blob: 18caf1f32f90736e9cdfa759bdc0f63120e7e2c0 [file] [log] [blame]
/*
* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <errno.h>
#include <inttypes.h> /* For PRIu64 */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <openssl/rsa.h>
#include "2sysincludes.h"
#include "2api.h"
#include "2common.h"
#include "2rsa.h"
#include "2sha.h"
#include "file_type.h"
#include "futility.h"
#include "host_common.h"
#include "kernel_blob.h"
#include "util_misc.h"
#include "vb1_helper.h"
#include "vb2_common.h"
/****************************************************************************/
/* Here are globals containing all the bits & pieces I'm working on.
*
* kernel vblock = keyblock + kernel preamble + padding to 64K (or whatever)
* kernel blob = 32-bit kernel + config file + params + bootloader stub +
* vmlinuz_header
* kernel partition = kernel vblock + kernel blob
*
* The vb2_kernel_preamble.preamble_size includes the padding.
*/
/* The keyblock, preamble, and kernel blob are kept in separate places. */
static struct vb2_keyblock *g_keyblock;
static struct vb2_kernel_preamble *g_preamble;
static uint8_t *g_kernel_blob_data;
static uint32_t g_kernel_blob_size;
/* These refer to individual parts within the kernel blob. */
static uint8_t *g_kernel_data;
static uint32_t g_kernel_size;
static uint8_t *g_config_data;
static uint32_t g_config_size;
static uint8_t *g_param_data;
static uint32_t g_param_size;
static uint8_t *g_bootloader_data;
static uint32_t g_bootloader_size;
static uint8_t *g_vmlinuz_header_data;
static uint32_t g_vmlinuz_header_size;
static uint64_t g_ondisk_bootloader_addr;
static uint64_t g_ondisk_vmlinuz_header_addr;
/*
* Read the kernel command line from a file. Get rid of \n characters along
* the way and verify that the line fits into a 4K buffer.
*
* Return the buffer contaning the line on success (and set the line length
* using the passed in parameter), or NULL in case something goes wrong.
*/
uint8_t *ReadConfigFile(const char *config_file, uint32_t *config_size)
{
uint8_t *config_buf;
int i;
if (VB2_SUCCESS != vb2_read_file(config_file, &config_buf, config_size))
return NULL;
Debug(" config file size=0x%x\n", *config_size);
if (CROS_CONFIG_SIZE <= *config_size) { /* room for trailing '\0' */
fprintf(stderr, "Config file %s is too large (>= %d bytes)\n",
config_file, CROS_CONFIG_SIZE);
free(config_buf);
return NULL;
}
/* Replace newlines with spaces */
for (i = 0; i < *config_size; i++)
if ('\n' == config_buf[i])
config_buf[i] = ' ';
return config_buf;
}
/****************************************************************************/
/* Return the smallest integral multiple of [alignment] that is equal
* to or greater than [val]. Used to determine the number of
* pages/sectors/blocks/whatever needed to contain [val]
* items/bytes/etc. */
static uint32_t roundup(uint32_t val, uint32_t alignment)
{
uint32_t rem = val % alignment;
if (rem)
return val + (alignment - rem);
return val;
}
/* Match regexp /\b--\b/ to delimit the start of the kernel commandline. If we
* don't find one, we'll use the whole thing. */
static unsigned int find_cmdline_start(uint8_t *buf_ptr, unsigned int max_len)
{
char *input = (char *)buf_ptr;
int start = 0;
int i;
for (i = 0; i < max_len - 1 && input[i]; i++) {
if ('-' == input[i] && '-' == input[i + 1]) {
if ((i == 0 || ' ' == input[i - 1]) &&
(i + 2 >= max_len || ' ' == input[i + 2])) {
/* found "--" with nothing before or after it */
start = i + 2; /* hope for a trailing '\0' */
break;
}
}
}
while (' ' == input[start]) /* skip leading spaces */
start++;
return start;
}
/* Offset of kernel command line string from the start of the kernel blob */
uint64_t kernel_cmd_line_offset(const struct vb2_kernel_preamble *preamble)
{
return preamble->bootloader_address - preamble->body_load_address -
CROS_CONFIG_SIZE - CROS_PARAMS_SIZE;
}
/* Returns the size of the 32-bit kernel, or negative on error. */
static int KernelSize(uint8_t *kernel_buf,
uint32_t kernel_size,
enum arch_t arch)
{
uint32_t kernel32_start = 0;
struct linux_kernel_params *lh;
/* Except for x86, the kernel is the kernel. */
if (arch != ARCH_X86)
return kernel_size;
/* The first part of the x86 vmlinuz is a header, followed by
* a real-mode boot stub. We only want the 32-bit part. */
lh = (struct linux_kernel_params *)kernel_buf;
if (lh->header != VMLINUZ_HEADER_SIG) {
Debug("Not a linux kernel image\n");
return kernel_size;
}
kernel32_start = (lh->setup_sects + 1) << 9;
if (kernel32_start >= kernel_size) {
fprintf(stderr, "Malformed kernel\n");
return -1;
}
return kernel_size - kernel32_start;
}
/* This extracts g_kernel_* and g_param_* from a standard vmlinuz file.
* It returns nonzero on error. */
static int PickApartVmlinuz(uint8_t *kernel_buf,
uint32_t kernel_size,
enum arch_t arch,
uint64_t kernel_body_load_address)
{
uint32_t kernel32_start = 0;
uint32_t kernel32_size = kernel_size;
struct linux_kernel_params *lh, *params;
/* Except for x86, the kernel is the kernel. */
switch (arch) {
case ARCH_X86:
/* The first part of the x86 vmlinuz is a header, followed by
* a real-mode boot stub. We only want the 32-bit part. */
lh = (struct linux_kernel_params *)kernel_buf;
if (lh->header != VMLINUZ_HEADER_SIG) {
Debug("Not a linux kernel image\n");
break;
}
kernel32_start = (lh->setup_sects + 1) << 9;
if (kernel32_start >= kernel_size) {
fprintf(stderr, "Malformed kernel\n");
return -1;
}
kernel32_size = kernel_size - kernel32_start;
Debug(" kernel16_start=0x%" PRIx64 "\n", 0);
Debug(" kernel16_size=0x%" PRIx64 "\n", kernel32_start);
/* Copy the original zeropage data from kernel_buf into
* g_param_data, then tweak a few fields for our purposes */
params = (struct linux_kernel_params *)(g_param_data);
memcpy(&(params->setup_sects), &(lh->setup_sects),
offsetof(struct linux_kernel_params, e820_entries)
- offsetof(struct linux_kernel_params, setup_sects));
params->boot_flag = 0;
params->ramdisk_image = 0; /* we don't support initrd */
params->ramdisk_size = 0;
params->type_of_loader = 0xff;
/* We need to point to the kernel commandline arg. On disk, it
* will come right after the 32-bit part of the kernel. */
params->cmd_line_ptr = kernel_body_load_address +
roundup(kernel32_size, CROS_ALIGN) +
find_cmdline_start(g_config_data, g_config_size);
Debug(" cmdline_addr=0x%x\n", params->cmd_line_ptr);
Debug(" version=0x%x\n", params->version);
Debug(" kernel_alignment=0x%x\n", params->kernel_alignment);
Debug(" relocatable_kernel=0x%x\n", params->relocatable_kernel);
/* Add a fake e820 memory map with 2 entries. */
params->n_e820_entry = 2;
params->e820_entries[0].start_addr = 0x00000000;
params->e820_entries[0].segment_size = 0x00001000;
params->e820_entries[0].segment_type = E820_TYPE_RAM;
params->e820_entries[1].start_addr = 0xfffff000;
params->e820_entries[1].segment_size = 0x00001000;
params->e820_entries[1].segment_type = E820_TYPE_RESERVED;
break;
default:
break;
}
Debug(" kernel32_start=0x%" PRIx64 "\n", kernel32_start);
Debug(" kernel32_size=0x%" PRIx64 "\n", kernel32_size);
/* Keep just the 32-bit kernel. */
if (kernel32_size) {
g_kernel_size = kernel32_size;
memcpy(g_kernel_data, kernel_buf + kernel32_start,
g_kernel_size);
}
/* done */
return 0;
}
/* Split a kernel blob into separate g_kernel, g_param, g_config,
* g_bootloader, and g_vmlinuz_header parts. */
static void UnpackKernelBlob(uint8_t *kernel_blob_data)
{
uint32_t now;
uint32_t vmlinuz_header_size = 0;
uint64_t vmlinuz_header_address = 0;
/* We have to work backwards from the end, because the preamble
only describes the bootloader and vmlinuz stubs. */
/* Vmlinuz Header is at the end */
vb2_kernel_get_vmlinuz_header(g_preamble,
&vmlinuz_header_address,
&vmlinuz_header_size);
if (vmlinuz_header_size) {
now = vmlinuz_header_address - g_preamble->body_load_address;
g_vmlinuz_header_size = vmlinuz_header_size;
g_vmlinuz_header_data = kernel_blob_data + now;
Debug("vmlinuz_header_size = 0x%x\n",
g_vmlinuz_header_size);
Debug("vmlinuz_header_ofs = 0x%x\n", now);
}
/* Where does the bootloader stub begin? */
now = g_preamble->bootloader_address - g_preamble->body_load_address;
/* Bootloader is at the end */
g_bootloader_size = g_preamble->bootloader_size;
g_bootloader_data = kernel_blob_data + now;
/* TODO: What to do if this is beyond the end of the blob? */
Debug("bootloader_size = 0x%x\n", g_bootloader_size);
Debug("bootloader_ofs = 0x%x\n", now);
/* Before that is the params */
now -= CROS_PARAMS_SIZE;
g_param_size = CROS_PARAMS_SIZE;
g_param_data = kernel_blob_data + now;
Debug("param_ofs = 0x%x\n", now);
/* Before that is the config */
now -= CROS_CONFIG_SIZE;
g_config_size = CROS_CONFIG_SIZE;
g_config_data = kernel_blob_data + now;
Debug("config_ofs = 0x%x\n", now);
/* The kernel starts at offset 0 and extends up to the config */
g_kernel_data = kernel_blob_data;
g_kernel_size = now;
Debug("kernel_size = 0x%x\n", g_kernel_size);
}
/* Replaces the config section of the specified kernel blob.
* Return nonzero on error. */
int UpdateKernelBlobConfig(uint8_t *kblob_data, uint32_t kblob_size,
uint8_t *config_data, uint32_t config_size)
{
/* We should have already examined this blob. If not, we could do it
* again, but it's more likely due to an error. */
if (kblob_data != g_kernel_blob_data ||
kblob_size != g_kernel_blob_size) {
fprintf(stderr, "Trying to update some other blob\n");
return -1;
}
memset(g_config_data, 0, g_config_size);
memcpy(g_config_data, config_data, config_size);
return 0;
}
/* Split a kernel partition into separate vblock and blob parts. */
uint8_t *unpack_kernel_partition(uint8_t *kpart_data,
uint32_t kpart_size,
uint32_t padding,
struct vb2_keyblock **keyblock_ptr,
struct vb2_kernel_preamble **preamble_ptr,
uint32_t *blob_size_ptr)
{
struct vb2_kernel_preamble *preamble;
uint32_t vmlinuz_header_size = 0;
uint64_t vmlinuz_header_address = 0;
uint32_t now = 0;
/* Sanity-check the keyblock */
struct vb2_keyblock *keyblock = (struct vb2_keyblock *)kpart_data;
Debug("Keyblock is 0x%x bytes\n", keyblock->keyblock_size);
now += keyblock->keyblock_size;
if (now > kpart_size) {
fprintf(stderr,
"keyblock_size advances past the end of the blob\n");
return NULL;
}
if (now > padding) {
fprintf(stderr,
"keyblock_size advances past %u byte padding\n",
padding);
return NULL;
}
/* LGTM */
g_keyblock = keyblock;
/* And the preamble */
preamble = (struct vb2_kernel_preamble *)(kpart_data + now);
Debug("Preamble is 0x%x bytes\n", preamble->preamble_size);
now += preamble->preamble_size;
if (now > kpart_size) {
fprintf(stderr,
"preamble_size advances past the end of the blob\n");
return NULL;
}
if (now > padding) {
fprintf(stderr, "preamble_size advances past %u"
" byte padding\n", padding);
return NULL;
}
/* LGTM */
Debug(" kernel_version = %d\n", preamble->kernel_version);
Debug(" bootloader_address = 0x%" PRIx64 "\n",
preamble->bootloader_address);
Debug(" bootloader_size = 0x%x\n", preamble->bootloader_size);
Debug(" kern_blob_size = 0x%x\n", preamble->body_signature.data_size);
uint32_t flags = vb2_kernel_get_flags(preamble);
Debug(" flags = 0x%x\n", flags);
g_preamble = preamble;
g_ondisk_bootloader_addr = g_preamble->bootloader_address;
vb2_kernel_get_vmlinuz_header(preamble,
&vmlinuz_header_address,
&vmlinuz_header_size);
if (vmlinuz_header_size) {
Debug(" vmlinuz_header_address = 0x%" PRIx64 "\n",
vmlinuz_header_address);
Debug(" vmlinuz_header_size = 0x%x\n", vmlinuz_header_size);
g_ondisk_vmlinuz_header_addr = vmlinuz_header_address;
}
Debug("kernel blob is at offset 0x%x\n", now);
g_kernel_blob_data = kpart_data + now;
g_kernel_blob_size = preamble->body_signature.data_size;
/* Sanity check */
if (g_kernel_blob_size < preamble->body_signature.data_size)
fprintf(stderr,
"Warning: kernel file only has 0x%x bytes\n",
g_kernel_blob_size);
/* Update the blob pointers */
UnpackKernelBlob(g_kernel_blob_data);
if (keyblock_ptr)
*keyblock_ptr = keyblock;
if (preamble_ptr)
*preamble_ptr = preamble;
if (blob_size_ptr)
*blob_size_ptr = g_kernel_blob_size;
return g_kernel_blob_data;
}
uint8_t *SignKernelBlob(uint8_t *kernel_blob,
uint32_t kernel_size,
uint32_t padding,
int version,
uint64_t kernel_body_load_address,
struct vb2_keyblock *keyblock,
struct vb2_private_key *signpriv_key,
uint32_t flags,
uint32_t *vblock_size_ptr)
{
/* Make sure the preamble fills up the rest of the required padding */
uint32_t min_size = padding > keyblock->keyblock_size
? padding - keyblock->keyblock_size : 0;
/* Sign the kernel data */
struct vb2_signature *body_sig = vb2_calculate_signature(kernel_blob,
kernel_size,
signpriv_key);
if (!body_sig) {
fprintf(stderr, "Error calculating body signature\n");
return NULL;
}
/* Create preamble */
struct vb2_kernel_preamble *preamble =
vb2_create_kernel_preamble(version,
kernel_body_load_address,
g_ondisk_bootloader_addr,
g_bootloader_size,
body_sig,
g_ondisk_vmlinuz_header_addr,
g_vmlinuz_header_size,
flags,
min_size,
signpriv_key);
if (!preamble) {
fprintf(stderr, "Error creating preamble.\n");
return 0;
}
uint32_t outsize = keyblock->keyblock_size + preamble->preamble_size;
void *outbuf = calloc(outsize, 1);
memcpy(outbuf, keyblock, keyblock->keyblock_size);
memcpy(outbuf + keyblock->keyblock_size,
preamble, preamble->preamble_size);
if (vblock_size_ptr)
*vblock_size_ptr = outsize;
return outbuf;
}
/* Returns zero on success */
int WriteSomeParts(const char *outfile,
void *part1_data, uint32_t part1_size,
void *part2_data, uint32_t part2_size)
{
FILE *f;
/* Write the output file */
Debug("writing %s with 0x%" PRIx64 ", 0x%" PRIx64 "\n",
outfile, part1_size, part2_size);
f = fopen(outfile, "wb");
if (!f) {
fprintf(stderr, "Can't open output file %s: %s\n",
outfile, strerror(errno));
return -1;
}
if (part1_data && part1_size) {
if (1 != fwrite(part1_data, part1_size, 1, f)) {
fprintf(stderr, "Can't write output file %s: %s\n",
outfile, strerror(errno));
fclose(f);
unlink(outfile);
return -1;
}
}
if (part2_data && part2_size) {
if (1 != fwrite(part2_data, part2_size, 1, f)) {
fprintf(stderr, "Can't write output file %s: %s\n",
outfile, strerror(errno));
fclose(f);
unlink(outfile);
return -1;
}
}
fclose(f);
/* Success */
return 0;
}
/* Returns 0 on success */
int VerifyKernelBlob(uint8_t *kernel_blob,
uint32_t kernel_size,
struct vb2_packed_key *signpub_key,
const char *keyblock_outfile,
uint32_t min_version)
{
int rv = -1;
uint32_t vmlinuz_header_size = 0;
uint64_t vmlinuz_header_address = 0;
uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE];
struct vb2_workbuf wb;
vb2_workbuf_init(&wb, workbuf, sizeof(workbuf));
if (signpub_key) {
struct vb2_public_key pubkey;
if (VB2_SUCCESS != vb2_unpack_key(&pubkey, signpub_key)) {
fprintf(stderr, "Error unpacking signing key.\n");
goto done;
}
if (VB2_SUCCESS !=
vb2_verify_keyblock(g_keyblock, g_keyblock->keyblock_size,
&pubkey, &wb)) {
fprintf(stderr, "Error verifying key block.\n");
goto done;
}
} else if (VB2_SUCCESS !=
vb2_verify_keyblock_hash(g_keyblock,
g_keyblock->keyblock_size,
&wb)) {
fprintf(stderr, "Error verifying key block.\n");
goto done;
}
printf("Key block:\n");
struct vb2_packed_key *data_key = &g_keyblock->data_key;
printf(" Signature: %s\n",
signpub_key ? "valid" : "ignored");
printf(" Size: 0x%x\n", g_keyblock->keyblock_size);
printf(" Flags: %u ", g_keyblock->keyblock_flags);
if (g_keyblock->keyblock_flags & KEY_BLOCK_FLAG_DEVELOPER_0)
printf(" !DEV");
if (g_keyblock->keyblock_flags & KEY_BLOCK_FLAG_DEVELOPER_1)
printf(" DEV");
if (g_keyblock->keyblock_flags & KEY_BLOCK_FLAG_RECOVERY_0)
printf(" !REC");
if (g_keyblock->keyblock_flags & KEY_BLOCK_FLAG_RECOVERY_1)
printf(" REC");
printf("\n");
printf(" Data key algorithm: %u %s\n", data_key->algorithm,
vb2_get_crypto_algorithm_name(data_key->algorithm));
printf(" Data key version: %u\n", data_key->key_version);
printf(" Data key sha1sum: %s\n",
packed_key_sha1_string(data_key));
if (keyblock_outfile) {
FILE *f = NULL;
f = fopen(keyblock_outfile, "wb");
if (!f) {
fprintf(stderr, "Can't open key block file %s: %s\n",
keyblock_outfile, strerror(errno));
goto done;
}
if (1 != fwrite(g_keyblock, g_keyblock->keyblock_size, 1, f)) {
fprintf(stderr, "Can't write key block file %s: %s\n",
keyblock_outfile, strerror(errno));
fclose(f);
goto done;
}
fclose(f);
}
if (data_key->key_version < (min_version >> 16)) {
fprintf(stderr, "Data key version %u < minimum %u.\n",
data_key->key_version, (min_version >> 16));
goto done;
}
struct vb2_public_key pubkey;
if (VB2_SUCCESS != vb2_unpack_key(&pubkey, data_key)) {
fprintf(stderr, "Error parsing data key.\n");
goto done;
}
/* Verify preamble */
if (VB2_SUCCESS != vb2_verify_kernel_preamble(
(struct vb2_kernel_preamble *)g_preamble,
g_preamble->preamble_size, &pubkey, &wb)) {
fprintf(stderr, "Error verifying preamble.\n");
goto done;
}
printf("Preamble:\n");
printf(" Size: 0x%x\n", g_preamble->preamble_size);
printf(" Header version: %u.%u\n",
g_preamble->header_version_major,
g_preamble->header_version_minor);
printf(" Kernel version: %u\n", g_preamble->kernel_version);
printf(" Body load address: 0x%" PRIx64 "\n",
g_preamble->body_load_address);
printf(" Body size: 0x%x\n",
g_preamble->body_signature.data_size);
printf(" Bootloader address: 0x%" PRIx64 "\n",
g_preamble->bootloader_address);
printf(" Bootloader size: 0x%x\n", g_preamble->bootloader_size);
vb2_kernel_get_vmlinuz_header(g_preamble,
&vmlinuz_header_address,
&vmlinuz_header_size);
if (vmlinuz_header_size) {
printf(" Vmlinuz header address: 0x%" PRIx64 "\n",
vmlinuz_header_address);
printf(" Vmlinuz header size: 0x%x\n",
(uint32_t)vmlinuz_header_size);
}
printf(" Flags : 0x%x\n",
vb2_kernel_get_flags(g_preamble));
if (g_preamble->kernel_version < (min_version & 0xFFFF)) {
fprintf(stderr,
"Kernel version %u is lower than minimum %u.\n",
g_preamble->kernel_version, (min_version & 0xFFFF));
goto done;
}
/* Verify body */
if (VB2_SUCCESS !=
vb2_verify_data(kernel_blob, kernel_size,
&g_preamble->body_signature,
&pubkey, &wb)) {
fprintf(stderr, "Error verifying kernel body.\n");
goto done;
}
printf("Body verification succeeded.\n");
printf("Config:\n%s\n",
kernel_blob + kernel_cmd_line_offset(g_preamble));
rv = 0;
done:
return rv;
}
uint8_t *CreateKernelBlob(uint8_t *vmlinuz_buf, uint32_t vmlinuz_size,
enum arch_t arch, uint64_t kernel_body_load_address,
uint8_t *config_data, uint32_t config_size,
uint8_t *bootloader_data, uint32_t bootloader_size,
uint32_t *blob_size_ptr)
{
uint32_t now = 0;
int tmp;
/* We have all the parts. How much room do we need? */
tmp = KernelSize(vmlinuz_buf, vmlinuz_size, arch);
if (tmp < 0)
return NULL;
g_kernel_size = tmp;
g_config_size = CROS_CONFIG_SIZE;
g_param_size = CROS_PARAMS_SIZE;
g_bootloader_size = roundup(bootloader_size, CROS_ALIGN);
g_vmlinuz_header_size = vmlinuz_size-g_kernel_size;
g_kernel_blob_size =
roundup(g_kernel_size, CROS_ALIGN) +
g_config_size +
g_param_size +
g_bootloader_size +
g_vmlinuz_header_size;
Debug("g_kernel_blob_size 0x%" PRIx64 "\n", g_kernel_blob_size);
/* Allocate space for the blob. */
g_kernel_blob_data = malloc(g_kernel_blob_size);
memset(g_kernel_blob_data, 0, g_kernel_blob_size);
/* Assign the sub-pointers */
g_kernel_data = g_kernel_blob_data + now;
Debug("g_kernel_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n",
g_kernel_size, now);
now += roundup(g_kernel_size, CROS_ALIGN);
g_config_data = g_kernel_blob_data + now;
Debug("g_config_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n",
g_config_size, now);
now += g_config_size;
g_param_data = g_kernel_blob_data + now;
Debug("g_param_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n",
g_param_size, now);
now += g_param_size;
g_bootloader_data = g_kernel_blob_data + now;
Debug("g_bootloader_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n",
g_bootloader_size, now);
g_ondisk_bootloader_addr = kernel_body_load_address + now;
Debug("g_ondisk_bootloader_addr 0x%" PRIx64 "\n",
g_ondisk_bootloader_addr);
now += g_bootloader_size;
if (g_vmlinuz_header_size) {
g_vmlinuz_header_data = g_kernel_blob_data + now;
Debug("g_vmlinuz_header_size 0x%" PRIx64 " ofs 0x%" PRIx64 "\n",
g_vmlinuz_header_size, now);
g_ondisk_vmlinuz_header_addr = kernel_body_load_address + now;
Debug("g_ondisk_vmlinuz_header_addr 0x%" PRIx64 "\n",
g_ondisk_vmlinuz_header_addr);
}
Debug("end of kern_blob at kern_blob+0x%" PRIx64 "\n", now);
/* Copy the kernel and params bits into the correct places */
if (0 != PickApartVmlinuz(vmlinuz_buf, vmlinuz_size,
arch, kernel_body_load_address)) {
fprintf(stderr, "Error picking apart kernel file.\n");
free(g_kernel_blob_data);
g_kernel_blob_data = NULL;
g_kernel_blob_size = 0;
return NULL;
}
/* Copy the other bits too */
memcpy(g_config_data, config_data, config_size);
memcpy(g_bootloader_data, bootloader_data, bootloader_size);
if (g_vmlinuz_header_size) {
memcpy(g_vmlinuz_header_data,
vmlinuz_buf,
g_vmlinuz_header_size);
}
if (blob_size_ptr)
*blob_size_ptr = g_kernel_blob_size;
return g_kernel_blob_data;
}
enum futil_file_type ft_recognize_vblock1(uint8_t *buf, uint32_t len)
{
uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE];
struct vb2_workbuf wb;
vb2_workbuf_init(&wb, workbuf, sizeof(workbuf));
/* Vboot 2.0 signature checks destroy the buffer, so make a copy */
uint8_t *buf2 = malloc(len);
memcpy(buf2, buf, len);
struct vb2_keyblock *keyblock = (struct vb2_keyblock *)buf2;
if (VB2_SUCCESS != vb2_verify_keyblock_hash(keyblock, len, &wb)) {
free(buf2);
return FILE_TYPE_UNKNOWN;
}
/* Try unpacking the data key from the keyblock */
struct vb2_public_key data_key;
if (VB2_SUCCESS !=
vb2_unpack_key(&data_key, &keyblock->data_key)) {
/* It looks like a bad keyblock, but still a keyblock */
free(buf2);
return FILE_TYPE_KEYBLOCK;
}
uint32_t more = keyblock->keyblock_size;
/* Followed by firmware preamble too? */
struct vb2_fw_preamble *pre2 = (struct vb2_fw_preamble *)(buf2 + more);
if (VB2_SUCCESS ==
vb2_verify_fw_preamble(pre2, len - more, &data_key, &wb)) {
free(buf2);
return FILE_TYPE_FW_PREAMBLE;
}
/* Recopy since firmware preamble check destroyed the buffer */
memcpy(buf2, buf, len);
/* Or maybe kernel preamble? */
struct vb2_kernel_preamble *kern_preamble =
(struct vb2_kernel_preamble *)(buf2 + more);
if (VB2_SUCCESS ==
vb2_verify_kernel_preamble(kern_preamble, len - more,
&data_key, &wb)) {
free(buf2);
return FILE_TYPE_KERN_PREAMBLE;
}
free(buf2);
/* No, just keyblock */
return FILE_TYPE_KEYBLOCK;
}
enum futil_file_type ft_recognize_vb1_key(uint8_t *buf, uint32_t len)
{
/* Maybe just a packed public key? */
const struct vb2_packed_key *pubkey = (struct vb2_packed_key *)buf;
if (packed_key_looks_ok(pubkey, len))
return FILE_TYPE_PUBKEY;
/* How about a private key? */
if (len < sizeof(uint64_t))
return FILE_TYPE_UNKNOWN;
const unsigned char *start = buf + sizeof(uint64_t);
struct rsa_st *rsa =
d2i_RSAPrivateKey(NULL, &start, len - sizeof(uint64_t));
if (rsa) {
RSA_free(rsa);
return FILE_TYPE_PRIVKEY;
}
return FILE_TYPE_UNKNOWN;
}