blob: b1e1635e298099a011ab9c9d9d5812100d72da72 [file] [log] [blame]
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Tests for vboot_kernel.c
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "2sysincludes.h"
#include "2api.h"
#include "2common.h"
#include "2misc.h"
#include "2sha.h"
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gbb_header.h"
#include "gpt.h"
#include "host_common.h"
#include "load_kernel_fw.h"
#include "rollback_index.h"
#include "test_common.h"
#include "vb2_struct.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#include "vboot_nvstorage.h"
#define LOGCALL(fmt, args...) sprintf(call_log + strlen(call_log), fmt, ##args)
#define TEST_CALLS(expect_log) TEST_STR_EQ(call_log, expect_log, " calls")
#define MOCK_SECTOR_SIZE 512
#define MOCK_SECTOR_COUNT 1024
/* Mock kernel partition */
struct mock_part {
uint32_t start;
uint32_t size;
};
/* Partition list; ends with a 0-size partition. */
#define MOCK_PART_COUNT 8
static struct mock_part mock_parts[MOCK_PART_COUNT];
static int mock_part_next;
/* Mock data */
static char call_log[4096];
static uint8_t kernel_buffer[80000];
static int disk_read_to_fail;
static int disk_write_to_fail;
static int gpt_init_fail;
static int key_block_verify_fail; /* 0=ok, 1=sig, 2=hash */
static int preamble_verify_fail;
static int verify_data_fail;
static int unpack_key_fail;
static int gpt_flag_external;
static uint8_t gbb_data[sizeof(GoogleBinaryBlockHeader) + 2048];
static GoogleBinaryBlockHeader *gbb = (GoogleBinaryBlockHeader*)gbb_data;
static VbExDiskHandle_t handle;
static VbNvContext vnc;
static uint8_t shared_data[VB_SHARED_DATA_MIN_SIZE];
static VbSharedDataHeader *shared = (VbSharedDataHeader *)shared_data;
static LoadKernelParams lkp;
static VbKeyBlockHeader kbh;
static VbKernelPreambleHeader kph;
static VbCommonParams cparams;
static struct RollbackSpaceFwmp fwmp;
static uint8_t mock_disk[MOCK_SECTOR_SIZE * MOCK_SECTOR_COUNT];
static GptHeader *mock_gpt_primary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * 1];
static GptHeader *mock_gpt_secondary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * (MOCK_SECTOR_COUNT - 1)];
static uint8_t mock_digest[VB2_SHA256_DIGEST_SIZE] = {12, 34, 56, 78};
static uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE];
static struct vb2_context ctx;
/**
* Prepare a valid GPT header that will pass CheckHeader() tests
*/
static void SetupGptHeader(GptHeader *h, int is_secondary)
{
memset(h, '\0', MOCK_SECTOR_SIZE);
/* "EFI PART" */
memcpy(h->signature, GPT_HEADER_SIGNATURE, GPT_HEADER_SIGNATURE_SIZE);
h->revision = GPT_HEADER_REVISION;
h->size = MIN_SIZE_OF_HEADER;
/* 16KB: 128 entries of 128 bytes */
h->size_of_entry = sizeof(GptEntry);
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
/* Set LBA pointers for primary or secondary header */
if (is_secondary) {
h->my_lba = MOCK_SECTOR_COUNT - GPT_HEADER_SECTORS;
h->entries_lba = h->my_lba - CalculateEntriesSectors(h);
} else {
h->my_lba = GPT_PMBR_SECTORS;
h->entries_lba = h->my_lba + 1;
}
h->first_usable_lba = 2 + CalculateEntriesSectors(h);
h->last_usable_lba = MOCK_SECTOR_COUNT - 2 - CalculateEntriesSectors(h);
h->header_crc32 = HeaderCrc(h);
}
static void ResetCallLog(void)
{
*call_log = 0;
}
/**
* Reset mock data (for use before each test)
*/
static void ResetMocks(void)
{
ResetCallLog();
memset(&mock_disk, 0, sizeof(mock_disk));
SetupGptHeader(mock_gpt_primary, 0);
SetupGptHeader(mock_gpt_secondary, 1);
disk_read_to_fail = -1;
disk_write_to_fail = -1;
gpt_init_fail = 0;
key_block_verify_fail = 0;
preamble_verify_fail = 0;
verify_data_fail = 0;
unpack_key_fail = 0;
gpt_flag_external = 0;
memset(gbb, 0, sizeof(*gbb));
gbb->major_version = GBB_MAJOR_VER;
gbb->minor_version = GBB_MINOR_VER;
gbb->flags = 0;
memset(&shared_data, 0, sizeof(shared_data));
VbSharedDataInit(shared, sizeof(shared_data));
shared->kernel_version_tpm = 0x20001;
memset(&cparams, '\0', sizeof(cparams));
cparams.gbb = gbb;
cparams.gbb_data = gbb;
cparams.gbb_size = sizeof(gbb_data);
cparams.shared_data_blob = shared;
memset(&vnc, 0, sizeof(vnc));
VbNvSetup(&vnc);
VbNvTeardown(&vnc); /* So CRC gets generated */
memset(&lkp, 0, sizeof(lkp));
lkp.nv_context = &vnc;
lkp.bytes_per_lba = 512;
lkp.streaming_lba_count = 1024;
lkp.gpt_lba_count = 1024;
lkp.kernel_buffer = kernel_buffer;
lkp.kernel_buffer_size = sizeof(kernel_buffer);
lkp.disk_handle = (VbExDiskHandle_t)1;
memset(&kbh, 0, sizeof(kbh));
kbh.data_key.key_version = 2;
kbh.key_block_flags = -1;
kbh.key_block_size = sizeof(kbh);
memset(&kph, 0, sizeof(kph));
kph.kernel_version = 1;
kph.preamble_size = 4096 - kbh.key_block_size;
kph.body_signature.data_size = 70144;
kph.bootloader_address = 0xbeadd008;
kph.bootloader_size = 0x1234;
memset(&fwmp, 0, sizeof(fwmp));
memcpy(fwmp.dev_key_hash, mock_digest, sizeof(fwmp.dev_key_hash));
memset(mock_parts, 0, sizeof(mock_parts));
mock_parts[0].start = 100;
mock_parts[0].size = 150; /* 75 KB */
mock_part_next = 0;
memset(&ctx, 0, sizeof(ctx));
memcpy(ctx.nvdata, vnc.raw, VB2_NVDATA_SIZE);
ctx.workbuf = workbuf;
ctx.workbuf_size = sizeof(workbuf);
// TODO: more workbuf fields - flags, secdata, secdatak
}
/* Mocks */
VbError_t VbExDiskRead(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, void *buffer)
{
LOGCALL("VbExDiskRead(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_read_to_fail)
return VBERROR_SIMULATED;
memcpy(buffer, &mock_disk[lba_start * MOCK_SECTOR_SIZE],
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
VbError_t VbExDiskWrite(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, const void *buffer)
{
LOGCALL("VbExDiskWrite(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_write_to_fail)
return VBERROR_SIMULATED;
memcpy(&mock_disk[lba_start * MOCK_SECTOR_SIZE], buffer,
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
int GptInit(GptData *gpt)
{
return gpt_init_fail;
}
int GptNextKernelEntry(GptData *gpt, uint64_t *start_sector, uint64_t *size)
{
struct mock_part *p = mock_parts + mock_part_next;
if (!p->size)
return GPT_ERROR_NO_VALID_KERNEL;
if (gpt->flags & GPT_FLAG_EXTERNAL)
gpt_flag_external++;
gpt->current_kernel = mock_part_next;
*start_sector = p->start;
*size = p->size;
mock_part_next++;
return GPT_SUCCESS;
}
void GetCurrentKernelUniqueGuid(GptData *gpt, void *dest)
{
static char fake_guid[] = "FakeGuid";
memcpy(dest, fake_guid, sizeof(fake_guid));
}
int vb2_unpack_key_buffer(struct vb2_public_key *key,
const uint8_t *buf,
uint32_t size)
{
if (--unpack_key_fail == 0)
return VB2_ERROR_MOCK;
return VB2_SUCCESS;
}
int vb2_verify_keyblock(struct vb2_keyblock *block,
uint32_t size,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (key_block_verify_fail >= 1)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the key block */
memcpy((void *)block, &kbh, sizeof(kbh));
return VB2_SUCCESS;
}
int vb2_verify_keyblock_hash(const struct vb2_keyblock *block,
uint32_t size,
const struct vb2_workbuf *wb)
{
if (key_block_verify_fail >= 2)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the key block */
memcpy((void *)block, &kbh, sizeof(kbh));
return VB2_SUCCESS;
}
int vb2_verify_kernel_preamble(struct vb2_kernel_preamble *preamble,
uint32_t size,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (preamble_verify_fail)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the preamble */
memcpy((void *)preamble, &kph, sizeof(kph));
return VB2_SUCCESS;
}
int vb2_verify_data(const uint8_t *data,
uint32_t size,
struct vb2_signature *sig,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (verify_data_fail)
return VB2_ERROR_MOCK;
return VB2_SUCCESS;
}
int vb2_digest_buffer(const uint8_t *buf,
uint32_t size,
enum vb2_hash_algorithm hash_alg,
uint8_t *digest,
uint32_t digest_size)
{
memcpy(digest, mock_digest, sizeof(mock_digest));
return VB2_SUCCESS;
}
/**
* Test reading/writing GPT
*/
static void ReadWriteGptTest(void)
{
GptData g;
GptHeader *h;
g.sector_bytes = MOCK_SECTOR_SIZE;
g.streaming_drive_sectors = g.gpt_drive_sectors = MOCK_SECTOR_COUNT;
g.valid_headers = g.valid_entries = MASK_BOTH;
ResetMocks();
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
ResetCallLog();
/*
* Valgrind complains about access to uninitialized memory here, so
* zero the primary header before each test.
*/
memset(g.primary_header, '\0', g.sector_bytes);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree");
TEST_CALLS("");
/*
* Invalidate primary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead primary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
1, "Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
0, "Secondary header is valid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate secondary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
0, "Primary header is valid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
1, "Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary AND secondary GPT header,
* check that AllocAndReadGptData fails.
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 1,
"AllocAndRead primary and secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
1, "Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
1, "Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary GPT header and check that it is
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Primary GPT: AllocAndRead");
/* Call GptRepair() with input indicating secondary GPT is valid */
g.valid_headers = g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Primary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n"
"VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
0, "Fix Primary GPT: Primary header is valid");
/*
* Invalidate secondary GPT header and check that it can be
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Secondary GPT: AllocAndRead");
/* Call GptRepair() with input indicating primary GPT is valid */
g.valid_headers = g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Secondary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0),
0, "Fix Secondary GPT: Secondary header is valid");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified |= GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1;
ResetCallLog();
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
h->size_of_entry = sizeof(GptEntry);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified = -1;
ResetCallLog();
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
h->size_of_entry = sizeof(GptEntry);
h = (GptHeader*)g.secondary_header;
h->entries_lba = 991;
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* If legacy signature, don't modify GPT header/entries 1 */
ResetMocks();
AllocAndReadGptData(handle, &g);
h = (GptHeader *)g.primary_header;
memcpy(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE);
g.modified = -1;
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* Error reading */
ResetMocks();
disk_read_to_fail = 1;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
ResetMocks();
disk_read_to_fail = 2;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = MASK_BOTH;
g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 2, 32)\n");
ResetMocks();
disk_read_to_fail = 991;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = MASK_BOTH;
g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 2");
TEST_CALLS("VbExDiskWrite(h, 991, 32)\n");
ResetMocks();
disk_read_to_fail = 1023;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 2");
TEST_CALLS("VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* Error writing */
ResetMocks();
disk_write_to_fail = 1;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 2;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 991;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 1023;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
}
static void TestLoadKernel(int expect_retval, char *test_name)
{
memcpy(ctx.nvdata, vnc.raw, VB2_NVDATA_SIZE);
TEST_EQ(LoadKernel(&ctx, &lkp, &cparams), expect_retval, test_name);
if (ctx.flags & VB2_CONTEXT_NVDATA_CHANGED) {
memcpy(vnc.raw, ctx.nvdata, VB2_NVDATA_SIZE);
vnc.raw_changed = 1;
ctx.flags &= ~VB2_CONTEXT_NVDATA_CHANGED;
}
}
/**
* Trivial invalid calls to LoadKernel()
*/
static void InvalidParamsTest(void)
{
ResetMocks();
gpt_init_fail = 1;
TestLoadKernel(VBERROR_NO_KERNEL_FOUND, "Bad GPT");
/* This causes the stream open call to fail */
ResetMocks();
lkp.disk_handle = NULL;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad disk handle");
}
static void LoadKernelTest(void)
{
uint32_t u;
ResetMocks();
TestLoadKernel(0, "First kernel good");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(lkp.bootloader_address, 0xbeadd008, " bootloader addr");
TEST_EQ(lkp.bootloader_size, 0x1234, " bootloader size");
TEST_STR_EQ((char *)lkp.partition_guid, "FakeGuid", " guid");
TEST_EQ(gpt_flag_external, 0, "GPT was internal");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, 0, " recovery request");
ResetMocks();
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TestLoadKernel(0, "Two good kernels");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(mock_part_next, 1, " didn't read second one");
/* Fail if no kernels found */
ResetMocks();
mock_parts[0].size = 0;
TestLoadKernel(VBERROR_NO_KERNEL_FOUND, "No kernels");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, VBNV_RECOVERY_RW_NO_OS, " recovery request");
/* Skip kernels which are too small */
ResetMocks();
mock_parts[0].size = 10;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Too small");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, VBNV_RECOVERY_RW_INVALID_OS, " recovery request");
ResetMocks();
disk_read_to_fail = 100;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel start");
ResetMocks();
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block sig");
/* In dev mode, fail if hash is bad too */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
key_block_verify_fail = 2;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block dev hash");
/* But just bad sig is ok */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
key_block_verify_fail = 1;
TestLoadKernel(0, "Succeed key block dev sig");
/* In dev mode and requiring signed kernel, fail if sig is bad */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
VbNvSet(&vnc, VBNV_DEV_BOOT_SIGNED_ONLY, 1);
VbNvTeardown(&vnc);
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block dev sig");
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_ENABLE_OFFICIAL_ONLY;
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev sig fwmp");
/* Check key block flag mismatches */
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_0 | KEY_BLOCK_FLAG_DEVELOPER_1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block dev flag mismatch");
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block rec flag mismatch");
ResetMocks();
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block recdev flag mismatch");
ResetMocks();
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE | VB2_CONTEXT_DEVELOPER_MODE;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block rec!dev flag mismatch");
ResetMocks();
kbh.data_key.key_version = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key rollback");
ResetMocks();
kbh.data_key.key_version = 0x10000;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key version too big");
ResetMocks();
kbh.data_key.key_version = 3;
TestLoadKernel(0, "Key block version roll forward");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 3;
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TestLoadKernel(0, "Two kernels roll forward");
TEST_EQ(mock_part_next, 2, " read both");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 1;
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
TestLoadKernel(0, "Key version ignored in dev mode");
ResetMocks();
kbh.data_key.key_version = 1;
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
TestLoadKernel(0, "Key version ignored in rec mode");
ResetMocks();
unpack_key_fail = 2;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad data key");
ResetMocks();
preamble_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad preamble");
ResetMocks();
kph.kernel_version = 0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel version rollback");
ResetMocks();
kph.kernel_version = 0;
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
TestLoadKernel(0, "Kernel version ignored in dev mode");
ResetMocks();
kph.kernel_version = 0;
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
TestLoadKernel(0, "Kernel version ignored in rec mode");
/* Check developer key hash - bad */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_USE_KEY_HASH;
fwmp.dev_key_hash[0]++;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev fwmp hash");
/* Check developer key hash - good */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_USE_KEY_HASH;
TestLoadKernel(0, "Good key block dev fwmp hash");
ResetMocks();
kph.preamble_size |= 0x07;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel body offset");
ResetMocks();
kph.preamble_size += 65536;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel body offset huge");
/* Check getting kernel load address from header */
ResetMocks();
kph.body_load_address = (size_t)kernel_buffer;
lkp.kernel_buffer = NULL;
TestLoadKernel(0, "Get load address from preamble");
TEST_PTR_EQ(lkp.kernel_buffer, kernel_buffer, " address");
/* Size is rounded up to nearest sector */
TEST_EQ(lkp.kernel_buffer_size, 70144, " size");
ResetMocks();
lkp.kernel_buffer_size = 8192;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for buffer");
ResetMocks();
mock_parts[0].size = 130;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for partition");
ResetMocks();
kph.body_signature.data_size = 8192;
TestLoadKernel(0, "Kernel tiny");
ResetMocks();
disk_read_to_fail = 228;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel data");
ResetMocks();
verify_data_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad data");
/* Check that EXTERNAL_GPT flag makes it down */
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_EXTERNAL_GPT;
TestLoadKernel(0, "Succeed external GPT");
TEST_EQ(gpt_flag_external, 1, "GPT was external");
/* Check recovery from unreadble primary GPT */
ResetMocks();
disk_read_to_fail = 1;
TestLoadKernel(0, "Can't read disk");
}
int main(void)
{
ReadWriteGptTest();
InvalidParamsTest();
LoadKernelTest();
return gTestSuccess ? 0 : 255;
}