blob: fc8b27c7a0617f66160da1e30c1c1f7bb1b83878 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture filtering tests.
*//*--------------------------------------------------------------------*/
#include "es3fTextureFilteringTests.hpp"
#include "glsTextureTestUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "gluTexture.hpp"
#include "gluTextureUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuImageCompare.hpp"
#include "tcuTexLookupVerifier.hpp"
#include "tcuVectorUtil.hpp"
#include "deStringUtil.hpp"
#include "deString.h"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "gluContextInfo.hpp"
#include "deUniquePtr.hpp"
using de::MovePtr;
using glu::ContextInfo;
namespace deqp
{
namespace gles3
{
namespace Functional
{
using std::vector;
using std::string;
using tcu::TestLog;
using namespace gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
enum
{
TEX2D_VIEWPORT_WIDTH = 64,
TEX2D_VIEWPORT_HEIGHT = 64,
TEX2D_MIN_VIEWPORT_WIDTH = 64,
TEX2D_MIN_VIEWPORT_HEIGHT = 64,
TEX3D_VIEWPORT_WIDTH = 64,
TEX3D_VIEWPORT_HEIGHT = 64,
TEX3D_MIN_VIEWPORT_WIDTH = 64,
TEX3D_MIN_VIEWPORT_HEIGHT = 64
};
namespace
{
void checkSupport (const glu::ContextInfo& info, deUint32 internalFormat)
{
if (internalFormat == GL_SR8_EXT && !info.isExtensionSupported("GL_EXT_texture_sRGB_R8"))
TCU_THROW(NotSupportedError, "GL_EXT_texture_sRGB_decode is not supported.");
}
} // anonymous
class Texture2DFilteringCase : public tcu::TestCase
{
public:
Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 internalFormat, int width, int height);
Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames);
~Texture2DFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DFilteringCase (const Texture2DFilteringCase& other);
Texture2DFilteringCase& operator= (const Texture2DFilteringCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const deUint32 m_internalFormat;
const int m_width;
const int m_height;
const std::vector<std::string> m_filenames;
struct FilterCase
{
const glu::Texture2D* texture;
tcu::Vec2 minCoord;
tcu::Vec2 maxCoord;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::Texture2D* tex_, const tcu::Vec2& minCoord_, const tcu::Vec2& maxCoord_)
: texture (tex_)
, minCoord (minCoord_)
, maxCoord (maxCoord_)
{
}
};
std::vector<glu::Texture2D*> m_textures;
std::vector<FilterCase> m_cases;
TextureRenderer m_renderer;
int m_caseNdx;
};
Texture2DFilteringCase::Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 internalFormat, int width, int height)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_internalFormat (internalFormat)
, m_width (width)
, m_height (height)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
Texture2DFilteringCase::Texture2DFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_internalFormat (GL_NONE)
, m_width (0)
, m_height (0)
, m_filenames (filenames)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
Texture2DFilteringCase::~Texture2DFilteringCase (void)
{
deinit();
}
void Texture2DFilteringCase::init (void)
{
checkSupport(m_renderCtxInfo, m_internalFormat);
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size(), m_filenames));
}
else
{
// Create 2 textures.
m_textures.reserve(2);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::Texture2D(m_renderCtx, m_internalFormat, m_width, m_height));
const bool mipmaps = true;
const int numLevels = mipmaps ? deLog2Floor32(de::max(m_width, m_height))+1 : 1;
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
const tcu::Vec4 cBias = fmtInfo.valueMin;
const tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
// Fill first gradient texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
tcu::Vec4 gMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)*cScale + cBias;
tcu::Vec4 gMax = tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)*cScale + cBias;
m_textures[0]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithComponentGradients(m_textures[0]->getRefTexture().getLevel(levelNdx), gMin, gMax);
}
// Fill second with grid texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
deUint32 step = 0x00ffffff / numLevels;
deUint32 rgb = step*levelNdx;
deUint32 colorA = 0xff000000 | rgb;
deUint32 colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel(levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevel(levelNdx), 4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
// Upload.
for (std::vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
// Compute cases.
{
const struct
{
int texNdx;
float lodX;
float lodY;
float oX;
float oY;
} cases[] =
{
{ 0, 1.6f, 2.9f, -1.0f, -2.7f },
{ 0, -2.0f, -1.35f, -0.2f, 0.7f },
{ 1, 0.14f, 0.275f, -1.5f, -1.1f },
{ 1, -0.92f, -2.64f, 0.4f, -0.1f },
};
const float viewportW = (float)de::min<int>(TEX2D_VIEWPORT_WIDTH, m_renderCtx.getRenderTarget().getWidth());
const float viewportH = (float)de::min<int>(TEX2D_VIEWPORT_HEIGHT, m_renderCtx.getRenderTarget().getHeight());
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); caseNdx++)
{
const int texNdx = de::clamp(cases[caseNdx].texNdx, 0, (int)m_textures.size()-1);
const float lodX = cases[caseNdx].lodX;
const float lodY = cases[caseNdx].lodY;
const float oX = cases[caseNdx].oX;
const float oY = cases[caseNdx].oY;
const float sX = deFloatExp2(lodX)*viewportW / float(m_textures[texNdx]->getRefTexture().getWidth());
const float sY = deFloatExp2(lodY)*viewportH / float(m_textures[texNdx]->getRefTexture().getHeight());
m_cases.push_back(FilterCase(m_textures[texNdx], tcu::Vec2(oX, oY), tcu::Vec2(oX+sX, oY+sY)));
}
}
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
Texture2DFilteringCase::deinit();
throw;
}
}
void Texture2DFilteringCase::deinit (void)
{
for (std::vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
m_cases.clear();
}
Texture2DFilteringCase::IterateResult Texture2DFilteringCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
const RandomViewport viewport (m_renderCtx.getRenderTarget(), TEX2D_VIEWPORT_WIDTH, TEX2D_VIEWPORT_HEIGHT, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const tcu::TextureFormat texFmt = m_textures[0]->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::ScopedLogSection section (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
ReferenceParams refParams (TEXTURETYPE_2D);
tcu::Surface rendered (viewport.width, viewport.height);
vector<float> texCoord;
if (viewport.width < TEX2D_MIN_VIEWPORT_WIDTH || viewport.height < TEX2D_MIN_VIEWPORT_HEIGHT)
throw tcu::NotSupportedError("Too small render target", "", __FILE__, __LINE__);
// Setup params for reference.
refParams.sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_minFilter, m_magFilter);
refParams.samplerType = getSamplerType(texFmt);
refParams.lodMode = LODMODE_EXACT;
refParams.colorBias = fmtInfo.lookupBias;
refParams.colorScale = fmtInfo.lookupScale;
// Compute texture coordinates.
m_testCtx.getLog() << TestLog::Message << "Texture coordinates: " << curCase.minCoord << " -> " << curCase.maxCoord << TestLog::EndMessage;
computeQuadTexCoord2D(texCoord, curCase.minCoord, curCase.maxCoord);
gl.bindTexture (GL_TEXTURE_2D, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
m_renderer.renderQuad(0, &texCoord[0], refParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, rendered.getAccess());
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 18;
lodPrecision.lodBits = 6;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / refParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(20,20,0);
lookupPrecision.uvwBits = tcu::IVec3(7,7,0);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isHighQuality = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isHighQuality)
{
// Evaluate against lower precision requirements.
lodPrecision.lodBits = 4;
lookupPrecision.uvwBits = tcu::IVec3(4,4,0);
m_testCtx.getLog() << TestLog::Message << "Warning: Verification against high precision requirements failed, trying with lower requirements." << TestLog::EndMessage;
const bool isOk = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: Verification against low precision requirements failed, failing test case." << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
else if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, "Low-quality filtering result");
}
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
class TextureCubeFilteringCase : public tcu::TestCase
{
public:
TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, bool onlySampleFaceInterior, deUint32 internalFormat, int width, int height);
TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, bool onlySampleFaceInterior, const std::vector<std::string>& filenames);
~TextureCubeFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeFilteringCase (const TextureCubeFilteringCase& other);
TextureCubeFilteringCase& operator= (const TextureCubeFilteringCase& other);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const bool m_onlySampleFaceInterior; //!< If true, we avoid sampling anywhere near a face's edges.
const deUint32 m_internalFormat;
const int m_width;
const int m_height;
const std::vector<std::string> m_filenames;
struct FilterCase
{
const glu::TextureCube* texture;
tcu::Vec2 bottomLeft;
tcu::Vec2 topRight;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::TextureCube* tex_, const tcu::Vec2& bottomLeft_, const tcu::Vec2& topRight_)
: texture (tex_)
, bottomLeft(bottomLeft_)
, topRight (topRight_)
{
}
};
std::vector<glu::TextureCube*> m_textures;
std::vector<FilterCase> m_cases;
TextureRenderer m_renderer;
int m_caseNdx;
};
TextureCubeFilteringCase::TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, bool onlySampleFaceInterior, deUint32 internalFormat, int width, int height)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_onlySampleFaceInterior (onlySampleFaceInterior)
, m_internalFormat (internalFormat)
, m_width (width)
, m_height (height)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
TextureCubeFilteringCase::TextureCubeFilteringCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, bool onlySampleFaceInterior, const std::vector<std::string>& filenames)
: TestCase (testCtx, name, desc)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (ctxInfo)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_onlySampleFaceInterior (onlySampleFaceInterior)
, m_internalFormat (GL_NONE)
, m_width (0)
, m_height (0)
, m_filenames (filenames)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
TextureCubeFilteringCase::~TextureCubeFilteringCase (void)
{
deinit();
}
void TextureCubeFilteringCase::init (void)
{
checkSupport(m_renderCtxInfo, m_internalFormat);
try
{
if (!m_filenames.empty())
{
m_textures.reserve(1);
m_textures.push_back(glu::TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size() / 6, m_filenames));
}
else
{
DE_ASSERT(m_width == m_height);
m_textures.reserve(2);
for (int ndx = 0; ndx < 2; ndx++)
m_textures.push_back(new glu::TextureCube(m_renderCtx, m_internalFormat, m_width));
const int numLevels = deLog2Floor32(de::max(m_width, m_height))+1;
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_textures[0]->getRefTexture().getFormat());
tcu::Vec4 cBias = fmtInfo.valueMin;
tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
// Fill first with gradient texture.
static const tcu::Vec4 gradients[tcu::CUBEFACE_LAST][2] =
{
{ tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // negative x
{ tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // positive x
{ tcu::Vec4(0.0f, 0.5f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // negative y
{ tcu::Vec4(0.0f, 0.0f, 0.5f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) }, // positive y
{ tcu::Vec4(0.0f, 0.0f, 0.0f, 0.5f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f) }, // negative z
{ tcu::Vec4(0.5f, 0.5f, 0.5f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f) } // positive z
};
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_textures[0]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithComponentGradients(m_textures[0]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face), gradients[face][0]*cScale + cBias, gradients[face][1]*cScale + cBias);
}
}
// Fill second with grid texture.
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
{
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
deUint32 step = 0x00ffffff / (numLevels*tcu::CUBEFACE_LAST);
deUint32 rgb = step*levelNdx*face;
deUint32 colorA = 0xff000000 | rgb;
deUint32 colorB = 0xff000000 | ~rgb;
m_textures[1]->getRefTexture().allocLevel((tcu::CubeFace)face, levelNdx);
tcu::fillWithGrid(m_textures[1]->getRefTexture().getLevelFace(levelNdx, (tcu::CubeFace)face), 4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
}
// Upload.
for (std::vector<glu::TextureCube*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
(*i)->upload();
}
// Compute cases
{
const glu::TextureCube* tex0 = m_textures[0];
const glu::TextureCube* tex1 = m_textures.size() > 1 ? m_textures[1] : tex0;
if (m_onlySampleFaceInterior)
{
m_cases.push_back(FilterCase(tex0, tcu::Vec2(-0.8f, -0.8f), tcu::Vec2(0.8f, 0.8f))); // minification
m_cases.push_back(FilterCase(tex0, tcu::Vec2(0.5f, 0.65f), tcu::Vec2(0.8f, 0.8f))); // magnification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(-0.8f, -0.8f), tcu::Vec2(0.8f, 0.8f))); // minification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(0.2f, 0.2f), tcu::Vec2(0.6f, 0.5f))); // magnification
}
else
{
if (m_renderCtx.getRenderTarget().getNumSamples() == 0)
m_cases.push_back(FilterCase(tex0, tcu::Vec2(-1.25f, -1.2f), tcu::Vec2(1.2f, 1.25f))); // minification
else
m_cases.push_back(FilterCase(tex0, tcu::Vec2(-1.19f, -1.3f), tcu::Vec2(1.1f, 1.35f))); // minification - w/ tweak to avoid hitting triangle edges with face switchpoint
m_cases.push_back(FilterCase(tex0, tcu::Vec2(0.8f, 0.8f), tcu::Vec2(1.25f, 1.20f))); // magnification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(-1.19f, -1.3f), tcu::Vec2(1.1f, 1.35f))); // minification
m_cases.push_back(FilterCase(tex1, tcu::Vec2(-1.2f, -1.1f), tcu::Vec2(-0.8f, -0.8f))); // magnification
}
}
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
TextureCubeFilteringCase::deinit();
throw;
}
}
void TextureCubeFilteringCase::deinit (void)
{
for (std::vector<glu::TextureCube*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
m_renderer.clear();
m_cases.clear();
}
static const char* getFaceDesc (const tcu::CubeFace face)
{
switch (face)
{
case tcu::CUBEFACE_NEGATIVE_X: return "-X";
case tcu::CUBEFACE_POSITIVE_X: return "+X";
case tcu::CUBEFACE_NEGATIVE_Y: return "-Y";
case tcu::CUBEFACE_POSITIVE_Y: return "+Y";
case tcu::CUBEFACE_NEGATIVE_Z: return "-Z";
case tcu::CUBEFACE_POSITIVE_Z: return "+Z";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
TextureCubeFilteringCase::IterateResult TextureCubeFilteringCase::iterate (void)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
const int viewportSize = 28;
const RandomViewport viewport (m_renderCtx.getRenderTarget(), viewportSize, viewportSize, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const tcu::ScopedLogSection iterSection (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::TextureFormat& texFmt = curCase.texture->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
ReferenceParams sampleParams (TEXTURETYPE_CUBE);
if (viewport.width < viewportSize || viewport.height < viewportSize)
throw tcu::NotSupportedError("Too small render target", DE_NULL, __FILE__, __LINE__);
// Setup texture
gl.bindTexture (GL_TEXTURE_CUBE_MAP, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, m_wrapT);
// Other state
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Params for reference computation.
sampleParams.sampler = glu::mapGLSampler(GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE, m_minFilter, m_magFilter);
sampleParams.sampler.seamlessCubeMap = true;
sampleParams.samplerType = getSamplerType(texFmt);
sampleParams.colorBias = fmtInfo.lookupBias;
sampleParams.colorScale = fmtInfo.lookupScale;
sampleParams.lodMode = LODMODE_EXACT;
m_testCtx.getLog() << TestLog::Message << "Coordinates: " << curCase.bottomLeft << " -> " << curCase.topRight << TestLog::EndMessage;
for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
{
const tcu::CubeFace face = tcu::CubeFace(faceNdx);
tcu::Surface result (viewport.width, viewport.height);
vector<float> texCoord;
computeQuadTexCoordCube(texCoord, face, curCase.bottomLeft, curCase.topRight);
m_testCtx.getLog() << TestLog::Message << "Face " << getFaceDesc(face) << TestLog::EndMessage;
// \todo Log texture coordinates.
m_renderer.renderQuad(0, &texCoord[0], sampleParams);
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
glu::readPixels(m_renderCtx, viewport.x, viewport.y, result.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_renderCtx.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 10;
lodPrecision.lodBits = 5;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / sampleParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(10,10,10);
lookupPrecision.uvwBits = tcu::IVec3(6,6,0);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isHighQuality = verifyTextureResult(m_testCtx, result.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], sampleParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isHighQuality)
{
// Evaluate against lower precision requirements.
lodPrecision.lodBits = 4;
lookupPrecision.uvwBits = tcu::IVec3(4,4,0);
m_testCtx.getLog() << TestLog::Message << "Warning: Verification against high precision requirements failed, trying with lower requirements." << TestLog::EndMessage;
const bool isOk = verifyTextureResult(m_testCtx, result.getAccess(), curCase.texture->getRefTexture(),
&texCoord[0], sampleParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: Verification against low precision requirements failed, failing test case." << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
else if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, "Low-quality filtering result");
}
}
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
// 2D array filtering
class Texture2DArrayFilteringCase : public TestCase
{
public:
Texture2DArrayFilteringCase (Context& context, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 internalFormat, int width, int height, int numLayers);
~Texture2DArrayFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture2DArrayFilteringCase (const Texture2DArrayFilteringCase&);
Texture2DArrayFilteringCase& operator= (const Texture2DArrayFilteringCase&);
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const deUint32 m_internalFormat;
const int m_width;
const int m_height;
const int m_numLayers;
struct FilterCase
{
const glu::Texture2DArray* texture;
tcu::Vec2 lod;
tcu::Vec2 offset;
tcu::Vec2 layerRange;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::Texture2DArray* tex_, const tcu::Vec2& lod_, const tcu::Vec2& offset_, const tcu::Vec2& layerRange_)
: texture (tex_)
, lod (lod_)
, offset (offset_)
, layerRange(layerRange_)
{
}
};
glu::Texture2DArray* m_gradientTex;
glu::Texture2DArray* m_gridTex;
TextureRenderer m_renderer;
std::vector<FilterCase> m_cases;
int m_caseNdx;
};
Texture2DArrayFilteringCase::Texture2DArrayFilteringCase (Context& context, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 internalFormat, int width, int height, int numLayers)
: TestCase (context, name, desc)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_internalFormat (internalFormat)
, m_width (width)
, m_height (height)
, m_numLayers (numLayers)
, m_gradientTex (DE_NULL)
, m_gridTex (DE_NULL)
, m_renderer (context.getRenderContext(), context.getTestContext().getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
Texture2DArrayFilteringCase::~Texture2DArrayFilteringCase (void)
{
Texture2DArrayFilteringCase::deinit();
}
void Texture2DArrayFilteringCase::init (void)
{
checkSupport(m_context.getContextInfo(), m_internalFormat);
try
{
const tcu::TextureFormat texFmt = glu::mapGLInternalFormat(m_internalFormat);
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
const tcu::Vec4 cBias = fmtInfo.valueMin;
const int numLevels = deLog2Floor32(de::max(m_width, m_height)) + 1;
// Create textures.
m_gradientTex = new glu::Texture2DArray(m_context.getRenderContext(), m_internalFormat, m_width, m_height, m_numLayers);
m_gridTex = new glu::Texture2DArray(m_context.getRenderContext(), m_internalFormat, m_width, m_height, m_numLayers);
const tcu::IVec4 levelSwz[] =
{
tcu::IVec4(0,1,2,3),
tcu::IVec4(2,1,3,0),
tcu::IVec4(3,0,1,2),
tcu::IVec4(1,3,2,0),
};
// Fill first gradient texture (gradient direction varies between layers).
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_gradientTex->getRefTexture().allocLevel(levelNdx);
const tcu::PixelBufferAccess levelBuf = m_gradientTex->getRefTexture().getLevel(levelNdx);
for (int layerNdx = 0; layerNdx < m_numLayers; layerNdx++)
{
const tcu::IVec4 swz = levelSwz[layerNdx%DE_LENGTH_OF_ARRAY(levelSwz)];
const tcu::Vec4 gMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f).swizzle(swz[0],swz[1],swz[2],swz[3])*cScale + cBias;
const tcu::Vec4 gMax = tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f).swizzle(swz[0],swz[1],swz[2],swz[3])*cScale + cBias;
tcu::fillWithComponentGradients(tcu::getSubregion(levelBuf, 0, 0, layerNdx, levelBuf.getWidth(), levelBuf.getHeight(), 1), gMin, gMax);
}
}
// Fill second with grid texture (each layer has unique colors).
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
m_gridTex->getRefTexture().allocLevel(levelNdx);
const tcu::PixelBufferAccess levelBuf = m_gridTex->getRefTexture().getLevel(levelNdx);
for (int layerNdx = 0; layerNdx < m_numLayers; layerNdx++)
{
const deUint32 step = 0x00ffffff / (numLevels*m_numLayers - 1);
const deUint32 rgb = step * (levelNdx + layerNdx*numLevels);
const deUint32 colorA = 0xff000000 | rgb;
const deUint32 colorB = 0xff000000 | ~rgb;
tcu::fillWithGrid(tcu::getSubregion(levelBuf, 0, 0, layerNdx, levelBuf.getWidth(), levelBuf.getHeight(), 1),
4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
}
// Upload.
m_gradientTex->upload();
m_gridTex->upload();
// Test cases
m_cases.push_back(FilterCase(m_gradientTex, tcu::Vec2( 1.5f, 2.8f ), tcu::Vec2(-1.0f, -2.7f), tcu::Vec2(-0.5f, float(m_numLayers)+0.5f)));
m_cases.push_back(FilterCase(m_gridTex, tcu::Vec2( 0.2f, 0.175f), tcu::Vec2(-2.0f, -3.7f), tcu::Vec2(-0.5f, float(m_numLayers)+0.5f)));
m_cases.push_back(FilterCase(m_gridTex, tcu::Vec2(-0.8f, -2.3f ), tcu::Vec2( 0.2f, -0.1f), tcu::Vec2(float(m_numLayers)+0.5f, -0.5f)));
// Level rounding - only in single-sample configs as multisample configs may produce smooth transition at the middle.
if (m_context.getRenderTarget().getNumSamples() == 0)
m_cases.push_back(FilterCase(m_gradientTex, tcu::Vec2(-2.0f, -1.5f ), tcu::Vec2(-0.1f, 0.9f), tcu::Vec2(1.50001f, 1.49999f)));
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
Texture2DArrayFilteringCase::deinit();
throw;
}
}
void Texture2DArrayFilteringCase::deinit (void)
{
delete m_gradientTex;
delete m_gridTex;
m_gradientTex = DE_NULL;
m_gridTex = DE_NULL;
m_renderer.clear();
m_cases.clear();
}
Texture2DArrayFilteringCase::IterateResult Texture2DArrayFilteringCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const RandomViewport viewport (m_context.getRenderTarget(), TEX3D_VIEWPORT_WIDTH, TEX3D_VIEWPORT_HEIGHT, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::TextureFormat texFmt = curCase.texture->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const tcu::ScopedLogSection section (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
ReferenceParams refParams (TEXTURETYPE_2D_ARRAY);
tcu::Surface rendered (viewport.width, viewport.height);
tcu::Vec3 texCoord[4];
if (viewport.width < TEX3D_MIN_VIEWPORT_WIDTH || viewport.height < TEX3D_MIN_VIEWPORT_HEIGHT)
throw tcu::NotSupportedError("Too small render target", "", __FILE__, __LINE__);
// Setup params for reference.
refParams.sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_wrapT, m_minFilter, m_magFilter);
refParams.samplerType = getSamplerType(texFmt);
refParams.lodMode = LODMODE_EXACT;
refParams.colorBias = fmtInfo.lookupBias;
refParams.colorScale = fmtInfo.lookupScale;
// Compute texture coordinates.
m_testCtx.getLog() << TestLog::Message << "Approximate lod per axis = " << curCase.lod << ", offset = " << curCase.offset << TestLog::EndMessage;
{
const float lodX = curCase.lod.x();
const float lodY = curCase.lod.y();
const float oX = curCase.offset.x();
const float oY = curCase.offset.y();
const float sX = deFloatExp2(lodX)*float(viewport.width) / float(m_gradientTex->getRefTexture().getWidth());
const float sY = deFloatExp2(lodY)*float(viewport.height) / float(m_gradientTex->getRefTexture().getHeight());
const float l0 = curCase.layerRange.x();
const float l1 = curCase.layerRange.y();
texCoord[0] = tcu::Vec3(oX, oY, l0);
texCoord[1] = tcu::Vec3(oX, oY+sY, l0*0.5f + l1*0.5f);
texCoord[2] = tcu::Vec3(oX+sX, oY, l0*0.5f + l1*0.5f);
texCoord[3] = tcu::Vec3(oX+sX, oY+sY, l1);
}
gl.bindTexture (GL_TEXTURE_2D_ARRAY, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, m_wrapT);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
m_renderer.renderQuad(0, (const float*)&texCoord[0], refParams);
glu::readPixels(m_context.getRenderContext(), viewport.x, viewport.y, rendered.getAccess());
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 18;
lodPrecision.lodBits = 6;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / refParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(20,20,20);
lookupPrecision.uvwBits = tcu::IVec3(7,7,0);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isHighQuality = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
(const float*)&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isHighQuality)
{
// Evaluate against lower precision requirements.
lodPrecision.lodBits = 4;
lookupPrecision.uvwBits = tcu::IVec3(4,4,0);
m_testCtx.getLog() << TestLog::Message << "Warning: Verification against high precision requirements failed, trying with lower requirements." << TestLog::EndMessage;
const bool isOk = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
(const float*)&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: Verification against low precision requirements failed, failing test case." << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
else if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, "Low-quality filtering result");
}
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
// 3D filtering
class Texture3DFilteringCase : public TestCase
{
public:
Texture3DFilteringCase (Context& context, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 wrapR, deUint32 internalFormat, int width, int height, int depth);
~Texture3DFilteringCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
Texture3DFilteringCase (const Texture3DFilteringCase& other);
Texture3DFilteringCase& operator= (const Texture3DFilteringCase& other);
const deUint32 m_minFilter;
const deUint32 m_magFilter;
const deUint32 m_wrapS;
const deUint32 m_wrapT;
const deUint32 m_wrapR;
const deUint32 m_internalFormat;
const int m_width;
const int m_height;
const int m_depth;
struct FilterCase
{
const glu::Texture3D* texture;
tcu::Vec3 lod;
tcu::Vec3 offset;
FilterCase (void)
: texture(DE_NULL)
{
}
FilterCase (const glu::Texture3D* tex_, const tcu::Vec3& lod_, const tcu::Vec3& offset_)
: texture (tex_)
, lod (lod_)
, offset (offset_)
{
}
};
glu::Texture3D* m_gradientTex;
glu::Texture3D* m_gridTex;
TextureRenderer m_renderer;
std::vector<FilterCase> m_cases;
int m_caseNdx;
};
Texture3DFilteringCase::Texture3DFilteringCase (Context& context, const char* name, const char* desc, deUint32 minFilter, deUint32 magFilter, deUint32 wrapS, deUint32 wrapT, deUint32 wrapR, deUint32 internalFormat, int width, int height, int depth)
: TestCase (context, name, desc)
, m_minFilter (minFilter)
, m_magFilter (magFilter)
, m_wrapS (wrapS)
, m_wrapT (wrapT)
, m_wrapR (wrapR)
, m_internalFormat (internalFormat)
, m_width (width)
, m_height (height)
, m_depth (depth)
, m_gradientTex (DE_NULL)
, m_gridTex (DE_NULL)
, m_renderer (context.getRenderContext(), context.getTestContext().getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_caseNdx (0)
{
}
Texture3DFilteringCase::~Texture3DFilteringCase (void)
{
Texture3DFilteringCase::deinit();
}
void Texture3DFilteringCase::init (void)
{
checkSupport(m_context.getContextInfo(), m_internalFormat);
try
{
const tcu::TextureFormat texFmt = glu::mapGLInternalFormat(m_internalFormat);
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const tcu::Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
const tcu::Vec4 cBias = fmtInfo.valueMin;
const int numLevels = deLog2Floor32(de::max(de::max(m_width, m_height), m_depth)) + 1;
// Create textures.
m_gradientTex = new glu::Texture3D(m_context.getRenderContext(), m_internalFormat, m_width, m_height, m_depth);
m_gridTex = new glu::Texture3D(m_context.getRenderContext(), m_internalFormat, m_width, m_height, m_depth);
// Fill first gradient texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
tcu::Vec4 gMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)*cScale + cBias;
tcu::Vec4 gMax = tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)*cScale + cBias;
m_gradientTex->getRefTexture().allocLevel(levelNdx);
tcu::fillWithComponentGradients(m_gradientTex->getRefTexture().getLevel(levelNdx), gMin, gMax);
}
// Fill second with grid texture.
for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
{
deUint32 step = 0x00ffffff / numLevels;
deUint32 rgb = step*levelNdx;
deUint32 colorA = 0xff000000 | rgb;
deUint32 colorB = 0xff000000 | ~rgb;
m_gridTex->getRefTexture().allocLevel(levelNdx);
tcu::fillWithGrid(m_gridTex->getRefTexture().getLevel(levelNdx), 4, tcu::RGBA(colorA).toVec()*cScale + cBias, tcu::RGBA(colorB).toVec()*cScale + cBias);
}
// Upload.
m_gradientTex->upload();
m_gridTex->upload();
// Test cases
m_cases.push_back(FilterCase(m_gradientTex, tcu::Vec3(1.5f, 2.8f, 1.0f), tcu::Vec3(-1.0f, -2.7f, -2.275f)));
m_cases.push_back(FilterCase(m_gradientTex, tcu::Vec3(-2.0f, -1.5f, -1.8f), tcu::Vec3(-0.1f, 0.9f, -0.25f)));
m_cases.push_back(FilterCase(m_gridTex, tcu::Vec3(0.2f, 0.175f, 0.3f), tcu::Vec3(-2.0f, -3.7f, -1.825f)));
m_cases.push_back(FilterCase(m_gridTex, tcu::Vec3(-0.8f, -2.3f, -2.5f), tcu::Vec3(0.2f, -0.1f, 1.325f)));
m_caseNdx = 0;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
catch (...)
{
// Clean up to save memory.
Texture3DFilteringCase::deinit();
throw;
}
}
void Texture3DFilteringCase::deinit (void)
{
delete m_gradientTex;
delete m_gridTex;
m_gradientTex = DE_NULL;
m_gridTex = DE_NULL;
m_renderer.clear();
m_cases.clear();
}
Texture3DFilteringCase::IterateResult Texture3DFilteringCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const RandomViewport viewport (m_context.getRenderTarget(), TEX3D_VIEWPORT_WIDTH, TEX3D_VIEWPORT_HEIGHT, deStringHash(getName()) ^ deInt32Hash(m_caseNdx));
const FilterCase& curCase = m_cases[m_caseNdx];
const tcu::TextureFormat texFmt = curCase.texture->getRefTexture().getFormat();
const tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFmt);
const tcu::ScopedLogSection section (m_testCtx.getLog(), string("Test") + de::toString(m_caseNdx), string("Test ") + de::toString(m_caseNdx));
ReferenceParams refParams (TEXTURETYPE_3D);
tcu::Surface rendered (viewport.width, viewport.height);
tcu::Vec3 texCoord[4];
if (viewport.width < TEX3D_MIN_VIEWPORT_WIDTH || viewport.height < TEX3D_MIN_VIEWPORT_HEIGHT)
throw tcu::NotSupportedError("Too small render target", "", __FILE__, __LINE__);
// Setup params for reference.
refParams.sampler = glu::mapGLSampler(m_wrapS, m_wrapT, m_wrapR, m_minFilter, m_magFilter);
refParams.samplerType = getSamplerType(texFmt);
refParams.lodMode = LODMODE_EXACT;
refParams.colorBias = fmtInfo.lookupBias;
refParams.colorScale = fmtInfo.lookupScale;
// Compute texture coordinates.
m_testCtx.getLog() << TestLog::Message << "Approximate lod per axis = " << curCase.lod << ", offset = " << curCase.offset << TestLog::EndMessage;
{
const float lodX = curCase.lod.x();
const float lodY = curCase.lod.y();
const float lodZ = curCase.lod.z();
const float oX = curCase.offset.x();
const float oY = curCase.offset.y();
const float oZ = curCase.offset.z();
const float sX = deFloatExp2(lodX)*float(viewport.width) / float(m_gradientTex->getRefTexture().getWidth());
const float sY = deFloatExp2(lodY)*float(viewport.height) / float(m_gradientTex->getRefTexture().getHeight());
const float sZ = deFloatExp2(lodZ)*float(de::max(viewport.width, viewport.height)) / float(m_gradientTex->getRefTexture().getDepth());
texCoord[0] = tcu::Vec3(oX, oY, oZ);
texCoord[1] = tcu::Vec3(oX, oY+sY, oZ + sZ*0.5f);
texCoord[2] = tcu::Vec3(oX+sX, oY, oZ + sZ*0.5f);
texCoord[3] = tcu::Vec3(oX+sX, oY+sY, oZ + sZ);
}
gl.bindTexture (GL_TEXTURE_3D, curCase.texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, m_minFilter);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, m_magFilter);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, m_wrapS);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, m_wrapT);
gl.texParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, m_wrapR);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
m_renderer.renderQuad(0, (const float*)&texCoord[0], refParams);
glu::readPixels(m_context.getRenderContext(), viewport.x, viewport.y, rendered.getAccess());
{
const bool isNearestOnly = m_minFilter == GL_NEAREST && m_magFilter == GL_NEAREST;
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
const tcu::IVec4 colorBits = max(getBitsVec(pixelFormat) - (isNearestOnly ? 1 : 2), tcu::IVec4(0)); // 1 inaccurate bit if nearest only, 2 otherwise
tcu::LodPrecision lodPrecision;
tcu::LookupPrecision lookupPrecision;
lodPrecision.derivateBits = 18;
lodPrecision.lodBits = 6;
lookupPrecision.colorThreshold = tcu::computeFixedPointThreshold(colorBits) / refParams.colorScale;
lookupPrecision.coordBits = tcu::IVec3(20,20,20);
lookupPrecision.uvwBits = tcu::IVec3(7,7,7);
lookupPrecision.colorMask = getCompareMask(pixelFormat);
const bool isHighQuality = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
(const float*)&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isHighQuality)
{
// Evaluate against lower precision requirements.
lodPrecision.lodBits = 4;
lookupPrecision.uvwBits = tcu::IVec3(4,4,4);
m_testCtx.getLog() << TestLog::Message << "Warning: Verification against high precision requirements failed, trying with lower requirements." << TestLog::EndMessage;
const bool isOk = verifyTextureResult(m_testCtx, rendered.getAccess(), curCase.texture->getRefTexture(),
(const float*)&texCoord[0], refParams, lookupPrecision, lodPrecision, pixelFormat);
if (!isOk)
{
m_testCtx.getLog() << TestLog::Message << "ERROR: Verification against low precision requirements failed, failing test case." << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
else if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, "Low-quality filtering result");
}
}
m_caseNdx += 1;
return m_caseNdx < (int)m_cases.size() ? CONTINUE : STOP;
}
TextureFilteringTests::TextureFilteringTests (Context& context)
: TestCaseGroup(context, "filtering", "Texture Filtering Tests")
{
}
TextureFilteringTests::~TextureFilteringTests (void)
{
}
void TextureFilteringTests::init (void)
{
static const struct
{
const char* name;
deUint32 mode;
} wrapModes[] =
{
{ "clamp", GL_CLAMP_TO_EDGE },
{ "repeat", GL_REPEAT },
{ "mirror", GL_MIRRORED_REPEAT }
};
static const struct
{
const char* name;
deUint32 mode;
} minFilterModes[] =
{
{ "nearest", GL_NEAREST },
{ "linear", GL_LINEAR },
{ "nearest_mipmap_nearest", GL_NEAREST_MIPMAP_NEAREST },
{ "linear_mipmap_nearest", GL_LINEAR_MIPMAP_NEAREST },
{ "nearest_mipmap_linear", GL_NEAREST_MIPMAP_LINEAR },
{ "linear_mipmap_linear", GL_LINEAR_MIPMAP_LINEAR }
};
static const struct
{
const char* name;
deUint32 mode;
} magFilterModes[] =
{
{ "nearest", GL_NEAREST },
{ "linear", GL_LINEAR }
};
static const struct
{
int width;
int height;
} sizes2D[] =
{
{ 4, 8 },
{ 32, 64 },
{ 128, 128 },
{ 3, 7 },
{ 31, 55 },
{ 127, 99 }
};
static const struct
{
int width;
int height;
} sizesCube[] =
{
{ 8, 8 },
{ 64, 64 },
{ 128, 128 },
{ 7, 7 },
{ 63, 63 }
};
static const struct
{
int width;
int height;
int numLayers;
} sizes2DArray[] =
{
{ 4, 8, 8 },
{ 32, 64, 16 },
{ 128, 32, 64 },
{ 3, 7, 5 },
{ 63, 63, 63 }
};
static const struct
{
int width;
int height;
int depth;
} sizes3D[] =
{
{ 4, 8, 8 },
{ 32, 64, 16 },
{ 128, 32, 64 },
{ 3, 7, 5 },
{ 63, 63, 63 }
};
static const struct
{
const char* name;
deUint32 format;
} filterableFormatsByType[] =
{
{ "rgba16f", GL_RGBA16F },
{ "r11f_g11f_b10f", GL_R11F_G11F_B10F },
{ "rgb9_e5", GL_RGB9_E5 },
{ "rgba8", GL_RGBA8 },
{ "rgba8_snorm", GL_RGBA8_SNORM },
{ "rgb565", GL_RGB565 },
{ "rgba4", GL_RGBA4 },
{ "rgb5_a1", GL_RGB5_A1 },
{ "srgb8_alpha8", GL_SRGB8_ALPHA8 },
{ "srgb_r8", GL_SR8_EXT },
{ "rgb10_a2", GL_RGB10_A2 }
};
// 2D texture filtering.
{
tcu::TestCaseGroup* group2D = new tcu::TestCaseGroup(m_testCtx, "2d", "2D Texture Filtering");
addChild(group2D);
// Formats.
tcu::TestCaseGroup* formatsGroup = new tcu::TestCaseGroup(m_testCtx, "formats", "2D Texture Formats");
group2D->addChild(formatsGroup);
for (int fmtNdx = 0; fmtNdx < DE_LENGTH_OF_ARRAY(filterableFormatsByType); fmtNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = filterableFormatsByType[fmtNdx].format;
const char* formatName = filterableFormatsByType[fmtNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string(formatName) + "_" + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = 64;
int height = 64;
formatsGroup->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height));
}
}
// ETC1 format.
{
std::vector<std::string> filenames;
for (int i = 0; i <= 7; i++)
filenames.push_back(string("data/etc1/photo_helsinki_mip_") + de::toString(i) + ".pkm");
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string("etc1_rgb8_") + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
formatsGroup->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
filenames));
}
}
// Sizes.
tcu::TestCaseGroup* sizesGroup = new tcu::TestCaseGroup(m_testCtx, "sizes", "Texture Sizes");
group2D->addChild(sizesGroup);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizes2D); sizeNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = GL_RGBA8;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = sizes2D[sizeNdx].width;
int height = sizes2D[sizeNdx].height;
string name = de::toString(width) + "x" + de::toString(height) + "_" + filterName;
sizesGroup->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height));
}
}
// Wrap modes.
tcu::TestCaseGroup* combinationsGroup = new tcu::TestCaseGroup(m_testCtx, "combinations", "Filter and wrap mode combinations");
group2D->addChild(combinationsGroup);
for (int minFilterNdx = 0; minFilterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); minFilterNdx++)
{
for (int magFilterNdx = 0; magFilterNdx < DE_LENGTH_OF_ARRAY(magFilterModes); magFilterNdx++)
{
for (int wrapSNdx = 0; wrapSNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapSNdx++)
{
for (int wrapTNdx = 0; wrapTNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapTNdx++)
{
deUint32 minFilter = minFilterModes[minFilterNdx].mode;
deUint32 magFilter = magFilterModes[magFilterNdx].mode;
deUint32 format = GL_RGBA8;
deUint32 wrapS = wrapModes[wrapSNdx].mode;
deUint32 wrapT = wrapModes[wrapTNdx].mode;
int width = 63;
int height = 57;
string name = string(minFilterModes[minFilterNdx].name) + "_" + magFilterModes[magFilterNdx].name + "_" + wrapModes[wrapSNdx].name + "_" + wrapModes[wrapTNdx].name;
combinationsGroup->addChild(new Texture2DFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height));
}
}
}
}
}
// Cube map texture filtering.
{
tcu::TestCaseGroup* groupCube = new tcu::TestCaseGroup(m_testCtx, "cube", "Cube Map Texture Filtering");
addChild(groupCube);
// Formats.
tcu::TestCaseGroup* formatsGroup = new tcu::TestCaseGroup(m_testCtx, "formats", "2D Texture Formats");
groupCube->addChild(formatsGroup);
for (int fmtNdx = 0; fmtNdx < DE_LENGTH_OF_ARRAY(filterableFormatsByType); fmtNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = filterableFormatsByType[fmtNdx].format;
const char* formatName = filterableFormatsByType[fmtNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string(formatName) + "_" + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = 64;
int height = 64;
formatsGroup->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
false /* always sample exterior as well */,
format,
width, height));
}
}
// ETC1 format.
{
static const char* faceExt[] = { "neg_x", "pos_x", "neg_y", "pos_y", "neg_z", "pos_z" };
const int numLevels = 7;
vector<string> filenames;
for (int level = 0; level < numLevels; level++)
for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
filenames.push_back(string("data/etc1/skybox_") + faceExt[face] + "_mip_" + de::toString(level) + ".pkm");
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string("etc1_rgb8_") + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
formatsGroup->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
false /* always sample exterior as well */,
filenames));
}
}
// Sizes.
tcu::TestCaseGroup* sizesGroup = new tcu::TestCaseGroup(m_testCtx, "sizes", "Texture Sizes");
groupCube->addChild(sizesGroup);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizesCube); sizeNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = GL_RGBA8;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = sizesCube[sizeNdx].width;
int height = sizesCube[sizeNdx].height;
string name = de::toString(width) + "x" + de::toString(height) + "_" + filterName;
sizesGroup->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
false,
format,
width, height));
}
}
// Filter/wrap mode combinations.
tcu::TestCaseGroup* combinationsGroup = new tcu::TestCaseGroup(m_testCtx, "combinations", "Filter and wrap mode combinations");
groupCube->addChild(combinationsGroup);
for (int minFilterNdx = 0; minFilterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); minFilterNdx++)
{
for (int magFilterNdx = 0; magFilterNdx < DE_LENGTH_OF_ARRAY(magFilterModes); magFilterNdx++)
{
for (int wrapSNdx = 0; wrapSNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapSNdx++)
{
for (int wrapTNdx = 0; wrapTNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapTNdx++)
{
deUint32 minFilter = minFilterModes[minFilterNdx].mode;
deUint32 magFilter = magFilterModes[magFilterNdx].mode;
deUint32 format = GL_RGBA8;
deUint32 wrapS = wrapModes[wrapSNdx].mode;
deUint32 wrapT = wrapModes[wrapTNdx].mode;
int width = 63;
int height = 63;
string name = string(minFilterModes[minFilterNdx].name) + "_" + magFilterModes[magFilterNdx].name + "_" + wrapModes[wrapSNdx].name + "_" + wrapModes[wrapTNdx].name;
combinationsGroup->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
false,
format,
width, height));
}
}
}
}
// Cases with no visible cube edges.
tcu::TestCaseGroup* onlyFaceInteriorGroup = new tcu::TestCaseGroup(m_testCtx, "no_edges_visible", "Don't sample anywhere near a face's edges");
groupCube->addChild(onlyFaceInteriorGroup);
for (int isLinearI = 0; isLinearI <= 1; isLinearI++)
{
bool isLinear = isLinearI != 0;
deUint32 filter = isLinear ? GL_LINEAR : GL_NEAREST;
onlyFaceInteriorGroup->addChild(new TextureCubeFilteringCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(),
isLinear ? "linear" : "nearest", "",
filter, filter,
GL_REPEAT, GL_REPEAT,
true,
GL_RGBA8,
63, 63));
}
}
// 2D array texture filtering.
{
tcu::TestCaseGroup* const group2DArray = new tcu::TestCaseGroup(m_testCtx, "2d_array", "2D Array Texture Filtering");
addChild(group2DArray);
// Formats.
tcu::TestCaseGroup* const formatsGroup = new tcu::TestCaseGroup(m_testCtx, "formats", "2D Array Texture Formats");
group2DArray->addChild(formatsGroup);
for (int fmtNdx = 0; fmtNdx < DE_LENGTH_OF_ARRAY(filterableFormatsByType); fmtNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = filterableFormatsByType[fmtNdx].format;
const char* formatName = filterableFormatsByType[fmtNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string(formatName) + "_" + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = 128;
int height = 128;
int numLayers = 8;
formatsGroup->addChild(new Texture2DArrayFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height, numLayers));
}
}
// Sizes.
tcu::TestCaseGroup* sizesGroup = new tcu::TestCaseGroup(m_testCtx, "sizes", "Texture Sizes");
group2DArray->addChild(sizesGroup);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizes2DArray); sizeNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = GL_RGBA8;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
int width = sizes2DArray[sizeNdx].width;
int height = sizes2DArray[sizeNdx].height;
int numLayers = sizes2DArray[sizeNdx].numLayers;
string name = de::toString(width) + "x" + de::toString(height) + "x" + de::toString(numLayers) + "_" + filterName;
sizesGroup->addChild(new Texture2DArrayFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height, numLayers));
}
}
// Wrap modes.
tcu::TestCaseGroup* const combinationsGroup = new tcu::TestCaseGroup(m_testCtx, "combinations", "Filter and wrap mode combinations");
group2DArray->addChild(combinationsGroup);
for (int minFilterNdx = 0; minFilterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); minFilterNdx++)
{
for (int magFilterNdx = 0; magFilterNdx < DE_LENGTH_OF_ARRAY(magFilterModes); magFilterNdx++)
{
for (int wrapSNdx = 0; wrapSNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapSNdx++)
{
for (int wrapTNdx = 0; wrapTNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapTNdx++)
{
deUint32 minFilter = minFilterModes[minFilterNdx].mode;
deUint32 magFilter = magFilterModes[magFilterNdx].mode;
deUint32 format = GL_RGBA8;
deUint32 wrapS = wrapModes[wrapSNdx].mode;
deUint32 wrapT = wrapModes[wrapTNdx].mode;
int width = 123;
int height = 107;
int numLayers = 7;
string name = string(minFilterModes[minFilterNdx].name) + "_" + magFilterModes[magFilterNdx].name + "_" + wrapModes[wrapSNdx].name + "_" + wrapModes[wrapTNdx].name;
combinationsGroup->addChild(new Texture2DArrayFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT,
format,
width, height, numLayers));
}
}
}
}
}
// 3D texture filtering.
{
tcu::TestCaseGroup* group3D = new tcu::TestCaseGroup(m_testCtx, "3d", "3D Texture Filtering");
addChild(group3D);
// Formats.
tcu::TestCaseGroup* formatsGroup = new tcu::TestCaseGroup(m_testCtx, "formats", "3D Texture Formats");
group3D->addChild(formatsGroup);
for (int fmtNdx = 0; fmtNdx < DE_LENGTH_OF_ARRAY(filterableFormatsByType); fmtNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = filterableFormatsByType[fmtNdx].format;
const char* formatName = filterableFormatsByType[fmtNdx].name;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
string name = string(formatName) + "_" + filterName;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
deUint32 wrapR = GL_REPEAT;
int width = 64;
int height = 64;
int depth = 64;
formatsGroup->addChild(new Texture3DFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT, wrapR,
format,
width, height, depth));
}
}
// Sizes.
tcu::TestCaseGroup* sizesGroup = new tcu::TestCaseGroup(m_testCtx, "sizes", "Texture Sizes");
group3D->addChild(sizesGroup);
for (int sizeNdx = 0; sizeNdx < DE_LENGTH_OF_ARRAY(sizes3D); sizeNdx++)
{
for (int filterNdx = 0; filterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); filterNdx++)
{
deUint32 minFilter = minFilterModes[filterNdx].mode;
const char* filterName = minFilterModes[filterNdx].name;
deUint32 format = GL_RGBA8;
bool isMipmap = minFilter != GL_NEAREST && minFilter != GL_LINEAR;
deUint32 magFilter = isMipmap ? GL_LINEAR : minFilter;
deUint32 wrapS = GL_REPEAT;
deUint32 wrapT = GL_REPEAT;
deUint32 wrapR = GL_REPEAT;
int width = sizes3D[sizeNdx].width;
int height = sizes3D[sizeNdx].height;
int depth = sizes3D[sizeNdx].depth;
string name = de::toString(width) + "x" + de::toString(height) + "x" + de::toString(depth) + "_" + filterName;
sizesGroup->addChild(new Texture3DFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT, wrapR,
format,
width, height, depth));
}
}
// Wrap modes.
tcu::TestCaseGroup* combinationsGroup = new tcu::TestCaseGroup(m_testCtx, "combinations", "Filter and wrap mode combinations");
group3D->addChild(combinationsGroup);
for (int minFilterNdx = 0; minFilterNdx < DE_LENGTH_OF_ARRAY(minFilterModes); minFilterNdx++)
{
for (int magFilterNdx = 0; magFilterNdx < DE_LENGTH_OF_ARRAY(magFilterModes); magFilterNdx++)
{
for (int wrapSNdx = 0; wrapSNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapSNdx++)
{
for (int wrapTNdx = 0; wrapTNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapTNdx++)
{
for (int wrapRNdx = 0; wrapRNdx < DE_LENGTH_OF_ARRAY(wrapModes); wrapRNdx++)
{
deUint32 minFilter = minFilterModes[minFilterNdx].mode;
deUint32 magFilter = magFilterModes[magFilterNdx].mode;
deUint32 format = GL_RGBA8;
deUint32 wrapS = wrapModes[wrapSNdx].mode;
deUint32 wrapT = wrapModes[wrapTNdx].mode;
deUint32 wrapR = wrapModes[wrapRNdx].mode;
int width = 63;
int height = 57;
int depth = 67;
string name = string(minFilterModes[minFilterNdx].name) + "_" + magFilterModes[magFilterNdx].name + "_" + wrapModes[wrapSNdx].name + "_" + wrapModes[wrapTNdx].name + "_" + wrapModes[wrapRNdx].name;
combinationsGroup->addChild(new Texture3DFilteringCase(m_context,
name.c_str(), "",
minFilter, magFilter,
wrapS, wrapT, wrapR,
format,
width, height, depth));
}
}
}
}
}
}
}
} // Functional
} // gles3
} // deqp