blob: d2f65cc13c40c10a31689b3b8e430e5520c0208d [file] [log] [blame]
/*-------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief VkSwapchain Tests
*//*--------------------------------------------------------------------*/
#include "vktWsiSwapchainTests.hpp"
#include "vktTestCaseUtil.hpp"
#include "vktTestGroupUtil.hpp"
#include "vkDefs.hpp"
#include "vkPlatform.hpp"
#include "vkStrUtil.hpp"
#include "vkRef.hpp"
#include "vkRefUtil.hpp"
#include "vkQueryUtil.hpp"
#include "vkMemUtil.hpp"
#include "vkDeviceUtil.hpp"
#include "vkPrograms.hpp"
#include "vkTypeUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkWsiPlatform.hpp"
#include "vkWsiUtil.hpp"
#include "vkAllocationCallbackUtil.hpp"
#include "vkCmdUtil.hpp"
#include "vkObjUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuFormatUtil.hpp"
#include "tcuPlatform.hpp"
#include "tcuResultCollector.hpp"
#include "deUniquePtr.hpp"
#include "deStringUtil.hpp"
#include "deArrayUtil.hpp"
#include "deSharedPtr.hpp"
#include <limits>
namespace vkt
{
namespace wsi
{
namespace
{
using namespace vk;
using namespace vk::wsi;
using tcu::TestLog;
using tcu::Maybe;
using tcu::UVec2;
using de::MovePtr;
using de::UniquePtr;
using std::string;
using std::vector;
typedef vector<VkExtensionProperties> Extensions;
void checkAllSupported (const Extensions& supportedExtensions, const vector<string>& requiredExtensions)
{
for (vector<string>::const_iterator requiredExtName = requiredExtensions.begin();
requiredExtName != requiredExtensions.end();
++requiredExtName)
{
if (!isExtensionSupported(supportedExtensions, RequiredExtension(*requiredExtName)))
TCU_THROW(NotSupportedError, (*requiredExtName + " is not supported").c_str());
}
}
Move<VkInstance> createInstanceWithWsi (const PlatformInterface& vkp,
deUint32 version,
const Extensions& supportedExtensions,
Type wsiType,
const VkAllocationCallbacks* pAllocator = DE_NULL)
{
vector<string> extensions;
extensions.push_back("VK_KHR_surface");
extensions.push_back(getExtensionName(wsiType));
// VK_EXT_swapchain_colorspace adds new surface formats. Driver can enumerate
// the formats regardless of whether VK_EXT_swapchain_colorspace was enabled,
// but using them without enabling the extension is not allowed. Thus we have
// two options:
//
// 1) Filter out non-core formats to stay within valid usage.
//
// 2) Enable VK_EXT_swapchain colorspace if advertised by the driver.
//
// We opt for (2) as it provides basic coverage for the extension as a bonus.
if (isExtensionSupported(supportedExtensions, RequiredExtension("VK_EXT_swapchain_colorspace")))
extensions.push_back("VK_EXT_swapchain_colorspace");
checkAllSupported(supportedExtensions, extensions);
return createDefaultInstance(vkp, version, vector<string>(), extensions, pAllocator);
}
VkPhysicalDeviceFeatures getDeviceFeaturesForWsi (void)
{
VkPhysicalDeviceFeatures features;
deMemset(&features, 0, sizeof(features));
return features;
}
Move<VkDevice> createDeviceWithWsi (const vk::PlatformInterface& vkp,
vk::VkInstance instance,
const InstanceInterface& vki,
VkPhysicalDevice physicalDevice,
const Extensions& supportedExtensions,
const deUint32 queueFamilyIndex,
const VkAllocationCallbacks* pAllocator = DE_NULL)
{
const float queuePriorities[] = { 1.0f };
const VkDeviceQueueCreateInfo queueInfos[] =
{
{
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
DE_NULL,
(VkDeviceQueueCreateFlags)0,
queueFamilyIndex,
DE_LENGTH_OF_ARRAY(queuePriorities),
&queuePriorities[0]
}
};
const VkPhysicalDeviceFeatures features = getDeviceFeaturesForWsi();
vector<const char*> extensions;
if (!isExtensionSupported(supportedExtensions, RequiredExtension("VK_KHR_swapchain")))
TCU_THROW(NotSupportedError, (string(extensions[0]) + " is not supported").c_str());
extensions.push_back("VK_KHR_swapchain");
if (isExtensionSupported(supportedExtensions, RequiredExtension("VK_EXT_hdr_metadata")))
extensions.push_back("VK_EXT_hdr_metadata");
const VkDeviceCreateInfo deviceParams =
{
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
DE_NULL,
(VkDeviceCreateFlags)0,
DE_LENGTH_OF_ARRAY(queueInfos),
&queueInfos[0],
0u, // enabledLayerCount
DE_NULL, // ppEnabledLayerNames
(deUint32)extensions.size(),
extensions.empty() ? DE_NULL : &extensions[0],
&features
};
return createDevice(vkp, instance, vki, physicalDevice, &deviceParams, pAllocator);
}
deUint32 getNumQueueFamilyIndices (const InstanceInterface& vki, VkPhysicalDevice physicalDevice)
{
deUint32 numFamilies = 0;
vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numFamilies, DE_NULL);
return numFamilies;
}
vector<deUint32> getSupportedQueueFamilyIndices (const InstanceInterface& vki, VkPhysicalDevice physicalDevice, VkSurfaceKHR surface)
{
const deUint32 numTotalFamilyIndices = getNumQueueFamilyIndices(vki, physicalDevice);
vector<deUint32> supportedFamilyIndices;
for (deUint32 queueFamilyNdx = 0; queueFamilyNdx < numTotalFamilyIndices; ++queueFamilyNdx)
{
if (getPhysicalDeviceSurfaceSupport(vki, physicalDevice, queueFamilyNdx, surface) != VK_FALSE)
supportedFamilyIndices.push_back(queueFamilyNdx);
}
return supportedFamilyIndices;
}
deUint32 chooseQueueFamilyIndex (const InstanceInterface& vki, VkPhysicalDevice physicalDevice, VkSurfaceKHR surface)
{
const vector<deUint32> supportedFamilyIndices = getSupportedQueueFamilyIndices(vki, physicalDevice, surface);
if (supportedFamilyIndices.empty())
TCU_THROW(NotSupportedError, "Device doesn't support presentation");
return supportedFamilyIndices[0];
}
struct InstanceHelper
{
const vector<VkExtensionProperties> supportedExtensions;
const Unique<VkInstance> instance;
const InstanceDriver vki;
InstanceHelper (Context& context, Type wsiType, const VkAllocationCallbacks* pAllocator = DE_NULL)
: supportedExtensions (enumerateInstanceExtensionProperties(context.getPlatformInterface(),
DE_NULL))
, instance (createInstanceWithWsi(context.getPlatformInterface(),
context.getUsedApiVersion(),
supportedExtensions,
wsiType,
pAllocator))
, vki (context.getPlatformInterface(), *instance)
{}
};
struct DeviceHelper
{
const VkPhysicalDevice physicalDevice;
const deUint32 queueFamilyIndex;
const Unique<VkDevice> device;
const DeviceDriver vkd;
const VkQueue queue;
DeviceHelper (Context& context,
const InstanceInterface& vki,
VkInstance instance,
VkSurfaceKHR surface,
const VkAllocationCallbacks* pAllocator = DE_NULL)
: physicalDevice (chooseDevice(vki, instance, context.getTestContext().getCommandLine()))
, queueFamilyIndex (chooseQueueFamilyIndex(vki, physicalDevice, surface))
, device (createDeviceWithWsi(context.getPlatformInterface(),
instance,
vki,
physicalDevice,
enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL),
queueFamilyIndex,
pAllocator))
, vkd (context.getPlatformInterface(), instance, *device)
, queue (getDeviceQueue(vkd, *device, queueFamilyIndex, 0))
{
}
};
MovePtr<Display> createDisplay (const vk::Platform& platform,
const Extensions& supportedExtensions,
Type wsiType)
{
try
{
return MovePtr<Display>(platform.createWsiDisplay(wsiType));
}
catch (const tcu::NotSupportedError& e)
{
if (isExtensionSupported(supportedExtensions, RequiredExtension(getExtensionName(wsiType))) &&
platform.hasDisplay(wsiType))
{
// If VK_KHR_{platform}_surface was supported, vk::Platform implementation
// must support creating native display & window for that WSI type.
throw tcu::TestError(e.getMessage());
}
else
throw;
}
}
MovePtr<Window> createWindow (const Display& display, const Maybe<UVec2>& initialSize)
{
try
{
return MovePtr<Window>(display.createWindow(initialSize));
}
catch (const tcu::NotSupportedError& e)
{
// See createDisplay - assuming that wsi::Display was supported platform port
// should also support creating a window.
throw tcu::TestError(e.getMessage());
}
}
struct NativeObjects
{
const UniquePtr<Display> display;
const UniquePtr<Window> window;
NativeObjects (Context& context,
const Extensions& supportedExtensions,
Type wsiType,
const Maybe<UVec2>& initialWindowSize = tcu::nothing<UVec2>())
: display (createDisplay(context.getTestContext().getPlatform().getVulkanPlatform(), supportedExtensions, wsiType))
, window (createWindow(*display, initialWindowSize))
{}
};
enum TestDimension
{
TEST_DIMENSION_MIN_IMAGE_COUNT = 0, //!< Test all supported image counts
TEST_DIMENSION_IMAGE_FORMAT, //!< Test all supported formats
TEST_DIMENSION_IMAGE_EXTENT, //!< Test various (supported) extents
TEST_DIMENSION_IMAGE_ARRAY_LAYERS,
TEST_DIMENSION_IMAGE_USAGE,
TEST_DIMENSION_IMAGE_SHARING_MODE,
TEST_DIMENSION_PRE_TRANSFORM,
TEST_DIMENSION_COMPOSITE_ALPHA,
TEST_DIMENSION_PRESENT_MODE,
TEST_DIMENSION_CLIPPED,
TEST_DIMENSION_LAST
};
struct TestParameters
{
Type wsiType;
TestDimension dimension;
TestParameters (Type wsiType_, TestDimension dimension_)
: wsiType (wsiType_)
, dimension (dimension_)
{}
TestParameters (void)
: wsiType (TYPE_LAST)
, dimension (TEST_DIMENSION_LAST)
{}
};
struct GroupParameters
{
typedef FunctionInstance1<TestParameters>::Function Function;
Type wsiType;
Function function;
GroupParameters (Type wsiType_, Function function_)
: wsiType (wsiType_)
, function (function_)
{}
GroupParameters (void)
: wsiType (TYPE_LAST)
, function ((Function)DE_NULL)
{}
};
VkSwapchainCreateInfoKHR getBasicSwapchainParameters (Type wsiType,
const InstanceInterface& vki,
VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VkSurfaceFormatKHR surfaceFormat,
const tcu::UVec2& desiredSize,
deUint32 desiredImageCount)
{
const VkSurfaceCapabilitiesKHR capabilities = getPhysicalDeviceSurfaceCapabilities(vki,
physicalDevice,
surface);
const PlatformProperties& platformProperties = getPlatformProperties(wsiType);
const VkSurfaceTransformFlagBitsKHR transform = (capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) ? VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR : capabilities.currentTransform;
const VkSwapchainCreateInfoKHR parameters =
{
VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
DE_NULL,
(VkSwapchainCreateFlagsKHR)0,
surface,
de::clamp(desiredImageCount, capabilities.minImageCount, capabilities.maxImageCount > 0 ? capabilities.maxImageCount : capabilities.minImageCount + desiredImageCount),
surfaceFormat.format,
surfaceFormat.colorSpace,
(platformProperties.swapchainExtent == PlatformProperties::SWAPCHAIN_EXTENT_MUST_MATCH_WINDOW_SIZE
? capabilities.currentExtent : vk::makeExtent2D(desiredSize.x(), desiredSize.y())),
1u, // imageArrayLayers
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0u,
(const deUint32*)DE_NULL,
transform,
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_PRESENT_MODE_FIFO_KHR,
VK_FALSE, // clipped
(VkSwapchainKHR)0 // oldSwapchain
};
return parameters;
}
typedef de::SharedPtr<Unique<VkImageView> > ImageViewSp;
typedef de::SharedPtr<Unique<VkFramebuffer> > FramebufferSp;
class TriangleRenderer
{
public:
TriangleRenderer (const DeviceInterface& vkd,
const VkDevice device,
Allocator& allocator,
const BinaryCollection& binaryRegistry,
const vector<VkImage> swapchainImages,
const VkFormat framebufferFormat,
const UVec2& renderSize);
~TriangleRenderer (void);
void recordFrame (VkCommandBuffer cmdBuffer,
deUint32 imageNdx,
deUint32 frameNdx) const;
static void getPrograms (SourceCollections& dst);
private:
static Move<VkRenderPass> createRenderPass (const DeviceInterface& vkd,
const VkDevice device,
const VkFormat colorAttachmentFormat);
static Move<VkPipelineLayout> createPipelineLayout(const DeviceInterface& vkd,
VkDevice device);
static Move<VkPipeline> createPipeline (const DeviceInterface& vkd,
const VkDevice device,
const VkRenderPass renderPass,
const VkPipelineLayout pipelineLayout,
const BinaryCollection& binaryCollection,
const UVec2& renderSize);
static Move<VkImageView> createAttachmentView(const DeviceInterface& vkd,
const VkDevice device,
const VkImage image,
const VkFormat format);
static Move<VkFramebuffer> createFramebuffer (const DeviceInterface& vkd,
const VkDevice device,
const VkRenderPass renderPass,
const VkImageView colorAttachment,
const UVec2& renderSize);
static Move<VkBuffer> createBuffer (const DeviceInterface& vkd,
VkDevice device,
VkDeviceSize size,
VkBufferUsageFlags usage);
const DeviceInterface& m_vkd;
const vector<VkImage> m_swapchainImages;
const tcu::UVec2 m_renderSize;
const Unique<VkRenderPass> m_renderPass;
const Unique<VkPipelineLayout> m_pipelineLayout;
const Unique<VkPipeline> m_pipeline;
const Unique<VkBuffer> m_vertexBuffer;
const UniquePtr<Allocation> m_vertexBufferMemory;
vector<ImageViewSp> m_attachmentViews;
vector<FramebufferSp> m_framebuffers;
};
Move<VkRenderPass> TriangleRenderer::createRenderPass (const DeviceInterface& vkd,
const VkDevice device,
const VkFormat colorAttachmentFormat)
{
const VkAttachmentDescription colorAttDesc =
{
(VkAttachmentDescriptionFlags)0,
colorAttachmentFormat,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
};
const VkAttachmentReference colorAttRef =
{
0u,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkSubpassDescription subpassDesc =
{
(VkSubpassDescriptionFlags)0u,
VK_PIPELINE_BIND_POINT_GRAPHICS,
0u, // inputAttachmentCount
DE_NULL, // pInputAttachments
1u, // colorAttachmentCount
&colorAttRef, // pColorAttachments
DE_NULL, // pResolveAttachments
DE_NULL, // depthStencilAttachment
0u, // preserveAttachmentCount
DE_NULL, // pPreserveAttachments
};
const VkSubpassDependency dependencies[] =
{
{
VK_SUBPASS_EXTERNAL, // srcSubpass
0u, // dstSubpass
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_MEMORY_READ_BIT,
(VK_ACCESS_COLOR_ATTACHMENT_READ_BIT|
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT),
VK_DEPENDENCY_BY_REGION_BIT
},
{
0u, // srcSubpass
VK_SUBPASS_EXTERNAL, // dstSubpass
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
(VK_ACCESS_COLOR_ATTACHMENT_READ_BIT|
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT),
VK_ACCESS_MEMORY_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT
},
};
const VkRenderPassCreateInfo renderPassParams =
{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
DE_NULL,
(VkRenderPassCreateFlags)0,
1u,
&colorAttDesc,
1u,
&subpassDesc,
DE_LENGTH_OF_ARRAY(dependencies),
dependencies,
};
return vk::createRenderPass(vkd, device, &renderPassParams);
}
Move<VkPipelineLayout> TriangleRenderer::createPipelineLayout (const DeviceInterface& vkd,
const VkDevice device)
{
const VkPushConstantRange pushConstantRange =
{
VK_SHADER_STAGE_VERTEX_BIT,
0u, // offset
(deUint32)sizeof(deUint32), // size
};
const VkPipelineLayoutCreateInfo pipelineLayoutParams =
{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
DE_NULL,
(vk::VkPipelineLayoutCreateFlags)0,
0u, // setLayoutCount
DE_NULL, // pSetLayouts
1u,
&pushConstantRange,
};
return vk::createPipelineLayout(vkd, device, &pipelineLayoutParams);
}
Move<VkPipeline> TriangleRenderer::createPipeline (const DeviceInterface& vkd,
const VkDevice device,
const VkRenderPass renderPass,
const VkPipelineLayout pipelineLayout,
const BinaryCollection& binaryCollection,
const UVec2& renderSize)
{
// \note VkShaderModules are fully consumed by vkCreateGraphicsPipelines()
// and can be deleted immediately following that call.
const Unique<VkShaderModule> vertShaderModule (createShaderModule(vkd, device, binaryCollection.get("tri-vert"), 0));
const Unique<VkShaderModule> fragShaderModule (createShaderModule(vkd, device, binaryCollection.get("tri-frag"), 0));
const std::vector<VkViewport> viewports (1, makeViewport(renderSize));
const std::vector<VkRect2D> scissors (1, makeRect2D(renderSize));
return vk::makeGraphicsPipeline(vkd, // const DeviceInterface& vk
device, // const VkDevice device
pipelineLayout, // const VkPipelineLayout pipelineLayout
*vertShaderModule, // const VkShaderModule vertexShaderModule
DE_NULL, // const VkShaderModule tessellationControlShaderModule
DE_NULL, // const VkShaderModule tessellationEvalShaderModule
DE_NULL, // const VkShaderModule geometryShaderModule
*fragShaderModule, // const VkShaderModule fragmentShaderModule
renderPass, // const VkRenderPass renderPass
viewports, // const std::vector<VkViewport>& viewports
scissors); // const std::vector<VkRect2D>& scissors
}
Move<VkImageView> TriangleRenderer::createAttachmentView (const DeviceInterface& vkd,
const VkDevice device,
const VkImage image,
const VkFormat format)
{
const VkImageViewCreateInfo viewParams =
{
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
DE_NULL,
(VkImageViewCreateFlags)0,
image,
VK_IMAGE_VIEW_TYPE_2D,
format,
vk::makeComponentMappingRGBA(),
{
VK_IMAGE_ASPECT_COLOR_BIT,
0u, // baseMipLevel
1u, // levelCount
0u, // baseArrayLayer
1u, // layerCount
},
};
return vk::createImageView(vkd, device, &viewParams);
}
Move<VkFramebuffer> TriangleRenderer::createFramebuffer (const DeviceInterface& vkd,
const VkDevice device,
const VkRenderPass renderPass,
const VkImageView colorAttachment,
const UVec2& renderSize)
{
const VkFramebufferCreateInfo framebufferParams =
{
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
DE_NULL,
(VkFramebufferCreateFlags)0,
renderPass,
1u,
&colorAttachment,
renderSize.x(),
renderSize.y(),
1u, // layers
};
return vk::createFramebuffer(vkd, device, &framebufferParams);
}
Move<VkBuffer> TriangleRenderer::createBuffer (const DeviceInterface& vkd,
VkDevice device,
VkDeviceSize size,
VkBufferUsageFlags usage)
{
const VkBufferCreateInfo bufferParams =
{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
DE_NULL,
(VkBufferCreateFlags)0,
size,
usage,
VK_SHARING_MODE_EXCLUSIVE,
0,
DE_NULL
};
return vk::createBuffer(vkd, device, &bufferParams);
}
TriangleRenderer::TriangleRenderer (const DeviceInterface& vkd,
const VkDevice device,
Allocator& allocator,
const BinaryCollection& binaryRegistry,
const vector<VkImage> swapchainImages,
const VkFormat framebufferFormat,
const UVec2& renderSize)
: m_vkd (vkd)
, m_swapchainImages (swapchainImages)
, m_renderSize (renderSize)
, m_renderPass (createRenderPass(vkd, device, framebufferFormat))
, m_pipelineLayout (createPipelineLayout(vkd, device))
, m_pipeline (createPipeline(vkd, device, *m_renderPass, *m_pipelineLayout, binaryRegistry, renderSize))
, m_vertexBuffer (createBuffer(vkd, device, (VkDeviceSize)(sizeof(float)*4*3), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT))
, m_vertexBufferMemory (allocator.allocate(getBufferMemoryRequirements(vkd, device, *m_vertexBuffer),
MemoryRequirement::HostVisible))
{
m_attachmentViews.resize(swapchainImages.size());
m_framebuffers.resize(swapchainImages.size());
for (size_t imageNdx = 0; imageNdx < swapchainImages.size(); ++imageNdx)
{
m_attachmentViews[imageNdx] = ImageViewSp(new Unique<VkImageView>(createAttachmentView(vkd, device, swapchainImages[imageNdx], framebufferFormat)));
m_framebuffers[imageNdx] = FramebufferSp(new Unique<VkFramebuffer>(createFramebuffer(vkd, device, *m_renderPass, **m_attachmentViews[imageNdx], renderSize)));
}
VK_CHECK(vkd.bindBufferMemory(device, *m_vertexBuffer, m_vertexBufferMemory->getMemory(), m_vertexBufferMemory->getOffset()));
{
const VkMappedMemoryRange memRange =
{
VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
DE_NULL,
m_vertexBufferMemory->getMemory(),
m_vertexBufferMemory->getOffset(),
VK_WHOLE_SIZE
};
const tcu::Vec4 vertices[] =
{
tcu::Vec4(-0.5f, -0.5f, 0.0f, 1.0f),
tcu::Vec4(+0.5f, -0.5f, 0.0f, 1.0f),
tcu::Vec4( 0.0f, +0.5f, 0.0f, 1.0f)
};
DE_STATIC_ASSERT(sizeof(vertices) == sizeof(float)*4*3);
deMemcpy(m_vertexBufferMemory->getHostPtr(), &vertices[0], sizeof(vertices));
VK_CHECK(vkd.flushMappedMemoryRanges(device, 1u, &memRange));
}
}
TriangleRenderer::~TriangleRenderer (void)
{
}
void TriangleRenderer::recordFrame (VkCommandBuffer cmdBuffer,
deUint32 imageNdx,
deUint32 frameNdx) const
{
const VkFramebuffer curFramebuffer = **m_framebuffers[imageNdx];
beginCommandBuffer(m_vkd, cmdBuffer, 0u);
beginRenderPass(m_vkd, cmdBuffer, *m_renderPass, curFramebuffer, makeRect2D(0, 0, m_renderSize.x(), m_renderSize.y()), tcu::Vec4(0.125f, 0.25f, 0.75f, 1.0f));
m_vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipeline);
{
const VkDeviceSize bindingOffset = 0;
m_vkd.cmdBindVertexBuffers(cmdBuffer, 0u, 1u, &m_vertexBuffer.get(), &bindingOffset);
}
m_vkd.cmdPushConstants(cmdBuffer, *m_pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0u, (deUint32)sizeof(deUint32), &frameNdx);
m_vkd.cmdDraw(cmdBuffer, 3u, 1u, 0u, 0u);
endRenderPass(m_vkd, cmdBuffer);
endCommandBuffer(m_vkd, cmdBuffer);
}
void TriangleRenderer::getPrograms (SourceCollections& dst)
{
dst.glslSources.add("tri-vert") << glu::VertexSource(
"#version 310 es\n"
"layout(location = 0) in highp vec4 a_position;\n"
"layout(push_constant) uniform FrameData\n"
"{\n"
" highp uint frameNdx;\n"
"} frameData;\n"
"void main (void)\n"
"{\n"
" highp float angle = float(frameData.frameNdx) / 100.0;\n"
" highp float c = cos(angle);\n"
" highp float s = sin(angle);\n"
" highp mat4 t = mat4( c, -s, 0, 0,\n"
" s, c, 0, 0,\n"
" 0, 0, 1, 0,\n"
" 0, 0, 0, 1);\n"
" gl_Position = t * a_position;\n"
"}\n");
dst.glslSources.add("tri-frag") << glu::FragmentSource(
"#version 310 es\n"
"layout(location = 0) out lowp vec4 o_color;\n"
"void main (void) { o_color = vec4(1.0, 0.0, 1.0, 1.0); }\n");
}
typedef de::SharedPtr<Unique<VkCommandBuffer> > CommandBufferSp;
typedef de::SharedPtr<Unique<VkFence> > FenceSp;
typedef de::SharedPtr<Unique<VkSemaphore> > SemaphoreSp;
vector<FenceSp> createFences (const DeviceInterface& vkd,
const VkDevice device,
size_t numFences)
{
vector<FenceSp> fences(numFences);
for (size_t ndx = 0; ndx < numFences; ++ndx)
fences[ndx] = FenceSp(new Unique<VkFence>(createFence(vkd, device)));
return fences;
}
vector<SemaphoreSp> createSemaphores (const DeviceInterface& vkd,
const VkDevice device,
size_t numSemaphores)
{
vector<SemaphoreSp> semaphores(numSemaphores);
for (size_t ndx = 0; ndx < numSemaphores; ++ndx)
semaphores[ndx] = SemaphoreSp(new Unique<VkSemaphore>(createSemaphore(vkd, device)));
return semaphores;
}
vector<CommandBufferSp> allocateCommandBuffers (const DeviceInterface& vkd,
const VkDevice device,
const VkCommandPool commandPool,
const VkCommandBufferLevel level,
const size_t numCommandBuffers)
{
vector<CommandBufferSp> buffers (numCommandBuffers);
for (size_t ndx = 0; ndx < numCommandBuffers; ++ndx)
buffers[ndx] = CommandBufferSp(new Unique<VkCommandBuffer>(allocateCommandBuffer(vkd, device, commandPool, level)));
return buffers;
}
tcu::TestStatus basicExtensionTest (Context& context, Type wsiType)
{
const tcu::UVec2 desiredSize (256, 256);
const InstanceHelper instHelper (context, wsiType);
const NativeObjects native (context, instHelper.supportedExtensions, wsiType, tcu::just(desiredSize));
const Unique<VkSurfaceKHR> surface (createSurface(instHelper.vki, *instHelper.instance, wsiType, *native.display, *native.window));
const DeviceHelper devHelper (context, instHelper.vki, *instHelper.instance, *surface);
if (!de::contains(context.getInstanceExtensions().begin(), context.getInstanceExtensions().end(), "VK_EXT_swapchain_colorspace"))
TCU_THROW(NotSupportedError, "Extension VK_EXT_swapchain_colorspace not supported");
const vector<VkSurfaceFormatKHR> formats = getPhysicalDeviceSurfaceFormats(instHelper.vki,
devHelper.physicalDevice,
*surface);
bool found = false;
for (vector<VkSurfaceFormatKHR>::const_iterator curFmt = formats.begin(); curFmt != formats.end(); ++curFmt)
{
if (curFmt->colorSpace != VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)
{
found = true;
break;
}
}
if (!found)
{
TCU_THROW(NotSupportedError, "VK_EXT_swapchain_colorspace supported, but no non-SRGB_NONLINEAR_KHR surface formats found.");
}
return tcu::TestStatus::pass("Extension tests succeeded");
}
tcu::TestStatus surfaceFormatRenderTest (Context& context,
Type wsiType,
VkSurfaceKHR surface,
VkSurfaceFormatKHR curFmt,
deBool checkHdr = false)
{
const tcu::UVec2 desiredSize (256, 256);
const InstanceHelper instHelper (context, wsiType);
const DeviceHelper devHelper (context, instHelper.vki, *instHelper.instance, surface);
const DeviceInterface& vkd = devHelper.vkd;
const VkDevice device = *devHelper.device;
SimpleAllocator allocator (vkd, device, getPhysicalDeviceMemoryProperties(instHelper.vki, devHelper.physicalDevice));
const VkSwapchainCreateInfoKHR swapchainInfo = getBasicSwapchainParameters(wsiType, instHelper.vki, devHelper.physicalDevice, surface, curFmt, desiredSize, 2);
const Unique<VkSwapchainKHR> swapchain (createSwapchainKHR(vkd, device, &swapchainInfo));
const vector<VkImage> swapchainImages = getSwapchainImages(vkd, device, *swapchain);
const vector<VkExtensionProperties> deviceExtensions (enumerateDeviceExtensionProperties(instHelper.vki, devHelper.physicalDevice, DE_NULL));
if (checkHdr && !isExtensionSupported(deviceExtensions, RequiredExtension("VK_EXT_hdr_metadata")))
TCU_THROW(NotSupportedError, "Extension VK_EXT_hdr_metadata not supported");
const TriangleRenderer renderer (vkd,
device,
allocator,
context.getBinaryCollection(),
swapchainImages,
swapchainInfo.imageFormat,
tcu::UVec2(swapchainInfo.imageExtent.width, swapchainInfo.imageExtent.height));
const Unique<VkCommandPool> commandPool (createCommandPool(vkd, device, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, devHelper.queueFamilyIndex));
const size_t maxQueuedFrames = swapchainImages.size()*2;
// We need to keep hold of fences from vkAcquireNextImageKHR to actually
// limit number of frames we allow to be queued.
const vector<FenceSp> imageReadyFences (createFences(vkd, device, maxQueuedFrames));
// We need maxQueuedFrames+1 for imageReadySemaphores pool as we need to pass
// the semaphore in same time as the fence we use to meter rendering.
const vector<SemaphoreSp> imageReadySemaphores (createSemaphores(vkd, device, maxQueuedFrames+1));
// For rest we simply need maxQueuedFrames as we will wait for image
// from frameNdx-maxQueuedFrames to become available to us, guaranteeing that
// previous uses must have completed.
const vector<SemaphoreSp> renderingCompleteSemaphores (createSemaphores(vkd, device, maxQueuedFrames));
const vector<CommandBufferSp> commandBuffers (allocateCommandBuffers(vkd, device, *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, maxQueuedFrames));
try
{
const deUint32 numFramesToRender = 60;
for (deUint32 frameNdx = 0; frameNdx < numFramesToRender; ++frameNdx)
{
const VkFence imageReadyFence = **imageReadyFences[frameNdx%imageReadyFences.size()];
const VkSemaphore imageReadySemaphore = **imageReadySemaphores[frameNdx%imageReadySemaphores.size()];
deUint32 imageNdx = ~0u;
if (frameNdx >= maxQueuedFrames)
VK_CHECK(vkd.waitForFences(device, 1u, &imageReadyFence, VK_TRUE, std::numeric_limits<deUint64>::max()));
VK_CHECK(vkd.resetFences(device, 1, &imageReadyFence));
{
const VkResult acquireResult = vkd.acquireNextImageKHR(device,
*swapchain,
std::numeric_limits<deUint64>::max(),
imageReadySemaphore,
(vk::VkFence)0,
&imageNdx);
if (acquireResult == VK_SUBOPTIMAL_KHR)
context.getTestContext().getLog() << TestLog::Message << "Got " << acquireResult << " at frame " << frameNdx << TestLog::EndMessage;
else
VK_CHECK(acquireResult);
}
TCU_CHECK((size_t)imageNdx < swapchainImages.size());
{
const VkSemaphore renderingCompleteSemaphore = **renderingCompleteSemaphores[frameNdx%renderingCompleteSemaphores.size()];
const VkCommandBuffer commandBuffer = **commandBuffers[frameNdx%commandBuffers.size()];
const VkPipelineStageFlags waitDstStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
const VkSubmitInfo submitInfo =
{
VK_STRUCTURE_TYPE_SUBMIT_INFO,
DE_NULL,
1u,
&imageReadySemaphore,
&waitDstStage,
1u,
&commandBuffer,
1u,
&renderingCompleteSemaphore
};
const VkPresentInfoKHR presentInfo =
{
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
DE_NULL,
1u,
&renderingCompleteSemaphore,
1u,
&*swapchain,
&imageNdx,
(VkResult*)DE_NULL
};
if (checkHdr) {
const VkHdrMetadataEXT hdrData = {
VK_STRUCTURE_TYPE_HDR_METADATA_EXT,
DE_NULL,
makeXYColorEXT(0.680f, 0.320f),
makeXYColorEXT(0.265f, 0.690f),
makeXYColorEXT(0.150f, 0.060f),
makeXYColorEXT(0.3127f, 0.3290f),
1000.0,
0.0,
1000.0,
70.0
};
vector<VkSwapchainKHR> swapchainArray;
swapchainArray.push_back(*swapchain);
vkd.setHdrMetadataEXT(device, (deUint32)swapchainArray.size(), swapchainArray.data(), &hdrData);
}
renderer.recordFrame(commandBuffer, imageNdx, frameNdx);
VK_CHECK(vkd.queueSubmit(devHelper.queue, 1u, &submitInfo, imageReadyFence));
VK_CHECK(vkd.queuePresentKHR(devHelper.queue, &presentInfo));
}
}
VK_CHECK(vkd.deviceWaitIdle(device));
}
catch (...)
{
// Make sure device is idle before destroying resources
vkd.deviceWaitIdle(device);
throw;
}
return tcu::TestStatus::pass("Rendering test succeeded");
}
tcu::TestStatus surfaceFormatRenderTests (Context& context, Type wsiType)
{
const tcu::UVec2 desiredSize (256, 256);
const InstanceHelper instHelper (context, wsiType);
const NativeObjects native (context, instHelper.supportedExtensions, wsiType, tcu::just(desiredSize));
const Unique<VkSurfaceKHR> surface (createSurface(instHelper.vki, *instHelper.instance, wsiType, *native.display, *native.window));
const DeviceHelper devHelper (context, instHelper.vki, *instHelper.instance, *surface);
if (!de::contains(context.getInstanceExtensions().begin(), context.getInstanceExtensions().end(), "VK_EXT_swapchain_colorspace"))
TCU_THROW(NotSupportedError, "Extension VK_EXT_swapchain_colorspace not supported");
const vector<VkSurfaceFormatKHR> formats = getPhysicalDeviceSurfaceFormats(instHelper.vki,
devHelper.physicalDevice,
*surface);
for (vector<VkSurfaceFormatKHR>::const_iterator curFmt = formats.begin(); curFmt != formats.end(); ++curFmt)
{
surfaceFormatRenderTest(context, wsiType, *surface, *curFmt);
}
return tcu::TestStatus::pass("Rendering tests succeeded");
}
tcu::TestStatus surfaceFormatRenderWithHdrTests (Context& context, Type wsiType)
{
const tcu::UVec2 desiredSize (256, 256);
const InstanceHelper instHelper (context, wsiType);
const NativeObjects native (context, instHelper.supportedExtensions, wsiType, tcu::just(desiredSize));
const Unique<VkSurfaceKHR> surface (createSurface(instHelper.vki, *instHelper.instance, wsiType, *native.display, *native.window));
const DeviceHelper devHelper (context, instHelper.vki, *instHelper.instance, *surface);
if (!de::contains(context.getInstanceExtensions().begin(), context.getInstanceExtensions().end(), "VK_EXT_swapchain_colorspace"))
TCU_THROW(NotSupportedError, "Extension VK_EXT_swapchain_colorspace not supported");
const vector<VkSurfaceFormatKHR> formats = getPhysicalDeviceSurfaceFormats(instHelper.vki,
devHelper.physicalDevice,
*surface);
for (vector<VkSurfaceFormatKHR>::const_iterator curFmt = formats.begin(); curFmt != formats.end(); ++curFmt)
{
surfaceFormatRenderTest(context, wsiType, *surface, *curFmt, true);
}
return tcu::TestStatus::pass("Rendering tests succeeded");
}
void getBasicRenderPrograms (SourceCollections& dst, Type)
{
TriangleRenderer::getPrograms(dst);
}
} // anonymous
void createColorSpaceTests (tcu::TestCaseGroup* testGroup, vk::wsi::Type wsiType)
{
addFunctionCase(testGroup, "extensions", "Verify Colorspace Extensions", basicExtensionTest, wsiType);
addFunctionCaseWithPrograms(testGroup, "basic", "Basic Rendering Tests", getBasicRenderPrograms, surfaceFormatRenderTests, wsiType);
addFunctionCaseWithPrograms(testGroup, "hdr", "Basic Rendering Tests with HDR", getBasicRenderPrograms, surfaceFormatRenderWithHdrTests, wsiType);
}
} // wsi
} // vkt