blob: ce19094e0769e82fe1560dd40db61225ad8d5dfe [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2020 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Ray Query Builtin tests
*//*--------------------------------------------------------------------*/
#include "vktRayQueryWatertightnessTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkImageUtil.hpp"
#include "deRandom.hpp"
#include "tcuTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuImageCompare.hpp"
#include "tcuCommandLine.hpp"
#include "vkRayTracingUtil.hpp"
namespace vkt
{
namespace RayQuery
{
namespace
{
using namespace vk;
using namespace vkt;
static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR
| VK_SHADER_STAGE_ANY_HIT_BIT_KHR
| VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR
| VK_SHADER_STAGE_MISS_BIT_KHR
| VK_SHADER_STAGE_INTERSECTION_BIT_KHR
| VK_SHADER_STAGE_CALLABLE_BIT_KHR;
enum TestType
{
TEST_TYPE_NO_MISS = 0,
TEST_TYPE_SINGLE_HIT,
};
enum GeomType
{
GEOM_TYPE_TRIANGLES,
GEOM_TYPE_AABBS,
GEOM_TYPE_LAST,
};
const deUint32 TEST_WIDTH = 256u;
const deUint32 TEST_HEIGHT = 256u;
const float MIN_AABB_SIDE_LENGTH = 1e-6f;
const float MIN_TRIANGLE_EDGE_LENGTH = 1.0f / float(10 * TEST_WIDTH * TEST_HEIGHT);
const float MIN_TRIANGLE_AREA_SIZE = 1.0f / float(10 * TEST_WIDTH * TEST_HEIGHT);
struct TestParams;
typedef void (*CheckSupportFunc)(Context& context, const TestParams& testParams);
typedef void (*InitProgramsFunc)(SourceCollections& programCollection, const TestParams& testParams);
typedef const std::string (*ShaderBodyTextFunc)(const TestParams& testParams);
class PipelineConfiguration
{
public:
PipelineConfiguration () {};
virtual ~PipelineConfiguration () {};
virtual void initConfiguration (Context& context,
TestParams& testParams) = 0;
virtual void fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer commandBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo) = 0;
};
class TestConfiguration
{
public:
TestConfiguration ()
: m_bottomAccelerationStructures ()
, m_topAccelerationStructure ()
, m_expected ()
{
}
virtual ~TestConfiguration ()
{
}
virtual const VkAccelerationStructureKHR* initAccelerationStructures (Context& context,
TestParams& testParams,
VkCommandBuffer cmdBuffer) = 0;
virtual bool verify (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams) = 0;
protected:
std::vector<de::SharedPtr<BottomLevelAccelerationStructure>> m_bottomAccelerationStructures;
de::SharedPtr<TopLevelAccelerationStructure> m_topAccelerationStructure;
std::vector<deInt32> m_expected;
};
struct TestParams
{
deUint32 width;
deUint32 height;
deUint32 depth;
deUint32 randomSeed;
TestType testType;
VkShaderStageFlagBits stage;
GeomType geomType;
deUint32 squaresGroupCount;
deUint32 geometriesGroupCount;
deUint32 instancesGroupCount;
VkFormat format;
CheckSupportFunc pipelineCheckSupport;
InitProgramsFunc pipelineInitPrograms;
ShaderBodyTextFunc testConfigShaderBodyText;
};
deUint32 getShaderGroupHandleSize (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupHandleSize();
}
deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki,
const VkPhysicalDevice physicalDevice)
{
de::MovePtr<RayTracingProperties> rayTracingPropertiesKHR;
rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice);
return rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
}
VkBuffer getVkBuffer (const de::MovePtr<BufferWithMemory>& buffer)
{
VkBuffer result = (buffer.get() == DE_NULL) ? DE_NULL : buffer->get();
return result;
}
VkStridedDeviceAddressRegionKHR makeStridedDeviceAddressRegion (const DeviceInterface& vkd, const VkDevice device, VkBuffer buffer, VkDeviceSize size)
{
const VkDeviceSize sizeFixed = ((buffer == DE_NULL) ? 0ull : size);
return makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, buffer, 0), sizeFixed, sizeFixed);
}
VkImageCreateInfo makeImageCreateInfo (VkFormat format,
deUint32 width,
deUint32 height,
deUint32 depth,
VkImageType imageType = VK_IMAGE_TYPE_3D,
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)
{
const VkImageCreateInfo imageCreateInfo =
{
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
(VkImageCreateFlags)0u, // VkImageCreateFlags flags;
imageType, // VkImageType imageType;
format, // VkFormat format;
makeExtent3D(width, height, depth), // VkExtent3D extent;
1u, // deUint32 mipLevels;
1u, // deUint32 arrayLayers;
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples;
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling;
usageFlags, // VkImageUsageFlags usage;
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
0u, // deUint32 queueFamilyIndexCount;
DE_NULL, // const deUint32* pQueueFamilyIndices;
VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
};
return imageCreateInfo;
}
Move<VkPipeline> makeComputePipeline (const DeviceInterface& vk,
const VkDevice device,
const VkPipelineLayout pipelineLayout,
const VkShaderModule shaderModule)
{
const VkPipelineShaderStageCreateInfo pipelineShaderStageParams =
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineShaderStageCreateFlags flags;
VK_SHADER_STAGE_COMPUTE_BIT, // VkShaderStageFlagBits stage;
shaderModule, // VkShaderModule module;
"main", // const char* pName;
DE_NULL, // const VkSpecializationInfo* pSpecializationInfo;
};
const VkComputePipelineCreateInfo pipelineCreateInfo =
{
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType;
DE_NULL, // const void* pNext;
0u, // VkPipelineCreateFlags flags;
pipelineShaderStageParams, // VkPipelineShaderStageCreateInfo stage;
pipelineLayout, // VkPipelineLayout layout;
DE_NULL, // VkPipeline basePipelineHandle;
0, // deInt32 basePipelineIndex;
};
return createComputePipeline(vk, device, DE_NULL , &pipelineCreateInfo);
}
static const std::string getMissPassthrough (void)
{
const std::string missPassthrough =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"\n"
"void main()\n"
"{\n"
"}\n";
return missPassthrough;
}
static const std::string getHitPassthrough (void)
{
const std::string hitPassthrough =
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"hitAttributeEXT vec3 attribs;\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"\n"
"void main()\n"
"{\n"
"}\n";
return hitPassthrough;
}
static const std::string getGraphicsPassthrough (void)
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< "}\n";
return src.str();
}
static const std::string getVertexPassthrough (void)
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_position;\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = in_position;\n"
<< "}\n";
return src.str();
}
static inline tcu::Vec2 mixVec2 (const tcu::Vec2& a, const tcu::Vec2& b, const float alpha)
{
const tcu::Vec2 result = a * alpha + b * (1.0f - alpha);
return result;
}
static inline tcu::Vec2 mixCoordsVec2 (const tcu::Vec2& a, const tcu::Vec2& b, const float alpha, const float beta)
{
const tcu::Vec2 result = tcu::Vec2(deFloatMix(a.x(), b.x(), alpha), deFloatMix(a.y(), b.y(), beta));
return result;
}
inline float triangleEdgeLength (const tcu::Vec2& vertexA, const tcu::Vec2& vertexB)
{
const float abx = vertexA.x() - vertexB.x();
const float aby = vertexA.y() - vertexB.y();
const float abq = abx * abx + aby * aby;
const float ab = deFloatSqrt(abq);
return ab;
}
inline float triangleArea (const float edgeALen, const float edgeBLen, const float edgeCLen)
{
const float s = (edgeALen + edgeBLen + edgeCLen) / 2.0f;
const float q = s * (s - edgeALen) * (s - edgeBLen) * (s - edgeCLen);
if (q <= 0.0f)
return 0.0f;
return deFloatSqrt(q);
}
class GraphicsConfiguration : public PipelineConfiguration
{
public:
static void checkSupport (Context& context,
const TestParams& testParams);
static void initPrograms (SourceCollections& programCollection,
const TestParams& testParams);
GraphicsConfiguration ();
virtual ~GraphicsConfiguration () {};
void initVertexBuffer (Context& context,
TestParams& testParams);
Move<VkPipeline> makeGraphicsPipeline (Context& context,
TestParams& testParams);
virtual void initConfiguration (Context& context,
TestParams& testParams) override;
virtual void fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer commandBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo) override;
private:
Move<VkDescriptorSetLayout> m_descriptorSetLayout;
Move<VkDescriptorPool> m_descriptorPool;
Move<VkDescriptorSet> m_descriptorSet;
VkFormat m_framebufferFormat;
Move<VkImage> m_framebufferImage;
de::MovePtr<Allocation> m_framebufferImageAlloc;
Move<VkImageView> m_framebufferAttachment;
Move<VkShaderModule> m_vertShaderModule;
Move<VkShaderModule> m_geomShaderModule;
Move<VkShaderModule> m_tescShaderModule;
Move<VkShaderModule> m_teseShaderModule;
Move<VkShaderModule> m_fragShaderModule;
Move<VkRenderPass> m_renderPass;
Move<VkFramebuffer> m_framebuffer;
Move<VkPipelineLayout> m_pipelineLayout;
Move<VkPipeline> m_pipeline;
deUint32 m_vertexCount;
Move<VkBuffer> m_vertexBuffer;
de::MovePtr<Allocation> m_vertexBufferAlloc;
};
GraphicsConfiguration::GraphicsConfiguration()
: PipelineConfiguration ()
, m_descriptorSetLayout ()
, m_descriptorPool ()
, m_descriptorSet ()
, m_framebufferFormat (VK_FORMAT_R8G8B8A8_UNORM)
, m_framebufferImage ()
, m_framebufferImageAlloc ()
, m_framebufferAttachment ()
, m_vertShaderModule ()
, m_geomShaderModule ()
, m_tescShaderModule ()
, m_teseShaderModule ()
, m_fragShaderModule ()
, m_renderPass ()
, m_framebuffer ()
, m_pipelineLayout ()
, m_pipeline ()
, m_vertexCount (0)
, m_vertexBuffer ()
, m_vertexBufferAlloc ()
{
}
void GraphicsConfiguration::checkSupport (Context& context,
const TestParams& testParams)
{
switch (testParams.stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_VERTEX_PIPELINE_STORES_AND_ATOMICS);
break;
default:
break;
}
switch (testParams.stage)
{
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_TESSELLATION_SHADER);
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_GEOMETRY_SHADER);
break;
default:
break;
}
}
void GraphicsConfiguration::initPrograms (SourceCollections& programCollection,
const TestParams& testParams)
{
const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
const std::string testShaderBody = testParams.testConfigShaderBodyText(testParams);
switch (testParams.stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
{
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_ray_query : require\n"
<< "#extension GL_EXT_ray_tracing : require\n"
<< "layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
<< "layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
<< "\n"
<< "void testFunc(ivec3 pos, ivec3 size)\n"
<< "{\n"
<< testShaderBody
<< "}\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " const int posId = int(gl_VertexIndex / 3);\n"
<< " const int vertId = int(gl_VertexIndex % 3);\n"
<< " const ivec3 size = ivec3(" << testParams.width << ", " << testParams.height << ", 1);\n"
<< " const ivec3 pos = ivec3(posId % size.x, posId / size.x, 0);\n"
<< "\n"
<< " if (vertId == 0)\n"
<< " {\n"
<< " testFunc(pos, size);\n"
<< " }\n"
<< "}\n";
programCollection.glslSources.add("vert") << glu::VertexSource(src.str()) << buildOptions;
}
programCollection.glslSources.add("frag") << glu::FragmentSource(getGraphicsPassthrough()) << buildOptions;
break;
}
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
{
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_position;\n"
<< "out gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "};\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = in_position;\n"
<< "}\n";
programCollection.glslSources.add("vert") << glu::VertexSource(src.str()) << buildOptions;
}
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_tessellation_shader : require\n"
<< "#extension GL_EXT_ray_query : require\n"
<< "layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
<< "layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
<< "in gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_in[];\n"
<< "layout(vertices = 3) out;\n"
<< "out gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_out[];\n"
<< "\n"
<< "void testFunc(ivec3 pos, ivec3 size)\n"
<< "{\n"
<< testShaderBody
<< "}\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< "\n"
<< " if (gl_InvocationID == 0)\n"
<< " {\n"
<< " const ivec3 size = ivec3(" << testParams.width << ", " << testParams.height << ", 1);\n"
<< " int index = int(gl_in[gl_InvocationID].gl_Position.z);\n"
<< " int x = index % size.x;\n"
<< " int y = index / size.y;\n"
<< " const ivec3 pos = ivec3(x, y, 0);\n"
<< " testFunc(pos, size);\n"
<< " }\n"
<< "\n"
<< " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
<< " gl_TessLevelInner[0] = 1;\n"
<< " gl_TessLevelInner[1] = 1;\n"
<< " gl_TessLevelOuter[gl_InvocationID] = 1;\n"
<< "}\n";
programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str()) << buildOptions;
}
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_tessellation_shader : require\n"
<< "layout(triangles, equal_spacing, ccw) in;\n"
<< "in gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_in[];\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = gl_in[0].gl_Position;\n"
<< "}\n";
programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(src.str()) << buildOptions;
}
break;
}
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
{
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "\n"
<< "layout(location = 0) in vec4 in_position;\n"
<< "out gl_PerVertex"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "};\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_Position = in_position;\n"
<< "}\n";
programCollection.glslSources.add("vert") << glu::VertexSource(src.str()) << buildOptions;
}
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_tessellation_shader : require\n"
<< "in gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_in[];\n"
<< "layout(vertices = 3) out;\n"
<< "out gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_out[];\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
<< " gl_TessLevelInner[0] = 1;\n"
<< " gl_TessLevelInner[1] = 1;\n"
<< " gl_TessLevelOuter[gl_InvocationID] = 1;\n"
<< "}\n";
programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str()) << buildOptions;
}
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_tessellation_shader : require\n"
<< "#extension GL_EXT_ray_query : require\n"
<< "layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
<< "layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
<< "layout(triangles, equal_spacing, ccw) in;\n"
<< "in gl_PerVertex\n"
<< "{\n"
<< " vec4 gl_Position;\n"
<< "} gl_in[];\n"
<< "\n"
<< "void testFunc(ivec3 pos, ivec3 size)\n"
<< "{\n"
<< testShaderBody
<< "}\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " const ivec3 size = ivec3(" << testParams.width << ", " << testParams.height << ", 1);\n"
<< " int index = int(gl_in[0].gl_Position.z);\n"
<< " int x = index % size.x;\n"
<< " int y = index / size.y;\n"
<< " const ivec3 pos = ivec3(x, y, 0);\n"
<< " testFunc(pos, size);\n"
<< " gl_Position = gl_in[0].gl_Position;\n"
<< "}\n";
programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(src.str()) << buildOptions;
}
break;
}
case VK_SHADER_STAGE_GEOMETRY_BIT:
{
programCollection.glslSources.add("vert") << glu::VertexSource(getVertexPassthrough()) << buildOptions;
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_ray_query : require\n"
<< "layout(triangles) in;\n"
<< "layout(points, max_vertices = 1) out;\n"
<< "layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
<< "layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
<< "\n"
<< "void testFunc(ivec3 pos, ivec3 size)\n"
<< "{\n"
<< testShaderBody
<< "}\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " const int posId = int(gl_PrimitiveIDIn);\n"
<< " const ivec3 size = ivec3(" << testParams.width << ", " << testParams.height << ", 1);\n"
<< " const ivec3 pos = ivec3(posId % size.x, posId / size.x, 0);\n"
<< "\n"
<< " testFunc(pos, size);\n"
<< "}\n";
programCollection.glslSources.add("geom") << glu::GeometrySource(src.str()) << buildOptions;
}
break;
}
case VK_SHADER_STAGE_FRAGMENT_BIT:
{
programCollection.glslSources.add("vert") << glu::VertexSource(getVertexPassthrough()) << buildOptions;
{
std::ostringstream src;
src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_460) << "\n"
<< "#extension GL_EXT_ray_query : require\n"
<< "layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
<< "layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
<< "\n"
<< "void testFunc(ivec3 pos, ivec3 size)\n"
<< "{\n"
<< testShaderBody
<< "}\n"
<< "\n"
<< "void main(void)\n"
<< "{\n"
<< " const ivec3 size = ivec3(" << testParams.width << ", " << testParams.height << ", 1);\n"
<< " const ivec3 pos = ivec3(int(gl_FragCoord.x - 0.5f), int(gl_FragCoord.y - 0.5f), 0);\n"
<< "\n"
<< " testFunc(pos, size);\n"
<< "}\n";
programCollection.glslSources.add("frag") << glu::FragmentSource(src.str()) << buildOptions;
}
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
void GraphicsConfiguration::initVertexBuffer (Context& context,
TestParams& testParams)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const deUint32 width = testParams.width;
const deUint32 height = testParams.height;
Allocator& allocator = context.getDefaultAllocator();
std::vector<tcu::Vec4> vertices;
switch (testParams.stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
{
float z = 0.0f;
const float w = 1.0f;
vertices.reserve(3 * height * width);
for (deUint32 y = 0; y < height; ++y)
for (deUint32 x = 0; x < width; ++x)
{
const float x0 = float(x + 0) / float(width);
const float y0 = float(y + 0) / float(height);
const float x1 = float(x + 1) / float(width);
const float y1 = float(y + 1) / float(height);
const float xm = (x0 + x1) / 2.0f;
const float ym = (y0 + y1) / 2.0f;
vertices.push_back(tcu::Vec4(x0, y0, z, w));
vertices.push_back(tcu::Vec4(xm, y1, z, w));
vertices.push_back(tcu::Vec4(x1, ym, z, w));
z += 1.f;
}
break;
}
case VK_SHADER_STAGE_GEOMETRY_BIT:
{
const float z = 0.0f;
const float w = 1.0f;
vertices.reserve(3 * height * width);
for (deUint32 y = 0; y < height; ++y)
for (deUint32 x = 0; x < width; ++x)
{
const float x0 = float(x + 0) / float(width);
const float y0 = float(y + 0) / float(height);
const float x1 = float(x + 1) / float(width);
const float y1 = float(y + 1) / float(height);
const float xm = (x0 + x1) / 2.0f;
const float ym = (y0 + y1) / 2.0f;
vertices.push_back(tcu::Vec4(x0, y0, z, w));
vertices.push_back(tcu::Vec4(xm, y1, z, w));
vertices.push_back(tcu::Vec4(x1, ym, z, w));
}
break;
}
case VK_SHADER_STAGE_FRAGMENT_BIT:
{
const float z = 1.0f;
const float w = 1.0f;
const tcu::Vec4 a = tcu::Vec4(-1.0f, -1.0f, z, w);
const tcu::Vec4 b = tcu::Vec4(+1.0f, -1.0f, z, w);
const tcu::Vec4 c = tcu::Vec4(-1.0f, +1.0f, z, w);
const tcu::Vec4 d = tcu::Vec4(+1.0f, +1.0f, z, w);
vertices.push_back(a);
vertices.push_back(b);
vertices.push_back(c);
vertices.push_back(b);
vertices.push_back(c);
vertices.push_back(d);
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
// Initialize vertex buffer
{
const VkDeviceSize vertexBufferSize = sizeof(vertices[0][0]) * vertices[0].SIZE * vertices.size();
const VkBufferCreateInfo vertexBufferCreateInfo = makeBufferCreateInfo(vertexBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
m_vertexCount = static_cast<deUint32>(vertices.size());
m_vertexBuffer = createBuffer(vkd, device, &vertexBufferCreateInfo);
m_vertexBufferAlloc = bindBuffer(vkd, device, allocator, *m_vertexBuffer, vk::MemoryRequirement::HostVisible);
deMemcpy(m_vertexBufferAlloc->getHostPtr(), vertices.data(), (size_t)vertexBufferSize);
flushAlloc(vkd, device, *m_vertexBufferAlloc);
}
}
Move<VkPipeline> GraphicsConfiguration::makeGraphicsPipeline (Context& context,
TestParams& testParams)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const bool tessStageTest = (testParams.stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || testParams.stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
const VkPrimitiveTopology topology = tessStageTest ? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST : VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
const deUint32 patchControlPoints = tessStageTest ? 3 : 0;
const std::vector<VkViewport> viewports (1, makeViewport(testParams.width, testParams.height));
const std::vector<VkRect2D> scissors (1, makeRect2D(testParams.width, testParams.height));
return vk::makeGraphicsPipeline (vkd,
device,
*m_pipelineLayout,
*m_vertShaderModule,
*m_tescShaderModule,
*m_teseShaderModule,
*m_geomShaderModule,
*m_fragShaderModule,
*m_renderPass,
viewports,
scissors,
topology,
0,
patchControlPoints);
}
void GraphicsConfiguration::initConfiguration (Context& context,
TestParams& testParams)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
Allocator& allocator = context.getDefaultAllocator();
vk::BinaryCollection& collection = context.getBinaryCollection();
VkShaderStageFlags shaders = static_cast<VkShaderStageFlags>(0);
deUint32 shaderCount = 0;
if (collection.contains("vert")) shaders |= VK_SHADER_STAGE_VERTEX_BIT;
if (collection.contains("geom")) shaders |= VK_SHADER_STAGE_GEOMETRY_BIT;
if (collection.contains("tesc")) shaders |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
if (collection.contains("tese")) shaders |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
if (collection.contains("frag")) shaders |= VK_SHADER_STAGE_FRAGMENT_BIT;
for (BinaryCollection::Iterator it = collection.begin(); it != collection.end(); ++it)
shaderCount++;
if (shaderCount != (deUint32)dePop32(shaders))
TCU_THROW(InternalError, "Unused shaders detected in the collection");
if (0 != (shaders & VK_SHADER_STAGE_VERTEX_BIT)) m_vertShaderModule = createShaderModule(vkd, device, collection.get("vert"), 0);
if (0 != (shaders & VK_SHADER_STAGE_GEOMETRY_BIT)) m_geomShaderModule = createShaderModule(vkd, device, collection.get("geom"), 0);
if (0 != (shaders & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)) m_tescShaderModule = createShaderModule(vkd, device, collection.get("tesc"), 0);
if (0 != (shaders & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) m_teseShaderModule = createShaderModule(vkd, device, collection.get("tese"), 0);
if (0 != (shaders & VK_SHADER_STAGE_FRAGMENT_BIT)) m_fragShaderModule = createShaderModule(vkd, device, collection.get("frag"), 0);
m_descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_ALL_GRAPHICS)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_ALL_GRAPHICS)
.build(vkd, device);
m_descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
m_descriptorSet = makeDescriptorSet (vkd, device, *m_descriptorPool, *m_descriptorSetLayout);
m_framebufferImage = makeImage (vkd, device, makeImageCreateInfo(m_framebufferFormat, testParams.width, testParams.height, 1u, VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT));
m_framebufferImageAlloc = bindImage (vkd, device, allocator, *m_framebufferImage, MemoryRequirement::Any);
m_framebufferAttachment = makeImageView (vkd, device, *m_framebufferImage, VK_IMAGE_VIEW_TYPE_2D, m_framebufferFormat, makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u));
m_renderPass = makeRenderPass (vkd, device, m_framebufferFormat);
m_framebuffer = makeFramebuffer (vkd, device, *m_renderPass, *m_framebufferAttachment, testParams.width, testParams.height);
m_pipelineLayout = makePipelineLayout (vkd, device, m_descriptorSetLayout.get());
m_pipeline = makeGraphicsPipeline (context, testParams);
initVertexBuffer(context, testParams);
}
void GraphicsConfiguration::fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer cmdBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const VkDeviceSize vertexBufferOffset = 0;
const VkWriteDescriptorSetAccelerationStructureKHR rayQueryAccelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
rayQueryTopAccelerationStructurePtr, // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &resultImageInfo)
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &rayQueryAccelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipelineLayout, 0, 1, &m_descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipeline);
vkd.cmdBindVertexBuffers(cmdBuffer, 0u, 1u, &m_vertexBuffer.get(), &vertexBufferOffset);
beginRenderPass(vkd, cmdBuffer, *m_renderPass, *m_framebuffer, makeRect2D(0, 0, testParams.width, testParams.height), tcu::UVec4());
vkd.cmdDraw(cmdBuffer, m_vertexCount, 1u, 0u, 0u);
endRenderPass(vkd, cmdBuffer);
}
class ComputeConfiguration : public PipelineConfiguration
{
public:
ComputeConfiguration ();
virtual ~ComputeConfiguration () {};
static void checkSupport (Context& context,
const TestParams& testParams);
static void initPrograms (SourceCollections& programCollection,
const TestParams& testParams);
virtual void initConfiguration (Context& context,
TestParams& testParams) override;
virtual void fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer commandBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo) override;
protected:
Move<VkDescriptorSetLayout> m_descriptorSetLayout;
Move<VkDescriptorPool> m_descriptorPool;
Move<VkDescriptorSet> m_descriptorSet;
Move<VkPipelineLayout> m_pipelineLayout;
Move<VkShaderModule> m_shaderModule;
Move<VkPipeline> m_pipeline;
};
ComputeConfiguration::ComputeConfiguration ()
: PipelineConfiguration ()
, m_descriptorSetLayout ()
, m_descriptorPool ()
, m_descriptorSet ()
, m_pipelineLayout ()
, m_shaderModule ()
, m_pipeline ()
{
}
void ComputeConfiguration::checkSupport (Context& context,
const TestParams& testParams)
{
DE_UNREF(context);
DE_UNREF(testParams);
}
void ComputeConfiguration::initPrograms (SourceCollections& programCollection,
const TestParams& testParams)
{
const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
const std::string testShaderBody = testParams.testConfigShaderBodyText(testParams);
const std::string testBody =
" ivec3 pos = ivec3(gl_WorkGroupID);\n"
" ivec3 size = ivec3(gl_NumWorkGroups);\n"
+ testShaderBody;
switch (testParams.stage)
{
case VK_SHADER_STAGE_COMPUTE_BIT:
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_query : require\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("comp") << glu::ComputeSource(updateRayTracingGLSL(css.str())) << buildOptions;
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
void ComputeConfiguration::initConfiguration (Context& context,
TestParams& testParams)
{
DE_UNREF(testParams);
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
vk::BinaryCollection& collection = context.getBinaryCollection();
m_descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_COMPUTE_BIT)
.build(vkd, device);
m_descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
m_descriptorSet = makeDescriptorSet(vkd, device, *m_descriptorPool, *m_descriptorSetLayout);
m_pipelineLayout = makePipelineLayout(vkd, device, m_descriptorSetLayout.get());
m_shaderModule = createShaderModule(vkd, device, collection.get("comp"), 0);
m_pipeline = makeComputePipeline(vkd, device, *m_pipelineLayout, *m_shaderModule);
}
void ComputeConfiguration::fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer cmdBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const VkWriteDescriptorSetAccelerationStructureKHR rayQueryAccelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
rayQueryTopAccelerationStructurePtr, // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &resultImageInfo)
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &rayQueryAccelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *m_pipelineLayout, 0, 1, &m_descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, m_pipeline.get());
vkd.cmdDispatch(cmdBuffer, testParams.width, testParams.height, 1);
}
class RayTracingConfiguration : public PipelineConfiguration
{
public:
RayTracingConfiguration ();
virtual ~RayTracingConfiguration () {};
static void checkSupport (Context& context,
const TestParams& testParams);
static void initPrograms (SourceCollections& programCollection,
const TestParams& testParams);
virtual void initConfiguration (Context& context,
TestParams& testParams) override;
virtual void fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer commandBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo) override;
protected:
de::MovePtr<BufferWithMemory> createShaderBindingTable (const InstanceInterface& vki,
const DeviceInterface& vkd,
const VkDevice device,
const VkPhysicalDevice physicalDevice,
const VkPipeline pipeline,
Allocator& allocator,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
const deUint32 group);
protected:
deUint32 m_shaders;
deUint32 m_raygenShaderGroup;
deUint32 m_missShaderGroup;
deUint32 m_hitShaderGroup;
deUint32 m_callableShaderGroup;
deUint32 m_shaderGroupCount;
Move<VkDescriptorSetLayout> m_descriptorSetLayout;
Move<VkDescriptorPool> m_descriptorPool;
Move<VkDescriptorSet> m_descriptorSet;
Move<VkPipelineLayout> m_pipelineLayout;
de::MovePtr<RayTracingPipeline> m_rayTracingPipeline;
Move<VkPipeline> m_pipeline;
de::MovePtr<BufferWithMemory> m_raygenShaderBindingTable;
de::MovePtr<BufferWithMemory> m_hitShaderBindingTable;
de::MovePtr<BufferWithMemory> m_missShaderBindingTable;
de::MovePtr<BufferWithMemory> m_callableShaderBindingTable;
VkStridedDeviceAddressRegionKHR m_raygenShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR m_missShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR m_hitShaderBindingTableRegion;
VkStridedDeviceAddressRegionKHR m_callableShaderBindingTableRegion;
de::SharedPtr<BottomLevelAccelerationStructure> m_bottomLevelAccelerationStructure;
de::SharedPtr<TopLevelAccelerationStructure> m_topLevelAccelerationStructure;
};
RayTracingConfiguration::RayTracingConfiguration()
: m_shaders (0)
, m_raygenShaderGroup (~0u)
, m_missShaderGroup (~0u)
, m_hitShaderGroup (~0u)
, m_callableShaderGroup (~0u)
, m_shaderGroupCount (0)
, m_descriptorSetLayout ()
, m_descriptorPool ()
, m_descriptorSet ()
, m_pipelineLayout ()
, m_rayTracingPipeline ()
, m_pipeline ()
, m_raygenShaderBindingTable ()
, m_hitShaderBindingTable ()
, m_missShaderBindingTable ()
, m_callableShaderBindingTable ()
, m_raygenShaderBindingTableRegion ()
, m_missShaderBindingTableRegion ()
, m_hitShaderBindingTableRegion ()
, m_callableShaderBindingTableRegion ()
, m_bottomLevelAccelerationStructure ()
, m_topLevelAccelerationStructure ()
{
}
void RayTracingConfiguration::checkSupport (Context& context,
const TestParams& testParams)
{
DE_UNREF(testParams);
context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
}
void RayTracingConfiguration::initPrograms (SourceCollections& programCollection,
const TestParams& testParams)
{
const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
const std::string testShaderBody = testParams.testConfigShaderBodyText(testParams);
const std::string testBody =
" ivec3 pos = ivec3(gl_LaunchIDEXT);\n"
" ivec3 size = ivec3(gl_LaunchSizeEXT);\n"
+ testShaderBody;
switch (testParams.stage)
{
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
break;
}
case VK_SHADER_STAGE_ANY_HIT_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions;
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"hitAttributeEXT vec3 attribs;\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(getMissPassthrough())) << buildOptions;
break;
}
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions;
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"hitAttributeEXT vec3 attribs;\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(getMissPassthrough())) << buildOptions;
break;
}
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions;
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"hitAttributeEXT vec3 hitAttribute;\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
" hitAttribute = vec3(0.0f, 0.0f, 0.0f);\n"
" reportIntersectionEXT(1.0f, 0);\n"
"}\n";
programCollection.glslSources.add("sect") << glu::IntersectionSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(getMissPassthrough())) << buildOptions;
break;
}
case VK_SHADER_STAGE_MISS_BIT_KHR:
{
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions;
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"layout(location = 0) rayPayloadInEXT vec3 hitValue;\n"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
break;
}
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
{
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"layout(location = 0) callableDataEXT float dummy;"
"layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n"
"\n"
"void main()\n"
"{\n"
" executeCallableEXT(0, 0);\n"
"}\n";
programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
{
std::stringstream css;
css <<
"#version 460 core\n"
"#extension GL_EXT_ray_tracing : require\n"
"#extension GL_EXT_ray_query : require\n"
"layout(location = 0) callableDataInEXT float dummy;"
"layout(set = 0, binding = 0, r32i) uniform iimage3D result;\n"
"layout(set = 0, binding = 2) uniform accelerationStructureEXT rayQueryTopLevelAccelerationStructure;\n"
"\n"
"void main()\n"
"{\n"
<< testBody <<
"}\n";
programCollection.glslSources.add("call") << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions;
}
programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("chit") << glu::ClosestHitSource(updateRayTracingGLSL(getHitPassthrough())) << buildOptions;
programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(getMissPassthrough())) << buildOptions;
break;
}
default:
TCU_THROW(InternalError, "Unknown stage");
}
}
de::MovePtr<BufferWithMemory> RayTracingConfiguration::createShaderBindingTable (const InstanceInterface& vki,
const DeviceInterface& vkd,
const VkDevice device,
const VkPhysicalDevice physicalDevice,
const VkPipeline pipeline,
Allocator& allocator,
de::MovePtr<RayTracingPipeline>& rayTracingPipeline,
const deUint32 group)
{
de::MovePtr<BufferWithMemory> shaderBindingTable;
if (group < m_shaderGroupCount)
{
const deUint32 shaderGroupHandleSize = getShaderGroupHandleSize(vki, physicalDevice);
const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice);
shaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, group, 1u);
}
return shaderBindingTable;
}
void RayTracingConfiguration::initConfiguration (Context& context,
TestParams& testParams)
{
DE_UNREF(testParams);
const InstanceInterface& vki = context.getInstanceInterface();
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
const VkPhysicalDevice physicalDevice = context.getPhysicalDevice();
vk::BinaryCollection& collection = context.getBinaryCollection();
Allocator& allocator = context.getDefaultAllocator();
const deUint32 shaderGroupHandleSize = getShaderGroupHandleSize(vki, physicalDevice);
const VkShaderStageFlags hitStages = VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
deUint32 shaderCount = 0;
m_shaderGroupCount = 0;
if (collection.contains("rgen")) m_shaders |= VK_SHADER_STAGE_RAYGEN_BIT_KHR;
if (collection.contains("ahit")) m_shaders |= VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
if (collection.contains("chit")) m_shaders |= VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
if (collection.contains("miss")) m_shaders |= VK_SHADER_STAGE_MISS_BIT_KHR;
if (collection.contains("sect")) m_shaders |= VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
if (collection.contains("call")) m_shaders |= VK_SHADER_STAGE_CALLABLE_BIT_KHR;
for (BinaryCollection::Iterator it = collection.begin(); it != collection.end(); ++it)
shaderCount++;
if (shaderCount != (deUint32)dePop32(m_shaders))
TCU_THROW(InternalError, "Unused shaders detected in the collection");
if (0 != (m_shaders & VK_SHADER_STAGE_RAYGEN_BIT_KHR))
m_raygenShaderGroup = m_shaderGroupCount++;
if (0 != (m_shaders & VK_SHADER_STAGE_MISS_BIT_KHR))
m_missShaderGroup = m_shaderGroupCount++;
if (0 != (m_shaders & hitStages))
m_hitShaderGroup = m_shaderGroupCount++;
if (0 != (m_shaders & VK_SHADER_STAGE_CALLABLE_BIT_KHR))
m_callableShaderGroup = m_shaderGroupCount++;
m_rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
m_descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES)
.build(vkd, device);
m_descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
m_descriptorSet = makeDescriptorSet(vkd, device, *m_descriptorPool, *m_descriptorSetLayout);
if (0 != (m_shaders & VK_SHADER_STAGE_RAYGEN_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR , createShaderModule(vkd, device, collection.get("rgen"), 0), m_raygenShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_ANY_HIT_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("ahit"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR , createShaderModule(vkd, device, collection.get("chit"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_MISS_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR , createShaderModule(vkd, device, collection.get("miss"), 0), m_missShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_INTERSECTION_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR , createShaderModule(vkd, device, collection.get("sect"), 0), m_hitShaderGroup);
if (0 != (m_shaders & VK_SHADER_STAGE_CALLABLE_BIT_KHR)) m_rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR , createShaderModule(vkd, device, collection.get("call"), 0), m_callableShaderGroup);
m_pipelineLayout = makePipelineLayout(vkd, device, m_descriptorSetLayout.get());
m_pipeline = m_rayTracingPipeline->createPipeline(vkd, device, *m_pipelineLayout);
m_raygenShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *m_pipeline, allocator, m_rayTracingPipeline, m_raygenShaderGroup);
m_missShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *m_pipeline, allocator, m_rayTracingPipeline, m_missShaderGroup);
m_hitShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *m_pipeline, allocator, m_rayTracingPipeline, m_hitShaderGroup);
m_callableShaderBindingTable = createShaderBindingTable(vki, vkd, device, physicalDevice, *m_pipeline, allocator, m_rayTracingPipeline, m_callableShaderGroup);
m_raygenShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(m_raygenShaderBindingTable), shaderGroupHandleSize);
m_missShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(m_missShaderBindingTable), shaderGroupHandleSize);
m_hitShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(m_hitShaderBindingTable), shaderGroupHandleSize);
m_callableShaderBindingTableRegion = makeStridedDeviceAddressRegion(vkd, device, getVkBuffer(m_callableShaderBindingTable), shaderGroupHandleSize);
}
void RayTracingConfiguration::fillCommandBuffer (Context& context,
TestParams& testParams,
VkCommandBuffer commandBuffer,
const VkAccelerationStructureKHR* rayQueryTopAccelerationStructurePtr,
const VkDescriptorImageInfo& resultImageInfo)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
Allocator& allocator = context.getDefaultAllocator();
de::MovePtr<BottomLevelAccelerationStructure> bottomLevelAccelerationStructure = makeBottomLevelAccelerationStructure();
de::MovePtr<TopLevelAccelerationStructure> topLevelAccelerationStructure = makeTopLevelAccelerationStructure();
m_bottomLevelAccelerationStructure = de::SharedPtr<BottomLevelAccelerationStructure>(bottomLevelAccelerationStructure.release());
m_bottomLevelAccelerationStructure->setDefaultGeometryData(testParams.stage);
m_bottomLevelAccelerationStructure->createAndBuild(vkd, device, commandBuffer, allocator);
m_topLevelAccelerationStructure = de::SharedPtr<TopLevelAccelerationStructure>(topLevelAccelerationStructure.release());
m_topLevelAccelerationStructure->setInstanceCount(1);
m_topLevelAccelerationStructure->addInstance(m_bottomLevelAccelerationStructure);
m_topLevelAccelerationStructure->createAndBuild(vkd, device, commandBuffer, allocator);
const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = m_topLevelAccelerationStructure.get();
const VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures;
};
const VkWriteDescriptorSetAccelerationStructureKHR rayQueryAccelerationStructureWriteDescriptorSet =
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType;
DE_NULL, // const void* pNext;
1u, // deUint32 accelerationStructureCount;
rayQueryTopAccelerationStructurePtr, // const VkAccelerationStructureKHR* pAccelerationStructures;
};
DescriptorSetUpdateBuilder()
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &resultImageInfo)
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet)
.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &rayQueryAccelerationStructureWriteDescriptorSet)
.update(vkd, device);
vkd.cmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *m_pipelineLayout, 0, 1, &m_descriptorSet.get(), 0, DE_NULL);
vkd.cmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, m_pipeline.get());
cmdTraceRays(vkd,
commandBuffer,
&m_raygenShaderBindingTableRegion,
&m_missShaderBindingTableRegion,
&m_hitShaderBindingTableRegion,
&m_callableShaderBindingTableRegion,
testParams.width, testParams.height, 1);
}
const std::string getShaderBodyText (const TestParams& testParams)
{
if (testParams.geomType == GEOM_TYPE_AABBS)
{
const std::string result =
" uint rayFlags = 0;\n"
" uint cullMask = 0xFF;\n"
" float tmin = 0.0;\n"
" float tmax = 9.0;\n"
" vec3 origin = vec3((float(pos.x) + 0.5f) / float(size.x), (float(pos.y) + 0.5f) / float(size.y), 0.0);\n"
" vec3 direct = vec3(0.0, 0.0, -1.0);\n"
" uint count = 0;\n"
" rayQueryEXT rayQuery;\n"
"\n"
" rayQueryInitializeEXT(rayQuery, rayQueryTopLevelAccelerationStructure, rayFlags, cullMask, origin, tmin, direct, tmax);\n"
"\n"
" while(rayQueryProceedEXT(rayQuery))\n"
" {\n"
" if (rayQueryGetIntersectionTypeEXT(rayQuery, false) == gl_RayQueryCandidateIntersectionAABBEXT)\n"
" {\n"
" rayQueryGenerateIntersectionEXT(rayQuery, 0.5f);\n"
" count++;\n"
" }\n"
" }\n"
" imageStore(result, pos, ivec4(count, 0, 0, 0));\n"
"\n";
return result;
}
else if (testParams.geomType == GEOM_TYPE_TRIANGLES)
{
const std::string result =
" uint rayFlags = gl_RayFlagsNoOpaqueEXT;\n"
" uint cullMask = 0xFF;\n"
" float tmin = 0.0;\n"
" float tmax = 9.0;\n"
" vec3 origin = vec3((float(pos.x) + 0.5f) / float(size.x), (float(pos.y) + 0.5f) / float(size.y), 0.0);\n"
" vec3 direct = vec3(0.0, 0.0, -1.0);\n"
" uint count = 0;\n"
" rayQueryEXT rayQuery;\n"
"\n"
" rayQueryInitializeEXT(rayQuery, rayQueryTopLevelAccelerationStructure, rayFlags, cullMask, origin, tmin, direct, tmax);\n"
"\n"
" while(rayQueryProceedEXT(rayQuery))\n"
" {\n"
" if (rayQueryGetIntersectionTypeEXT(rayQuery, false) == gl_RayQueryCandidateIntersectionTriangleEXT)\n"
" {\n"
" rayQueryConfirmIntersectionEXT(rayQuery);\n"
" count++;\n"
" }\n"
" }\n"
" imageStore(result, pos, ivec4(count, 0, 0, 0));\n"
"\n";
return result;
}
else
{
TCU_THROW(InternalError, "Unknown geometry type");
}
}
class TestConfigurationNoMiss : public TestConfiguration
{
public:
virtual const VkAccelerationStructureKHR* initAccelerationStructures (Context& context,
TestParams& testParams,
VkCommandBuffer cmdBuffer) override;
virtual bool verify (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams) override;
private:
deUint32 chooseAABB (de::Random& rng,
const std::vector<tcu::Vec2>& vertices,
const std::vector<tcu::UVec2>& aabbs);
deUint32 chooseTriangle (de::Random& rng,
const std::vector<tcu::Vec2>& vertices,
const std::vector<tcu::UVec3>& triangles);
};
deUint32 TestConfigurationNoMiss::chooseAABB (de::Random& rng,
const std::vector<tcu::Vec2>& vertices,
const std::vector<tcu::UVec2>& aabbs)
{
while (true)
{
const deUint32 n = (deUint32)rng.getInt(0, (deUint32)aabbs.size() - 1);
const tcu::UVec2& t = aabbs[n];
const tcu::Vec2& a = vertices[t.x()];
const tcu::Vec2& b = vertices[t.y()];
if (deFloatAbs(a.x() - b.x()) < MIN_AABB_SIDE_LENGTH || deFloatAbs(a.y() - b.y()) < MIN_AABB_SIDE_LENGTH)
continue;
return n;
}
}
deUint32 TestConfigurationNoMiss::chooseTriangle (de::Random& rng,
const std::vector<tcu::Vec2>& vertices,
const std::vector<tcu::UVec3>& triangles)
{
while (true)
{
const deUint32 n = (deUint32)rng.getInt(0, (deUint32)triangles.size() - 1);
const tcu::UVec3& t = triangles[n];
const tcu::Vec2& a = vertices[t.x()];
const tcu::Vec2& b = vertices[t.y()];
const tcu::Vec2& c = vertices[t.z()];
const float ab = triangleEdgeLength(a, b);
const float bc = triangleEdgeLength(b, c);
const float ca = triangleEdgeLength(c, a);
if (ab < MIN_TRIANGLE_EDGE_LENGTH || bc < MIN_TRIANGLE_EDGE_LENGTH || ca < MIN_TRIANGLE_EDGE_LENGTH || triangleArea(ab, bc, ca) < MIN_TRIANGLE_AREA_SIZE)
continue;
return n;
}
}
const VkAccelerationStructureKHR* TestConfigurationNoMiss::initAccelerationStructures (Context& context,
TestParams& testParams,
VkCommandBuffer cmdBuffer)
{
const DeviceInterface& vkd = context.getDeviceInterface();
const VkDevice device = context.getDevice();
Allocator& allocator = context.getDefaultAllocator();
const tcu::Vec2 centerPixelCenter = tcu::Vec2(0.5f - 0.5f / float(testParams.width), 0.5f - 0.5f / float(testParams.height));
de::MovePtr<BottomLevelAccelerationStructure> rayQueryBottomLevelAccelerationStructure = makeBottomLevelAccelerationStructure();
de::MovePtr<TopLevelAccelerationStructure> rayQueryTopLevelAccelerationStructure = makeTopLevelAccelerationStructure();
de::Random rng (testParams.randomSeed);
std::vector<tcu::Vec3> geometryData;
if (testParams.geomType == GEOM_TYPE_AABBS)
{
std::vector<tcu::UVec2> aabbs;
std::vector<tcu::Vec2> vertices;
vertices.reserve(2u * testParams.squaresGroupCount);
aabbs.reserve(testParams.squaresGroupCount);
{
// a---g---+
// | | |
// e---d---h
// | | |
// +---f---b
//
// a-d, d-b, e-f, g-h
const tcu::Vec2 d = centerPixelCenter;
const tcu::Vec2 a = tcu::Vec2(0.0f, 0.0f);
const tcu::Vec2 b = tcu::Vec2(1.0f, 1.0f);
const tcu::Vec2 e = tcu::Vec2(a.x(), d.y());
const tcu::Vec2 f = tcu::Vec2(d.x(), b.y());
const tcu::Vec2 g = tcu::Vec2(d.x(), a.y());
const tcu::Vec2 h = tcu::Vec2(b.x(), d.y());
const deUint32 A = 0;
const deUint32 B = 1;
const deUint32 D = 2;
const deUint32 E = 3;
const deUint32 F = 4;
const deUint32 G = 5;
const deUint32 H = 6;
vertices.push_back(a);
vertices.push_back(b);
vertices.push_back(d);
vertices.push_back(e);
vertices.push_back(f);
vertices.push_back(g);
vertices.push_back(h);
aabbs.push_back(tcu::UVec2(A, D));
aabbs.push_back(tcu::UVec2(D, B));
aabbs.push_back(tcu::UVec2(E, F));
aabbs.push_back(tcu::UVec2(G, H));
}
while (aabbs.size() < testParams.squaresGroupCount)
{
// a-------+ a---g---+
// | | | | |
// | | -> e---d---h
// | | | | |
// +-------b +---f---b
//
// a-b -> a-d, d-b, e-f, g-h
const deUint32 n = chooseAABB(rng, vertices, aabbs);
tcu::UVec2& t = aabbs[n];
const tcu::Vec2& a = vertices[t.x()];
const tcu::Vec2& b = vertices[t.y()];
const float alfa = rng.getFloat(0.2f, 0.8f);
const float beta = rng.getFloat(0.2f, 0.8f);
const tcu::Vec2 d = mixCoordsVec2(a, b, alfa, beta);
const tcu::Vec2 e = tcu::Vec2(a.x(), d.y());
const tcu::Vec2 f = tcu::Vec2(d.x(), b.y());
const tcu::Vec2 g = tcu::Vec2(d.x(), a.y());
const tcu::Vec2 h = tcu::Vec2(b.x(), d.y());
const deUint32 B = t.y();
const deUint32 D = (deUint32)vertices.size();
const deUint32 E = D + 1;
const deUint32 F = D + 2;
const deUint32 G = D + 3;
const deUint32 H = D + 4;
if (d.x() <= a.x() || d.x() >= b.x() || d.y() <= a.y() || d.y() >= b.y())
continue;
vertices.push_back(d);
vertices.push_back(e);
vertices.push_back(f);
vertices.push_back(g);
vertices.push_back(h);
t.y() = D;
aabbs.push_back(tcu::UVec2(D, B));
aabbs.push_back(tcu::UVec2(E, F));
aabbs.push_back(tcu::UVec2(G, H));
}
geometryData.reserve(2u * aabbs.size());
for (size_t i = 0; i < aabbs.size(); ++i)
{
const tcu::Vec2& a = vertices[aabbs[i].x()];
const tcu::Vec2& b = vertices[aabbs[i].y()];
const float az = -rng.getFloat(0.1f, 0.5f);
const float bz = az + 0.01f;
const tcu::Vec3 A = tcu::Vec3(a.x(), a.y(), az);
const tcu::Vec3 B = tcu::Vec3(b.x(), b.y(), bz);
geometryData.push_back(A);
geometryData.push_back(B);
}
}
else if (testParams.geomType == GEOM_TYPE_TRIANGLES)
{
std::vector<tcu::UVec3> triangles;
std::vector<tcu::Vec2> vertices;
std::vector<float> verticesZ;
vertices.reserve(3u * testParams.squaresGroupCount);
triangles.reserve(testParams.squaresGroupCount);
{
// Initial triangle set: aeb, bec, cef, fei, ieh, heg, ged, dea
// e - is not math middle, but centrum of one of the pixels
// a---b---c
// | \ | / |
// d---e---f
// | / | \ |
// g---h---i
const tcu::Vec2 e = centerPixelCenter;
const tcu::Vec2 a = tcu::Vec2( 0.0f, 0.0f);
const tcu::Vec2 i = tcu::Vec2( 1.0f, 1.0f);
const tcu::Vec2 c = tcu::Vec2(i.x(), a.y());
const tcu::Vec2 g = tcu::Vec2(a.x(), i.y());
const tcu::Vec2 b = tcu::Vec2(e.x(), a.y());
const tcu::Vec2 d = tcu::Vec2(a.x(), e.y());
const tcu::Vec2 f = tcu::Vec2(i.x(), e.y());
const tcu::Vec2 h = tcu::Vec2(e.x(), i.y());
const deUint32 A = 0;
const deUint32 B = 1;
const deUint32 C = 2;
const deUint32 D = 3;
const deUint32 E = 4;
const deUint32 F = 5;
const deUint32 G = 6;
const deUint32 H = 7;
const deUint32 I = 8;
vertices.push_back(a);
vertices.push_back(b);
vertices.push_back(c);
vertices.push_back(d);
vertices.push_back(e);
vertices.push_back(f);
vertices.push_back(g);
vertices.push_back(h);
vertices.push_back(i);
triangles.push_back(tcu::UVec3(A, E, B));
triangles.push_back(tcu::UVec3(B, E, C));
triangles.push_back(tcu::UVec3(C, E, F));
triangles.push_back(tcu::UVec3(F, E, I));
triangles.push_back(tcu::UVec3(I, E, H));
triangles.push_back(tcu::UVec3(H, E, G));
triangles.push_back(tcu::UVec3(G, E, D));
triangles.push_back(tcu::UVec3(D, E, A));
}
while (triangles.size() < testParams.squaresGroupCount)
{
const deUint32 n = chooseTriangle(rng, vertices, triangles);
tcu::UVec3& t = triangles[n];
const tcu::Vec2& a = vertices[t.x()];
const tcu::Vec2& b = vertices[t.y()];
const tcu::Vec2& c = vertices[t.z()];
const float alfa = rng.getFloat(0.2f, 0.8f);
const float beta = rng.getFloat(0.2f, 0.8f);
const tcu::Vec2 d = mixVec2(mixVec2(a, b, alfa), c, beta);
const deUint32& p = t.x();
const deUint32& q = t.y();
deUint32& r = t.z();
const deUint32 R = (deUint32)vertices.size();
vertices.push_back(d);
triangles.push_back(tcu::UVec3(q, r, R));
triangles.push_back(tcu::UVec3(p, r, R));
r = R;
}
verticesZ.reserve(vertices.size());
for (size_t i = 0; i < vertices.size(); ++i)
verticesZ.push_back(-rng.getFloat(0.01f, 0.99f));
geometryData.reserve(3u * triangles.size());
for (size_t i = 0; i < triangles.size(); ++i)
{
const deUint32 a = triangles[i].x();
const deUint32 b = triangles[i].y();
const deUint32 c = triangles[i].z();
geometryData.push_back(tcu::Vec3(vertices[a].x(), vertices[a].y(), verticesZ[a]));
geometryData.push_back(tcu::Vec3(vertices[b].x(), vertices[b].y(), verticesZ[b]));
geometryData.push_back(tcu::Vec3(vertices[c].x(), vertices[c].y(), verticesZ[c]));
}
}
else
{
TCU_THROW(InternalError, "Unknown geometry type");
}
rayQueryBottomLevelAccelerationStructure->setGeometryCount(1u);
rayQueryBottomLevelAccelerationStructure->addGeometry(geometryData, testParams.geomType == GEOM_TYPE_TRIANGLES);
rayQueryBottomLevelAccelerationStructure->createAndBuild(vkd, device, cmdBuffer, allocator);
m_bottomAccelerationStructures.push_back(de::SharedPtr<BottomLevelAccelerationStructure>(rayQueryBottomLevelAccelerationStructure.release()));
m_topAccelerationStructure = de::SharedPtr<TopLevelAccelerationStructure>(rayQueryTopLevelAccelerationStructure.release());
m_topAccelerationStructure->addInstance(m_bottomAccelerationStructures.back());
m_topAccelerationStructure->createAndBuild(vkd, device, cmdBuffer, allocator);
return m_topAccelerationStructure.get()->getPtr();
}
bool TestConfigurationNoMiss::verify (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams)
{
tcu::TestLog& log = context.getTestContext().getLog();
const deUint32 width = testParams.width;
const deUint32 height = testParams.height;
const deInt32* resultPtr = (deInt32*)resultBuffer->getAllocation().getHostPtr();
deUint32 failures = 0;
deUint32 pos = 0;
for (deUint32 y = 0; y < height; ++y)
for (deUint32 x = 0; x < width; ++x)
{
if (resultPtr[pos] <= 0)
failures++;
pos++;
}
if (failures != 0)
{
std::stringstream css;
pos = 0;
for (deUint32 y = 0; y < height; ++y)
{
for (deUint32 x = 0; x < width; ++x)
{
if (resultPtr[pos] <= 0)
css << std::setw(3) << resultPtr[pos] << ",";
else
css << "___,";
pos++;
}
css << std::endl;
}
log << tcu::TestLog::Message << "Retrieved:" << tcu::TestLog::EndMessage;
log << tcu::TestLog::Message << css.str() << tcu::TestLog::EndMessage;
}
return (failures == 0);
}
class TestConfigurationSingleHit : public TestConfigurationNoMiss
{
public:
virtual bool verify (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams) override;
};
bool TestConfigurationSingleHit::verify (BufferWithMemory* resultBuffer,
Context& context,
TestParams& testParams)
{
tcu::TestLog& log = context.getTestContext().getLog();
const deUint32 width = testParams.width;
const deUint32 height = testParams.height;
const deInt32* resultPtr = (deInt32*)resultBuffer->getAllocation().getHostPtr();
const deInt32 expectedValue = 1;
deUint32 failures = 0;
deUint32 pos = 0;
for (deUint32 y = 0; y < height; ++y)
for (deUint32 x = 0; x < width; ++x)
{
if (resultPtr[pos] != expectedValue)
failures++;
pos++;
}
if (failures != 0)
{
std::stringstream css;
pos = 0;
for (deUint32 y = 0; y < height; ++y)
{
for (deUint32 x = 0; x < width; ++x)
{
if (resultPtr[pos] != expectedValue)
css << std::setw(3) << resultPtr[pos] << ",";
else
css << "___,";
pos++;
}
css << std::endl;
}
log << tcu::TestLog::Message << "Retrieved:" << tcu::TestLog::EndMessage;
log << tcu::TestLog::Message << css.str() << tcu::TestLog::EndMessage;
}
return (failures == 0);
}
class RayQueryBuiltinTestInstance : public TestInstance
{
public:
RayQueryBuiltinTestInstance (Context& context, const TestParams& data);
virtual ~RayQueryBuiltinTestInstance (void);
tcu::TestStatus iterate (void);
private:
TestParams m_data;
de::MovePtr<TestConfiguration> m_testConfig;
de::MovePtr<PipelineConfiguration> m_pipelineConfig;
};
RayQueryBuiltinTestInstance::RayQueryBuiltinTestInstance (Context& context, const TestParams& data)
: vkt::TestInstance (context)
, m_data (data)
{
switch (m_data.testType)
{
case TEST_TYPE_NO_MISS: m_testConfig = de::MovePtr<TestConfiguration>(new TestConfigurationNoMiss()); break;
case TEST_TYPE_SINGLE_HIT: m_testConfig = de::MovePtr<TestConfiguration>(new TestConfigurationSingleHit()); break;
default: TCU_THROW(InternalError, "Unknown test type");
}
switch (m_data.stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_FRAGMENT_BIT:
{
m_pipelineConfig = de::MovePtr<PipelineConfiguration>(new GraphicsConfiguration());
break;
}
case VK_SHADER_STAGE_COMPUTE_BIT:
{
m_pipelineConfig = de::MovePtr<PipelineConfiguration>(new ComputeConfiguration());
break;
}
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
case VK_SHADER_STAGE_ANY_HIT_BIT_KHR:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
case VK_SHADER_STAGE_MISS_BIT_KHR:
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
{
m_pipelineConfig = de::MovePtr<PipelineConfiguration>(new RayTracingConfiguration());
break;
}
default:
TCU_THROW(InternalError, "Unknown shader stage");
}
}
RayQueryBuiltinTestInstance::~RayQueryBuiltinTestInstance (void)
{
}
tcu::TestStatus RayQueryBuiltinTestInstance::iterate (void)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const deUint32 width = m_data.width;
const deUint32 height = m_data.height;
const deUint32 depth = m_data.depth;
const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.format, width, height, depth);
const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u);
const de::MovePtr<ImageWithMemory> image = de::MovePtr<ImageWithMemory>(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any));
const Move<VkImageView> imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_3D, m_data.format, imageSubresourceRange);
const deUint32 pixelSize = mapVkFormat(m_data.format).getPixelSize();
const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(width * height * depth * pixelSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkImageSubresourceLayers resultBufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u);
const VkBufferImageCopy resultBufferImageRegion = makeBufferImageCopy(makeExtent3D(width, height, depth), resultBufferImageSubresourceLayers);
de::MovePtr<BufferWithMemory> resultBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
const VkDescriptorImageInfo resultImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL);
const Move<VkCommandPool> cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
const Move<VkCommandBuffer> cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
const VkAccelerationStructureKHR* topAccelerationStructurePtr = DE_NULL;
m_pipelineConfig->initConfiguration(m_context, m_data);
beginCommandBuffer(vkd, *cmdBuffer, 0u);
{
const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange);
const VkClearValue clearValue = makeClearValueColorU32(0u, 0u, 0u, 0u);
const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange);
const VkMemoryBarrier postTestMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier);
vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange);
cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier);
topAccelerationStructurePtr = m_testConfig->initAccelerationStructures(m_context, m_data, *cmdBuffer);
m_pipelineConfig->fillCommandBuffer(m_context, m_data, *cmdBuffer, topAccelerationStructurePtr, resultImageInfo);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTestMemoryBarrier);
vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **resultBuffer, 1u, &resultBufferImageRegion);
cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier);
}
endCommandBuffer(vkd, *cmdBuffer);
submitCommandsAndWait(vkd, device, queue, cmdBuffer.get());
invalidateMappedMemoryRange(vkd, device, resultBuffer->getAllocation().getMemory(), resultBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE);
if (m_testConfig->verify(resultBuffer.get(), m_context, m_data))
return tcu::TestStatus::pass("Pass");
else
return tcu::TestStatus::fail("Fail");
}
class RayQueryBuiltinTestCase : public TestCase
{
public:
RayQueryBuiltinTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data);
~RayQueryBuiltinTestCase (void);
virtual void checkSupport (Context& context) const;
virtual void initPrograms (SourceCollections& programCollection) const;
virtual TestInstance* createInstance (Context& context) const;
private:
TestParams m_data;
};
RayQueryBuiltinTestCase::RayQueryBuiltinTestCase (tcu::TestContext& context, const char* name, const char* desc, const TestParams data)
: vkt::TestCase (context, name, desc)
, m_data (data)
{
}
RayQueryBuiltinTestCase::~RayQueryBuiltinTestCase (void)
{
}
void RayQueryBuiltinTestCase::checkSupport (Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_query");
const VkPhysicalDeviceRayQueryFeaturesKHR& rayQueryFeaturesKHR = context.getRayQueryFeatures();
if (rayQueryFeaturesKHR.rayQuery == DE_FALSE)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayQueryFeaturesKHR.rayQuery");
const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
TCU_THROW(TestError, "VK_KHR_ray_query requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
m_data.pipelineCheckSupport(context, m_data);
}
TestInstance* RayQueryBuiltinTestCase::createInstance (Context& context) const
{
return new RayQueryBuiltinTestInstance(context, m_data);
}
void RayQueryBuiltinTestCase::initPrograms (SourceCollections& programCollection) const
{
m_data.pipelineInitPrograms(programCollection, m_data);
}
static inline CheckSupportFunc getPipelineCheckSupport (const VkShaderStageFlagBits stage)
{
switch (stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_FRAGMENT_BIT:
return GraphicsConfiguration::checkSupport;
case VK_SHADER_STAGE_COMPUTE_BIT:
return ComputeConfiguration::checkSupport;
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
case VK_SHADER_STAGE_ANY_HIT_BIT_KHR:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
case VK_SHADER_STAGE_MISS_BIT_KHR:
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
return RayTracingConfiguration::checkSupport;
default:
TCU_THROW(InternalError, "Unknown shader stage");
}
}
static inline InitProgramsFunc getPipelineInitPrograms (const VkShaderStageFlagBits stage)
{
switch (stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_FRAGMENT_BIT:
return GraphicsConfiguration::initPrograms;
case VK_SHADER_STAGE_COMPUTE_BIT:
return ComputeConfiguration::initPrograms;
case VK_SHADER_STAGE_RAYGEN_BIT_KHR:
case VK_SHADER_STAGE_ANY_HIT_BIT_KHR:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR:
case VK_SHADER_STAGE_MISS_BIT_KHR:
case VK_SHADER_STAGE_INTERSECTION_BIT_KHR:
case VK_SHADER_STAGE_CALLABLE_BIT_KHR:
return RayTracingConfiguration::initPrograms;
default:
TCU_THROW(InternalError, "Unknown shader stage");
}
}
static inline ShaderBodyTextFunc getShaderBodyTextFunc (const TestType testType)
{
switch (testType)
{
case TEST_TYPE_NO_MISS: return getShaderBodyText; break;
case TEST_TYPE_SINGLE_HIT: return getShaderBodyText; break;
default: TCU_THROW(InternalError, "Unknown test type");
}
}
} // anonymous
tcu::TestCaseGroup* createWatertightnessTests (tcu::TestContext& testCtx)
{
const deUint32 seed = (deUint32)(testCtx.getCommandLine().getBaseSeed());
de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "watertightness", "Tests watertightness of ray query"));
const struct PipelineStages
{
VkShaderStageFlagBits stage;
const char* name;
}
pipelineStages[] =
{
{ VK_SHADER_STAGE_VERTEX_BIT, "vert" },
{ VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, "tesc" },
{ VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, "tese" },
{ VK_SHADER_STAGE_GEOMETRY_BIT, "geom" },
{ VK_SHADER_STAGE_FRAGMENT_BIT, "frag" },
{ VK_SHADER_STAGE_COMPUTE_BIT, "comp" },
{ VK_SHADER_STAGE_RAYGEN_BIT_KHR, "rgen" },
{ VK_SHADER_STAGE_ANY_HIT_BIT_KHR, "ahit" },
{ VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, "chit" },
{ VK_SHADER_STAGE_MISS_BIT_KHR, "miss" },
{ VK_SHADER_STAGE_INTERSECTION_BIT_KHR, "sect" },
{ VK_SHADER_STAGE_CALLABLE_BIT_KHR, "call" },
};
const struct TestTypes
{
TestType testType;
const char* name;
}
testTypes[] =
{
{ TEST_TYPE_NO_MISS, "nomiss" },
{ TEST_TYPE_SINGLE_HIT, "singlehit" },
};
const struct GeomTypes
{
GeomType geomType;
const char* name;
}
geomTypes[] =
{
{ GEOM_TYPE_TRIANGLES, "triangles" },
{ GEOM_TYPE_AABBS, "aabbs" },
};
for (size_t testTypeNdx = 0; testTypeNdx < DE_LENGTH_OF_ARRAY(testTypes); ++testTypeNdx)
{
de::MovePtr<tcu::TestCaseGroup> testTypeGroup (new tcu::TestCaseGroup(group->getTestContext(), testTypes[testTypeNdx].name, ""));
const TestType testType = testTypes[testTypeNdx].testType;
const ShaderBodyTextFunc shaderBodyTextFunc = getShaderBodyTextFunc(testType);
const deUint32 imageDepth = 1;
for (size_t pipelineStageNdx = 0; pipelineStageNdx < DE_LENGTH_OF_ARRAY(pipelineStages); ++pipelineStageNdx)
{
de::MovePtr<tcu::TestCaseGroup> sourceTypeGroup (new tcu::TestCaseGroup(group->getTestContext(), pipelineStages[pipelineStageNdx].name, ""));
const VkShaderStageFlagBits stage = pipelineStages[pipelineStageNdx].stage;
const CheckSupportFunc pipelineCheckSupport = getPipelineCheckSupport(stage);
const InitProgramsFunc pipelineInitPrograms = getPipelineInitPrograms(stage);
const deUint32 instancesGroupCount = 1;
const deUint32 geometriesGroupCount = 1;
const deUint32 squaresGroupCount = (TEST_WIDTH * TEST_HEIGHT) / geometriesGroupCount / instancesGroupCount;
DE_ASSERT(instancesGroupCount * geometriesGroupCount * squaresGroupCount == TEST_WIDTH * TEST_HEIGHT);
for (size_t geomTypeNdx = 0; geomTypeNdx < DE_LENGTH_OF_ARRAY(geomTypes); ++geomTypeNdx)
{
const GeomType geomType = geomTypes[geomTypeNdx].geomType;
const TestParams testParams =
{
TEST_WIDTH, // deUint32 width;
TEST_HEIGHT, // deUint32 height;
imageDepth, // deUint32 depth;
seed, // deUint32 randomSeed;
testType, // TestType testType;
stage, // VkShaderStageFlagBits stage;
geomType, // GeomType geomType;
squaresGroupCount, // deUint32 squaresGroupCount;
geometriesGroupCount, // deUint32 geometriesGroupCount;
instancesGroupCount, // deUint32 instancesGroupCount;
VK_FORMAT_R32_SINT, // VkFormat format;
pipelineCheckSupport, // CheckSupportFunc pipelineCheckSupport;
pipelineInitPrograms, // InitProgramsFunc pipelineInitPrograms;
shaderBodyTextFunc, // ShaderTestTextFunc testConfigShaderBodyText;
};
if (testType == TEST_TYPE_SINGLE_HIT && geomType == GEOM_TYPE_AABBS)
continue;
sourceTypeGroup->addChild(new RayQueryBuiltinTestCase(group->getTestContext(), geomTypes[geomTypeNdx].name, "", testParams));
}
testTypeGroup->addChild(sourceTypeGroup.release());
}
group->addChild(testTypeGroup.release());
}
return group.release();
}
} // RayQuery
} // vkt