blob: 2b72d94b441c427acdf7272fa5b3269405a5dedc [file] [log] [blame]
/*------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2020 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Test procedural geometry with complex bouding box sets
*//*--------------------------------------------------------------------*/
#include "vktRayQueryProceduralGeometryTests.hpp"
#include "vkDefs.hpp"
#include "vktTestCase.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "vkBuilderUtil.hpp"
#include "vkBarrierUtil.hpp"
#include "vkBufferWithMemory.hpp"
#include "vkImageWithMemory.hpp"
#include "vkTypeUtil.hpp"
#include "vkImageUtil.hpp"
#include "vkRayTracingUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuTexture.hpp"
#include "tcuTestLog.hpp"
#include "tcuImageCompare.hpp"
#include "tcuFloat.hpp"
namespace vkt
{
namespace RayQuery
{
namespace
{
using namespace vk;
using namespace vkt;
enum class TestType
{
OBJECT_BEHIND_BOUNDING_BOX = 0,
TRIANGLE_IN_BETWEEN
};
class RayQueryProceduralGeometryTestBase : public TestInstance
{
public:
RayQueryProceduralGeometryTestBase (Context& context);
~RayQueryProceduralGeometryTestBase (void) = default;
tcu::TestStatus iterate (void) override;
protected:
virtual void setupAccelerationStructures() = 0;
private:
VkWriteDescriptorSetAccelerationStructureKHR makeASWriteDescriptorSet (const VkAccelerationStructureKHR* pAccelerationStructure);
void clearBuffer (de::SharedPtr<BufferWithMemory> buffer, VkDeviceSize bufferSize);
protected:
Move<VkCommandPool> m_cmdPool;
Move<VkCommandBuffer> m_cmdBuffer;
std::vector<de::SharedPtr<BottomLevelAccelerationStructure> > m_blasVect;
de::SharedPtr<TopLevelAccelerationStructure> m_referenceTLAS;
de::SharedPtr<TopLevelAccelerationStructure> m_resultTLAS;
};
RayQueryProceduralGeometryTestBase::RayQueryProceduralGeometryTestBase(Context& context)
: vkt::TestInstance (context)
, m_referenceTLAS (makeTopLevelAccelerationStructure().release())
, m_resultTLAS (makeTopLevelAccelerationStructure().release())
{
}
tcu::TestStatus RayQueryProceduralGeometryTestBase::iterate(void)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
const VkQueue queue = m_context.getUniversalQueue();
Allocator& allocator = m_context.getDefaultAllocator();
const deUint32 imageSize = 64u;
const Move<VkDescriptorPool> descriptorPool = DescriptorPoolBuilder()
.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 2u)
.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2u)
.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 2u);
Move<VkDescriptorSetLayout> descriptorSetLayout = DescriptorSetLayoutBuilder()
.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_COMPUTE_BIT) // as with single/four aabb's
.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT) // ssbo with result/reference values
.build(vkd, device);
const Move<VkDescriptorSet> referenceDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const Move<VkDescriptorSet> resultDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout);
const VkDeviceSize resultBufferSize = imageSize * imageSize * sizeof(int);
const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(resultBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
de::SharedPtr<BufferWithMemory> referenceBuffer = de::SharedPtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
de::SharedPtr<BufferWithMemory> resultBuffer = de::SharedPtr<BufferWithMemory>(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible));
Move<VkShaderModule> shaderModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("comp"), 0u);
const Move<VkPipelineLayout> pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get());
const VkComputePipelineCreateInfo pipelineCreateInfo
{
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType
DE_NULL, // const void* pNext
0u, // VkPipelineCreateFlags flags
{ // VkPipelineShaderStageCreateInfo stage
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
DE_NULL,
(VkPipelineShaderStageCreateFlags)0,
VK_SHADER_STAGE_COMPUTE_BIT,
*shaderModule,
"main",
DE_NULL
},
*pipelineLayout, // VkPipelineLayout layout
DE_NULL, // VkPipeline basePipelineHandle
0, // deInt32 basePipelineIndex
};
Move<VkPipeline> pipeline = createComputePipeline(vkd, device, DE_NULL, &pipelineCreateInfo);
m_cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex);
m_cmdBuffer = allocateCommandBuffer(vkd, device, *m_cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
// clear result and reference buffers
clearBuffer(resultBuffer, resultBufferSize);
clearBuffer(referenceBuffer, resultBufferSize);
beginCommandBuffer(vkd, *m_cmdBuffer, 0u);
{
setupAccelerationStructures();
// update descriptor sets
{
typedef DescriptorSetUpdateBuilder::Location DSL;
const VkWriteDescriptorSetAccelerationStructureKHR referenceAS = makeASWriteDescriptorSet(m_referenceTLAS->getPtr());
const VkDescriptorBufferInfo referenceSSBO = makeDescriptorBufferInfo(**referenceBuffer, 0u, VK_WHOLE_SIZE);
DescriptorSetUpdateBuilder()
.writeSingle(*referenceDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &referenceAS)
.writeSingle(*referenceDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &referenceSSBO)
.update(vkd, device);
const VkWriteDescriptorSetAccelerationStructureKHR resultAS = makeASWriteDescriptorSet(m_resultTLAS->getPtr());
const VkDescriptorBufferInfo resultSSBO = makeDescriptorBufferInfo(**resultBuffer, 0u, VK_WHOLE_SIZE);
DescriptorSetUpdateBuilder()
.writeSingle(*resultDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &resultAS)
.writeSingle(*resultDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &resultSSBO)
.update(vkd, device);
}
// wait for data transfers
const VkMemoryBarrier bufferUploadBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, &bufferUploadBarrier, 1u);
// wait for as build
const VkMemoryBarrier asBuildBarrier = makeMemoryBarrier(VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_ACCESS_SHADER_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, &asBuildBarrier, 1u);
vkd.cmdBindPipeline(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
// generate reference
vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0, 1, &referenceDescriptorSet.get(), 0, DE_NULL);
vkd.cmdDispatch(*m_cmdBuffer, imageSize, imageSize, 1);
// generate result
vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0, 1, &resultDescriptorSet.get(), 0, DE_NULL);
vkd.cmdDispatch(*m_cmdBuffer, imageSize, imageSize, 1);
const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier);
}
endCommandBuffer(vkd, *m_cmdBuffer);
submitCommandsAndWait(vkd, device, queue, m_cmdBuffer.get());
// verify result buffer
auto referenceAllocation = referenceBuffer->getAllocation();
invalidateMappedMemoryRange(vkd, device, referenceAllocation.getMemory(), referenceAllocation.getOffset(), resultBufferSize);
auto resultAllocation = resultBuffer->getAllocation();
invalidateMappedMemoryRange(vkd, device, resultAllocation.getMemory(), resultAllocation.getOffset(), resultBufferSize);
tcu::TextureFormat imageFormat (vk::mapVkFormat(VK_FORMAT_R8G8B8A8_UNORM));
tcu::PixelBufferAccess referenceAccess (imageFormat, imageSize, imageSize, 1, referenceAllocation.getHostPtr());
tcu::PixelBufferAccess resultAccess (imageFormat, imageSize, imageSize, 1, resultAllocation.getHostPtr());
if (tcu::intThresholdCompare(m_context.getTestContext().getLog(), "Result comparison", "", referenceAccess, resultAccess, tcu::UVec4(0), tcu::COMPARE_LOG_EVERYTHING))
return tcu::TestStatus::pass("Pass");
return tcu::TestStatus::fail("Fail");
}
VkWriteDescriptorSetAccelerationStructureKHR RayQueryProceduralGeometryTestBase::makeASWriteDescriptorSet(const VkAccelerationStructureKHR* pAccelerationStructure)
{
return
{
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType
DE_NULL, // const void* pNext
1u, // deUint32 accelerationStructureCount
pAccelerationStructure // const VkAccelerationStructureKHR* pAccelerationStructures
};
}
void RayQueryProceduralGeometryTestBase::clearBuffer(de::SharedPtr<BufferWithMemory> buffer, VkDeviceSize bufferSize)
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
auto& bufferAlloc = buffer->getAllocation();
void* bufferPtr = bufferAlloc.getHostPtr();
deMemset(bufferPtr, 1, static_cast<size_t>(bufferSize));
vk::flushAlloc(vkd, device, bufferAlloc);
}
class ObjectBehindBoundingBoxInstance : public RayQueryProceduralGeometryTestBase
{
public:
ObjectBehindBoundingBoxInstance(Context& context);
void setupAccelerationStructures() override;
};
ObjectBehindBoundingBoxInstance::ObjectBehindBoundingBoxInstance(Context& context)
: RayQueryProceduralGeometryTestBase(context)
{
}
void ObjectBehindBoundingBoxInstance::setupAccelerationStructures()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
// build reference acceleration structure - single aabb big enough to fit whole procedural geometry
de::SharedPtr<BottomLevelAccelerationStructure> referenceBLAS(makeBottomLevelAccelerationStructure().release());
referenceBLAS->setGeometryData(
{
{ 0.0, 0.0, -64.0 },
{ 64.0, 64.0, -16.0 },
},
false,
0
);
referenceBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(referenceBLAS);
m_referenceTLAS->setInstanceCount(1);
m_referenceTLAS->addInstance(m_blasVect.back());
m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
// build result acceleration structure - wall of 4 aabb's and generated object is actualy behind it (as it is just 1.0 unit thick)
de::SharedPtr<BottomLevelAccelerationStructure> resultBLAS(makeBottomLevelAccelerationStructure().release());
resultBLAS->setGeometryData(
{
{ 0.0, 0.0, 0.0 }, // | |
{ 32.0, 32.0, 1.0 }, // |* |
{ 32.0, 0.0, 0.0 }, // | |
{ 64.0, 32.0, 1.0 }, // | *|
{ 0.0, 32.0, 0.0 }, // |* |
{ 32.0, 64.0, 1.0 }, // | |
{ 32.0, 32.0, 0.0 }, // | *|
{ 64.0, 64.0, 1.0 }, // | |
},
false,
0
);
resultBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(resultBLAS);
m_resultTLAS->setInstanceCount(1);
m_resultTLAS->addInstance(m_blasVect.back());
m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
}
class TriangleInBeteenInstance : public RayQueryProceduralGeometryTestBase
{
public:
TriangleInBeteenInstance(Context& context);
void setupAccelerationStructures() override;
};
TriangleInBeteenInstance::TriangleInBeteenInstance(Context& context)
: RayQueryProceduralGeometryTestBase(context)
{
}
void TriangleInBeteenInstance::setupAccelerationStructures()
{
const DeviceInterface& vkd = m_context.getDeviceInterface();
const VkDevice device = m_context.getDevice();
Allocator& allocator = m_context.getDefaultAllocator();
de::SharedPtr<BottomLevelAccelerationStructure> triangleBLAS(makeBottomLevelAccelerationStructure().release());
triangleBLAS->setGeometryData(
{
{ 16.0, 16.0, -8.0 },
{ 56.0, 32.0, -8.0 },
{ 32.0, 48.0, -8.0 },
},
true,
VK_GEOMETRY_OPAQUE_BIT_KHR
);
triangleBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(triangleBLAS);
de::SharedPtr<BottomLevelAccelerationStructure> fullElipsoidBLAS(makeBottomLevelAccelerationStructure().release());
fullElipsoidBLAS->setGeometryData(
{
{ 0.0, 0.0, -64.0 },
{ 64.0, 64.0, -16.0 },
},
false,
0
);
fullElipsoidBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(fullElipsoidBLAS);
// build reference acceleration structure - triangle and a single aabb big enough to fit whole procedural geometry
m_referenceTLAS->setInstanceCount(2);
m_referenceTLAS->addInstance(fullElipsoidBLAS);
m_referenceTLAS->addInstance(triangleBLAS);
m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
de::SharedPtr<BottomLevelAccelerationStructure> elipsoidWallBLAS(makeBottomLevelAccelerationStructure().release());
elipsoidWallBLAS->setGeometryData(
{
{ 0.0, 0.0, 0.0 }, // |* |
{ 20.0, 64.0, 1.0 },
{ 20.0, 0.0, 0.0 }, // | * |
{ 44.0, 64.0, 1.0 },
{ 44.0, 0.0, 0.0 }, // | *|
{ 64.0, 64.0, 1.0 },
},
false,
0
);
elipsoidWallBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
m_blasVect.push_back(elipsoidWallBLAS);
// build result acceleration structure - triangle and a three aabb's (they are in front of triangle but generate intersections behind it)
m_resultTLAS->setInstanceCount(2);
m_resultTLAS->addInstance(elipsoidWallBLAS);
m_resultTLAS->addInstance(triangleBLAS);
m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator);
}
class RayQueryProceduralGeometryTestCase : public TestCase
{
public:
RayQueryProceduralGeometryTestCase (tcu::TestContext& context, const char* name, TestType testType);
~RayQueryProceduralGeometryTestCase (void) = default;
void checkSupport (Context& context) const override;
void initPrograms (SourceCollections& programCollection) const override;
TestInstance* createInstance (Context& context) const override;
protected:
TestType m_testType;
};
RayQueryProceduralGeometryTestCase::RayQueryProceduralGeometryTestCase(tcu::TestContext& context, const char* name, TestType testType)
: TestCase (context, name, "")
, m_testType (testType)
{
}
void RayQueryProceduralGeometryTestCase::checkSupport(Context& context) const
{
context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
context.requireDeviceFunctionality("VK_KHR_ray_query");
if (!context.getRayQueryFeatures().rayQuery)
TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayQueryFeaturesKHR.rayQuery");
if (!context.getAccelerationStructureFeatures().accelerationStructure)
TCU_THROW(TestError, "Requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
}
void RayQueryProceduralGeometryTestCase::initPrograms(SourceCollections& programCollection) const
{
const vk::ShaderBuildOptions glslBuildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
std::string compSource =
"#version 460 core\n"
"#extension GL_EXT_ray_query : require\n"
"layout(set = 0, binding = 0) uniform accelerationStructureEXT tlas;\n"
"layout(set = 0, binding = 1, std430) writeonly buffer Result {\n"
" int value[];\n"
"} result;\n"
"void main()\n"
"{\n"
" float tmin = 0.0;\n"
" float tmax = 50.0;\n"
" vec3 rayOrigin = vec3(float(gl_GlobalInvocationID.x) + 0.5f, float(gl_GlobalInvocationID.y) + 0.5f, 2.0);\n"
" vec3 rayDir = vec3(0.0,0.0,-1.0);\n"
" uint resultIndex = gl_GlobalInvocationID.x + gl_GlobalInvocationID.y * gl_NumWorkGroups.x;\n"
" int payload = 30;\n"
// elipsoid center and radii
" vec3 elipsoidOrigin = vec3(32.0, 32.0, -30.0);\n"
" vec3 elipsoidRadii = vec3(30.0, 15.0, 5.0);\n"
" rayQueryEXT rq;\n"
" rayQueryInitializeEXT(rq, tlas, gl_RayFlagsCullBackFacingTrianglesEXT, 0xFF, rayOrigin, tmin, rayDir, tmax);\n"
" while (rayQueryProceedEXT(rq))\n"
" {\n"
" uint intersectionType = rayQueryGetIntersectionTypeEXT(rq, false);\n"
" if (intersectionType == gl_RayQueryCandidateIntersectionAABBEXT)\n"
" {\n"
// simplify to ray sphere intersection
" vec3 eliDir = rayOrigin - elipsoidOrigin;\n"
" vec3 eliS = eliDir / elipsoidRadii;\n"
" vec3 rayS = rayDir / elipsoidRadii;\n"
" float a = dot(rayS, rayS);\n"
" float b = dot(eliS, rayS);\n"
" float c = dot(eliS, eliS);\n"
" float h = b * b - a * (c - 1.0);\n"
" if (h >= 0.0)\n"
" rayQueryGenerateIntersectionEXT(rq, (-b - sqrt(h)) / a);\n"
" }\n"
" else if (intersectionType == gl_RayQueryCandidateIntersectionTriangleEXT)\n"
" {\n"
" payload = 250;\n"
" rayQueryConfirmIntersectionEXT(rq);\n"
" }\n"
" }\n"
" if (rayQueryGetIntersectionTypeEXT(rq, true) != gl_RayQueryCommittedIntersectionNoneEXT)\n"
" {\n"
" int instanceId = rayQueryGetIntersectionInstanceIdEXT(rq, true);\n"
" if (instanceId > -1)\n"
" {\n"
" float hitT = rayQueryGetIntersectionTEXT(rq, true);\n"
" vec3 lightDir = normalize(vec3(0.0, 0.0, 1.0));\n"
" vec3 hitPos = rayOrigin + hitT * rayDir;\n"
" vec3 hitNormal = normalize((hitPos - elipsoidOrigin) / elipsoidRadii);\n"
" payload = 50 + int(200.0 * clamp(dot(hitNormal, lightDir), 0.0, 1.0));\n"
" }\n"
" }\n"
// to be able to display result in cherry this is interpreated as r8g8b8a8 during verification
// we are using only red but we need to add alpha (note: r and a may be swapped depending on endianness)
" result.value[resultIndex] = payload + 0xFF000000;\n"
"};\n";
programCollection.glslSources.add("comp") << glu::ComputeSource(compSource) << glslBuildOptions;
}
TestInstance* RayQueryProceduralGeometryTestCase::createInstance(Context& context) const
{
if (m_testType == TestType::TRIANGLE_IN_BETWEEN)
return new TriangleInBeteenInstance(context);
// TestType::OBJECT_BEHIND_BOUNDING_BOX
return new ObjectBehindBoundingBoxInstance(context);
}
} // anonymous
tcu::TestCaseGroup* createProceduralGeometryTests(tcu::TestContext& testCtx)
{
de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "procedural_geometry", "Test procedural geometry with complex bouding box sets"));
group->addChild(new RayQueryProceduralGeometryTestCase(testCtx, "object_behind_bounding_boxes", TestType::OBJECT_BEHIND_BOUNDING_BOX));
group->addChild(new RayQueryProceduralGeometryTestCase(testCtx, "triangle_in_between", TestType::TRIANGLE_IN_BETWEEN));
return group.release();
}
} // RayQuery
} // vkt