT_KHR)) rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR , createShaderModule(vkd, device, collection.get("sect2"), 0), m_hitShaderGroup + 1);
if (m_data.testOp == TEST_OP_TRACE_RAY && m_data.stage != VK_SHADER_STAGE_RAYGEN_BIT_KHR)
rayTracingPipeline->setMaxRecursionDepth(2);
Move<VkPipeline> pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout);
return pipeline;
}
de::MovePtr<BufferWithMemory> RayTracingComplexControlFlowInstance::createShaderBindingTable (const InstanceInterface& vki,
const DeviceInterface& vkd,
const VkDevice device,
const VkPhysicalDevice physicalDevice,
const VkPipeline pipeline,
Allocator& allocator,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
const deUint32 group,
const deUint32 groupCount)
{
de::MovePtr<BufferWithMemory> shaderBindingTable;
if (group < m_shaderGroupCount)
{
const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice);
const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice);
shaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, group, groupCount);
}
return shaderBindingTable;
}
de::MovePtr<TopLevelAccelerationStructure> RayTracingComplexControlFlowInstance::initTopAccelerationStructure (VkCommandBuffer cmdBuffer,
vector<de::SharedPtr<BottomLevelAccelerationStructure> >& bottomLevelAccelerationStructures)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::MovePtr<TopLevelAccelerationStructure> result = makeTopLevelAccelerationStructure();
result->setInstanceCount(bottomLevelAccelerationStructures.size());
for (size_t structNdx = 0; structNdx < bottomLevelAccelerationStructures.size(); ++structNdx)
result->addInstance(bottomLevelAccelerationStructures[structNdx]);
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return result;
}
de::MovePtr<BottomLevelAccelerationStructure> RayTracingComplexControlFlowInstance::initBottomAccelerationStructure (VkCommandBuffer cmdBuffer,
tcu::UVec2& startPos)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::MovePtr<BottomLevelAccelerationStructure> result = makeBottomLevelAccelerationStructure();
const float z = (m_data.stage == VK_SHADER_STAGE_MISS_BIT_KHR) ? +1.0f : -1.0f;
std::vector<tcu::Vec3> geometryData;
DE_UNREF(startPos);
result->setGeometryCount(1);
geometryData.push_back(tcu::Vec3(0.0f, 0.0f, z));
geometryData.push_back(tcu::Vec3(1.0f, 1.0f, z));
result->addGeometry(geometryData, false);
result->createAndBuild(vkd, device, cmdBuffer, allocator);
return result;
}
vector<de::SharedPtr<BottomLevelAccelerationStructure> > RayTracingComplexControlFlowInstance::initBottomAccelerationStructures (VkCommandBuffer cmdBuffer)
{
tcu::UVec2 startPos;
vector<de::SharedPtr<BottomLevelAccelerationStructure> > result;
de::MovePtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure = initBottomAccelerationStructure(cmdBuffer, startPos);
result.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(bottomLevelAccelerationStructure.release()));
return result;
}
PushConstants RayTracingComplexControlFlowInstance::getPushConstants (void) const
{
const deUint32 hitOfs = 1;
const deUint32 miss = 1;
PushConstants result;
switch (m_data.testType)
{
case TEST_TYPE_IF:
{
result = { 32 | 8 | 1, 10000, 0x0F, 0xF0, hitOfs, miss };
break;
}
case TEST_TYPE_LOOP:
{
result = { 8, 10000, 0x0F, 100000, hitOfs, miss };
break;
}
case TEST_TYPE_SWITCH:
{
result = { 3, 10000, 0x07, 100000, hitOfs, miss };
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL:
{
result = { 7, 10000, 0x0F, 0xF0, hitOfs, miss };
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE:
{
result = { 16, 5, 0x0F, 0xF0, hitOfs, miss };
break;
}
case TEST_TYPE_NESTED_LOOP:
{
result = { 8, 5, 0x0F, 0x09, hitOfs, miss };
break;
}
case TEST_TYPE_NESTED_LOOP_BEFORE:
{
result = { 9, 16, 0x0F, 10, hitOfs, miss };
break;
}
case TEST_TYPE_NESTED_LOOP_AFTER:
{
result = { 9, 16, 0x0F, 10, hitOfs, miss };
break;
}
case TEST_TYPE_FUNCTION_CALL:
{
result = { 0xFFB, 16, 10, 100000, hitOfs, miss };
break;
}
case TEST_TYPE_NESTED_FUNCTION_CALL:
{
result = { 0xFFB, 16, 10, 100000, hitOfs, miss };
break;
}
default:
TCU_THROW(InternalError, "Unknown testType");
}
return result;
}
de::MovePtr<BufferWithMemory> RayTracingComplexControlFlowInstance::runTest (void)
{
const InstanceInterface& vki = m_context.getInstanceInterface();
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const VkFormat format = VK_FORMAT_R32_UINT;
const deUint32 pushConstants[] = { m_pushConstants.a, m_pushConstants.b, m_pushConstants.c, m_pushConstants.d, m_pushConstants.hitOfs, m_pushConstants.miss };
const deUint32 pushConstantsSize = sizeof(pushConstants);
const deUint32 pixelCount = m_data.width * m_data.height * m_depth;
const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice);
const Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
const Move<VkDescriptorSet> descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get(), pushConstantsSize);
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
de::MovePtr<RayTracingPipeline> rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
const Move<VkPipeline> pipeline = makePipeline(rayTracingPipeline, *pipelineLayout);
const de::MovePtr<BufferWithMemory> raygenShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_raygenShaderGroup, m_raygenShaderGroupCount);
const de::MovePtr<BufferWithMemory> missShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_missShaderGroup, m_missShaderGroupCount);
const de::MovePtr<BufferWithMemory> hitShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_hitShaderGroup, m_hitShaderGroupCount);
const de::MovePtr<BufferWithMemory> callableShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *pipeline, allocator, rayTracingPipeline, m_callableShaderGroup, m_callableShaderGroupCount);
const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(raygenShaderBindingTable), shaderGroupHandleSize, m_raygenShaderGroupCount);
const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(missShaderBindingTable), shaderGroupHandleSize, m_missShaderGroupCount);
const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(hitShaderBindingTable), shaderGroupHandleSize, m_hitShaderGroupCount);
const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(callableShaderBindingTable), shaderGroupHandleSize, m_callableShaderGroupCount);
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, m_depth, format);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_3D, format, imageSubresourceRange);
const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u);
const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, m_depth), bufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> buffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
**image, imageSubresourceRange);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
**image, imageSubresourceRange);
const VkMemoryBarrier preTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
const VkClearValue clearValue = makeClearValueColorU32(DEFAULT_CLEAR_VALUE, 0u, 0u, 255u);
vector<de::SharedPtr<BottomLevelAccelerationStructure> > bottomLevelAccelerationStructures;
de::MovePtr<TopLevelAccelerationStructure> topLevelAccelerationStructure;
DE_ASSERT(DE_LENGTH_OF_ARRAY(pushConstants) == PUSH_CONSTANTS_COUNT);
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
vkd.cmdPushConstants(*cmdBuffer, *pipelineLayout, ALL_RAY_TRACING_STAGES, 0, pushConstantsSize, &m_pushConstants);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, ALL_RAY_TRACING_STAGES, &postImageBarrier);
bottomLevelAccelerationStructures = initBottomAccelerationStructures(*cmdBuffer);
topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructures);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, ALL_RAY_TRACING_STAGES, &preTraceMemoryBarrier);
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get();
VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline);
cmdTraceRays(vkd,
*cmdBuffer,
&raygenShaderBindingTableRegion,
&missShaderBindingTableRegion,
&hitShaderBindingTableRegion,
&callableShaderBindingTableRegion,
m_data.width, m_data.height, 1);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, ALL_RAY_TRACING_STAGES, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateMappedMemoryRange(vkd, device, buffer->getAllocation().getMemory(), buffer->getAllocation().getOffset(), pixelCount * sizeof(deUint32));
return buffer;
}
std::vector<deUint32> RayTracingComplexControlFlowInstance::getExpectedValues (void) const
{
const deUint32 plainSize = m_data.width * m_data.height;
const deUint32 plain8Ofs = 8 * plainSize;
const struct PushConstants& p = m_pushConstants;
const deUint32 pushConstants[] = { 0, m_pushConstants.a, m_pushConstants.b, m_pushConstants.c, m_pushConstants.d, m_pushConstants.hitOfs, m_pushConstants.miss };
const deUint32 resultSize = plainSize * m_depth;
const bool fixed = m_data.testOp == TEST_OP_REPORT_INTERSECTION;
std::vector<deUint32> result (resultSize, DEFAULT_CLEAR_VALUE);
deUint32 v0;
deUint32 v1;
deUint32 v2;
deUint32 v3;
switch (m_data.testType)
{
case TEST_TYPE_IF:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
v2 = v3 = p.b;
if ((p.a & id) != 0)
{
v0 = p.c & id;
v1 = (p.d & id) + 1;
result[plain8Ofs + id] = v0;
if (!fixed) v0++;
}
else
{
v0 = p.d & id;
v1 = (p.c & id) + 1;
if (!fixed)
{
result[plain8Ofs + id] = v1;
v1++;
}
else
result[plain8Ofs + id] = v0;
}
result[id] = v0 + v1 + v2 + v3;
}
break;
}
case TEST_TYPE_LOOP:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
v1 = v3 = p.b;
for (deUint32 n = 0; n < p.a; n++)
{
v0 = (p.c & id) + n;
result[((n % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
result[id] += v0 + v1 + v3;
}
}
break;
}
case TEST_TYPE_SWITCH:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
switch (p.a & id)
{
case 0: { v1 = v2 = v3 = p.b; v0 = p.c & id; break; }
case 1: { v0 = v2 = v3 = p.b; v1 = p.c & id; break; }
case 2: { v0 = v1 = v3 = p.b; v2 = p.c & id; break; }
case 3: { v0 = v1 = v2 = p.b; v3 = p.c & id; break; }
default: { v0 = v1 = v2 = v3 = 0; break; }
};
if (!fixed)
result[plain8Ofs + id] = p.c & id;
else
result[plain8Ofs + id] = v0;
result[id] = v0 + v1 + v2 + v3;
if (!fixed) result[id]++;
}
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
v3 = p.b;
for (deUint32 x = 0; x < p.a; x++)
{
v0 = (p.c & id) + x;
v1 = (p.d & id) + x + 1;
result[(((2 * x + 0) % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
if (!fixed)
{
result[(((2 * x + 1) % 8) + 8) * plainSize + id] = v1;
v1++;
}
result[id] += v0 + v1 + v3;
}
}
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
v3 = p.a + p.b;
for (deUint32 x = 0; x < p.a; x++)
{
if ((x & p.b) != 0)
{
v0 = (p.c & id) + x;
v1 = (p.d & id) + x + 1;
result[(((2 * x + 0) % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
if (!fixed)
{
result[(((2 * x + 1) % 8) + 8) * plainSize + id] = v1;
v1++;
}
result[id] += v0 + v1 + v3;
}
}
}
break;
}
case TEST_TYPE_NESTED_LOOP:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
v1 = v3 = p.b;
for (deUint32 y = 0; y < p.a; y++)
for (deUint32 x = 0; x < p.a; x++)
{
const deUint32 n = x + y * p.a;
if ((n & p.d) != 0)
{
v0 = (p.c & id) + n;
result[((n % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
result[id] += v0 + v1 + v3;
}
}
}
break;
}
case TEST_TYPE_NESTED_LOOP_BEFORE:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
for (deUint32 y = 0; y < p.d; y++)
for (deUint32 x = 0; x < p.d; x++)
{
if (((x + y * p.a) & p.b) != 0)
result[id] += (x + y);
}
v1 = v3 = p.a;
for (deUint32 x = 0; x < p.b; x++)
{
if ((x & p.a) != 0)
{
v0 = p.c & id;
result[((x % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
result[id] += v0 + v1 + v3;
}
}
}
break;
}
case TEST_TYPE_NESTED_LOOP_AFTER:
{
for (deUint32 id = 0; id < plainSize; ++id)
{
result[id] = 0;
v1 = v3 = p.a;
for (deUint32 x = 0; x < p.b; x++)
{
if ((x & p.a) != 0)
{
v0 = p.c & id;
result[((x % 8) + 8) * plainSize + id] = v0;
if (!fixed) v0++;
result[id] += v0 + v1 + v3;
}
}
for (deUint32 y = 0; y < p.d; y++)
for (deUint32 x = 0; x < p.d; x++)
{
if (((x + y * p.a) & p.b) != 0)
result[id] += (x + y);
}
}
break;
}
case TEST_TYPE_FUNCTION_CALL:
{
deUint32 a[42];
for (deUint32 id = 0; id < plainSize; ++id)
{
deUint32 r = 0;
deUint32 i;
v0 = p.a & id;
v1 = v3 = p.d;
for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++)
a[i] = p.c * i;
result[plain8Ofs + id] = v0;
if (!fixed) v0++;
for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++)
r += a[i];
result[id] = (r + i) + v0 + v1 + v3;
}
break;
}
case TEST_TYPE_NESTED_FUNCTION_CALL:
{
deUint32 a[14];
deUint32 b[256];
for (deUint32 id = 0; id < plainSize; ++id)
{
deUint32 r = 0;
deUint32 i;
deUint32 t = 0;
deUint32 j;
v0 = p.a & id;
v3 = p.d;
for (j = 0; j < DE_LENGTH_OF_ARRAY(b); j++)
b[j] = p.c * j;
v1 = p.b;
for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++)
a[i] = p.c * i;
result[plain8Ofs + id] = v0;
if (!fixed) v0++;
for (i = 0; i < DE_LENGTH_OF_ARRAY(a); i++)
r += a[i];
for (j = 0; j < DE_LENGTH_OF_ARRAY(b); j++)
t += b[j];
result[id] = (r + i) + (t + j) + v0 + v1 + v3;
}
break;
}
default:
TCU_THROW(InternalError, "Unknown testType");
}
{
const deUint32 startOfs = 7 * plainSize;
for (deUint32 n = 0; n < plainSize; ++n)
result[startOfs + n] = n;
}
for (deUint32 z = 1; z < DE_LENGTH_OF_ARRAY(pushConstants); ++z)
{
const deUint32 startOfs = z * plainSize;
const deUint32 pushConstant = pushConstants[z];
for (deUint32 n = 0; n < plainSize; ++n)
result[startOfs + n] = pushConstant;
}
return result;
}
tcu::TestStatus RayTracingComplexControlFlowInstance::iterate (void)
{
const de::MovePtr<BufferWithMemory> buffer = runTest();
const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr();
const vector<deUint32> expected = getExpectedValues();
tcu::TestLog& log = m_context.getTestContext().getLog();
deUint32 failures = 0;
deUint32 pos = 0;
for (deUint32 z = 0; z < m_depth; ++z)
for (deUint32 y = 0; y < m_data.height; ++y)
for (deUint32 x = 0; x < m_data.width; ++x)
{
if (bufferPtr[pos] != expected[pos])
failures++;
++pos;
}
if (failures != 0)
{
deUint32 pos0 = 0;
deUint32 pos1 = 0;
std::stringstream css;
for (deUint32 z = 0; z < m_depth; ++z)
{
css << "z=" << z << std::endl;
for (deUint32 y = 0; y < m_data.height; ++y)
{
for (deUint32 x = 0; x < m_data.width; ++x)
css << std::setw(6) << bufferPtr[pos0++] << ' ';
css << " ";
for (deUint32 x = 0; x < m_data.width; ++x)
css << std::setw(6) << expected[pos1++] << ' ';
css << std::endl;
}
css << std::endl;
}
log << tcu::TestLog::Message << css.str() << tcu::TestLog::EndMessage;
}
if (failures == 0)
return tcu::TestStatus::pass("Pass");
else
return tcu::TestStatus::fail("failures=" + de::toString(failures));
}
class ComplexControlFlowTestCase : public TestCase
{
public:
ComplexControlFlowTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data);
~ComplexControlFlowTestCase (void);
virtual void initPrograms (SourceCollections& programCollection) const;
virtual TestInstance* createInstance (Context& context) const;
virtual void checkSupport (Context& context) const;
private:
static inline const std::string getIntersectionPassthrough (void);
static inline const std::string getMissPassthrough (void);
static inline const std::string getHitPassthrough (void);
CaseDef m_data;
};
ComplexControlFlowTestCase::ComplexControlFlowTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data)
: vkt::TestCase (context, name, desc)
, m_data (data)
{
}
ComplexControlFlowTestCase::~ComplexControlFlowTestCase (void)
{
}
void ComplexControlFlowTestCase::checkSupport (Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
const VkPhysicalDeviceRayTracingPipelinePropertiesKHR& rayTracingPipelinePropertiesKHR = context.getRayTracingPipelineProperties();
if (m_data.testOp == TEST_OP_TRACE_RAY && m_data.stage != VK_SHADER_STAGE_RAYGEN_BIT_KHR)
{
if (rayTracingPipelinePropertiesKHR.maxRayRecursionDepth < 2)
TCU_THROW(NotSupportedError, "rayTracingPipelinePropertiesKHR.maxRayRecursionDepth is smaller than required");
}
}
const std::string ComplexControlFlowTestCase::getIntersectionPassthrough (void)
{
const std::string intersectionPassthrough =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"hitAttributeEXT vec3 hitAttribute;\n"
"\n"
"void main()\n"
"{\n"
" reportIntersectionEXT(0.95f, 0u);\n"
"}\n";
return intersectionPassthrough;
}
const std::string ComplexControlFlowTestCase::getMissPassthrough (void)
{
const std::string missPassthrough =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"\n"
"void main()\n"
"{\n"
"}\n";
return missPassthrough;
}
const std::string ComplexControlFlowTestCase::getHitPassthrough (void)
{
const std::string hitPassthrough =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"hitAttributeEXT vec3 attribs;\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"\n"
"void main()\n"
"{\n"
"}\n";
return hitPassthrough;
}
void ComplexControlFlowTestCase::initPrograms (SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
const std::string calleeMainPart =
" uint z = (inValue.x % 8) + 8;\n"
" uint v = inValue.y;\n"
" uint n = gl_LaunchIDEXT.x + gl_LaunchSizeEXT.x * gl_LaunchIDEXT.y;\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, z), uvec4(v, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 7), uvec4(n, 0, 0, 1));\n";
const std::string idTemplate = "$";
const std::string shaderCallInstruction = (m_data.testOp == TEST_OP_EXECUTE_CALLABLE) ? "executeCallableEXT(0, " + idTemplate + ")"
: (m_data.testOp == TEST_OP_TRACE_RAY) ? "traceRayEXT(as, 0, 0xFF, p.hitOfs, 0, p.miss, vec3((gl_LaunchIDEXT.x) + vec3(0.5f)) / vec3(gl_LaunchSizeEXT), 1.0f, vec3(0.0f, 0.0f, 1.0f), 100.0f, " + idTemplate + ")"
: (m_data.testOp == TEST_OP_REPORT_INTERSECTION) ? "reportIntersectionEXT(1.0f, 0u)"
: "TEST_OP_NOT_IMPLEMENTED_FAILURE";
std::string declsPreMain =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT as;\n"
"\n"
"layout(push_constant) uniform TestParams\n"
"{\n"
" uint a;\n"
" uint b;\n"
" uint c;\n"
" uint d;\n"
" uint hitOfs;\n"
" uint miss;\n"
"} p;\n";
std::string declsInMainBeforeOp =
" uint result = 0;\n"
" uint id = uint(gl_LaunchIDEXT.x + gl_LaunchSizeEXT.x * gl_LaunchIDEXT.y);\n";
std::string declsInMainAfterOp =
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 0), uvec4(result, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 1), uvec4(p.a, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 2), uvec4(p.b, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 3), uvec4(p.c, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 4), uvec4(p.d, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 5), uvec4(p.hitOfs, 0, 0, 1));\n"
" imageStore(resultImage, ivec3(gl_LaunchIDEXT.x, gl_LaunchIDEXT.y, 6), uvec4(p.miss, 0, 0, 1));\n";
std::string opInMain = "";
std::string opPreMain = "";
DE_ASSERT(!declsPreMain.empty() && PUSH_CONSTANTS_COUNT == 6);
switch (m_data.testType)
{
case TEST_TYPE_IF:
{
opInMain =
" v2 = v3 = uvec2(0, p.b);\n"
"\n"
" if ((p.a & id) != 0)\n"
" { v0 = uvec2(0, p.c & id); v1 = uvec2(0, (p.d & id) + 1);" + replace(shaderCallInstruction, idTemplate, "0") + "; }\n"
" else\n"
" { v0 = uvec2(0, p.d & id); v1 = uvec2(0, (p.c & id) + 1);" + replace(shaderCallInstruction, idTemplate, "1") + "; }\n"
"\n"
" result = v0.y + v1.y + v2.y + v3.y;\n";
break;
}
case TEST_TYPE_LOOP:
{
opInMain =
" v1 = v3 = uvec2(0, p.b);\n"
"\n"
" for (uint x = 0; x < p.a; x++)\n"
" {\n"
" v0 = uvec2(x, (p.c & id) + x);\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n";
break;
}
case TEST_TYPE_SWITCH:
{
opInMain =
" switch (p.a & id)\n"
" {\n"
" case 0: { v1 = v2 = v3 = uvec2(0, p.b); v0 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "0") + "; break; }\n"
" case 1: { v0 = v2 = v3 = uvec2(0, p.b); v1 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "1") + "; break; }\n"
" case 2: { v0 = v1 = v3 = uvec2(0, p.b); v2 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "2") + "; break; }\n"
" case 3: { v0 = v1 = v2 = uvec2(0, p.b); v3 = uvec2(0, p.c & id); " + replace(shaderCallInstruction, idTemplate, "3") + "; break; }\n"
" default: break;\n"
" }\n"
"\n"
" result = v0.y + v1.y + v2.y + v3.y;\n";
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL:
{
opInMain =
" v3 = uvec2(0, p.b);\n"
" for (uint x = 0; x < p.a; x++)\n"
" {\n"
" v0 = uvec2(2 * x + 0, (p.c & id) + x);\n"
" v1 = uvec2(2 * x + 1, (p.d & id) + x + 1);\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" " + replace(shaderCallInstruction, idTemplate, "1") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n";
break;
}
case TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE:
{
opInMain =
" v3 = uvec2(0, p.a + p.b);\n"
" for (uint x = 0; x < p.a; x++)\n"
" if ((x & p.b) != 0)\n"
" {\n"
" v0 = uvec2(2 * x + 0, (p.c & id) + x + 0);\n"
" v1 = uvec2(2 * x + 1, (p.d & id) + x + 1);\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" " + replace(shaderCallInstruction, idTemplate, "1") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n"
"\n";
break;
}
case TEST_TYPE_NESTED_LOOP:
{
opInMain =
" v1 = v3 = uvec2(0, p.b);\n"
" for (uint y = 0; y < p.a; y++)\n"
" for (uint x = 0; x < p.a; x++)\n"
" {\n"
" uint n = x + y * p.a;\n"
" if ((n & p.d) != 0)\n"
" {\n"
" v0 = uvec2(n, (p.c & id) + (x + y * p.a));\n"
" "+ replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n"
" }\n"
"\n";
break;
}
case TEST_TYPE_NESTED_LOOP_BEFORE:
{
opInMain =
" for (uint y = 0; y < p.d; y++)\n"
" for (uint x = 0; x < p.d; x++)\n"
" if (((x + y * p.a) & p.b) != 0)\n"
" result += (x + y);\n"
"\n"
" v1 = v3 = uvec2(0, p.a);\n"
"\n"
" for (uint x = 0; x < p.b; x++)\n"
" if ((x & p.a) != 0)\n"
" {\n"
" v0 = uvec2(x, p.c & id);\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n";
break;
}
case TEST_TYPE_NESTED_LOOP_AFTER:
{
opInMain =
" v1 = v3 = uvec2(0, p.a); \n"
" for (uint x = 0; x < p.b; x++)\n"
" if ((x & p.a) != 0)\n"
" {\n"
" v0 = uvec2(x, p.c & id);\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
" result += v0.y + v1.y + v3.y;\n"
" }\n"
"\n"
" for (uint y = 0; y < p.d; y++)\n"
" for (uint x = 0; x < p.d; x++)\n"
" if (((x + y * p.a) & p.b) != 0)\n"
" result += x + y;\n";
break;
}
case TEST_TYPE_FUNCTION_CALL:
{
opPreMain =
"uint f1(void)\n"
"{\n"
" uint i, r = 0;\n"
" uint a[42];\n"
"\n"
" for (i = 0; i < a.length(); i++) a[i] = p.c * i;\n"
"\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
"\n"
" for (i = 0; i < a.length(); i++) r += a[i];\n"
"\n"
" return r + i;\n"
"}\n";
opInMain =
" v0 = uvec2(0, p.a & id); v1 = v3 = uvec2(0, p.d);\n"
" result = f1() + v0.y + v1.y + v3.y;\n";
break;
}
case TEST_TYPE_NESTED_FUNCTION_CALL:
{
opPreMain =
"uint f0(void)\n"
"{\n"
" uint i, r = 0;\n"
" uint a[14];\n"
"\n"
" for (i = 0; i < a.length(); i++) a[i] = p.c * i;\n"
"\n"
" " + replace(shaderCallInstruction, idTemplate, "0") + ";\n"
"\n"
" for (i = 0; i < a.length(); i++) r += a[i];\n"
"\n"
" return r + i;\n"
"}\n"
"\n"
"uint f1(void)\n"
"{\n"
" uint j, t = 0;\n"
" uint b[256];\n"
"\n"
" for (j = 0; j < b.length(); j++) b[j] = p.c * j;\n"
"\n"
" v1 = uvec2(0, p.b);\n"
"\n"
" t += f0();\n"
"\n"
" for (j = 0; j < b.length(); j++) t += b[j];\n"
"\n"
" return t + j;\n"
"}\n";
opInMain =
" v0 = uvec2(0, p.a & id); v3 = uvec2(0, p.d);\n"
" result = f1() + v0.y + v1.y + v3.y;\n";
break;
}
default:
TCU_THROW(InternalError, "Unknown testType");
}
if (m_data.testOp == TEST_OP_EXECUTE_CALLABLE)
{
const std::string calleeShader =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n"
"layout(location = 0) callableDataInEXT uvec2 inValue;\n"
"\n"
"void main()\n"
"{\n"
+ calleeMainPart +
" inValue.y++;\n"
"}\n";
declsPreMain +=
"layout(location = 0) callableDataEXT uvec2 v0;\n"
"layout(location = 1) callableDataEXT uvec2 v1;\n"
"layout(location = 2) callableDataEXT uvec2 v2;\n"
"layout(location = 3) callableDataEXT uvec2 v3;\n"
"\n";
switch (m_data.stage)
{
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
{
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // executeCallableEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions;
programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions;
break;
}
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions;
std::stringstream css;
css << declsPreMain
<< "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
<< "hitAttributeEXT vec3 attribs;\n"
<< "\n"
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // executeCallableEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("chit") << glu::ClosestHitSource(css.str()) << buildOptions;
programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions;
programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
break;
}
case VK_SHADER_STAGE_MISS_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions;
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // executeCallableEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("miss") << glu::MissSource(css.str()) << buildOptions;
programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
break;
}
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
{
{
std::stringstream css;
css << "#version 460 core\n"
<< "#extension GL_EXT_nonuniform_qualifier : enable\n"
<< "#extension GL_EXT_ray_tracing : require\n"
<< "\n"
<< "layout(location = 4) callableDataEXT float dummy;\n"
<< "layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n"
<< "\n"
<< "void main()\n"
<< "{\n"
<< " executeCallableEXT(1, 4);\n"
<< "}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions;
}
{
std::stringstream css;
css << declsPreMain
<< "layout(location = 4) callableDataInEXT float dummyIn;\n"
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // executeCallableEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("call") << glu::CallableSource(css.str()) << buildOptions;
}
programCollection.glslSources.add("cal0") << glu::CallableSource(calleeShader) << buildOptions;
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
else if (m_data.testOp == TEST_OP_TRACE_RAY)
{
const std::string missShader =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n"
"layout(location = 0) rayPayloadInEXT uvec2 inValue;\n"
"\n"
"void main()\n"
"{\n"
+ calleeMainPart +
" inValue.y++;\n"
"}\n";
declsPreMain +=
"layout(location = 0) rayPayloadEXT uvec2 v0;\n"
"layout(location = 1) rayPayloadEXT uvec2 v1;\n"
"layout(location = 2) rayPayloadEXT uvec2 v2;\n"
"layout(location = 3) rayPayloadEXT uvec2 v3;\n";
switch (m_data.stage)
{
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
{
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // traceRayEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(css.str()) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions;
programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
break;
}
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions;
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // traceRayEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("chit") << glu::ClosestHitSource(css.str()) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions;
programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
break;
}
case VK_SHADER_STAGE_MISS_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions;
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // traceRayEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("miss") << glu::MissSource(css.str()) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
programCollection.glslSources.add("miss2") << glu::MissSource(missShader) << buildOptions;
programCollection.glslSources.add("ahit2") << glu::AnyHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("chit2") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("sect2") << glu::IntersectionSource(getIntersectionPassthrough()) << buildOptions;
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
else if (m_data.testOp == TEST_OP_REPORT_INTERSECTION)
{
const std::string anyHitShader =
"#version 460 core\n"
"#extension GL_EXT_nonuniform_qualifier : enable\n"
"#extension GL_EXT_ray_tracing : require\n"
"\n"
"layout(set = 0, binding = 0, r32ui) uniform uimage3D resultImage;\n"
"hitAttributeEXT block { uvec2 inValue; };\n"
"\n"
"void main()\n"
"{\n"
+ calleeMainPart +
"}\n";
declsPreMain +=
"hitAttributeEXT block { uvec2 v0; };\n"
"uvec2 v1;\n"
"uvec2 v2;\n"
"uvec2 v3;\n";
switch (m_data.stage)
{
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(getCommonRayGenerationShader()) << buildOptions;
std::stringstream css;
css << declsPreMain
<< opPreMain
<< "\n"
<< "void main()\n"
<< "{\n"
<< declsInMainBeforeOp
<< opInMain // reportIntersectionEXT
<< declsInMainAfterOp
<< "}\n";
programCollection.glslSources.add("sect") << glu::IntersectionSource(css.str()) << buildOptions;
programCollection.glslSources.add("ahit") << glu::AnyHitSource(anyHitShader) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(getHitPassthrough()) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(getMissPassthrough()) << buildOptions;
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
else
{
TCU_THROW(InternalError, "Unknown operation");
}
}
TestInstance* ComplexControlFlowTestCase::createInstance (Context& context) const
{
return new RayTracingComplexControlFlowInstance(context, m_data);
}
} // anonymous
tcu::TestCaseGroup* createComplexControlFlowTests (tcu::TestContext& testCtx)
{
const VkShaderStageFlagBits R = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
const VkShaderStageFlagBits A = VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
const VkShaderStageFlagBits C = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
const VkShaderStageFlagBits M = VK_SHADER_STAGE_MISS_BIT_KHR;
const VkShaderStageFlagBits I = VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
const VkShaderStageFlagBits L = VK_SHADER_STAGE_CALLABLE_BIT_KHR;
DE_UNREF(A);
static const struct
{
const char* name;
VkShaderStageFlagBits stage;
}
testStages[]
{
{ "rgen", VK_SHADER_STAGE_RAYGEN_BIT_KHR },
{ "chit", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR },
{ "ahit", VK_SHADER_STAGE_ANY_HIT_BIT_KHR },
{ "sect", VK_SHADER_STAGE_INTERSECTION_BIT_KHR },
{ "miss", VK_SHADER_STAGE_MISS_BIT_KHR },
{ "call", VK_SHADER_STAGE_CALLABLE_BIT_KHR },
};
static const struct
{
const char* name;
TestOp op;
VkShaderStageFlags applicableInStages;
}
testOps[]
{
{ "execute_callable", TEST_OP_EXECUTE_CALLABLE, R | C | M | L },
{ "trace_ray", TEST_OP_TRACE_RAY, R | C | M },
{ "report_intersection", TEST_OP_REPORT_INTERSECTION, I },
};
static const struct
{
const char* name;
TestType testType;
}
testTypes[]
{
{ "if", TEST_TYPE_IF },
{ "loop", TEST_TYPE_LOOP },
{ "switch", TEST_TYPE_SWITCH },
{ "loop_double_call", TEST_TYPE_LOOP_DOUBLE_CALL },
{ "loop_double_call_sparse", TEST_TYPE_LOOP_DOUBLE_CALL_SPARSE },
{ "nested_loop", TEST_TYPE_NESTED_LOOP },
{ "nested_loop_loop_before", TEST_TYPE_NESTED_LOOP_BEFORE },
{ "nested_loop_loop_after", TEST_TYPE_NESTED_LOOP_AFTER },
{ "function_call", TEST_TYPE_FUNCTION_CALL },
{ "nested_function_call", TEST_TYPE_NESTED_FUNCTION_CALL },
};
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "complexcontrolflow", "Ray tracing complex control flow tests"));
for (size_t testTypeNdx = 0; testTypeNdx < DE_LENGTH_OF_ARRAY(testTypes); ++testTypeNdx)
{
const TestType testType = testTypes[testTypeNdx].testType;
de::MovePtr<tcu::TestCaseGroup> testTypeGroup (new tcu::TestCaseGroup(testCtx, testTypes[testTypeNdx].name, ""));
for (size_t testOpNdx = 0; testOpNdx < DE_LENGTH_OF_ARRAY(testOps); ++testOpNdx)
{
const TestOp testOp = testOps[testOpNdx].op;
de::MovePtr<tcu::TestCaseGroup> testOpGroup (new tcu::TestCaseGroup(testCtx, testOps[testOpNdx].name, ""));
for (size_t testStagesNdx = 0; testStagesNdx < DE_LENGTH_OF_ARRAY(testStages); ++testStagesNdx)
{
const VkShaderStageFlagBits testStage = testStages[testStagesNdx].stage;
const std::string testName = de::toString(testStages[testStagesNdx].name);
const deUint32 width = 4u;
const deUint32 height = 4u;
const CaseDef caseDef =
{
testType, // TestType testType;
testOp, // TestOp testOp;
testStage, // VkShaderStageFlagBits stage;
width, // deUint32 width;
height, // deUint32 height;
};
if ((testOps[testOpNdx].applicableInStages & static_cast<VkShaderStageFlags>(testStage)) == 0)
continue;
testOpGroup->addChild(new ComplexControlFlowTestCase(testCtx, testName.c_str(), "", caseDef));
}
testTypeGroup->addChild(testOpGroup.release());
}
group->addChild(testTypeGroup.release());
}
return group.release();
}
} // RayTracing
} // vkt