blob: 810bb08ecfe2f8a4aaa2fb2a622caad569ce5db7 [file] [log] [blame]
/*-------------------------------------------------------------------------
* Vulkan Conformance Tests
* ------------------------
*
* Copyright (c) 2018 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief VK_KHR_shader_float_controls tests.
*//*--------------------------------------------------------------------*/
#include "vktSpvAsmFloatControlsTests.hpp"
#include "vktSpvAsmComputeShaderCase.hpp"
#include "vktSpvAsmGraphicsShaderTestUtil.hpp"
#include "vktTestGroupUtil.hpp"
#include "tcuFloat.hpp"
#include "tcuFloatFormat.hpp"
#include "tcuStringTemplate.hpp"
#include "deUniquePtr.hpp"
#include "deFloat16.h"
#include "vkRefUtil.hpp"
#include <vector>
#include <limits>
#include <fenv.h>
namespace vkt
{
namespace SpirVAssembly
{
namespace
{
using namespace std;
using namespace tcu;
enum FloatType
{
FP16 = 0,
FP32,
FP64
};
// Enum containing float behaviors that its possible to test.
enum BehaviorFlagBits
{
B_DENORM_PRESERVE = 0x00000001, // DenormPreserve
B_DENORM_FLUSH = 0x00000002, // DenormFlushToZero
B_ZIN_PRESERVE = 0x00000004, // SignedZeroInfNanPreserve
B_RTE_ROUNDING = 0x00000008, // RoundingModeRTE
B_RTZ_ROUNDING = 0x00000010 // RoundingModeRTZ
};
typedef deUint32 BehaviorFlags;
// Codes for all float values used in tests as arguments and operation results
// This approach allows to replace values with different types reducing complexity of the tests implementation
enum ValueId
{
// common values used as both arguments and results
V_UNUSED = 0, // used to mark arguments that are not used in operation
V_MINUS_INF, // or results of tests cases that should be skipped
V_MINUS_ONE, // -1.0
V_MINUS_ZERO, // -0.0
V_ZERO, // 0.0
V_HALF, // 0.5
V_ONE, // 1.0
V_INF,
V_DENORM,
V_NAN,
// arguments for rounding mode tests - used only when arguments are passed from input
V_ADD_ARG_A,
V_ADD_ARG_B,
V_SUB_ARG_A,
V_SUB_ARG_B,
V_MUL_ARG_A,
V_MUL_ARG_B,
V_DOT_ARG_A,
V_DOT_ARG_B,
// arguments of conversion operations - used only when arguments are passed from input
V_CONV_FROM_FP32_ARG,
V_CONV_FROM_FP64_ARG,
// arguments of rounding operations
V_ADD_RTZ_RESULT,
V_ADD_RTE_RESULT,
V_SUB_RTZ_RESULT,
V_SUB_RTE_RESULT,
V_MUL_RTZ_RESULT,
V_MUL_RTE_RESULT,
V_DOT_RTZ_RESULT,
V_DOT_RTE_RESULT,
// non comon results of some operation - corner cases
V_MINUS_ONE_OR_CLOSE, // value used only fur fp16 subtraction result of preserved denorm and one
V_PI_DIV_2,
V_ZERO_OR_MINUS_ZERO, // both +0 and -0 are accepted
V_ZERO_OR_FP16_DENORM_TO_FP32, // both 0 and fp32 representation of fp16 denorm are accepted
V_ZERO_OR_FP16_DENORM_TO_FP64,
V_ZERO_OR_FP32_DENORM_TO_FP64,
V_DENORM_TIMES_TWO,
V_DEGREES_DENORM,
V_TRIG_ONE, // 1.0 trigonometric operations, including precision margin
//results of conversion operations
V_CONV_TO_FP16_RTZ_RESULT,
V_CONV_TO_FP16_RTE_RESULT,
V_CONV_TO_FP32_RTZ_RESULT,
V_CONV_TO_FP32_RTE_RESULT,
V_CONV_DENORM_SMALLER, // used e.g. when converting fp16 denorm to fp32
V_CONV_DENORM_BIGGER,
};
// Enum containing all tested operatios. Operations are defined in generic way so that
// they can be used to generate tests operating on arguments with different values of
// specified float type.
enum OperationId
{
// spir-v unary operations
O_NEGATE = 0,
O_COMPOSITE,
O_COMPOSITE_INS,
O_COPY,
O_D_EXTRACT,
O_D_INSERT,
O_SHUFFLE,
O_TRANSPOSE,
O_CONV_FROM_FP16,
O_CONV_FROM_FP32,
O_CONV_FROM_FP64,
O_SCONST_CONV_FROM_FP32_TO_FP16,
O_SCONST_CONV_FROM_FP64_TO_FP32,
O_SCONST_CONV_FROM_FP64_TO_FP16,
O_RETURN_VAL,
// spir-v binary operations
O_ADD,
O_SUB,
O_MUL,
O_DIV,
O_REM,
O_MOD,
O_PHI,
O_SELECT,
O_DOT,
O_VEC_MUL_S,
O_VEC_MUL_M,
O_MAT_MUL_S,
O_MAT_MUL_V,
O_MAT_MUL_M,
O_OUT_PROD,
O_ORD_EQ,
O_UORD_EQ,
O_ORD_NEQ,
O_UORD_NEQ,
O_ORD_LS,
O_UORD_LS,
O_ORD_GT,
O_UORD_GT,
O_ORD_LE,
O_UORD_LE,
O_ORD_GE,
O_UORD_GE,
// glsl unary operations
O_ROUND,
O_ROUND_EV,
O_TRUNC,
O_ABS,
O_SIGN,
O_FLOOR,
O_CEIL,
O_FRACT,
O_RADIANS,
O_DEGREES,
O_SIN,
O_COS,
O_TAN,
O_ASIN,
O_ACOS,
O_ATAN,
O_SINH,
O_COSH,
O_TANH,
O_ASINH,
O_ACOSH,
O_ATANH,
O_EXP,
O_LOG,
O_EXP2,
O_LOG2,
O_SQRT,
O_INV_SQRT,
O_MODF,
O_MODF_ST,
O_FREXP,
O_FREXP_ST,
O_LENGHT,
O_NORMALIZE,
O_REFLECT,
O_REFRACT,
O_MAT_DET,
O_MAT_INV,
O_PH_DENORM, // PackHalf2x16
O_UPH_DENORM,
O_PD_DENORM, // PackDouble2x32
O_UPD_DENORM_FLUSH,
O_UPD_DENORM_PRESERVE,
// glsl binary operations
O_ATAN2,
O_POW,
O_MIX,
O_FMA,
O_MIN,
O_MAX,
O_CLAMP,
O_STEP,
O_SSTEP,
O_DIST,
O_CROSS,
O_FACE_FWD,
O_NMIN,
O_NMAX,
O_NCLAMP,
O_ORTE_ROUND,
O_ORTZ_ROUND
};
// Structures storing data required to test DenormPreserve and DenormFlushToZero modes.
// Operations are separated into binary and unary lists because binary operations can be tested with
// two attributes and thus denorms can be tested in combination with value, denorm, inf and nan.
// Unary operations are only tested with denorms.
struct BinaryCase
{
OperationId operationId;
ValueId opVarResult;
ValueId opDenormResult;
ValueId opInfResult;
ValueId opNanResult;
};
struct UnaryCase
{
OperationId operationId;
ValueId result;
};
// Function replacing all occurrences of substring with string passed in last parameter.
string replace(string str, const string& from, const string& to)
{
// to keep spir-v code clean and easier to read parts of it are processed
// with this method instead of StringTemplate; main usage of this method is the
// replacement of "float_" with "f16_", "f32_" or "f64_" depending on test case
size_t start_pos = 0;
while((start_pos = str.find(from, start_pos)) != std::string::npos)
{
str.replace(start_pos, from.length(), to);
start_pos += to.length();
}
return str;
}
// Structure used to perform bits conversion int type <-> float type.
template<typename FLOAT_TYPE, typename UINT_TYPE>
struct RawConvert
{
union Value
{
FLOAT_TYPE fp;
UINT_TYPE ui;
};
};
// Traits used to get int type that can store equivalent float type.
template<typename FLOAT_TYPE>
struct GetCoresponding
{
typedef deUint16 uint_type;
};
template<>
struct GetCoresponding<float>
{
typedef deUint32 uint_type;
};
template<>
struct GetCoresponding<double>
{
typedef deUint64 uint_type;
};
// All values used for arguments and operation results are stored in single map.
// Each float type (fp16, fp32, fp64) has its own map that is used during
// test setup and during verification. TypeValuesBase is interface to that map.
class TypeValuesBase
{
public:
TypeValuesBase();
virtual ~TypeValuesBase() {}
virtual BufferSp constructInputBuffer(const ValueId* twoArguments) const = 0;
virtual BufferSp constructOutputBuffer(ValueId result) const = 0;
protected:
const double pi;
};
TypeValuesBase::TypeValuesBase()
: pi(3.14159265358979323846)
{
}
typedef de::SharedPtr<TypeValuesBase> TypeValuesSP;
template <typename FLOAT_TYPE>
class TypeValues: public TypeValuesBase
{
public:
TypeValues();
BufferSp constructInputBuffer(const ValueId* twoArguments) const;
BufferSp constructOutputBuffer(ValueId result) const;
FLOAT_TYPE getValue(ValueId id) const;
template <typename UINT_TYPE>
FLOAT_TYPE exactByteEquivalent(UINT_TYPE byteValue) const;
private:
typedef map<ValueId, FLOAT_TYPE> ValueMap;
ValueMap m_valueIdToFloatType;
};
template <typename FLOAT_TYPE>
BufferSp TypeValues<FLOAT_TYPE>::constructInputBuffer(const ValueId* twoArguments) const
{
std::vector<FLOAT_TYPE> inputData(2);
inputData[0] = m_valueIdToFloatType.at(twoArguments[0]);
inputData[1] = m_valueIdToFloatType.at(twoArguments[1]);
return BufferSp(new Buffer<FLOAT_TYPE>(inputData));
}
template <typename FLOAT_TYPE>
BufferSp TypeValues<FLOAT_TYPE>::constructOutputBuffer(ValueId result) const
{
// note: we are not doing maping here, ValueId is directly saved in
// float type in order to be able to retireve it during verification
typedef typename GetCoresponding<FLOAT_TYPE>::uint_type uint_t;
uint_t value = static_cast<uint_t>(result);
std::vector<FLOAT_TYPE> outputData(1, exactByteEquivalent<uint_t>(value));
return BufferSp(new Buffer<FLOAT_TYPE>(outputData));
}
template <typename FLOAT_TYPE>
FLOAT_TYPE TypeValues<FLOAT_TYPE>::getValue(ValueId id) const
{
return m_valueIdToFloatType.at(id);
}
template <typename FLOAT_TYPE>
template <typename UINT_TYPE>
FLOAT_TYPE TypeValues<FLOAT_TYPE>::exactByteEquivalent(UINT_TYPE byteValue) const
{
typename RawConvert<FLOAT_TYPE, UINT_TYPE>::Value value;
value.ui = byteValue;
return value.fp;
}
template <>
TypeValues<deFloat16>::TypeValues()
: TypeValuesBase()
{
// NOTE: when updating entries in m_valueIdToFloatType make sure to
// update also valueIdToSnippetArgMap defined in updateSpirvSnippets()
ValueMap& vm = m_valueIdToFloatType;
vm[V_UNUSED] = deFloat32To16(0.0f);
vm[V_MINUS_INF] = 0xfc00;
vm[V_MINUS_ONE] = deFloat32To16(-1.0f);
vm[V_MINUS_ZERO] = 0x8000;
vm[V_ZERO] = 0x0000;
vm[V_HALF] = deFloat32To16(0.5f);
vm[V_ONE] = deFloat32To16(1.0f);
vm[V_INF] = 0x7c00;
vm[V_DENORM] = 0x03f0; // this value should be the same as the result of denormBase - epsilon
vm[V_NAN] = 0x7cf0;
vm[V_PI_DIV_2] = 0x3e48;
vm[V_DENORM_TIMES_TWO] = 0x07e0;
vm[V_DEGREES_DENORM] = 0x1b0c;
vm[V_ADD_ARG_A] = 0x3c03;
vm[V_ADD_ARG_B] = vm[V_ONE];
vm[V_SUB_ARG_A] = vm[V_ADD_ARG_A];
vm[V_SUB_ARG_B] = 0x4203;
vm[V_MUL_ARG_A] = vm[V_ADD_ARG_A];
vm[V_MUL_ARG_B] = 0x1900;
vm[V_DOT_ARG_A] = vm[V_ADD_ARG_A];
vm[V_DOT_ARG_B] = vm[V_MUL_ARG_B];
vm[V_CONV_FROM_FP32_ARG] = vm[V_UNUSED];
vm[V_CONV_FROM_FP64_ARG] = vm[V_UNUSED];
vm[V_ADD_RTZ_RESULT] = 0x4001; // deFloat16Add(vm[V_ADD_ARG_A], vm[V_ADD_ARG_B], rtz)
vm[V_SUB_RTZ_RESULT] = 0xc001; // deFloat16Sub(vm[V_SUB_ARG_A], vm[V_SUB_ARG_B], rtz)
vm[V_MUL_RTZ_RESULT] = 0x1903; // deFloat16Mul(vm[V_MUL_ARG_A], vm[V_MUL_ARG_B], rtz)
vm[V_DOT_RTZ_RESULT] = 0x1d03;
vm[V_CONV_TO_FP16_RTZ_RESULT] = deFloat32To16Round(1.22334445f, DE_ROUNDINGMODE_TO_ZERO);
vm[V_CONV_TO_FP32_RTZ_RESULT] = vm[V_UNUSED];
vm[V_ADD_RTE_RESULT] = 0x4002; // deFloat16Add(vm[V_ADD_ARG_A], vm[V_ADD_ARG_B], rte)
vm[V_SUB_RTE_RESULT] = 0xc002; // deFloat16Sub(vm[V_SUB_ARG_A], vm[V_SUB_ARG_B], rte)
vm[V_MUL_RTE_RESULT] = 0x1904; // deFloat16Mul(vm[V_MUL_ARG_A], vm[V_MUL_ARG_B], rte)
vm[V_DOT_RTE_RESULT] = 0x1d04;
vm[V_CONV_TO_FP16_RTE_RESULT] = deFloat32To16Round(1.22334445f, DE_ROUNDINGMODE_TO_NEAREST_EVEN);
vm[V_CONV_TO_FP32_RTE_RESULT] = vm[V_UNUSED];
// there is no precision to store fp32 denorm nor fp64 denorm
vm[V_CONV_DENORM_SMALLER] = vm[V_ZERO];
vm[V_CONV_DENORM_BIGGER] = vm[V_ZERO];
}
template <>
TypeValues<float>::TypeValues()
: TypeValuesBase()
{
// NOTE: when updating entries in m_valueIdToFloatType make sure to
// update also valueIdToSnippetArgMap defined in updateSpirvSnippets()
ValueMap& vm = m_valueIdToFloatType;
vm[V_UNUSED] = 0.0f;
vm[V_MINUS_INF] = -std::numeric_limits<float>::infinity();
vm[V_MINUS_ONE] = -1.0f;
vm[V_MINUS_ZERO] = -0.0f;
vm[V_ZERO] = 0.0f;
vm[V_HALF] = 0.5f;
vm[V_ONE] = 1.0f;
vm[V_INF] = std::numeric_limits<float>::infinity();
vm[V_DENORM] = static_cast<float>(1.413e-42); // 0x000003f0
vm[V_NAN] = std::numeric_limits<float>::quiet_NaN();
vm[V_PI_DIV_2] = static_cast<float>(pi / 2);
vm[V_DENORM_TIMES_TWO] = vm[V_DENORM] + vm[V_DENORM];
vm[V_DEGREES_DENORM] = deFloatDegrees(vm[V_DENORM]);
float e = std::numeric_limits<float>::epsilon();
vm[V_ADD_ARG_A] = 1.0f + 3 * e;
vm[V_ADD_ARG_B] = 1.0f;
vm[V_SUB_ARG_A] = vm[V_ADD_ARG_A];
vm[V_SUB_ARG_B] = 3.0f + 6 * e;
vm[V_MUL_ARG_A] = vm[V_ADD_ARG_A];
vm[V_MUL_ARG_B] = 5 * e;
vm[V_DOT_ARG_A] = vm[V_ADD_ARG_A];
vm[V_DOT_ARG_B] = 5 * e;
vm[V_CONV_FROM_FP32_ARG] = 1.22334445f;
vm[V_CONV_FROM_FP64_ARG] = vm[V_UNUSED];
int prevRound = fegetround();
fesetround(FE_TOWARDZERO);
vm[V_ADD_RTZ_RESULT] = vm[V_ADD_ARG_A] + vm[V_ADD_ARG_B];
vm[V_SUB_RTZ_RESULT] = vm[V_SUB_ARG_A] - vm[V_SUB_ARG_B];
vm[V_MUL_RTZ_RESULT] = vm[V_MUL_ARG_A] * vm[V_MUL_ARG_B];
vm[V_DOT_RTZ_RESULT] = vm[V_MUL_RTZ_RESULT] + vm[V_MUL_RTZ_RESULT];
vm[V_CONV_TO_FP16_RTZ_RESULT] = vm[V_UNUSED];
vm[V_CONV_TO_FP32_RTZ_RESULT] = exactByteEquivalent<deUint32>(0x3f9c968d); // result of conversion from double(1.22334455)
fesetround(FE_TONEAREST);
vm[V_ADD_RTE_RESULT] = vm[V_ADD_ARG_A] + vm[V_ADD_ARG_B];
vm[V_SUB_RTE_RESULT] = vm[V_SUB_ARG_A] - vm[V_SUB_ARG_B];
vm[V_MUL_RTE_RESULT] = vm[V_MUL_ARG_A] * vm[V_MUL_ARG_B];
vm[V_DOT_RTE_RESULT] = vm[V_MUL_RTE_RESULT] + vm[V_MUL_RTE_RESULT];
vm[V_CONV_TO_FP16_RTE_RESULT] = vm[V_UNUSED];
vm[V_CONV_TO_FP32_RTE_RESULT] = exactByteEquivalent<deUint32>(0x3f9c968e); // result of conversion from double(1.22334455)
fesetround(prevRound);
// there is no precision to store fp64 denorm
vm[V_CONV_DENORM_SMALLER] = exactByteEquivalent<deUint32>(0x387c0000); // fp16 denorm
vm[V_CONV_DENORM_BIGGER] = vm[V_ZERO];
}
template <>
TypeValues<double>::TypeValues()
: TypeValuesBase()
{
// NOTE: when updating entries in m_valueIdToFloatType make sure to
// update also valueIdToSnippetArgMap defined in updateSpirvSnippets()
ValueMap& vm = m_valueIdToFloatType;
vm[V_UNUSED] = 0.0;
vm[V_MINUS_INF] = -std::numeric_limits<double>::infinity();
vm[V_MINUS_ONE] = -1.0;
vm[V_MINUS_ZERO] = -0.0;
vm[V_ZERO] = 0.0;
vm[V_HALF] = 0.5;
vm[V_ONE] = 1.0;
vm[V_INF] = std::numeric_limits<double>::infinity();
vm[V_DENORM] = 4.98e-321; // 0x00000000000003F0
vm[V_NAN] = std::numeric_limits<double>::quiet_NaN();
vm[V_PI_DIV_2] = pi / 2;
vm[V_DENORM_TIMES_TWO] = vm[V_DENORM] + vm[V_DENORM];
vm[V_DEGREES_DENORM] = vm[V_UNUSED];
double e = std::numeric_limits<double>::epsilon();
vm[V_ADD_ARG_A] = 1.0 + 3 * e;
vm[V_ADD_ARG_B] = 1.0;
vm[V_SUB_ARG_A] = vm[V_ADD_ARG_A];
vm[V_SUB_ARG_B] = 3.0 + 6 * e;
vm[V_MUL_ARG_A] = vm[V_ADD_ARG_A];
vm[V_MUL_ARG_B] = 5 * e;
vm[V_DOT_ARG_A] = vm[V_ADD_ARG_A];
vm[V_DOT_ARG_B] = 5 * e;
vm[V_CONV_FROM_FP32_ARG] = vm[V_UNUSED];
vm[V_CONV_FROM_FP64_ARG] = 1.22334455;
int prevRound = fegetround();
fesetround(FE_TOWARDZERO);
vm[V_ADD_RTZ_RESULT] = vm[V_ADD_ARG_A] + vm[V_ADD_ARG_B];
vm[V_SUB_RTZ_RESULT] = vm[V_SUB_ARG_A] - vm[V_SUB_ARG_B];
vm[V_MUL_RTZ_RESULT] = vm[V_MUL_ARG_A] * vm[V_MUL_ARG_B];
vm[V_DOT_RTZ_RESULT] = vm[V_MUL_RTZ_RESULT] + vm[V_MUL_RTZ_RESULT];
vm[V_CONV_TO_FP16_RTZ_RESULT] = vm[V_UNUSED];
vm[V_CONV_TO_FP32_RTZ_RESULT] = vm[V_UNUSED];
fesetround(FE_TONEAREST);
vm[V_ADD_RTE_RESULT] = vm[V_ADD_ARG_A] + vm[V_ADD_ARG_B];
vm[V_SUB_RTE_RESULT] = vm[V_SUB_ARG_A] - vm[V_SUB_ARG_B];
vm[V_MUL_RTE_RESULT] = vm[V_MUL_ARG_A] * vm[V_MUL_ARG_B];
vm[V_DOT_RTE_RESULT] = vm[V_MUL_RTE_RESULT] + vm[V_MUL_RTE_RESULT];
vm[V_CONV_TO_FP16_RTE_RESULT] = vm[V_UNUSED];
vm[V_CONV_TO_FP32_RTE_RESULT] = vm[V_UNUSED];
fesetround(prevRound);
vm[V_CONV_DENORM_SMALLER] = exactByteEquivalent<deUint64>(0x3f0f800000000000); // 0x03f0 is fp16 denorm
vm[V_CONV_DENORM_BIGGER] = exactByteEquivalent<deUint64>(0x373f800000000000); // 0x000003f0 is fp32 denorm
}
// Each float type (fp16, fp32, fp64) has specific set of SPIR-V snippets
// that was extracted to separate template specialization. Those snippets
// are used to compose final test shaders. With this approach
// parameterization can be done just once per type and reused for many tests.
class TypeSnippetsBase
{
public:
virtual ~TypeSnippetsBase() {}
protected:
void updateSpirvSnippets();
public: // Type specific data:
// Number of bits consumed by float type
string bitWidth;
// Minimum positive normal
string epsilon;
// denormBase is a normal value (found empirically) used to generate denorm value.
// Denorm is generated by substracting epsilon from denormBase.
// denormBase is not a denorm - it is used to create denorm.
// This value is needed when operations are tested with arguments that were
// generated in the code. Generated denorm should be the same as denorm
// used when arguments are passed via input (m_valueIdToFloatType[V_DENORM]).
// This is required as result of some operations depends on actual denorm value
// e.g. OpRadians(0x0001) is 0 but OpRadians(0x03f0) is denorm.
string denormBase;
string capabilities;
string extensions;
string arrayStride;
public: // Type specific spir-v snippets:
// Common annotations
string typeAnnotationsSnippet;
// Definitions of all types commonly used by tests
string typeDefinitionsSnippet;
// Definitions of all constants commonly used by tests
string constantsDefinitionsSnippet;
// Map that stores instructions that generate arguments of specified value.
// Every test that uses generated inputod will select up to two items from this map
typedef map<ValueId, string> SnippetMap;
SnippetMap valueIdToSnippetArgMap;
// Spir-v snippet that reads argument from SSBO
string argumentsFromInputSnippet;
// SSBO with stage input/output definitions
string inputAnnotationsSnippet;
string inputDefinitionsSnippet;
string outputAnnotationsSnippet;
string outputDefinitionsSnippet;
// Varying is required to pass result from vertex stage to fragment stage,
// one of requirements was to not use SSBO writes in vertex stage so we
// need to do that in fragment stage; we also cant pass operation result
// directly because of interpolation, to avoid it we do a bitcast to uint
string varyingsTypesSnippet;
string inputVaryingsSnippet;
string outputVaryingsSnippet;
string storeVertexResultSnippet;
string loadVertexResultSnippet;
string storeResultsSnippet;
};
void TypeSnippetsBase::updateSpirvSnippets()
{
// annotations to types that are commonly used by tests
const string typeAnnotationsTemplate =
"OpDecorate %type_float_arr_1 ArrayStride " + arrayStride + "\n"
"OpDecorate %type_float_arr_2 ArrayStride " + arrayStride + "\n";
// definition off all types that are commonly used by tests
const string typeDefinitionsTemplate =
"%type_float = OpTypeFloat " + bitWidth + "\n"
"%type_float_uptr = OpTypePointer Uniform %type_float\n"
"%type_float_fptr = OpTypePointer Function %type_float\n"
"%type_float_vec2 = OpTypeVector %type_float 2\n"
"%type_float_vec3 = OpTypeVector %type_float 3\n"
"%type_float_vec4 = OpTypeVector %type_float 4\n"
"%type_float_vec4_iptr = OpTypePointer Input %type_float_vec4\n"
"%type_float_vec4_optr = OpTypePointer Output %type_float_vec4\n"
"%type_float_mat2x2 = OpTypeMatrix %type_float_vec2 2\n"
"%type_float_arr_1 = OpTypeArray %type_float %c_i32_1\n"
"%type_float_arr_2 = OpTypeArray %type_float %c_i32_2\n";
// definition off all constans that are used by tests
const string constantsDefinitionsTemplate =
"%c_float_n1 = OpConstant %type_float -1\n"
"%c_float_0 = OpConstant %type_float 0.0\n"
"%c_float_0_5 = OpConstant %type_float 0.5\n"
"%c_float_1 = OpConstant %type_float 1\n"
"%c_float_2 = OpConstant %type_float 2\n"
"%c_float_3 = OpConstant %type_float 3\n"
"%c_float_4 = OpConstant %type_float 4\n"
"%c_float_5 = OpConstant %type_float 5\n"
"%c_float_6 = OpConstant %type_float 6\n"
"%c_float_eps = OpConstant %type_float " + epsilon + "\n"
"%c_float_denorm_base = OpConstant %type_float " + denormBase + "\n";
// when arguments are read from SSBO this snipped is placed in main function
const string argumentsFromInputTemplate =
"%arg1loc = OpAccessChain %type_float_uptr %ssbo_in %c_i32_0 %c_i32_0\n"
"%arg1 = OpLoad %type_float %arg1loc\n"
"%arg2loc = OpAccessChain %type_float_uptr %ssbo_in %c_i32_0 %c_i32_1\n"
"%arg2 = OpLoad %type_float %arg2loc\n";
// when tested shader stage reads from SSBO it has to have this snippet
inputAnnotationsSnippet =
"OpMemberDecorate %SSBO_in 0 Offset 0\n"
"OpDecorate %SSBO_in BufferBlock\n"
"OpDecorate %ssbo_in DescriptorSet 0\n"
"OpDecorate %ssbo_in Binding 0\n"
"OpDecorate %ssbo_in NonWritable\n";
const string inputDefinitionsTemplate =
"%SSBO_in = OpTypeStruct %type_float_arr_2\n"
"%up_SSBO_in = OpTypePointer Uniform %SSBO_in\n"
"%ssbo_in = OpVariable %up_SSBO_in Uniform\n";
outputAnnotationsSnippet =
"OpMemberDecorate %SSBO_out 0 Offset 0\n"
"OpDecorate %SSBO_out BufferBlock\n"
"OpDecorate %ssbo_out DescriptorSet 0\n"
"OpDecorate %ssbo_out Binding 1\n";
const string outputDefinitionsTemplate =
"%SSBO_out = OpTypeStruct %type_float_arr_1\n"
"%up_SSBO_out = OpTypePointer Uniform %SSBO_out\n"
"%ssbo_out = OpVariable %up_SSBO_out Uniform\n";
// this snippet is used by compute and fragment stage but not by vertex stage
const string storeResultsTemplate =
"%outloc = OpAccessChain %type_float_uptr %ssbo_out %c_i32_0 %c_i32_0\n"
"OpStore %outloc %result\n";
const string typeToken = "_float";
const string typeName = "_f" + bitWidth;
typeAnnotationsSnippet = replace(typeAnnotationsTemplate, typeToken, typeName);
typeDefinitionsSnippet = replace(typeDefinitionsTemplate, typeToken, typeName);
constantsDefinitionsSnippet = replace(constantsDefinitionsTemplate, typeToken, typeName);
argumentsFromInputSnippet = replace(argumentsFromInputTemplate, typeToken, typeName);
inputDefinitionsSnippet = replace(inputDefinitionsTemplate, typeToken, typeName);
outputDefinitionsSnippet = replace(outputDefinitionsTemplate, typeToken, typeName);
storeResultsSnippet = replace(storeResultsTemplate, typeToken, typeName);
// NOTE: only values used as _generated_ arguments in test operations
// need to be in this map, arguments that are only used by tests,
// that grab arguments from input, do need to be in this map
// NOTE: when updating entries in valueIdToSnippetArgMap make
// sure to update also m_valueIdToFloatType for all float width
SnippetMap& sm = valueIdToSnippetArgMap;
sm[V_UNUSED] = "OpFSub %type_float %c_float_0 %c_float_0\n";
sm[V_MINUS_INF] = "OpFDiv %type_float %c_float_n1 %c_float_0\n";
sm[V_MINUS_ONE] = "OpFAdd %type_float %c_float_n1 %c_float_0\n";
sm[V_MINUS_ZERO] = "OpFMul %type_float %c_float_n1 %c_float_0\n";
sm[V_ZERO] = "OpFMul %type_float %c_float_0 %c_float_0\n";
sm[V_HALF] = "OpFAdd %type_float %c_float_0_5 %c_float_0\n";
sm[V_ONE] = "OpFAdd %type_float %c_float_1 %c_float_0\n";
sm[V_INF] = "OpFDiv %type_float %c_float_1 %c_float_0\n"; // x / 0 == Inf
sm[V_DENORM] = "OpFSub %type_float %c_float_denorm_base %c_float_eps\n";
sm[V_NAN] = "OpFDiv %type_float %c_float_0 %c_float_0\n"; // 0 / 0 == Nan
map<ValueId, string>::iterator it;
for ( it = sm.begin(); it != sm.end(); it++ )
sm[it->first] = replace(it->second, typeToken, typeName);
}
typedef de::SharedPtr<TypeSnippetsBase> TypeSnippetsSP;
template<typename FLOAT_TYPE>
class TypeSnippets: public TypeSnippetsBase
{
public:
TypeSnippets();
};
template<>
TypeSnippets<deFloat16>::TypeSnippets()
{
bitWidth = "16";
epsilon = "6.104e-5"; // 2^-14 = 0x0400
// 1.2113e-4 is 0x07f0 which after substracting epsilon will give 0x03f0 (same as vm[V_DENORM])
// NOTE: constants in SPIR-V cant be specified as exact fp16 - there is conversion from double to fp16
denormBase = "1.2113e-4";
capabilities = "OpCapability StorageUniform16\n";
extensions = "OpExtension \"SPV_KHR_16bit_storage\"\n";
arrayStride = "2";
varyingsTypesSnippet =
"%type_u32_iptr = OpTypePointer Input %type_u32\n"
"%type_u32_optr = OpTypePointer Output %type_u32\n";
inputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_iptr Input\n";
outputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_optr Output\n";
storeVertexResultSnippet =
"%tmp_vec2 = OpCompositeConstruct %type_f16_vec2 %result %c_f16_0\n"
"%packed_result = OpBitcast %type_u32 %tmp_vec2\n"
"OpStore %BP_vertex_result %packed_result\n";
loadVertexResultSnippet =
"%packed_result = OpLoad %type_u32 %BP_vertex_result\n"
"%tmp_vec2 = OpBitcast %type_f16_vec2 %packed_result\n"
"%result = OpCompositeExtract %type_f16 %tmp_vec2 0\n";
updateSpirvSnippets();
}
template<>
TypeSnippets<float>::TypeSnippets()
{
bitWidth = "32";
epsilon = "1.175494351e-38";
denormBase = "1.1756356e-38";
capabilities = "";
extensions = "";
arrayStride = "4";
varyingsTypesSnippet =
"%type_u32_iptr = OpTypePointer Input %type_u32\n"
"%type_u32_optr = OpTypePointer Output %type_u32\n";
inputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_iptr Input\n";
outputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_optr Output\n";
storeVertexResultSnippet =
"%packed_result = OpBitcast %type_u32 %result\n"
"OpStore %BP_vertex_result %packed_result\n";
loadVertexResultSnippet =
"%packed_result = OpLoad %type_u32 %BP_vertex_result\n"
"%result = OpBitcast %type_f32 %packed_result\n";
updateSpirvSnippets();
}
template<>
TypeSnippets<double>::TypeSnippets()
{
bitWidth = "64";
epsilon = "2.2250738585072014e-308"; // 0x0010000000000000
denormBase = "2.2250738585076994e-308"; // 0x00100000000003F0
capabilities = "OpCapability Float64\n";
extensions = "";
arrayStride = "8";
varyingsTypesSnippet =
"%type_u32_vec2_iptr = OpTypePointer Input %type_u32_vec2\n"
"%type_u32_vec2_optr = OpTypePointer Output %type_u32_vec2\n";
inputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_vec2_iptr Input\n";
outputVaryingsSnippet =
"%BP_vertex_result = OpVariable %type_u32_vec2_optr Output\n";
storeVertexResultSnippet =
"%packed_result = OpBitcast %type_u32_vec2 %result\n"
"OpStore %BP_vertex_result %packed_result\n";
loadVertexResultSnippet =
"%packed_result = OpLoad %type_u32_vec2 %BP_vertex_result\n"
"%result = OpBitcast %type_f64 %packed_result\n";
updateSpirvSnippets();
}
class TypeTestResultsBase
{
public:
virtual ~TypeTestResultsBase() {}
FloatType floatType() const;
protected:
FloatType m_floatType;
public:
// Vectors containing test data for float controls
vector<BinaryCase> binaryOpFTZ;
vector<UnaryCase> unaryOpFTZ;
vector<BinaryCase> binaryOpDenormPreserve;
vector<UnaryCase> unaryOpDenormPreserve;
};
FloatType TypeTestResultsBase::floatType() const
{
return m_floatType;
}
typedef de::SharedPtr<TypeTestResultsBase> TypeTestResultsSP;
template<typename FLOAT_TYPE>
class TypeTestResults: public TypeTestResultsBase
{
public:
TypeTestResults();
};
template<>
TypeTestResults<deFloat16>::TypeTestResults()
{
m_floatType = FP16;
// note: there are many FTZ test cases that can produce diferent result depending
// on input denorm being flushed or not; because of that FTZ tests can be limited
// to those that return denorm as those are the ones affected by tested extension
const BinaryCase binaryOpFTZArr[] = {
//operation den op one den op den den op inf den op nan
{ O_ADD, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_SUB, V_MINUS_ONE, V_ZERO, V_MINUS_INF, V_UNUSED },
{ O_MUL, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DIV, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_REM, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_MOD, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_V, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_OUT_PROD, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DOT, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_ATAN2, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_POW, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_MIX, V_HALF, V_ZERO, V_INF, V_UNUSED },
{ O_MIN, V_ZERO, V_ZERO, V_ZERO, V_UNUSED },
{ O_MAX, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_STEP, V_ONE, V_ONE, V_ONE, V_UNUSED },
{ O_SSTEP, V_HALF, V_ONE, V_ZERO, V_UNUSED },
{ O_FMA, V_HALF, V_HALF, V_UNUSED, V_UNUSED },
{ O_FACE_FWD, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE },
{ O_NMIN, V_ZERO, V_ZERO, V_ZERO, V_ZERO },
{ O_NMAX, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_NCLAMP, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_DIST, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CROSS, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
};
const UnaryCase unaryOpFTZArr[] = {
//operation op den
{ O_NEGATE, V_MINUS_ZERO },
{ O_ROUND, V_ZERO },
{ O_ROUND_EV, V_ZERO },
{ O_TRUNC, V_ZERO },
{ O_ABS, V_ZERO },
{ O_FLOOR, V_ZERO },
{ O_CEIL, V_ZERO },
{ O_FRACT, V_ZERO },
{ O_RADIANS, V_ZERO },
{ O_DEGREES, V_ZERO },
{ O_SIN, V_ZERO },
{ O_COS, V_TRIG_ONE },
{ O_TAN, V_ZERO },
{ O_ASIN, V_ZERO },
{ O_ACOS, V_PI_DIV_2 },
{ O_ATAN, V_ZERO },
{ O_SINH, V_ZERO },
{ O_COSH, V_ONE },
{ O_TANH, V_ZERO },
{ O_ASINH, V_ZERO },
{ O_ACOSH, V_UNUSED },
{ O_ATANH, V_ZERO },
{ O_EXP, V_ONE },
{ O_LOG, V_MINUS_INF },
{ O_EXP2, V_ONE },
{ O_LOG2, V_MINUS_INF },
{ O_SQRT, V_ZERO },
{ O_INV_SQRT, V_INF },
{ O_MAT_DET, V_ZERO },
{ O_MAT_INV, V_ZERO_OR_MINUS_ZERO },
{ O_MODF, V_ZERO },
{ O_MODF_ST, V_ZERO },
{ O_NORMALIZE, V_ZERO },
{ O_REFLECT, V_ZERO },
{ O_REFRACT, V_ZERO },
{ O_LENGHT, V_ZERO },
};
const BinaryCase binaryOpDenormPreserveArr[] = {
//operation den op one den op den den op inf den op nan
{ O_PHI, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_SELECT, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_ADD, V_ONE, V_DENORM_TIMES_TWO, V_INF, V_NAN },
{ O_SUB, V_MINUS_ONE_OR_CLOSE, V_ZERO, V_MINUS_INF, V_NAN },
{ O_MUL, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_M, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_V, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_M, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_OUT_PROD, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_DOT, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MIX, V_HALF, V_DENORM, V_INF, V_NAN },
{ O_FMA, V_HALF, V_HALF, V_INF, V_NAN },
{ O_MIN, V_DENORM, V_DENORM, V_DENORM, V_UNUSED },
{ O_MAX, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_NMIN, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_NMAX, V_ONE, V_DENORM, V_INF, V_DENORM },
{ O_NCLAMP, V_ONE, V_DENORM, V_INF, V_DENORM },
};
const UnaryCase unaryOpDenormPreserveArr[] = {
//operation op den
{ O_RETURN_VAL, V_DENORM },
{ O_D_EXTRACT, V_DENORM },
{ O_D_INSERT, V_DENORM },
{ O_SHUFFLE, V_DENORM },
{ O_COMPOSITE, V_DENORM },
{ O_COMPOSITE_INS, V_DENORM },
{ O_COPY, V_DENORM },
{ O_TRANSPOSE, V_DENORM },
{ O_NEGATE, V_DENORM },
{ O_ABS, V_DENORM },
{ O_SIGN, V_ONE },
{ O_RADIANS, V_DENORM },
{ O_DEGREES, V_DEGREES_DENORM },
};
binaryOpFTZ.insert(binaryOpFTZ.begin(), binaryOpFTZArr,
binaryOpFTZArr + DE_LENGTH_OF_ARRAY(binaryOpFTZArr));
unaryOpFTZ.insert(unaryOpFTZ.begin(), unaryOpFTZArr,
unaryOpFTZArr + DE_LENGTH_OF_ARRAY(unaryOpFTZArr));
binaryOpDenormPreserve.insert(binaryOpDenormPreserve.begin(), binaryOpDenormPreserveArr,
binaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(binaryOpDenormPreserveArr));
unaryOpDenormPreserve.insert(unaryOpDenormPreserve.begin(), unaryOpDenormPreserveArr,
unaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(unaryOpDenormPreserveArr));
}
template<>
TypeTestResults<float>::TypeTestResults()
{
m_floatType = FP32;
const BinaryCase binaryOpFTZArr[] = {
//operation den op one den op den den op inf den op nan
{ O_ADD, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_SUB, V_MINUS_ONE, V_ZERO, V_MINUS_INF, V_UNUSED },
{ O_MUL, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DIV, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_REM, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_MOD, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_V, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_OUT_PROD, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DOT, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_ATAN2, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_POW, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_MIX, V_HALF, V_ZERO, V_INF, V_UNUSED },
{ O_MIN, V_ZERO, V_ZERO, V_ZERO, V_UNUSED },
{ O_MAX, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_STEP, V_ONE, V_ONE, V_ONE, V_UNUSED },
{ O_SSTEP, V_HALF, V_ONE, V_ZERO, V_UNUSED },
{ O_FMA, V_HALF, V_HALF, V_UNUSED, V_UNUSED },
{ O_FACE_FWD, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE },
{ O_NMIN, V_ZERO, V_ZERO, V_ZERO, V_ZERO },
{ O_NMAX, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_NCLAMP, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_DIST, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CROSS, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
};
const UnaryCase unaryOpFTZArr[] = {
//operation op den
{ O_NEGATE, V_MINUS_ZERO },
{ O_ROUND, V_ZERO },
{ O_ROUND_EV, V_ZERO },
{ O_TRUNC, V_ZERO },
{ O_ABS, V_ZERO },
{ O_FLOOR, V_ZERO },
{ O_CEIL, V_ZERO },
{ O_FRACT, V_ZERO },
{ O_RADIANS, V_ZERO },
{ O_DEGREES, V_ZERO },
{ O_SIN, V_ZERO },
{ O_COS, V_TRIG_ONE },
{ O_TAN, V_ZERO },
{ O_ASIN, V_ZERO },
{ O_ACOS, V_PI_DIV_2 },
{ O_ATAN, V_ZERO },
{ O_SINH, V_ZERO },
{ O_COSH, V_ONE },
{ O_TANH, V_ZERO },
{ O_ASINH, V_ZERO },
{ O_ACOSH, V_UNUSED },
{ O_ATANH, V_ZERO },
{ O_EXP, V_ONE },
{ O_LOG, V_MINUS_INF },
{ O_EXP2, V_ONE },
{ O_LOG2, V_MINUS_INF },
{ O_SQRT, V_ZERO },
{ O_INV_SQRT, V_INF },
{ O_MAT_DET, V_ZERO },
{ O_MAT_INV, V_ZERO_OR_MINUS_ZERO },
{ O_MODF, V_ZERO },
{ O_MODF_ST, V_ZERO },
{ O_NORMALIZE, V_ZERO },
{ O_REFLECT, V_ZERO },
{ O_REFRACT, V_ZERO },
{ O_LENGHT, V_ZERO },
};
const BinaryCase binaryOpDenormPreserveArr[] = {
//operation den op one den op den den op inf den op nan
{ O_PHI, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_SELECT, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_ADD, V_ONE, V_DENORM_TIMES_TWO, V_INF, V_NAN },
{ O_SUB, V_MINUS_ONE, V_ZERO, V_MINUS_INF, V_NAN },
{ O_MUL, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_M, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_V, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_M, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_OUT_PROD, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_DOT, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MIX, V_HALF, V_DENORM, V_INF, V_NAN },
{ O_FMA, V_HALF, V_HALF, V_INF, V_NAN },
{ O_MIN, V_DENORM, V_DENORM, V_DENORM, V_UNUSED },
{ O_MAX, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_NMIN, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_NMAX, V_ONE, V_DENORM, V_INF, V_DENORM },
{ O_NCLAMP, V_ONE, V_DENORM, V_INF, V_DENORM },
};
const UnaryCase unaryOpDenormPreserveArr[] = {
//operation op den
{ O_RETURN_VAL, V_DENORM },
{ O_D_EXTRACT, V_DENORM },
{ O_D_INSERT, V_DENORM },
{ O_SHUFFLE, V_DENORM },
{ O_COMPOSITE, V_DENORM },
{ O_COMPOSITE_INS, V_DENORM },
{ O_COPY, V_DENORM },
{ O_TRANSPOSE, V_DENORM },
{ O_NEGATE, V_DENORM },
{ O_ABS, V_DENORM },
{ O_SIGN, V_ONE },
{ O_RADIANS, V_DENORM },
{ O_DEGREES, V_DEGREES_DENORM },
};
binaryOpFTZ.insert(binaryOpFTZ.begin(), binaryOpFTZArr,
binaryOpFTZArr + DE_LENGTH_OF_ARRAY(binaryOpFTZArr));
unaryOpFTZ.insert(unaryOpFTZ.begin(), unaryOpFTZArr,
unaryOpFTZArr + DE_LENGTH_OF_ARRAY(unaryOpFTZArr));
binaryOpDenormPreserve.insert(binaryOpDenormPreserve.begin(), binaryOpDenormPreserveArr,
binaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(binaryOpDenormPreserveArr));
unaryOpDenormPreserve.insert(unaryOpDenormPreserve.begin(), unaryOpDenormPreserveArr,
unaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(unaryOpDenormPreserveArr));
}
template<>
TypeTestResults<double>::TypeTestResults()
{
m_floatType = FP64;
// fp64 is supported by fewer operations then fp16 and fp32
// e.g. Radians and Degrees functions are not supported
const BinaryCase binaryOpFTZArr[] = {
//operation den op one den op den den op inf den op nan
{ O_ADD, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_SUB, V_MINUS_ONE, V_ZERO, V_MINUS_INF, V_UNUSED },
{ O_MUL, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DIV, V_ZERO, V_UNUSED, V_ZERO, V_UNUSED },
{ O_REM, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_MOD, V_ZERO, V_UNUSED, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_VEC_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_S, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_V, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MAT_MUL_M, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_OUT_PROD, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_DOT, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
{ O_MIX, V_HALF, V_ZERO, V_INF, V_UNUSED },
{ O_MIN, V_ZERO, V_ZERO, V_ZERO, V_UNUSED },
{ O_MAX, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_STEP, V_ONE, V_ONE, V_ONE, V_UNUSED },
{ O_SSTEP, V_HALF, V_ONE, V_ZERO, V_UNUSED },
{ O_FMA, V_HALF, V_HALF, V_UNUSED, V_UNUSED },
{ O_FACE_FWD, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE, V_MINUS_ONE },
{ O_NMIN, V_ZERO, V_ZERO, V_ZERO, V_ZERO },
{ O_NMAX, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_NCLAMP, V_ONE, V_ZERO, V_INF, V_ZERO },
{ O_DIST, V_ONE, V_ZERO, V_INF, V_UNUSED },
{ O_CROSS, V_ZERO, V_ZERO, V_UNUSED, V_UNUSED },
};
const UnaryCase unaryOpFTZArr[] = {
//operation op den
{ O_NEGATE, V_MINUS_ZERO },
{ O_ROUND, V_ZERO },
{ O_ROUND_EV, V_ZERO },
{ O_TRUNC, V_ZERO },
{ O_ABS, V_ZERO },
{ O_FLOOR, V_ZERO },
{ O_CEIL, V_ZERO },
{ O_FRACT, V_ZERO },
{ O_SQRT, V_ZERO },
{ O_INV_SQRT, V_INF },
{ O_MAT_DET, V_ZERO },
{ O_MAT_INV, V_ZERO_OR_MINUS_ZERO },
{ O_MODF, V_ZERO },
{ O_MODF_ST, V_ZERO },
{ O_NORMALIZE, V_ZERO },
{ O_REFLECT, V_ZERO },
{ O_LENGHT, V_ZERO },
};
const BinaryCase binaryOpDenormPreserveArr[] = {
//operation den op one den op den den op inf den op nan
{ O_PHI, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_SELECT, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_ADD, V_ONE, V_DENORM_TIMES_TWO, V_INF, V_NAN },
{ O_SUB, V_MINUS_ONE, V_ZERO, V_MINUS_INF, V_NAN },
{ O_MUL, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_VEC_MUL_M, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_S, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_V, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MAT_MUL_M, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_OUT_PROD, V_DENORM, V_ZERO, V_INF, V_NAN },
{ O_DOT, V_DENORM_TIMES_TWO, V_ZERO, V_INF, V_NAN },
{ O_MIX, V_HALF, V_DENORM, V_INF, V_NAN },
{ O_FMA, V_HALF, V_HALF, V_INF, V_NAN },
{ O_MIN, V_DENORM, V_DENORM, V_DENORM, V_UNUSED },
{ O_MAX, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_CLAMP, V_ONE, V_DENORM, V_INF, V_UNUSED },
{ O_NMIN, V_DENORM, V_DENORM, V_DENORM, V_DENORM },
{ O_NMAX, V_ONE, V_DENORM, V_INF, V_DENORM },
{ O_NCLAMP, V_ONE, V_DENORM, V_INF, V_DENORM },
};
const UnaryCase unaryOpDenormPreserveArr[] = {
//operation op den
{ O_RETURN_VAL, V_DENORM },
{ O_D_EXTRACT, V_DENORM },
{ O_D_INSERT, V_DENORM },
{ O_SHUFFLE, V_DENORM },
{ O_COMPOSITE, V_DENORM },
{ O_COMPOSITE_INS, V_DENORM },
{ O_COPY, V_DENORM },
{ O_TRANSPOSE, V_DENORM },
{ O_NEGATE, V_DENORM },
{ O_ABS, V_DENORM },
{ O_SIGN, V_ONE },
};
binaryOpFTZ.insert(binaryOpFTZ.begin(), binaryOpFTZArr,
binaryOpFTZArr + DE_LENGTH_OF_ARRAY(binaryOpFTZArr));
unaryOpFTZ.insert(unaryOpFTZ.begin(), unaryOpFTZArr,
unaryOpFTZArr + DE_LENGTH_OF_ARRAY(unaryOpFTZArr));
binaryOpDenormPreserve.insert(binaryOpDenormPreserve.begin(), binaryOpDenormPreserveArr,
binaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(binaryOpDenormPreserveArr));
unaryOpDenormPreserve.insert(unaryOpDenormPreserve.begin(), unaryOpDenormPreserveArr,
unaryOpDenormPreserveArr + DE_LENGTH_OF_ARRAY(unaryOpDenormPreserveArr));
}
// Operation structure holds data needed to test specified SPIR-V operation. This class contains
// additional annotations, additional types and aditional constants that should be properly included
// in SPIR-V code. Commands attribute in this structure contains code that performs tested operation
// on given arguments, in some cases verification is also performed there.
// All snipets stroed in this structure are generic and can be specialized for fp16, fp32 or fp64,
// thanks to that this data can be shared by many OperationTestCase instances (testing diferent
// float behaviours on diferent float widths).
struct Operation
{
// operation name is included in test case name
const char* name;
// operation specific spir-v snippets that will be
// placed in proper places in final test shader
const char* annotations;
const char* types;
const char* constants;
const char* variables;
const char* commands;
// conversion operations operate on one float type and produce float
// type with different bit width; restrictedInputType is used only when
// isInputTypeRestricted is set to true and it restricts usega of this
// operation to specified input type
bool isInputTypeRestricted;
FloatType restrictedInputType;
// arguments for OpSpecConstant need to be specified also as constant
bool isSpecConstant;
Operation() {}
// Minimal constructor - used by most of operations
Operation(const char* _name, const char* _commands)
: name(_name)
, annotations("")
, types("")
, constants("")
, variables("")
, commands(_commands)
, isInputTypeRestricted(false)
, restrictedInputType(FP16) // not used as isInputTypeRestricted is false
, isSpecConstant(false)
{}
// Conversion operations constructor (used also by conversions done in SpecConstantOp)
Operation(const char* _name,
bool specConstant,
FloatType _inputType,
const char* _constants,
const char* _commands)
: name(_name)
, annotations("")
, types("")
, constants(_constants)
, variables("")
, commands(_commands)
, isInputTypeRestricted(true)
, restrictedInputType(_inputType)
, isSpecConstant(specConstant)
{}
// Full constructor - used by few operations, that are more complex to test
Operation(const char* _name,
const char* _annotations,
const char* _types,
const char* _constants,
const char* _variables,
const char* _commands)
: name(_name)
, annotations(_annotations)
, types(_types)
, constants(_constants)
, variables(_variables)
, commands(_commands)
, isInputTypeRestricted(false)
, restrictedInputType(FP16) // not used as isInputTypeRestricted is false
, isSpecConstant(false)
{}
// Full constructor - used by rounding override cases
Operation(const char* _name,
FloatType _inputType,
const char* _annotations,
const char* _types,
const char* _constants,
const char* _commands)
: name(_name)
, annotations(_annotations)
, types(_types)
, constants(_constants)
, variables("")
, commands(_commands)
, isInputTypeRestricted(true)
, restrictedInputType(_inputType)
, isSpecConstant(false)
{}
};
// Class storing input that will be passed to operation and expected
// output that should be generated for specified behaviour.
class OperationTestCase
{
public:
OperationTestCase() {}
OperationTestCase(const char* _baseName,
BehaviorFlags _behaviorFlags,
OperationId _operatinId,
ValueId _input1,
ValueId _input2,
ValueId _expectedOutput)
: baseName(_baseName)
, behaviorFlags(_behaviorFlags)
, operationId(_operatinId)
, expectedOutput(_expectedOutput)
{
input[0] = _input1;
input[1] = _input2;
}
public:
string baseName;
BehaviorFlags behaviorFlags;
OperationId operationId;
ValueId input[2];
ValueId expectedOutput;
};
// Helper structure used to store specialized operation
// data. This data is ready to be used during shader assembly.
struct SpecializedOperation
{
string constans;
string annotations;
string types;
string arguments;
string variables;
string commands;
FloatType inFloatType;
TypeSnippetsSP inTypeSnippets;
TypeSnippetsSP outTypeSnippets;
};
// Class responsible for constructing list of test cases for specified
// float type and specified way of preparation of arguments.
// Arguments can be either read from input SSBO or generated via math
// operations in spir-v code.
class TestCasesBuilder
{
public:
void init();
void build(vector<OperationTestCase>& testCases, TypeTestResultsSP typeTestResults, bool argumentsFromInput);
const Operation& getOperation(OperationId id) const;
private:
void createUnaryTestCases(vector<OperationTestCase>& testCases,
OperationId operationId,
ValueId denormPreserveResult,
ValueId denormFTZResult) const;
private:
// Operations are shared betwean test cases so they are
// passed to them as pointers to data stored in TestCasesBuilder.
typedef OperationTestCase OTC;
typedef Operation Op;
map<int, Op> m_operations;
};
void TestCasesBuilder::init()
{
map<int, Op>& mo = m_operations;
// predefine operations repeatedly used in tests; note that "_float"
// in every operation command will be replaced with either "_f16",
// "_f32" or "_f64" - StringTemplate is not used here because it
// would make code less readable
// m_operations contains generic operation definitions that can be
// used for all float types
mo[O_NEGATE] = Op("negate", "%result = OpFNegate %type_float %arg1\n");
mo[O_COMPOSITE] = Op("composite", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%result = OpCompositeExtract %type_float %vec1 0\n");
mo[O_COMPOSITE_INS] = Op("comp_ins", "%vec1 = OpCompositeConstruct %type_float_vec2 %c_float_0 %c_float_0\n"
"%vec2 = OpCompositeInsert %type_float_vec2 %arg1 %vec1 0\n"
"%result = OpCompositeExtract %type_float %vec2 0\n");
mo[O_COPY] = Op("copy", "%result = OpCopyObject %type_float %arg1\n");
mo[O_D_EXTRACT] = Op("extract", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%result = OpVectorExtractDynamic %type_float %vec1 %c_i32_0\n");
mo[O_D_INSERT] = Op("insert", "%tmpVec = OpCompositeConstruct %type_float_vec2 %c_float_2 %c_float_2\n"
"%vec1 = OpVectorInsertDynamic %type_float_vec2 %tmpVec %arg1 %c_i32_0\n"
"%result = OpCompositeExtract %type_float %vec1 0\n");
mo[O_SHUFFLE] = Op("shuffle", "%tmpVec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%tmpVec2 = OpCompositeConstruct %type_float_vec2 %c_float_2 %c_float_2\n" // NOTE: its impossible to test shuffle with denorms flushed
"%vec1 = OpVectorShuffle %type_float_vec2 %tmpVec1 %tmpVec2 0 2\n" // to zero as this will be done by earlier operation
"%result = OpCompositeExtract %type_float %vec1 0\n"); // (this also applies to few other operations)
mo[O_TRANSPOSE] = Op("transpose", "%col = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col %col\n"
"%tmat = OpTranspose %type_float_mat2x2 %mat\n"
"%tcol = OpCompositeExtract %type_float_vec2 %tmat 0\n"
"%result = OpCompositeExtract %type_float %tcol 0\n");
mo[O_RETURN_VAL] = Op("ret_val", "",
"%type_test_fun = OpTypeFunction %type_float %type_float\n",
"%test_fun = OpFunction %type_float None %type_test_fun\n"
"%param = OpFunctionParameter %type_float\n"
"%entry = OpLabel\n"
"OpReturnValue %param\n"
"OpFunctionEnd\n",
"",
"%result = OpFunctionCall %type_float %test_fun %arg1\n");
// conversion operations that are meant to be used only for single output type (defined by the second number in name)
const char* convertSource = "%result = OpFConvert %type_float %arg1\n";
mo[O_CONV_FROM_FP16] = Op("conv_from_fp16", false, FP16, "", convertSource);
mo[O_CONV_FROM_FP32] = Op("conv_from_fp32", false, FP32, "", convertSource);
mo[O_CONV_FROM_FP64] = Op("conv_from_fp64", false, FP64, "", convertSource);
// from all operands supported by OpSpecConstantOp we can only test FConvert opcode with literals as everything
// else requires Karnel capability (OpenCL); values of literals used in SPIR-V code must be equiwalent to
// V_CONV_FROM_FP32_ARG and V_CONV_FROM_FP64_ARG so we can use same expected rounded values as for regular OpFConvert
mo[O_SCONST_CONV_FROM_FP32_TO_FP16]
= Op("sconst_conv_from_fp32", true, FP32,
"%c_arg = OpConstant %type_f32 1.22334445\n"
"%result = OpSpecConstantOp %type_f16 FConvert %c_arg\n",
"");
mo[O_SCONST_CONV_FROM_FP64_TO_FP32]
= Op("sconst_conv_from_fp64", true, FP64,
"%c_arg = OpConstant %type_f64 1.22334455\n"
"%result = OpSpecConstantOp %type_f32 FConvert %c_arg\n",
"");
mo[O_SCONST_CONV_FROM_FP64_TO_FP16]
= Op("sconst_conv_from_fp64", true, FP64,
"%c_arg = OpConstant %type_f64 1.22334445\n"
"%result = OpSpecConstantOp %type_f16 FConvert %c_arg\n",
"");
mo[O_ADD] = Op("add", "%result = OpFAdd %type_float %arg1 %arg2\n");
mo[O_SUB] = Op("sub", "%result = OpFSub %type_float %arg1 %arg2\n");
mo[O_MUL] = Op("mul", "%result = OpFMul %type_float %arg1 %arg2\n");
mo[O_DIV] = Op("div", "%result = OpFDiv %type_float %arg1 %arg2\n");
mo[O_REM] = Op("rem", "%result = OpFRem %type_float %arg1 %arg2\n");
mo[O_MOD] = Op("mod", "%result = OpFMod %type_float %arg1 %arg2\n");
mo[O_PHI] = Op("phi", "%comp = OpFOrdGreaterThan %type_bool %arg1 %arg2\n"
" OpSelectionMerge %comp_merge None\n"
" OpBranchConditional %comp %true_branch %false_branch\n"
"%true_branch = OpLabel\n"
" OpBranch %comp_merge\n"
"%false_branch = OpLabel\n"
" OpBranch %comp_merge\n"
"%comp_merge = OpLabel\n"
"%result = OpPhi %type_float %arg2 %true_branch %arg1 %false_branch\n");
mo[O_SELECT] = Op("select", "%always_true = OpFOrdGreaterThan %type_bool %c_float_1 %c_float_0\n"
"%result = OpSelect %type_float %always_true %arg1 %arg2\n");
mo[O_DOT] = Op("dot", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%vec2 = OpCompositeConstruct %type_float_vec2 %arg2 %arg2\n"
"%result = OpDot %type_float %vec1 %vec2\n");
mo[O_VEC_MUL_S] = Op("vmuls", "%vec = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%tmpVec = OpVectorTimesScalar %type_float_vec2 %vec %arg2\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_VEC_MUL_M] = Op("vmulm", "%col = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col %col\n"
"%vec = OpCompositeConstruct %type_float_vec2 %arg2 %arg2\n"
"%tmpVec = OpVectorTimesMatrix %type_float_vec2 %vec %mat\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_MAT_MUL_S] = Op("mmuls", "%col = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col %col\n"
"%mulMat = OpMatrixTimesScalar %type_float_mat2x2 %mat %arg2\n"
"%extCol = OpCompositeExtract %type_float_vec2 %mulMat 0\n"
"%result = OpCompositeExtract %type_float %extCol 0\n");
mo[O_MAT_MUL_V] = Op("mmulv", "%col = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col %col\n"
"%vec = OpCompositeConstruct %type_float_vec2 %arg2 %arg2\n"
"%mulVec = OpMatrixTimesVector %type_float_vec2 %mat %vec\n"
"%result = OpCompositeExtract %type_float %mulVec 0\n");
mo[O_MAT_MUL_M] = Op("mmulm", "%col1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat1 = OpCompositeConstruct %type_float_mat2x2 %col1 %col1\n"
"%col2 = OpCompositeConstruct %type_float_vec2 %arg2 %arg2\n"
"%mat2 = OpCompositeConstruct %type_float_mat2x2 %col2 %col2\n"
"%mulMat = OpMatrixTimesMatrix %type_float_mat2x2 %mat1 %mat2\n"
"%extCol = OpCompositeExtract %type_float_vec2 %mulMat 0\n"
"%result = OpCompositeExtract %type_float %extCol 0\n");
mo[O_OUT_PROD] = Op("out_prod", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%vec2 = OpCompositeConstruct %type_float_vec2 %arg2 %arg2\n"
"%mulMat = OpOuterProduct %type_float_mat2x2 %vec1 %vec2\n"
"%extCol = OpCompositeExtract %type_float_vec2 %mulMat 0\n"
"%result = OpCompositeExtract %type_float %extCol 0\n");
// comparison operations
mo[O_ORD_EQ] = Op("ord_eq", "%boolVal = OpFOrdEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_EQ] = Op("uord_eq", "%boolVal = OpFUnordEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ORD_NEQ] = Op("ord_neq", "%boolVal = OpFOrdNotEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_NEQ] = Op("uord_neq", "%boolVal = OpFUnordNotEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ORD_LS] = Op("ord_ls", "%boolVal = OpFOrdLessThan %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_LS] = Op("uord_ls", "%boolVal = OpFUnordLessThan %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ORD_GT] = Op("ord_gt", "%boolVal = OpFOrdGreaterThan %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_GT] = Op("uord_gt", "%boolVal = OpFUnordGreaterThan %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ORD_LE] = Op("ord_le", "%boolVal = OpFOrdLessThanEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_LE] = Op("uord_le", "%boolVal = OpFUnordLessThanEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ORD_GE] = Op("ord_ge", "%boolVal = OpFOrdGreaterThanEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_UORD_GE] = Op("uord_ge", "%boolVal = OpFUnordGreaterThanEqual %type_bool %arg1 %arg2\n"
"%result = OpSelect %type_float %boolVal %c_float_1 %c_float_0\n");
mo[O_ATAN2] = Op("atan2", "%result = OpExtInst %type_float %std450 Atan2 %arg1 %arg2\n");
mo[O_POW] = Op("pow", "%result = OpExtInst %type_float %std450 Pow %arg1 %arg2\n");
mo[O_MIX] = Op("mix", "%result = OpExtInst %type_float %std450 FMix %arg1 %arg2 %c_float_0_5\n");
mo[O_FMA] = Op("fma", "%result = OpExtInst %type_float %std450 Fma %arg1 %arg2 %c_float_0_5\n");
mo[O_MIN] = Op("min", "%result = OpExtInst %type_float %std450 FMin %arg1 %arg2\n");
mo[O_MAX] = Op("max", "%result = OpExtInst %type_float %std450 FMax %arg1 %arg2\n");
mo[O_CLAMP] = Op("clamp", "%result = OpExtInst %type_float %std450 FClamp %arg1 %arg2 %arg2\n");
mo[O_STEP] = Op("step", "%result = OpExtInst %type_float %std450 Step %arg1 %arg2\n");
mo[O_SSTEP] = Op("sstep", "%result = OpExtInst %type_float %std450 SmoothStep %arg1 %arg2 %c_float_0_5\n");
mo[O_DIST] = Op("distance", "%result = OpExtInst %type_float %std450 Distance %arg1 %arg2\n");
mo[O_CROSS] = Op("cross", "%vec1 = OpCompositeConstruct %type_float_vec3 %arg1 %arg1 %arg1\n"
"%vec2 = OpCompositeConstruct %type_float_vec3 %arg2 %arg2 %arg2\n"
"%tmpVec = OpExtInst %type_float_vec3 %std450 Cross %vec1 %vec2\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_FACE_FWD] = Op("face_fwd", "%result = OpExtInst %type_float %std450 FaceForward %c_float_1 %arg1 %arg2\n");
mo[O_NMIN] = Op("nmin", "%result = OpExtInst %type_float %std450 NMin %arg1 %arg2\n");
mo[O_NMAX] = Op("nmax", "%result = OpExtInst %type_float %std450 NMax %arg1 %arg2\n");
mo[O_NCLAMP] = Op("nclamp", "%result = OpExtInst %type_float %std450 NClamp %arg2 %arg1 %arg2\n");
mo[O_ROUND] = Op("round", "%result = OpExtInst %type_float %std450 Round %arg1\n");
mo[O_ROUND_EV] = Op("round_ev", "%result = OpExtInst %type_float %std450 RoundEven %arg1\n");
mo[O_TRUNC] = Op("trunc", "%result = OpExtInst %type_float %std450 Trunc %arg1\n");
mo[O_ABS] = Op("abs", "%result = OpExtInst %type_float %std450 FAbs %arg1\n");
mo[O_SIGN] = Op("sign", "%result = OpExtInst %type_float %std450 FSign %arg1\n");
mo[O_FLOOR] = Op("floor", "%result = OpExtInst %type_float %std450 Floor %arg1\n");
mo[O_CEIL] = Op("ceil", "%result = OpExtInst %type_float %std450 Ceil %arg1\n");
mo[O_FRACT] = Op("fract", "%result = OpExtInst %type_float %std450 Fract %arg1\n");
mo[O_RADIANS] = Op("radians", "%result = OpExtInst %type_float %std450 Radians %arg1\n");
mo[O_DEGREES] = Op("degrees", "%result = OpExtInst %type_float %std450 Degrees %arg1\n");
mo[O_SIN] = Op("sin", "%result = OpExtInst %type_float %std450 Sin %arg1\n");
mo[O_COS] = Op("cos", "%result = OpExtInst %type_float %std450 Cos %arg1\n");
mo[O_TAN] = Op("tan", "%result = OpExtInst %type_float %std450 Tan %arg1\n");
mo[O_ASIN] = Op("asin", "%result = OpExtInst %type_float %std450 Asin %arg1\n");
mo[O_ACOS] = Op("acos", "%result = OpExtInst %type_float %std450 Acos %arg1\n");
mo[O_ATAN] = Op("atan", "%result = OpExtInst %type_float %std450 Atan %arg1\n");
mo[O_SINH] = Op("sinh", "%result = OpExtInst %type_float %std450 Sinh %arg1\n");
mo[O_COSH] = Op("cosh", "%result = OpExtInst %type_float %std450 Cosh %arg1\n");
mo[O_TANH] = Op("tanh", "%result = OpExtInst %type_float %std450 Tanh %arg1\n");
mo[O_ASINH] = Op("asinh", "%result = OpExtInst %type_float %std450 Asinh %arg1\n");
mo[O_ACOSH] = Op("acosh", "%result = OpExtInst %type_float %std450 Acosh %arg1\n");
mo[O_ATANH] = Op("atanh", "%result = OpExtInst %type_float %std450 Atanh %arg1\n");
mo[O_EXP] = Op("exp", "%result = OpExtInst %type_float %std450 Exp %arg1\n");
mo[O_LOG] = Op("log", "%result = OpExtInst %type_float %std450 Log %arg1\n");
mo[O_EXP2] = Op("exp2", "%result = OpExtInst %type_float %std450 Exp2 %arg1\n");
mo[O_LOG2] = Op("log2", "%result = OpExtInst %type_float %std450 Log2 %arg1\n");
mo[O_SQRT] = Op("sqrt", "%result = OpExtInst %type_float %std450 Sqrt %arg1\n");
mo[O_INV_SQRT] = Op("inv_sqrt", "%result = OpExtInst %type_float %std450 InverseSqrt %arg1\n");
mo[O_MODF] = Op("modf", "",
"",
"",
"%tmpVarPtr = OpVariable %type_float_fptr Function\n",
"%result = OpExtInst %type_float %std450 Modf %arg1 %tmpVarPtr\n");
mo[O_MODF_ST] = Op("modf_st", "OpMemberDecorate %struct_ff 0 Offset ${float_width}\n"
"OpMemberDecorate %struct_ff 1 Offset ${float_width}\n",
"%struct_ff = OpTypeStruct %type_float %type_float\n"
"%struct_ff_fptr = OpTypePointer Function %struct_ff\n",
"",
"%tmpStructPtr = OpVariable %struct_ff_fptr Function\n",
"%tmpStruct = OpExtInst %struct_ff %std450 ModfStruct %arg1\n"
" OpStore %tmpStructPtr %tmpStruct\n"
"%tmpLoc = OpAccessChain %type_float_fptr %tmpStructPtr %c_i32_0\n"
"%result = OpLoad %type_float %tmpLoc\n");
mo[O_FREXP] = Op("frexp", "",
"",
"",
"%tmpVarPtr = OpVariable %type_i32_fptr Function\n",
"%result = OpExtInst %type_float %std450 Frexp %arg1 %tmpVarPtr\n");
mo[O_FREXP_ST] = Op("frexp_st", "OpMemberDecorate %struct_fi 0 Offset ${float_width}\n"
"OpMemberDecorate %struct_fi 1 Offset 32\n",
"%struct_fi = OpTypeStruct %type_float %type_i32\n"
"%struct_fi_fptr = OpTypePointer Function %struct_fi\n",
"",
"%tmpStructPtr = OpVariable %struct_fi_fptr Function\n",
"%tmpStruct = OpExtInst %struct_fi %std450 FrexpStruct %arg1\n"
" OpStore %tmpStructPtr %tmpStruct\n"
"%tmpLoc = OpAccessChain %type_float_fptr %tmpStructPtr %c_i32_0\n"
"%result = OpLoad %type_float %tmpLoc\n");
mo[O_LENGHT] = Op("length", "%result = OpExtInst %type_float %std450 Length %arg1\n");
mo[O_NORMALIZE] = Op("normalize", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %c_float_2\n"
"%tmpVec = OpExtInst %type_float_vec2 %std450 Normalize %vec1\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_REFLECT] = Op("reflect", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%vecN = OpCompositeConstruct %type_float_vec2 %c_float_0 %c_float_n1\n"
"%tmpVec = OpExtInst %type_float_vec2 %std450 Reflect %vec1 %vecN\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_REFRACT] = Op("refract", "%vec1 = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%vecN = OpCompositeConstruct %type_float_vec2 %c_float_0 %c_float_n1\n"
"%tmpVec = OpExtInst %type_float_vec2 %std450 Refract %vec1 %vecN %c_float_0_5\n"
"%result = OpCompositeExtract %type_float %tmpVec 0\n");
mo[O_MAT_DET] = Op("mat_det", "%col = OpCompositeConstruct %type_float_vec2 %arg1 %arg1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col %col\n"
"%result = OpExtInst %type_float %std450 Determinant %mat\n");
mo[O_MAT_INV] = Op("mat_inv", "%col1 = OpCompositeConstruct %type_float_vec2 %arg1 %c_float_1\n"
"%col2 = OpCompositeConstruct %type_float_vec2 %c_float_1 %c_float_1\n"
"%mat = OpCompositeConstruct %type_float_mat2x2 %col1 %col2\n"
"%invMat = OpExtInst %type_float_mat2x2 %std450 MatrixInverse %mat\n"
"%extCol = OpCompositeExtract %type_float_vec2 %invMat 1\n"
"%result = OpCompositeExtract %type_float %extCol 1\n");
// PackHalf2x16 is a special case as it operates on fp32 vec2 and returns unsigned int,
// the verification is done in SPIR-V code (if result is correct 1.0 will be written to SSBO)
mo[O_PH_DENORM] = Op("ph_denorm", "",
"",
"%c_fp32_denorm_fp16 = OpConstant %type_f32 6.01e-5\n" // fp32 representation of fp16 denorm value
"%c_ref = OpConstant %type_u32 66061296\n",
"",
"%srcVec = OpCompositeConstruct %type_f32_vec2 %c_fp32_denorm_fp16 %c_fp32_denorm_fp16\n"
"%packedInt = OpExtInst %type_u32 %std450 PackHalf2x16 %srcVec\n"
"%boolVal = OpIEqual %type_bool %c_ref %packedInt\n"
"%result = OpSelect %type_f32 %boolVal %c_f32_1 %c_f32_0\n");
// UnpackHalf2x16 is a special case that operates on uint32 and returns two 32-bit floats,
// this function is tested using constants
mo[O_UPH_DENORM] = Op("uph_denorm", "",
"",
"%c_u32_2_16_pack = OpConstant %type_u32 66061296\n", // == packHalf2x16(vec2(denorm))
"",
"%tmpVec = OpExtInst %type_f32_vec2 %std450 UnpackHalf2x16 %c_u32_2_16_pack\n"
"%result = OpCompositeExtract %type_f32 %tmpVec 0\n");
// PackDouble2x32 is a special case that operates on two uint32 and returns
// double, this function is tested using constants
mo[O_PD_DENORM] = Op("pd_denorm", "",
"",
"%c_p1 = OpConstant %type_u32 0\n"
"%c_p2 = OpConstant %type_u32 262144\n", // == UnpackDouble2x32(denorm)
"",
"%srcVec = OpCompositeConstruct %type_u32_vec2 %c_p1 %c_p2\n"
"%result = OpExtInst %type_f64 %std450 PackDouble2x32 %srcVec\n");
// UnpackDouble2x32 is a special case as it operates only on FP64 and returns two ints,
// the verification is done in SPIR-V code (if result is correct 1.0 will be written to SSBO)
const char* unpackDouble2x32Types = "%type_bool_vec2 = OpTypeVector %type_bool 2\n";
const char* unpackDouble2x32Source = "%refVec2 = OpCompositeConstruct %type_u32_vec2 %c_p1 %c_p2\n"
"%resVec2 = OpExtInst %type_u32_vec2 %std450 UnpackDouble2x32 %arg1\n"
"%boolVec2 = OpIEqual %type_bool_vec2 %refVec2 %resVec2\n"
"%boolVal = OpAll %type_bool %boolVec2\n"
"%result = OpSelect %type_f64 %boolVal %c_f64_1 %c_f64_0\n";
mo[O_UPD_DENORM_FLUSH] = Op("upd_denorm", "",
unpackDouble2x32Types,
"%c_p1 = OpConstant %type_u32 0\n"
"%c_p2 = OpConstant %type_u32 0\n",
"",
unpackDouble2x32Source);
mo[O_UPD_DENORM_PRESERVE] = Op("upd_denorm", "",
unpackDouble2x32Types,
"%c_p1 = OpConstant %type_u32 1008\n"
"%c_p2 = OpConstant %type_u32 0\n",
"",
unpackDouble2x32Source);
mo[O_ORTE_ROUND] = Op("orte_round", FP32,
"OpDecorate %result FPRoundingMode RTE\n",
"",
"",
"%result = OpFConvert %type_f16 %arg1\n");
mo[O_ORTZ_ROUND] = Op("ortz_round", FP32,
"OpDecorate %result FPRoundingMode RTZ\n",
"",
"",
"%result = OpFConvert %type_f16 %arg1\n");
}
void TestCasesBuilder::build(vector<OperationTestCase>& testCases, TypeTestResultsSP typeTestResults, bool argumentsFromInput)
{
// this method constructs a list of test cases; this list is a bit different
// for every combination of float type, arguments preparation method and tested float control
testCases.reserve(750);
// Denorm - FlushToZero - binary operations
for (size_t i = 0 ; i < typeTestResults->binaryOpFTZ.size() ; ++i)
{
const BinaryCase& binaryCase = typeTestResults->binaryOpFTZ[i];
OperationId operation = binaryCase.operationId;
testCases.push_back(OTC("denorm_op_var_flush_to_zero", B_DENORM_FLUSH, operation, V_DENORM, V_ONE, binaryCase.opVarResult));
testCases.push_back(OTC("denorm_op_denorm_flush_to_zero", B_DENORM_FLUSH, operation, V_DENORM, V_DENORM, binaryCase.opDenormResult));
testCases.push_back(OTC("denorm_op_inf_flush_to_zero", B_DENORM_FLUSH | B_ZIN_PRESERVE, operation, V_DENORM, V_INF, binaryCase.opInfResult));
testCases.push_back(OTC("denorm_op_nan_flush_to_zero", B_DENORM_FLUSH | B_ZIN_PRESERVE, operation, V_DENORM, V_NAN, binaryCase.opNanResult));
}
// Denorm - FlushToZero - unary operations
for (size_t i = 0 ; i < typeTestResults->unaryOpFTZ.size() ; ++i)
{
const UnaryCase& unaryCase = typeTestResults->unaryOpFTZ[i];
OperationId operation = unaryCase.operationId;
testCases.push_back(OTC("op_denorm_flush_to_zero", B_DENORM_FLUSH, operation, V_DENORM, V_UNUSED, unaryCase.result));
}
// Denom - Preserve - binary operations
for (size_t i = 0 ; i < typeTestResults->binaryOpDenormPreserve.size() ; ++i)
{
const BinaryCase& binaryCase = typeTestResults->binaryOpDenormPreserve[i];
OperationId operation = binaryCase.operationId;
testCases.push_back(OTC("denorm_op_var_preserve", B_DENORM_PRESERVE, operation, V_DENORM, V_ONE, binaryCase.opVarResult));
testCases.push_back(OTC("denorm_op_denorm_preserve", B_DENORM_PRESERVE, operation, V_DENORM, V_DENORM, binaryCase.opDenormResult));
testCases.push_back(OTC("denorm_op_inf_preserve", B_DENORM_PRESERVE | B_ZIN_PRESERVE, operation, V_DENORM, V_INF, binaryCase.opInfResult));
testCases.push_back(OTC("denorm_op_nan_preserve", B_DENORM_PRESERVE | B_ZIN_PRESERVE, operation, V_DENORM, V_NAN, binaryCase.opNanResult));
}
// Denom - Preserve - unary operations
for (size_t i = 0 ; i < typeTestResults->unaryOpDenormPreserve.size() ; ++i)
{
const UnaryCase& unaryCase = typeTestResults->unaryOpDenormPreserve[i];
OperationId operation = unaryCase.operationId;
testCases.push_back(OTC("op_denorm_preserve", B_DENORM_PRESERVE, operation, V_DENORM, V_UNUSED, unaryCase.result));
}
struct ZINCase
{
OperationId operationId;
bool supportedByFP64;
ValueId secondArgument;
ValueId preserveZeroResult;
ValueId preserveSZeroResult;
ValueId preserveInfResult;
ValueId preserveSInfResult;
ValueId preserveNanResult;
};
const ZINCase binaryOpZINPreserve[] = {
// operation fp64 second arg preserve zero preserve szero preserve inf preserve sinf preserve nan
{ O_PHI, true, V_INF, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_SELECT, true, V_ONE, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_ADD, true, V_ZERO, V_ZERO, V_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_SUB, true, V_ZERO, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_MUL, true, V_ONE, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
};
const ZINCase unaryOpZINPreserve[] = {
// operation fp64 second arg preserve zero preserve szero preserve inf preserve sinf preserve nan
{ O_RETURN_VAL, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_D_EXTRACT, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_D_INSERT, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_SHUFFLE, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_COMPOSITE, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_COMPOSITE_INS, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_COPY, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_TRANSPOSE, true, V_UNUSED, V_ZERO, V_MINUS_ZERO, V_INF, V_MINUS_INF, V_NAN },
{ O_NEGATE, true, V_UNUSED, V_MINUS_ZERO, V_ZERO, V_MINUS_INF, V_INF, V_NAN },
};
bool isFP64 = typeTestResults->floatType() == FP64;
// Signed Zero Inf Nan - Preserve - binary operations
for (size_t i = 0 ; i < DE_LENGTH_OF_ARRAY(binaryOpZINPreserve) ; ++i)
{
const ZINCase& zc = binaryOpZINPreserve[i];
if (isFP64 && !zc.supportedByFP64)
continue;
testCases.push_back(OTC("zero_op_var_preserve", B_ZIN_PRESERVE, zc.operationId, V_ZERO, zc.secondArgument, zc.preserveZeroResult));
testCases.push_back(OTC("signed_zero_op_var_preserve", B_ZIN_PRESERVE, zc.operationId, V_MINUS_ZERO, zc.secondArgument, zc.preserveSZeroResult));
testCases.push_back(OTC("inf_op_var_preserve", B_ZIN_PRESERVE, zc.operationId, V_INF, zc.secondArgument, zc.preserveInfResult));
testCases.push_back(OTC("signed_inf_op_var_preserve", B_ZIN_PRESERVE, zc.operationId, V_MINUS_INF, zc.secondArgument, zc.preserveSInfResult));
testCases.push_back(OTC("nan_op_var_preserve", B_ZIN_PRESERVE, zc.operationId, V_NAN, zc.secondArgument, zc.preserveNanResult));
}
// Signed Zero Inf Nan - Preserve - unary operations
for (size_t i = 0 ; i < DE_LENGTH_OF_ARRAY(unaryOpZINPreserve) ; ++i)
{
const ZINCase& zc = unaryOpZINPreserve[i];
if (isFP64 && !zc.supportedByFP64)
continue;
testCases.push_back(OTC("op_zero_preserve", B_ZIN_PRESERVE,zc.operationId, V_ZERO, V_UNUSED, zc.preserveZeroResult));
testCases.push_back(OTC("op_signed_zero_preserve", B_ZIN_PRESERVE,zc.operationId, V_MINUS_ZERO, V_UNUSED, zc.preserveSZeroResult));
testCases.push_back(OTC("op_inf_preserve", B_ZIN_PRESERVE,zc.operationId, V_INF, V_UNUSED, zc.preserveInfResult));
testCases.push_back(OTC("op_signed_inf_preserve", B_ZIN_PRESERVE,zc.operationId, V_MINUS_INF, V_UNUSED, zc.preserveSInfResult));
testCases.push_back(OTC("op_nan_preserve", B_ZIN_PRESERVE,zc.operationId, V_NAN, V_UNUSED, zc.preserveNanResult));
}
// comparison operations - tested differently because they return true/false
struct ComparisonCase
{
OperationId operationId;
ValueId denormPreserveResult;
};
const ComparisonCase comparisonCases[] =
{
// operation denorm
{ O_ORD_EQ, V_ZERO },
{ O_UORD_EQ, V_ZERO },
{ O_ORD_NEQ, V_ONE },
{ O_UORD_NEQ, V_ONE },
{ O_ORD_LS, V_ONE },
{ O_UORD_LS, V_ONE },
{ O_ORD_GT, V_ZERO },
{ O_UORD_GT, V_ZERO },
{ O_ORD_LE, V_ONE },
{ O_UORD_LE, V_ONE },
{ O_ORD_GE, V_ZERO },
{ O_UORD_GE, V_ZERO }
};
for (int op = 0 ; op < DE_LENGTH_OF_ARRAY(comparisonCases) ; ++op)
{
const ComparisonCase& cc = comparisonCases[op];
testCases.push_back(OTC("denorm_op_var_preserve", B_DENORM_PRESERVE, cc.operationId, V_DENORM, V_ONE, cc.denormPreserveResult));
}
if (argumentsFromInput)
{
struct RoundingModeCase
{
OperationId operationId;
ValueId arg1;
ValueId arg2;
ValueId expectedRTEResult;
ValueId expectedRTZResult;
};
const RoundingModeCase roundingCases[] =
{
{ O_ADD, V_ADD_ARG_A, V_ADD_ARG_B, V_ADD_RTE_RESULT, V_ADD_RTZ_RESULT },
{ O_SUB, V_SUB_ARG_A, V_SUB_ARG_B, V_SUB_RTE_RESULT, V_SUB_RTZ_RESULT },
{ O_MUL, V_MUL_ARG_A, V_MUL_ARG_B, V_MUL_RTE_RESULT, V_MUL_RTZ_RESULT },
{ O_DOT, V_DOT_ARG_A, V_DOT_ARG_B, V_DOT_RTE_RESULT, V_DOT_RTZ_RESULT },
// in vect/mat multiplication by scalar operations only first element of result is checked
// so argument and result values prepared for multiplication can be reused for those cases
{ O_VEC_MUL_S, V_MUL_ARG_A, V_MUL_ARG_B, V_MUL_RTE_RESULT, V_MUL_RTZ_RESULT },
{ O_MAT_MUL_S, V_MUL_ARG_A, V_MUL_ARG_B, V_MUL_RTE_RESULT, V_MUL_RTZ_RESULT },
{ O_OUT_PROD, V_MUL_ARG_A, V_MUL_ARG_B, V_MUL_RTE_RESULT, V_MUL_RTZ_RESULT },
// in SPIR-V code we return first element of operation result so for following
// cases argument and result values prepared for dot product can be reused
{ O_VEC_MUL_M, V_DOT_ARG_A, V_DOT_ARG_B, V_DOT_RTE_RESULT, V_DOT_RTZ_RESULT },
{ O_MAT_MUL_V, V_DOT_ARG_A, V_DOT_ARG_B, V_DOT_RTE_RESULT, V_DOT_RTZ_RESULT },
{ O_MAT_MUL_M, V_DOT_ARG_A, V_DOT_ARG_B, V_DOT_RTE_RESULT, V_DOT_RTZ_RESULT },
// conversion operations are added separately - depending on float type width
};
for (int c = 0 ; c < DE_LENGTH_OF_ARRAY(roundingCases) ; ++c)
{
const RoundingModeCase& rmc = roundingCases[c];
testCases.push_back(OTC("rounding_rte_op", B_RTE_ROUNDING, rmc.operationId, rmc.arg1, rmc.arg2, rmc.expectedRTEResult));
testCases.push_back(OTC("rounding_rtz_op", B_RTZ_ROUNDING, rmc.operationId, rmc.arg1, rmc.arg2, rmc.expectedRTZResult));
}
}
// special cases
if (typeTestResults->floatType() == FP16)
{
if (argumentsFromInput)
{
testCases.push_back(OTC("rounding_rte_conv_from_fp32", B_RTE_ROUNDING, O_CONV_FROM_FP32, V_CONV_FROM_FP32_ARG, V_UNUSED, V_CONV_TO_FP16_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_conv_from_fp32", B_RTZ_ROUNDING, O_CONV_FROM_FP32, V_CONV_FROM_FP32_ARG, V_UNUSED, V_CONV_TO_FP16_RTZ_RESULT));
testCases.push_back(OTC("rounding_rte_conv_from_fp64", B_RTE_ROUNDING, O_CONV_FROM_FP64, V_CONV_FROM_FP64_ARG, V_UNUSED, V_CONV_TO_FP16_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_conv_from_fp64", B_RTZ_ROUNDING, O_CONV_FROM_FP64, V_CONV_FROM_FP64_ARG, V_UNUSED, V_CONV_TO_FP16_RTZ_RESULT));
testCases.push_back(OTC("rounding_rte_sconst_conv_from_fp32", B_RTE_ROUNDING, O_SCONST_CONV_FROM_FP32_TO_FP16, V_UNUSED, V_UNUSED, V_CONV_TO_FP16_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_sconst_conv_from_fp32", B_RTZ_ROUNDING, O_SCONST_CONV_FROM_FP32_TO_FP16, V_UNUSED, V_UNUSED, V_CONV_TO_FP16_RTZ_RESULT));
testCases.push_back(OTC("rounding_rte_sconst_conv_from_fp64", B_RTE_ROUNDING, O_SCONST_CONV_FROM_FP64_TO_FP16, V_UNUSED, V_UNUSED, V_CONV_TO_FP16_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_sconst_conv_from_fp64", B_RTZ_ROUNDING, O_SCONST_CONV_FROM_FP64_TO_FP16, V_UNUSED, V_UNUSED, V_CONV_TO_FP16_RTZ_RESULT));
// verify that VkShaderFloatingPointRoundingModeKHR can be overridden for a given instruction by the FPRoundingMode decoration
testCases.push_back(OTC("rounding_rte_override", B_RTE_ROUNDING, O_ORTZ_ROUND, V_CONV_FROM_FP32_ARG, V_UNUSED, V_CONV_TO_FP16_RTZ_RESULT));
testCases.push_back(OTC("rounding_rtz_override", B_RTZ_ROUNDING, O_ORTE_ROUND, V_CONV_FROM_FP32_ARG, V_UNUSED, V_CONV_TO_FP16_RTE_RESULT));
}
createUnaryTestCases(testCases, O_CONV_FROM_FP32, V_CONV_DENORM_SMALLER, V_ZERO);
createUnaryTestCases(testCases, O_CONV_FROM_FP64, V_CONV_DENORM_BIGGER, V_ZERO);
}
else if (typeTestResults->floatType() == FP32)
{
if (argumentsFromInput)
{
// convert from fp64 to fp32
testCases.push_back(OTC("rounding_rte_conv_from_fp64", B_RTE_ROUNDING, O_CONV_FROM_FP64, V_CONV_FROM_FP64_ARG, V_UNUSED, V_CONV_TO_FP32_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_conv_from_fp64", B_RTZ_ROUNDING, O_CONV_FROM_FP64, V_CONV_FROM_FP64_ARG, V_UNUSED, V_CONV_TO_FP32_RTZ_RESULT));
testCases.push_back(OTC("rounding_rte_sconst_conv_from_fp64", B_RTE_ROUNDING, O_SCONST_CONV_FROM_FP64_TO_FP32, V_UNUSED, V_UNUSED, V_CONV_TO_FP32_RTE_RESULT));
testCases.push_back(OTC("rounding_rtz_sconst_conv_from_fp64", B_RTZ_ROUNDING, O_SCONST_CONV_FROM_FP64_TO_FP32, V_UNUSED, V_UNUSED, V_CONV_TO_FP32_RTZ_RESULT));
}
else
{
// PackHalf2x16 - verification done in SPIR-V
testCases.push_back(OTC("pack_half_denorm_preserve", B_DENORM_PRESERVE, O_PH_DENORM, V_UNUSED, V_UNUSED, V_ONE));
// UnpackHalf2x16 - custom arguments defined as constants
testCases.push_back(OTC("upack_half_denorm_flush_to_zero", B_DENORM_FLUSH, O_UPH_DENORM, V_UNUSED, V_UNUSED, V_ZERO));
testCases.push_back(OTC("upack_half_denorm_preserve", B_DENORM_PRESERVE, O_UPH_DENORM, V_UNUSED, V_UNUSED, V_CONV_DENORM_SMALLER));
}
createUnaryTestCases(testCases, O_CONV_FROM_FP16, V_CONV_DENORM_SMALLER, V_ZERO_OR_FP16_DENORM_TO_FP32);
createUnaryTestCases(testCases, O_CONV_FROM_FP64, V_CONV_DENORM_BIGGER, V_ZERO);
}
else // FP64
{
if (!argumentsFromInput)
{
// PackDouble2x32 - custom arguments defined as constants
testCases.push_back(OTC("pack_double_denorm_preserve", B_DENORM_PRESERVE, O_PD_DENORM, V_UNUSED, V_UNUSED, V_DENORM));
// UnpackDouble2x32 - verification done in SPIR-V
testCases.push_back(OTC("upack_double_denorm_flush_to_zero", B_DENORM_FLUSH, O_UPD_DENORM_FLUSH, V_DENORM, V_UNUSED, V_ONE));
testCases.push_back(OTC("upack_double_denorm_preserve", B_DENORM_PRESERVE, O_UPD_DENORM_PRESERVE, V_DENORM, V_UNUSED, V_ONE));
}
createUnaryTestCases(testCases, O_CONV_FROM_FP16, V_CONV_DENORM_SMALLER, V_ZERO_OR_FP16_DENORM_TO_FP64);
createUnaryTestCases(testCases, O_CONV_FROM_FP32, V_CONV_DENORM_BIGGER, V_ZERO_OR_FP32_DENORM_TO_FP64);
}
}
const Operation& TestCasesBuilder::getOperation(OperationId id) const
{
return m_operations.at(id);
}
void TestCasesBuilder::createUnaryTestCases(vector<OperationTestCase>& testCases, OperationId operationId, ValueId denormPreserveResult, ValueId denormFTZResult) const
{
// Denom - Preserve
testCases.push_back(OTC("op_denorm_preserve", B_DENORM_PRESERVE, operationId, V_DENORM, V_UNUSED, denormPreserveResult));
// Denorm - FlushToZero
testCases.push_back(OTC("op_denorm_flush_to_zero", B_DENORM_FLUSH, operationId, V_DENORM, V_UNUSED, denormFTZResult));
// Signed Zero Inf Nan - Preserve
testCases.push_back(OTC("op_zero_preserve", B_ZIN_PRESERVE, operationId, V_ZERO, V_UNUSED, V_ZERO));
testCases.push_back(OTC("op_signed_zero_preserve", B_ZIN_PRESERVE, operationId, V_MINUS_ZERO, V_UNUSED, V_MINUS_ZERO));
testCases.push_back(OTC("op_inf_preserve", B_ZIN_PRESERVE, operationId, V_INF, V_UNUSED, V_INF));
testCases.push_back(OTC("op_nan_preserve", B_ZIN_PRESERVE, operationId, V_NAN, V_UNUSED, V_NAN));
}
template <typename TYPE, typename FLOAT_TYPE>
bool isZeroOrOtherValue(const TYPE& returnedFloat, ValueId secondAcceptableResult, TestLog& log)
{
if (returnedFloat.isZero() && !returnedFloat.signBit())
return true;
TypeValues<FLOAT_TYPE> typeValues;
typedef typename TYPE::StorageType SType;
typename RawConvert<FLOAT_TYPE, SType>::Value value;
value.fp = typeValues.getValue(secondAcceptableResult);
if (returnedFloat.bits() == value.ui)
return true;
log << TestLog::Message << "Expected 0 or " << toHex(value.ui)
<< " (" << value.fp << ")" << TestLog::EndMessage;
return false;
}
template <typename TYPE>
bool isAcosResultCorrect(const TYPE& returnedFloat, TestLog& log)
{
// pi/2 is result of acos(0) which in the specs is defined as equivalent to
// atan2(sqrt(1.0 - x^2), x), where atan2 has 4096 ULP, sqrt is equivalent to
// 1.0 /inversesqrt(), inversesqrt() is 2 ULP and rcp is another 2.5 ULP
double precision = 0;
const double piDiv2 = 3.14159265358979323846 / 2;
if (returnedFloat.MANTISSA_BITS == 23)
{
FloatFormat fp32Format(-126, 127, 23, true, tcu::MAYBE, tcu::YES, tcu::MAYBE);
precision = fp32Format.ulp(piDiv2, 4096.0);
}
else
{
FloatFormat fp16Format(-14, 15, 10, true, tcu::MAYBE);
precision = fp16Format.ulp(piDiv2, 5.0);
}
if (deAbs(returnedFloat.asDouble() - piDiv2) < precision)
return true;
log << TestLog::Message << "Expected result to be in range"
<< " (" << piDiv2 - precision << ", " << piDiv2 + precision << "), got "
<< returnedFloat.asDouble() << TestLog::EndMessage;
return false;
}
template <typename TYPE>
bool isCosResultCorrect(const TYPE& returnedFloat, TestLog& log)
{
// for cos(x) with x between -pi and pi, the precision error is 2^-11 for fp32 and 2^-7 for fp16.
double precision = returnedFloat.MANTISSA_BITS == 23 ? dePow(2, -11) : dePow(2, -7);
const double expected = 1.0;
if (deAbs(returnedFloat.asDouble() - expected) < precision)
return true;
log << TestLog::Message << "Expected result to be in range"
<< " (" << expected - precision << ", " << expected + precision << "), got "
<< returnedFloat.asDouble() << TestLog::EndMessage;
return false;
}
// Function used to compare test result with expected output.
// TYPE can be Float16, Float32 or Float64.
// FLOAT_TYPE can be deFloat16, float, double.
template <typename TYPE, typename FLOAT_TYPE>
bool compareBytes(vector<deUint8>& expectedBytes, AllocationSp outputAlloc, TestLog& log)
{
const TYPE* returned = static_cast<const TYPE*>(outputAlloc->getHostPtr());
const TYPE* fValueId = reinterpret_cast<const TYPE*>(&expectedBytes.front());
// all test return single value
DE_ASSERT((expectedBytes.size() / sizeof(TYPE)) == 1);
// during test setup we do not store expected value but id that can be used to
// retrieve actual value - this is done to handle special cases like multiple
// allowed results or epsilon checks for some cases
// note that this is workaround - this should be done by changing
// ComputerShaderCase and GraphicsShaderCase so that additional arguments can
// be passed to this verification callback
typedef typename TYPE::StorageType SType;
SType expectedInt = fValueId[0].bits();
ValueId expectedValueId = static_cast<ValueId>(expectedInt);
// something went wrong, expected value cant be V_UNUSED,
// if this is the case then test shouldn't be created at all
DE_ASSERT(expectedValueId != V_UNUSED);
TYPE returnedFloat = returned[0];
log << TestLog::Message << "Calculated result: " << toHex(returnedFloat.bits())
<< " (" << returnedFloat.asFloat() << ")" << TestLog::EndMessage;
if (expectedValueId == V_NAN)
{
if (returnedFloat.isNaN())
return true;
log << TestLog::Message << "Expected NaN" << TestLog::EndMessage;
return false;
}
if (expectedValueId == V_DENORM)
{
if (returnedFloat.isDenorm())
return true;
log << TestLog::Message << "Expected Denorm" << TestLog::EndMessage;
return false;
}
// handle multiple acceptable results cases
if (expectedValueId == V_ZERO_OR_MINUS_ZERO)
{
if (returnedFloat.isZero())
return true;
log << TestLog::Message << "Expected 0 or -0" << TestLog::EndMessage;
return false;
}
if ((expectedValueId == V_ZERO_OR_FP16_DENORM_TO_FP32) || (expectedValueId == V_ZERO_OR_FP16_DENORM_TO_FP64))
return isZeroOrOtherValue<TYPE, FLOAT_TYPE>(returnedFloat, V_CONV_DENORM_SMALLER, log);
if (expectedValueId == V_ZERO_OR_FP32_DENORM_TO_FP64)
return isZeroOrOtherValue<TYPE, FLOAT_TYPE>(returnedFloat, V_CONV_DENORM_BIGGER, log);
if (expectedValueId == V_MINUS_ONE_OR_CLOSE)
{
// this expected value is only needed for fp16
DE_ASSERT(returnedFloat.EXPONENT_BIAS == 15);
typename TYPE::StorageType returnedValue = returnedFloat.bits();
return (returnedValue == 0xbc00) || (returnedValue == 0xbbff);
}
// handle trigonometric operations precision errors
if (expectedValueId == V_TRIG_ONE)
return isCosResultCorrect<TYPE>(returnedFloat, log);
// handle acos(0) case
if (expectedValueId == V_PI_DIV_2)
return isAcosResultCorrect<TYPE>(returnedFloat, log);
TypeValues<FLOAT_TYPE> typeValues;
typename RawConvert<FLOAT_TYPE, SType>::Value value;
value.fp = typeValues.getValue(expectedValueId);
if (returnedFloat.bits() == value.ui)
return true;
log << TestLog::Message << "Expected " << toHex(value.ui)
<< " (" << value.fp << ")" << TestLog::EndMessage;
return false;
}
template <typename TYPE, typename FLOAT_TYPE>
bool checkFloats (const vector<Resource>& ,
const vector<AllocationSp>& outputAllocs,
const vector<Resource>& expectedOutputs,
TestLog& log)
{
if (outputAllocs.size() != expectedOutputs.size())
return false;
for (deUint32 outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
{
vector<deUint8> expectedBytes;
expectedOutputs[outputNdx].getBytes(expectedBytes);
if (!compareBytes<TYPE, FLOAT_TYPE>(expectedBytes, outputAllocs[outputNdx], log))
return false;
}
return true;
}
// Base class for ComputeTestGroupBuilder and GrephicstestGroupBuilder classes.
// It contains all functionalities that are used by both child classes.
class TestGroupBuilderBase
{
public:
TestGroupBuilderBase();
virtual ~TestGroupBuilderBase() {}
void init();
virtual void createTests(TestCaseGroup* group,
FloatType floatType,
bool argumentsFromInput) = 0;
protected:
typedef vector<OperationTestCase> TestCaseVect;
// Structure containing all data required to create single test.
struct TestCaseInfo
{
FloatType outFloatType;
bool argumentsFromInput;
VkShaderStageFlagBits testedStage;
const Operation& operation;
const OperationTestCase& testCase;
};
void specializeOperation(const TestCaseInfo& testCaseInfo,
SpecializedOperation& specializedOperation) const;
void getBehaviorCapabilityAndExecutionMode(BehaviorFlags behaviorFlags,
const string inBitWidth,
const string outBitWidth,
string& capability,
string& executionMode) const;
void setupVulkanFeatures(FloatType inFloatType,
FloatType outFloatType,
BehaviorFlags behaviorFlags,
bool float64FeatureRequired,
VulkanFeatures& features) const;
protected:
struct TypeData
{
TypeValuesSP values;
TypeSnippetsSP snippets;
TypeTestResultsSP testResults;
};
// Type specific parameters are stored in this map.
map<FloatType, TypeData> m_typeData;
// Map converting behaviuor id to OpCapability instruction
typedef map<BehaviorFlagBits, string> BehaviorNameMap;
BehaviorNameMap m_behaviorToName;
};
TestGroupBuilderBase::TestGroupBuilderBase()
{
m_typeData[FP16] = TypeData();
m_typeData[FP16].values = TypeValuesSP(new TypeValues<deFloat16>);
m_typeData[FP16].snippets = TypeSnippetsSP(new TypeSnippets<deFloat16>);
m_typeData[FP16].testResults = TypeTestResultsSP(new TypeTestResults<deFloat16>);
m_typeData[FP32] = TypeData();
m_typeData[FP32].values = TypeValuesSP(new TypeValues<float>);
m_typeData[FP32].snippets = TypeSnippetsSP(new TypeSnippets<float>);
m_typeData[FP32].testResults = TypeTestResultsSP(new TypeTestResults<float>);
m_typeData[FP64] = TypeData();
m_typeData[FP64].values = TypeValuesSP(new TypeValues<double>);
m_typeData[FP64].snippets = TypeSnippetsSP(new TypeSnippets<double>);
m_typeData[FP64].testResults = TypeTestResultsSP(new TypeTestResults<double>);
m_behaviorToName[B_DENORM_PRESERVE] = "DenormPreserve";
m_behaviorToName[B_DENORM_FLUSH] = "DenormFlushToZero";
m_behaviorToName[B_ZIN_PRESERVE] = "SignedZeroInfNanPreserve";
m_behaviorToName[B_RTE_ROUNDING] = "RoundingModeRTE";
m_behaviorToName[B_RTZ_ROUNDING] = "RoundingModeRTZ";
}
void TestGroupBuilderBase::specializeOperation(const TestCaseInfo& testCaseInfo,
SpecializedOperation& specializedOperation) const
{
const string typeToken = "_float";
const string widthToken = "${float_width}";
FloatType outFloatType = testCaseInfo.outFloatType;
const Operation& operation = testCaseInfo.operation;
const TypeSnippetsSP outTypeSnippets = m_typeData.at(outFloatType).snippets;
const bool inputRestricted = operation.isInputTypeRestricted;
FloatType inFloatType = operation.restrictedInputType;
// usually input type is same as output but this is not the case for conversion
// operations; in those cases operation definitions have restricted input type
inFloatType = inputRestricted ? inFloatType : outFloatType;
TypeSnippetsSP inTypeSnippets = m_typeData.at(inFloatType).snippets;
const string inTypePrefix = string("_f") + inTypeSnippets->bitWidth;
const string outTypePrefix = string("_f") + outTypeSnippets->bitWidth;
specializedOperation.constans = replace(operation.constants, typeToken, inTypePrefix);
specializedOperation.annotations = replace(operation.annotations, widthToken, outTypeSnippets->bitWidth);
specializedOperation.types = replace(operation.types, typeToken, outTypePrefix);
specializedOperation.variables = replace(operation.variables, typeToken, outTypePrefix);
specializedOperation.commands = replace(operation.commands, typeToken, outTypePrefix);
specializedOperation.inFloatType = inFloatType;
specializedOperation.inTypeSnippets = inTypeSnippets;
specializedOperation.outTypeSnippets = outTypeSnippets;
if (operation.isSpecConstant)
return;
// select way arguments are prepared
if (testCaseInfo.argumentsFromInput)
{
// read arguments from input SSBO in main function
specializedOperation.arguments = inTypeSnippets->argumentsFromInputSnippet;
}
else
{
// generate proper values in main function
const string arg1 = "%arg1 = ";
const string arg2 = "%arg2 = ";
const ValueId* inputArguments = testCaseInfo.testCase.input;
if (inputArguments[0] != V_UNUSED)
specializedOperation.arguments = arg1 + inTypeSnippets->valueIdToSnippetArgMap.at(inputArguments[0]);
if (inputArguments[1] != V_UNUSED)
specializedOperation.arguments += arg2 + inTypeSnippets->valueIdToSnippetArgMap.at(inputArguments[1]);
}
}
void TestGroupBuilderBase::getBehaviorCapabilityAndExecutionMode(BehaviorFlags behaviorFlags,
const string inBitWidth,
const string outBitWidth,
string& capability,
string& executionMode) const
{
// iterate over all behaviours and request those that are needed
BehaviorNameMap::const_iterator it = m_behaviorToName.begin();
while (it != m_behaviorToName.end())
{
BehaviorFlagBits behaviorId = it->first;
string behaviorName = it->second;
if (behaviorFlags & behaviorId)
{
capability += "OpCapability " + behaviorName + "\n";
// rounding mode should be obeyed for destination type
bool rounding = (behaviorId == B_RTE_ROUNDING) || (behaviorId == B_RTZ_ROUNDING);
executionMode += "OpExecutionMode %main " + behaviorName + " " +
(rounding ? outBitWidth : inBitWidth) + "\n";
}
++it;
}
DE_ASSERT(!capability.empty() && !executionMode.empty());
}
void TestGroupBuilderBase::setupVulkanFeatures(FloatType inFloatType,
FloatType outFloatType,
BehaviorFlags behaviorFlags,
bool float64FeatureRequired,
VulkanFeatures& features) const
{
features.coreFeatures.shaderFloat64 = float64FeatureRequired;
// request proper float controls features
ExtensionFloatControlsFeatures& floatControls = features.floatControlsProperties;
// rounding mode should obey the destination type
bool rteRounding = (behaviorFlags & B_RTE_ROUNDING) != 0;
bool rtzRounding = (behaviorFlags & B_RTZ_ROUNDING) != 0;
if (rteRounding || rtzRounding)
{
switch(outFloatType)
{
case FP16:
floatControls.shaderRoundingModeRTEFloat16 = rteRounding;
floatControls.shaderRoundingModeRTZFloat16 = rtzRounding;
return;
case FP32:
floatControls.shaderRoundingModeRTEFloat32 = rteRounding;
floatControls.shaderRoundingModeRTZFloat32 = rtzRounding;
return;
case FP64:
floatControls.shaderRoundingModeRTEFloat64 = rteRounding;
floatControls.shaderRoundingModeRTZFloat64 = rtzRounding;
return;
}
}
switch(inFloatType)
{
case FP16:
floatControls.shaderDenormPreserveFloat16 = behaviorFlags & B_DENORM_PRESERVE;
floatControls.shaderDenormFlushToZeroFloat16 = behaviorFlags & B_DENORM_FLUSH;
floatControls.shaderSignedZeroInfNanPreserveFloat16 = behaviorFlags & B_ZIN_PRESERVE;
return;
case FP32:
floatControls.shaderDenormPreserveFloat32 = behaviorFlags & B_DENORM_PRESERVE;
floatControls.shaderDenormFlushToZeroFloat32 = behaviorFlags & B_DENORM_FLUSH;
floatControls.shaderSignedZeroInfNanPreserveFloat32 = behaviorFlags & B_ZIN_PRESERVE;
return;
case FP64:
floatControls.shaderDenormPreserveFloat64 = behaviorFlags & B_DENORM_PRESERVE;
floatControls.shaderDenormFlushToZeroFloat64 = behaviorFlags & B_DENORM_FLUSH;
floatControls.shaderSignedZeroInfNanPreserveFloat64 = behaviorFlags & B_ZIN_PRESERVE;
return;
}
}
// ComputeTestGroupBuilder contains logic that creates compute shaders
// for all test cases. As most tests in spirv-assembly it uses functionality
// implemented in vktSpvAsmComputeShaderTestUtil.cpp.
class ComputeTestGroupBuilder: public TestGroupBuilderBase
{
public:
void init();
void createTests(TestCaseGroup* group, FloatType floatType, bool argumentsFromInput);
protected:
void fillShaderSpec(const TestCaseInfo& testCaseInfo,
ComputeShaderSpec& csSpec) const;
private:
StringTemplate m_shaderTemplate;
TestCasesBuilder m_testCaseBuilder;
};
void ComputeTestGroupBuilder::init()
{
m_testCaseBuilder.init();
// geenric compute shader template that has code common for all
// float types and all possible operations listed in OperationId enum
m_shaderTemplate.setString(
"OpCapability Shader\n"
"${capabilities}"
"OpExtension \"SPV_KHR_float_controls\"\n"
"${extensions}"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %main \"main\" %id\n"
"OpExecutionMode %main LocalSize 1 1 1\n"
"${execution_mode}"
"OpDecorate %id BuiltIn GlobalInvocationId\n"
// some tests require additional annotations
"${annotations}"
"%type_void = OpTypeVoid\n"
"%type_voidf = OpTypeFunction %type_void\n"
"%type_bool = OpTypeBool\n"
"%type_u32 = OpTypeInt 32 0\n"
"%type_i32 = OpTypeInt 32 1\n"
"%type_i32_fptr = OpTypePointer Function %type_i32\n"
"%type_u32_vec2 = OpTypeVector %type_u32 2\n"
"%type_u32_vec3 = OpTypeVector %type_u32 3\n"
"%type_u32_vec3_ptr = OpTypePointer Input %type_u32_vec3\n"
"%c_i32_0 = OpConstant %type_i32 0\n"
"%c_i32_1 = OpConstant %type_i32 1\n"
"%c_i32_2 = OpConstant %type_i32 2\n"
"%c_u32_1 = OpConstant %type_u32 1\n"
// if input float type has different width then output then
// both types are defined here along with all types derived from
// them that are commonly used by tests; some tests also define
// their own types (those that are needed just by this single test)
"${types}"
// SSBO definitions
"${io_definitions}"
"%id = OpVariable %type_u32_vec3_ptr Input\n"
// set of default constants per float type is placed here,
// operation tests can also define additional constants;
// note that O_RETURN_VAL defines function here and becouse
// of that this token needs to be directly before main function
"${constants}"
"%main = OpFunction %type_void None %type_voidf\n"
"%label = OpLabel\n"
"${variables}"
// depending on test case arguments are either read from input ssbo
// or generated in spir-v code - in later case shader input is not used
"${arguments}"
// perform test commands
"${commands}"
// save result to SSBO
"${save_result}"
"OpReturn\n"
"OpFunctionEnd\n");
}
void ComputeTestGroupBuilder::createTests(TestCaseGroup* group, FloatType floatType, bool argumentsFromInput)
{
TestContext& testCtx = group->getTestContext();
TestCaseVect testCases;
m_testCaseBuilder.build(testCases, m_typeData[floatType].testResults, argumentsFromInput);
TestCaseVect::const_iterator currTestCase = testCases.begin();
TestCaseVect::const_iterator lastTestCase = testCases.end();
while(currTestCase != lastTestCase)
{
const OperationTestCase& testCase = *currTestCase;
++currTestCase;
// skip cases with undefined output
if (testCase.expectedOutput == V_UNUSED)
continue;
TestCaseInfo testCaseInfo =
{
floatType,
argumentsFromInput,
VK_SHADER_STAGE_COMPUTE_BIT,
m_testCaseBuilder.getOperation(testCase.operationId),
testCase
};
ComputeShaderSpec csSpec;
fillShaderSpec(testCaseInfo, csSpec);
string testName = replace(testCase.baseName, "op", testCaseInfo.operation.name);
group->addChild(new SpvAsmComputeShaderCase(testCtx, testName.c_str(), "", csSpec));
}
}
void ComputeTestGroupBuilder::fillShaderSpec(const TestCaseInfo& testCaseInfo,
ComputeShaderSpec& csSpec) const
{
// LUT storing functions used to verify test results
const VerifyIOFunc checkFloatsLUT[] =
{
checkFloats<Float16, deFloat16>,
checkFloats<Float32, float>,
checkFloats<Float64, double>
};
const Operation& testOperation = testCaseInfo.operation;
const OperationTestCase& testCase = testCaseInfo.testCase;
FloatType outFloatType = testCaseInfo.outFloatType;
SpecializedOperation specOpData;
specializeOperation(testCaseInfo, specOpData);
TypeSnippetsSP inTypeSnippets = specOpData.inTypeSnippets;
TypeSnippetsSP outTypeSnippets = specOpData.outTypeSnippets;
FloatType inFloatType = specOpData.inFloatType;
// UnpackHalf2x16 is a corner case - it returns two 32-bit floats but
// internaly operates on fp16 and this type should be used by float controls
FloatType inFloatTypeForCaps = inFloatType;
string inFloatWidthForCaps = inTypeSnippets->bitWidth;
if (testCase.operationId == O_UPH_DENORM)
{
inFloatTypeForCaps = FP16;
inFloatWidthForCaps = "16";
}
string behaviorCapability;
string behaviorExecutionMode;
getBehaviorCapabilityAndExecutionMode(testCase.behaviorFlags,
inFloatWidthForCaps,
outTypeSnippets->bitWidth,
behaviorCapability,
behaviorExecutionMode);
string capabilities = behaviorCapability + outTypeSnippets->capabilities;
string extensions = outTypeSnippets->extensions;
string annotations = inTypeSnippets->inputAnnotationsSnippet + outTypeSnippets->outputAnnotationsSnippet +
outTypeSnippets->typeAnnotationsSnippet;
string types = outTypeSnippets->typeDefinitionsSnippet;
string constants = outTypeSnippets->constantsDefinitionsSnippet;
string ioDefinitions = inTypeSnippets->inputDefinitionsSnippet + outTypeSnippets->outputDefinitionsSnippet;
if (testOperation.isInputTypeRestricted)
{
annotations += inTypeSnippets->typeAnnotationsSnippet;
capabilities += inTypeSnippets->capabilities;
extensions += inTypeSnippets->extensions;
types += inTypeSnippets->typeDefinitionsSnippet;
constants += inTypeSnippets->constantsDefinitionsSnippet;
}
map<string, string> specializations;
specializations["capabilities"] = capabilities;
specializations["extensions"] = extensions;
specializations["execution_mode"] = behaviorExecutionMode;
specializations["annotations"] = annotations + specOpData.annotations;
specializations["types"] = types + specOpData.types;
specializations["constants"] = constants + specOpData.constans;
specializations["io_definitions"] = ioDefinitions;
specializations["arguments"] = specOpData.arguments;
specializations["variables"] = specOpData.variables;
specializations["commands"] = specOpData.commands;
specializations["save_result"] = outTypeSnippets->storeResultsSnippet;
// specialize shader
const string shaderCode = m_shaderTemplate.specialize(specializations);
// construct input and output buffers of proper types
TypeValuesSP inTypeValues = m_typeData.at(inFloatType).values;
TypeValuesSP outTypeValues = m_typeData.at(outFloatType).values;
BufferSp inBufferSp = inTypeValues->constructInputBuffer(testCase.input);
BufferSp outBufferSp = outTypeValues->constructOutputBuffer(testCase.expectedOutput);
csSpec.inputs.push_back(Resource(inBufferSp, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER));
csSpec.outputs.push_back(Resource(outBufferSp));
// check which format features are needed
bool float16FeatureRequired = (outFloatType == FP16) || (inFloatType == FP16);
bool float64FeatureRequired = (outFloatType == FP64) || (inFloatType == FP64);
setupVulkanFeatures(inFloatTypeForCaps, // usualy same as inFloatType - different only for UnpackHalf2x16
outFloatType,
testCase.behaviorFlags,
float64FeatureRequired,
csSpec.requestedVulkanFeatures);
csSpec.assembly = shaderCode;
csSpec.numWorkGroups = IVec3(1, 1, 1);
csSpec.verifyIO = checkFloatsLUT[outFloatType];
csSpec.extensions.push_back("VK_KHR_shader_float_controls");
if (float16FeatureRequired)
{
csSpec.extensions.push_back("VK_KHR_16bit_storage");
csSpec.requestedVulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
}
if (float64FeatureRequired)
csSpec.requestedVulkanFeatures.coreFeatures.shaderFloat64 = VK_TRUE;
}
void getGraphicsShaderCode (vk::SourceCollections& dst, InstanceContext context)
{
// this function is used only by GraphicsTestGroupBuilder but it couldn't
// be implemented as a method because of how addFunctionCaseWithPrograms
// was implemented
SpirvVersion targetSpirvVersion = context.resources.spirvVersion;
const deUint32 vulkanVersion = dst.usedVulkanVersion;
static const string vertexTemplate =
"OpCapability Shader\n"
"${vert_capabilities}"
"OpExtension \"SPV_KHR_float_controls\"\n"
"${vert_extensions}"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex %BP_vertex_color %BP_vertex_result \n"
"${vert_execution_mode}"
"OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
"OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
"OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
"OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
"OpDecorate %BP_gl_PerVertex Block\n"
"OpDecorate %BP_position Location 0\n"
"OpDecorate %BP_color Location 1\n"
"OpDecorate %BP_vertex_color Location 1\n"
"OpDecorate %BP_vertex_result Location 2\n"
"OpDecorate %BP_vertex_result Flat\n"
"OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
"OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
// some tests require additional annotations
"${vert_annotations}"
// types required by most of tests
"%type_void = OpTypeVoid\n"
"%type_voidf = OpTypeFunction %type_void\n"
"%type_bool = OpTypeBool\n"
"%type_i32 = OpTypeInt 32 1\n"
"%type_u32 = OpTypeInt 32 0\n"
"%type_u32_vec2 = OpTypeVector %type_u32 2\n"
"%type_i32_iptr = OpTypePointer Input %type_i32\n"
"%type_i32_optr = OpTypePointer Output %type_i32\n"
"%type_i32_fptr = OpTypePointer Function %type_i32\n"
// constants required by most of tests
"%c_i32_0 = OpConstant %type_i32 0\n"
"%c_i32_1 = OpConstant %type_i32 1\n"
"%c_i32_2 = OpConstant %type_i32 2\n"
"%c_u32_1 = OpConstant %type_u32 1\n"
// if input float type has different width then output then
// both types are defined here along with all types derived from
// them that are commonly used by tests; some tests also define
// their own types (those that are needed just by this single test)
"${vert_types}"
// SSBO is not universally supported for storing
// data in vertex stages - it is onle read here
"${vert_io_definitions}"
"%BP_gl_PerVertex = OpTypeStruct %type_f32_vec4 %type_f32 %type_f32_arr_1 %type_f32_arr_1\n"
"%BP_gl_PerVertex_optr = OpTypePointer Output %BP_gl_PerVertex\n"
"%BP_stream = OpVariable %BP_gl_PerVertex_optr Output\n"
"%BP_position = OpVariable %type_f32_vec4_iptr Input\n"
"%BP_color = OpVariable %type_f32_vec4_iptr Input\n"
"%BP_gl_VertexIndex = OpVariable %type_i32_iptr Input\n"
"%BP_gl_InstanceIndex = OpVariable %type_i32_iptr Input\n"
"%BP_vertex_color = OpVariable %type_f32_vec4_optr Output\n"
// set of default constants per float type is placed here,
// operation tests can also define additional constants;
// note that O_RETURN_VAL defines function here and because
// of that this token needs to be directly before main function
"${vert_constants}"
"%main = OpFunction %type_void None %type_voidf\n"
"%label = OpLabel\n"
"${vert_variables}"
"%position = OpLoad %type_f32_vec4 %BP_position\n"
"%gl_pos = OpAccessChain %type_f32_vec4_optr %BP_stream %c_i32_0\n"
"OpStore %gl_pos %position\n"
"%color = OpLoad %type_f32_vec4 %BP_color\n"
"OpStore %BP_vertex_color %color\n"
// this token is filled only when vertex stage is tested;
// depending on test case arguments are either read from input ssbo
// or generated in spir-v code - in later case ssbo is not used
"${vert_arguments}"
// when vertex shader is tested then test operations are performed
// here and passed to fragment stage; if fragment stage ts tested
// then ${comands} and ${vert_process_result} are rplaced with nop
"${vert_commands}"
"${vert_process_result}"
"OpReturn\n"
"OpFunctionEnd\n";
static const string fragmentTemplate =
"OpCapability Shader\n"
"${frag_capabilities}"
"OpExtension \"SPV_KHR_float_controls\"\n"
"${frag_extensions}"
"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint Fragment %main \"main\" %BP_vertex_color %BP_vertex_result %BP_fragColor %BP_gl_FragCoord \n"
"OpExecutionMode %main OriginUpperLeft\n"
"${frag_execution_mode}"
"OpDecorate %BP_fragColor Location 0\n"
"OpDecorate %BP_vertex_color Location 1\n"
"OpDecorate %BP_vertex_result Location 2\n"
"OpDecorate %BP_vertex_result Flat\n"
"OpDecorate %BP_gl_FragCoord BuiltIn FragCoord\n"
// some tests require additional annotations
"${frag_annotations}"
// types required by most of tests
"%type_void = OpTypeVoid\n"
"%type_voidf = OpTypeFunction %type_void\n"
"%type_bool = OpTypeBool\n"
"%type_i32 = OpTypeInt 32 1\n"
"%type_u32 = OpTypeInt 32 0\n"
"%type_u32_vec2 = OpTypeVector %type_u32 2\n"
"%type_i32_iptr = OpTypePointer Input %type_i32\n"
"%type_i32_optr = OpTypePointer Output %type_i32\n"
"%type_i32_fptr = OpTypePointer Function %type_i32\n"
// constants required by most of tests
"%c_i32_0 = OpConstant %type_i32 0\n"
"%c_i32_1 = OpConstant %type_i32 1\n"
"%c_i32_2 = OpConstant %type_i32 2\n"
"%c_u32_1 = OpConstant %type_u32 1\n"
// if input float type has different width then output then
// both types are defined here along with all types derived from
// them that are commonly used by tests; some tests also define
// their own types (those that are needed just by this single test)
"${frag_types}"
"%BP_gl_FragCoord = OpVariable %type_f32_vec4_iptr Input\n"
"%BP_vertex_color = OpVariable %type_f32_vec4_iptr Input\n"
"%BP_fragColor = OpVariable %type_f32_vec4_optr Output\n"
// SSBO definitions
"${frag_io_definitions}"
// set of default constants per float type is placed here,
// operation tests can also define additional constants;
// note that O_RETURN_VAL defines function here and because
// of that this token needs to be directly before main function
"${frag_constants}"
"%main = OpFunction %type_void None %type_voidf\n"
"%label = OpLabel\n"
"${frag_variables}"
// just pass vertex color - rendered image is not important in our case
"%vertex_color = OpLoad %type_f32_vec4 %BP_vertex_color\n"
"OpStore %BP_fragColor %vertex_color\n"
// this token is filled only when fragment stage is tested;
// depending on test case arguments are either read from input ssbo or
// generated in spir-v code - in later case ssbo is used only for output
"${frag_arguments}"
// when fragment shader is tested then test operations are performed
// here and saved to ssbo; if vertex stage was tested then its
// result is just saved to ssbo here
"${frag_commands}"
"${frag_process_result}"
"OpReturn\n"
"OpFunctionEnd\n";
dst.spirvAsmSources.add("vert", DE_NULL)
<< StringTemplate(vertexTemplate).specialize(context.testCodeFragments)
<< SpirVAsmBuildOptions(vulkanVersion, targetSpirvVersion);
dst.spirvAsmSources.add("frag", DE_NULL)
<< StringTemplate(fragmentTemplate).specialize(context.testCodeFragments)
<< SpirVAsmBuildOptions(vulkanVersion, targetSpirvVersion);
}
// GraphicsTestGroupBuilder iterates over all test cases and creates test for both
// vertex and fragment stages. As in most spirv-assembly tests, tests here are also
// executed using functionality defined in vktSpvAsmGraphicsShaderTestUtil.cpp but
// because one of requirements during development was that SSBO wont be used in
// vertex stage we couldn't use createTestForStage functions - we need a custom
// version for both vertex and fragmen shaders at the same time. This was required
// as we needed to pass result from vertex stage to fragment stage where it could
// be saved to ssbo. To achieve that InstanceContext is created manually in
// createInstanceContext method.
class GraphicsTestGroupBuilder: public TestGroupBuilderBase
{
public:
void init();
void createTests(TestCaseGroup* group, FloatType floatType, bool argumentsFromInput);
protected:
InstanceContext createInstanceContext(const TestCaseInfo& testCaseInfo) const;
private:
TestCasesBuilder m_testCaseBuilder;
};
void GraphicsTestGroupBuilder::init()
{
m_testCaseBuilder.init();
}
void GraphicsTestGroupBuilder::createTests(TestCaseGroup* group, FloatType floatType, bool argumentsFromInput)
{
// create test cases for vertex stage
TestCaseVect testCases;
m_testCaseBuilder.build(testCases, m_typeData[floatType].testResults, argumentsFromInput);
TestCaseVect::const_iterator currTestCase = testCases.begin();
TestCaseVect::const_iterator lastTestCase = testCases.end();
while(currTestCase != lastTestCase)
{
const OperationTestCase& testCase = *currTestCase;
++currTestCase;
// skip cases with undefined output
if (testCase.expectedOutput == V_UNUSED)
continue;
// FPRoundingMode decoration can be applied only to conversion instruction that is used as the object
// argument of an OpStore storing through a pointer to a 16-bit floating-point object in Uniform, or
// PushConstant, or Input, or Output Storage Classes. SSBO writes are not commonly supported
// in VS so this test case needs to be skiped for vertex stage.
if ((testCase.operationId == O_ORTZ_ROUND) || (testCase.operationId == O_ORTE_ROUND))
continue;
TestCaseInfo testCaseInfo =
{
floatType,
argumentsFromInput,
VK_SHADER_STAGE_VERTEX_BIT,
m_testCaseBuilder.getOperation(testCase.operationId),
testCase
};
InstanceContext ctxVertex = createInstanceContext(testCaseInfo);
string testName = replace(testCase.baseName, "op", testCaseInfo.operation.name);
addFunctionCaseWithPrograms<InstanceContext>(group, testName + "_vert", "", getGraphicsShaderCode, runAndVerifyDefaultPipeline, ctxVertex);
}
// create test cases for fragment stage
testCases.clear();
m_testCaseBuilder.build(testCases, m_typeData[floatType].testResults, argumentsFromInput);
currTestCase = testCases.begin();
lastTestCase = testCases.end();
while(currTestCase != lastTestCase)
{
const OperationTestCase& testCase = *currTestCase;
++currTestCase;
// skip cases with undefined output
if (testCase.expectedOutput == V_UNUSED)
continue;
TestCaseInfo testCaseInfo =
{
floatType,
argumentsFromInput,
VK_SHADER_STAGE_FRAGMENT_BIT,
m_testCaseBuilder.getOperation(testCase.operationId),
testCase
};
InstanceContext ctxFragment = createInstanceContext(testCaseInfo);
string testName = replace(testCase.baseName, "op", testCaseInfo.operation.name);
addFunctionCaseWithPrograms<InstanceContext>(group, testName + "_frag", "", getGraphicsShaderCode, runAndVerifyDefaultPipeline, ctxFragment);
}
}
InstanceContext GraphicsTestGroupBuilder::createInstanceContext(const TestCaseInfo& testCaseInfo) const
{
// LUT storing functions used to verify test results
const VerifyIOFunc checkFloatsLUT[] =
{
checkFloats<Float16, deFloat16>,
checkFloats<Float32, float>,
checkFloats<Float64, double>
};
// 32-bit float types are always needed for standard operations on color
// if tested operation does not require fp32 for either input or output
// then this minimal type definitions must be appended to types section
const string f32TypeMinimalRequired =
"%type_f32 = OpTypeFloat 32\n"
"%type_f32_arr_1 = OpTypeArray %type_f32 %c_i32_1\n"
"%type_f32_iptr = OpTypePointer Input %type_f32\n"
"%type_f32_optr = OpTypePointer Output %type_f32\n"
"%type_f32_vec4 = OpTypeVector %type_f32 4\n"
"%type_f32_vec4_iptr = OpTypePointer Input %type_f32_vec4\n"
"%type_f32_vec4_optr = OpTypePointer Output %type_f32_vec4\n";
const Operation& testOperation = testCaseInfo.operation;
const OperationTestCase& testCase = testCaseInfo.testCase;
FloatType outFloatType = testCaseInfo.outFloatType;
VkShaderStageFlagBits testedStage = testCaseInfo.testedStage;
DE_ASSERT((testedStage == VK_SHADER_STAGE_VERTEX_BIT) || (testedStage == VK_SHADER_STAGE_FRAGMENT_BIT));
SpecializedOperation specOpData;
specializeOperation(testCaseInfo, specOpData);
TypeSnippetsSP inTypeSnippets = specOpData.inTypeSnippets;
TypeSnippetsSP outTypeSnippets = specOpData.outTypeSnippets;
FloatType inFloatType = specOpData.inFloatType;
// UnpackHalf2x16 is a corner case - it returns two 32-bit floats but
// internaly operates on fp16 and this type should be used by float controls
FloatType inFloatTypeForCaps = inFloatType;
string inFloatWidthForCaps = inTypeSnippets->bitWidth;
if (testCase.operationId == O_UPH_DENORM)
{
inFloatTypeForCaps = FP16;
inFloatWidthForCaps = "16";
}
string behaviorCapability;
string behaviorExecutionMode;
getBehaviorCapabilityAndExecutionMode(testCase.behaviorFlags,
inFloatWidthForCaps,
outTypeSnippets->bitWidth,
behaviorCapability,
behaviorExecutionMode);
// check which format features are needed
bool float16FeatureRequired = (inFloatType == FP16) || (outFloatType == FP16);
bool float64FeatureRequired = (inFloatType == FP64) || (outFloatType == FP64);
string vertExecutionMode;
string fragExecutionMode;
string vertCapabilities;
string fragCapabilities;
string vertExtensions;
string fragExtensions;
string vertAnnotations;
string fragAnnotations;
string vertTypes;
string fragTypes;
string vertConstants;
string fragConstants;
string vertIODefinitions;
string fragIODefinitions;
string vertArguments;
string fragArguments;
string vertVariables;
string fragVariables;
string vertCommands;
string fragCommands;
string vertProcessResult;
string fragProcessResult;
// check if operation should be executed in vertex stage
if (testedStage == VK_SHADER_STAGE_VERTEX_BIT)
{
vertAnnotations = inTypeSnippets->inputAnnotationsSnippet + inTypeSnippets->typeAnnotationsSnippet;
fragAnnotations = outTypeSnippets->outputAnnotationsSnippet + outTypeSnippets->typeAnnotationsSnippet;
// check if input type is different from tested type (conversion operations)
if (testOperation.isInputTypeRestricted)
{
vertCapabilities = behaviorCapability + inTypeSnippets->capabilities + outTypeSnippets->capabilities;
fragCapabilities = outTypeSnippets->capabilities;
vertExtensions = inTypeSnippets->extensions + outTypeSnippets->extensions;
fragExtensions = outTypeSnippets->extensions;
vertTypes = inTypeSnippets->typeDefinitionsSnippet + outTypeSnippets->typeDefinitionsSnippet + outTypeSnippets->varyingsTypesSnippet;
fragTypes = outTypeSnippets->typeDefinitionsSnippet + outTypeSnippets->varyingsTypesSnippet;
vertConstants = inTypeSnippets->constantsDefinitionsSnippet + outTypeSnippets->constantsDefinitionsSnippet;
fragConstants = outTypeSnippets->constantsDefinitionsSnippet;
}
else
{
// input and output types are the same (majority of operations)
vertCapabilities = behaviorCapability + outTypeSnippets->capabilities;
fragCapabilities = vertCapabilities;
vertExtensions = outTypeSnippets->extensions;
fragExtensions = vertExtensions;
vertTypes = outTypeSnippets->typeDefinitionsSnippet + outTypeSnippets->varyingsTypesSnippet;
fragTypes = vertTypes;
vertConstants = outTypeSnippets->constantsDefinitionsSnippet;
fragConstants = vertConstants;
}
if (outFloatType != FP32)
{
fragTypes += f32TypeMinimalRequired;
if (inFloatType != FP32)
vertTypes += f32TypeMinimalRequired;
}
vertAnnotations += specOpData.annotations;
vertTypes += specOpData.types;
vertConstants += specOpData.constans;
vertExecutionMode = behaviorExecutionMode;
fragExecutionMode = "";
vertIODefinitions = inTypeSnippets->inputDefinitionsSnippet + outTypeSnippets->outputVaryingsSnippet;
fragIODefinitions = outTypeSnippets->outputDefinitionsSnippet + outTypeSnippets->inputVaryingsSnippet;
vertArguments = specOpData.arguments;
fragArguments = "";
vertVariables = specOpData.variables;
fragVariables = "";
vertCommands = specOpData.commands;
fragCommands = "";
vertProcessResult = outTypeSnippets->storeVertexResultSnippet;
fragProcessResult = outTypeSnippets->loadVertexResultSnippet + outTypeSnippets->storeResultsSnippet;
}
else // perform test in fragment stage - vertex stage is empty
{
// check if input type is different from tested type
if (testOperation.isInputTypeRestricted)
{
fragAnnotations = inTypeSnippets->inputAnnotationsSnippet + inTypeSnippets->typeAnnotationsSnippet +
outTypeSnippets->outputAnnotationsSnippet + outTypeSnippets->typeAnnotationsSnippet;
fragCapabilities = behaviorCapability + inTypeSnippets->capabilities + outTypeSnippets->capabilities;
fragExtensions = inTypeSnippets->extensions + outTypeSnippets->extensions;
fragTypes = inTypeSnippets->typeDefinitionsSnippet + outTypeSnippets->typeDefinitionsSnippet;
fragConstants = inTypeSnippets->constantsDefinitionsSnippet + outTypeSnippets->constantsDefinitionsSnippet;
}
else
{
// input and output types are the same
fragAnnotations = inTypeSnippets->inputAnnotationsSnippet + inTypeSnippets->typeAnnotationsSnippet +
outTypeSnippets->outputAnnotationsSnippet;
fragCapabilities = behaviorCapability + outTypeSnippets->capabilities;
fragExtensions = outTypeSnippets->extensions;
fragTypes = outTypeSnippets->typeDefinitionsSnippet;
fragConstants = outTypeSnippets->constantsDefinitionsSnippet;
}
// varying is not used but it needs to be specified so lets use type_i32 for it
string dummyVertVarying = "%BP_vertex_result = OpVariable %type_i32_optr Output\n";
string dummyFragVarying = "%BP_vertex_result = OpVariable %type_i32_iptr Input\n";
vertCapabilities = "";
vertExtensions = "";
vertAnnotations = "OpDecorate %type_f32_arr_1 ArrayStride 4\n";
vertTypes = f32TypeMinimalRequired;
vertConstants = "";
if ((outFloatType != FP32) && (inFloatType != FP32))
fragTypes += f32TypeMinimalRequired;
fragAnnotations += specOpData.annotations;
fragTypes += specOpData.types;
fragConstants += specOpData.constans;
vertExecutionMode = "";
fragExecutionMode = behaviorExecutionMode;
vertIODefinitions = dummyVertVarying;
fragIODefinitions = inTypeSnippets->inputDefinitionsSnippet +
outTypeSnippets->outputDefinitionsSnippet + dummyFragVarying;
vertArguments = "";
fragArguments = specOpData.arguments;
vertVariables = "";
fragVariables = specOpData.variables;
vertCommands = "";
fragCommands = specOpData.commands;
vertProcessResult = "";
fragProcessResult = outTypeSnippets->storeResultsSnippet;
}
map<string, string> specializations;
specializations["vert_capabilities"] = vertCapabilities;
specializations["vert_extensions"] = vertExtensions;
specializations["vert_execution_mode"] = vertExecutionMode;
specializations["vert_annotations"] = vertAnnotations;
specializations["vert_types"] = vertTypes;
specializations["vert_constants"] = vertConstants;
specializations["vert_io_definitions"] = vertIODefinitions;
specializations["vert_arguments"] = vertArguments;
specializations["vert_variables"] = vertVariables;
specializations["vert_commands"] = vertCommands;
specializations["vert_process_result"] = vertProcessResult;
specializations["frag_capabilities"] = fragCapabilities;
specializations["frag_extensions"] = fragExtensions;
specializations["frag_execution_mode"] = fragExecutionMode;
specializations["frag_annotations"] = fragAnnotations;
specializations["frag_types"] = fragTypes;
specializations["frag_constants"] = fragConstants;
specializations["frag_io_definitions"] = fragIODefinitions;
specializations["frag_arguments"] = fragArguments;
specializations["frag_variables"] = fragVariables;
specializations["frag_commands"] = fragCommands;
specializations["frag_process_result"] = fragProcessResult;
// colors are not used by the test - input is passed via uniform buffer
RGBA defaultColors[4] = { RGBA::white(), RGBA::red(), RGBA::green(), RGBA::blue() };
// construct input and output buffers of proper types
TypeValuesSP inTypeValues = m_typeData.at(inFloatType).values;
TypeValuesSP outTypeValues = m_typeData.at(outFloatType).values;
BufferSp inBufferSp = inTypeValues->constructInputBuffer(testCase.input);
BufferSp outBufferSp = outTypeValues->constructOutputBuffer(testCase.expectedOutput);
vkt::SpirVAssembly::GraphicsResources resources;
resources.inputs.push_back( Resource(inBufferSp, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER));
resources.outputs.push_back(Resource(outBufferSp, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER));
resources.verifyIO = checkFloatsLUT[outFloatType];
StageToSpecConstantMap noSpecConstants;
PushConstants noPushConstants;
GraphicsInterfaces noInterfaces;
VulkanFeatures vulkanFeatures;
setupVulkanFeatures(inFloatTypeForCaps, // usualy same as inFloatType - different only for UnpackHalf2x16
outFloatType,
testCase.behaviorFlags,
float64FeatureRequired,
vulkanFeatures);
vulkanFeatures.coreFeatures.fragmentStoresAndAtomics = true;
vector<string> extensions;
extensions.push_back("VK_KHR_shader_float_controls");
if (float16FeatureRequired)
{
extensions.push_back("VK_KHR_16bit_storage");
vulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
}
InstanceContext ctx(defaultColors,
defaultColors,
specializations,
noSpecConstants,
noPushConstants,
resources,
noInterfaces,
extensions,
vulkanFeatures,
testedStage);
ctx.moduleMap["vert"].push_back(std::make_pair("main", VK_SHADER_STAGE_VERTEX_BIT));
ctx.moduleMap["frag"].push_back(std::make_pair("main", VK_SHADER_STAGE_FRAGMENT_BIT));
ctx.requiredStages = static_cast<VkShaderStageFlagBits>(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT);
ctx.failResult = QP_TEST_RESULT_FAIL;
ctx.failMessageTemplate = "Output doesn't match with expected";
return ctx;
}
} // anonymous
tcu::TestCaseGroup* createFloatControlsTestGroup (TestContext& testCtx, TestGroupBuilderBase* groupBuilder)
{
de::MovePtr<TestCaseGroup> group(new TestCaseGroup(testCtx, "float_controls", "Tests for VK_KHR_shader_float_controls extension"));
struct TestGroup
{
FloatType floatType;
const char* groupName;
};
TestGroup testGroups[] =
{
{ FP16, "fp16" },
{ FP32, "fp32" },
{ FP64, "fp64" },
};
for (int i = 0 ; i < DE_LENGTH_OF_ARRAY(testGroups) ; ++i)
{
const TestGroup& testGroup = testGroups[i];
TestCaseGroup* typeGroup = new TestCaseGroup(testCtx, testGroup.groupName, "");
group->addChild(typeGroup);
TestCaseGroup* inputArgsGroup = new TestCaseGroup(testCtx, "input_args", "");
groupBuilder->createTests(inputArgsGroup, testGroup.floatType, true);
typeGroup->addChild(inputArgsGroup);
TestCaseGroup* generatedArgsGroup = new TestCaseGroup(testCtx, "generated_args", "");
groupBuilder->createTests(generatedArgsGroup, testGroup.floatType, false);
typeGroup->addChild(generatedArgsGroup);
}
return group.release();
}
tcu::TestCaseGroup* createFloatControlsComputeGroup (TestContext& testCtx)
{
ComputeTestGroupBuilder computeTestGroupBuilder;
computeTestGroupBuilder.init();
return createFloatControlsTestGroup(testCtx, &computeTestGroupBuilder);
}
tcu::TestCaseGroup* createFloatControlsGraphicsGroup (TestContext& testCtx)
{
GraphicsTestGroupBuilder graphicsTestGroupBuilder;
graphicsTestGroupBuilder.init();
return createFloatControlsTestGroup(testCtx, &graphicsTestGroupBuilder);
}
} // SpirVAssembly
} // vkt