blob: 1c5b070cea616eb5afdcdfea3db2952eeb9357f6 [file] [log] [blame]
/*
* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "fmap.h"
#include "futility.h"
enum { FMT_NORMAL, FMT_PRETTY, FMT_FLASHROM, FMT_HUMAN };
/* global variables */
static int opt_extract;
static int opt_format = FMT_NORMAL;
static int opt_overlap;
static void *base_of_rom;
static size_t size_of_rom;
static int opt_gaps;
/* Return 0 if successful */
static int normal_fmap(const FmapHeader *fmh, int argc, char *argv[])
{
int i, retval = 0;
char buf[80]; /* DWR: magic number */
const FmapAreaHeader *ah;
ah = (const FmapAreaHeader *) (fmh + 1);
char *extract_names[argc];
char *outname = 0;
memset(extract_names, 0, sizeof(extract_names));
if (opt_extract) {
/* prepare the filenames to write areas to */
for (i = 0; i < argc; i++) {
char *a = argv[i];
char *f = strchr(a, ':');
if (!f)
continue;
if (a == f || *(f+1) == '\0') {
fprintf(stderr,
"argument \"%s\" is bogus\n", a);
retval = 1;
continue;
}
*f++ = '\0';
extract_names[i] = f;
}
if (retval)
return retval;
}
if (FMT_NORMAL == opt_format) {
snprintf(buf, FMAP_SIGNATURE_SIZE + 1, "%s",
fmh->fmap_signature);
printf("fmap_signature %s\n", buf);
printf("fmap_version: %d.%d\n",
fmh->fmap_ver_major, fmh->fmap_ver_minor);
printf("fmap_base: 0x%" PRIx64 "\n", fmh->fmap_base);
printf("fmap_size: 0x%08x (%d)\n", fmh->fmap_size,
fmh->fmap_size);
snprintf(buf, FMAP_NAMELEN + 1, "%s", fmh->fmap_name);
printf("fmap_name: %s\n", buf);
printf("fmap_nareas: %d\n", fmh->fmap_nareas);
}
for (i = 0; i < fmh->fmap_nareas; i++, ah++) {
snprintf(buf, FMAP_NAMELEN + 1, "%s", ah->area_name);
if (argc) {
int j, found = 0;
outname = NULL;
for (j = 0; j < argc; j++)
if (!strcmp(argv[j], buf)) {
found = 1;
outname = extract_names[j];
break;
}
if (!found)
continue;
}
switch (opt_format) {
case FMT_PRETTY:
printf("%s %d %d\n", buf, ah->area_offset,
ah->area_size);
break;
case FMT_FLASHROM:
if (ah->area_size)
printf("0x%08x:0x%08x %s\n", ah->area_offset,
ah->area_offset + ah->area_size - 1,
buf);
break;
default:
printf("area: %d\n", i + 1);
printf("area_offset: 0x%08x\n", ah->area_offset);
printf("area_size: 0x%08x (%d)\n", ah->area_size,
ah->area_size);
printf("area_name: %s\n", buf);
}
if (opt_extract) {
char *s;
if (!outname) {
for (s = buf; *s; s++)
if (*s == ' ')
*s = '_';
outname = buf;
}
FILE *fp = fopen(outname, "wb");
if (!fp) {
fprintf(stderr, "%s: can't open %s: %s\n",
argv[0], outname, strerror(errno));
retval = 1;
} else if (!ah->area_size) {
fprintf(stderr,
"%s: section %s has zero size\n",
argv[0], buf);
} else if (ah->area_offset + ah->area_size >
size_of_rom) {
fprintf(stderr, "%s: section %s is larger"
" than the image\n", argv[0], buf);
retval = 1;
} else if (1 != fwrite(base_of_rom + ah->area_offset,
ah->area_size, 1, fp)) {
fprintf(stderr, "%s: can't write %s: %s\n",
argv[0], buf, strerror(errno));
retval = 1;
} else {
if (FMT_NORMAL == opt_format)
printf("saved as \"%s\"\n", outname);
}
if (fp)
fclose(fp);
}
}
return retval;
}
/****************************************************************************/
/* Stuff for human-readable form */
struct dup_s {
char *name;
struct dup_s *next;
};
struct node_s {
char *name;
uint32_t start;
uint32_t size;
uint32_t end;
struct node_s *parent;
int num_children;
struct node_s **child;
struct dup_s *alias;
};
static struct node_s *all_nodes;
static void sort_nodes(int num, struct node_s *ary[])
{
int i, j;
struct node_s *tmp;
/* bubble-sort is quick enough with only a few entries */
for (i = 0; i < num; i++) {
for (j = i + 1; j < num; j++) {
if (ary[j]->start > ary[i]->start) {
tmp = ary[i];
ary[i] = ary[j];
ary[j] = tmp;
}
}
}
}
static void line(int indent, char *name,
uint32_t start, uint32_t end, uint32_t size, char *append)
{
int i;
for (i = 0; i < indent; i++)
printf(" ");
printf("%-25s %08x %08x %08x%s\n", name, start, end, size,
append ? append : "");
}
static int gapcount;
static void empty(int indent, uint32_t start, uint32_t end, char *name)
{
char buf[80];
if (opt_gaps) {
sprintf(buf, " // gap in %s", name);
line(indent + 1, "", start, end, end - start, buf);
}
gapcount++;
}
static void show(struct node_s *p, int indent, int show_first)
{
int i;
struct dup_s *alias;
if (show_first) {
line(indent, p->name, p->start, p->end, p->size, 0);
for (alias = p->alias; alias; alias = alias->next)
line(indent, alias->name, p->start, p->end, p->size,
" // DUPLICATE");
}
sort_nodes(p->num_children, p->child);
for (i = 0; i < p->num_children; i++) {
if (i == 0 && p->end != p->child[i]->end)
empty(indent, p->child[i]->end, p->end, p->name);
show(p->child[i], indent + show_first, 1);
if (i < p->num_children - 1
&& p->child[i]->start != p->child[i + 1]->end)
empty(indent, p->child[i + 1]->end, p->child[i]->start,
p->name);
if (i == p->num_children - 1 && p->child[i]->start != p->start)
empty(indent, p->start, p->child[i]->start, p->name);
}
}
static int overlaps(int i, int j)
{
struct node_s *a = all_nodes + i;
struct node_s *b = all_nodes + j;
return ((a->start < b->start) && (b->start < a->end) &&
(b->start < a->end) && (a->end < b->end));
}
static int encloses(int i, int j)
{
struct node_s *a = all_nodes + i;
struct node_s *b = all_nodes + j;
return ((a->start <= b->start) && (a->end >= b->end));
}
static int duplicates(int i, int j)
{
struct node_s *a = all_nodes + i;
struct node_s *b = all_nodes + j;
return ((a->start == b->start) && (a->end == b->end));
}
static void add_dupe(int i, int j, int numnodes)
{
int k;
struct dup_s *alias;
alias = (struct dup_s *) malloc(sizeof(struct dup_s));
alias->name = all_nodes[j].name;
alias->next = all_nodes[i].alias;
all_nodes[i].alias = alias;
for (k = j; k < numnodes; k++)
all_nodes[k] = all_nodes[k + 1];
}
static void add_child(struct node_s *p, int n)
{
int i;
if (p->num_children && !p->child) {
p->child =
(struct node_s **)calloc(p->num_children,
sizeof(struct node_s *));
if (!p->child) {
perror("calloc failed");
exit(1);
}
}
for (i = 0; i < p->num_children; i++)
if (!p->child[i]) {
p->child[i] = all_nodes + n;
return;
}
}
static int human_fmap(const FmapHeader *fmh)
{
FmapAreaHeader *ah;
int i, j, errorcnt = 0;
int numnodes;
ah = (FmapAreaHeader *) (fmh + 1);
/* The challenge here is to generate a directed graph from the
* arbitrarily-ordered FMAP entries, and then to prune it until it's as
* simple (and deep) as possible. Overlapping regions are not allowed.
* Duplicate regions are okay, but may require special handling. */
/* Convert the FMAP info into our format. */
numnodes = fmh->fmap_nareas;
/* plus one for the all-enclosing "root" */
all_nodes = (struct node_s *) calloc(numnodes + 1,
sizeof(struct node_s));
if (!all_nodes) {
perror("calloc failed");
exit(1);
}
for (i = 0; i < numnodes; i++) {
char buf[FMAP_NAMELEN + 1];
strncpy(buf, ah[i].area_name, FMAP_NAMELEN);
buf[FMAP_NAMELEN] = '\0';
all_nodes[i].name = strdup(buf);
if (!all_nodes[i].name) {
perror("strdup failed");
exit(1);
}
all_nodes[i].start = ah[i].area_offset;
all_nodes[i].size = ah[i].area_size;
all_nodes[i].end = ah[i].area_offset + ah[i].area_size;
}
/* Now add the root node */
all_nodes[numnodes].name = strdup("-entire flash-");
all_nodes[numnodes].start = fmh->fmap_base;
all_nodes[numnodes].size = fmh->fmap_size;
all_nodes[numnodes].end = fmh->fmap_base + fmh->fmap_size;
/* First, coalesce any duplicates */
for (i = 0; i < numnodes; i++) {
for (j = i + 1; j < numnodes; j++) {
if (duplicates(i, j)) {
add_dupe(i, j, numnodes);
numnodes--;
}
}
}
/* Each node should have at most one parent, which is the smallest
* enclosing node. Duplicate nodes "enclose" each other, but if there's
* already a relationship in one direction, we won't create another.
*/
for (i = 0; i < numnodes; i++) {
/* Find the smallest parent, which might be the root node. */
int k = numnodes;
for (j = 0; j < numnodes; j++) { /* full O(N^2) comparison */
if (i == j)
continue;
if (overlaps(i, j)) {
printf("ERROR: %s and %s overlap\n",
all_nodes[i].name, all_nodes[j].name);
printf(" %s: 0x%x - 0x%x\n", all_nodes[i].name,
all_nodes[i].start, all_nodes[i].end);
printf(" %s: 0x%x - 0x%x\n", all_nodes[j].name,
all_nodes[j].start, all_nodes[j].end);
if (opt_overlap < 2) {
printf("Use more -h args to ignore"
" this error\n");
errorcnt++;
}
continue;
}
if (encloses(j, i)
&& all_nodes[j].size < all_nodes[k].size)
k = j;
}
all_nodes[i].parent = all_nodes + k;
}
if (errorcnt)
return 1;
/* Force those deadbeat parents to recognize their children */
for (i = 0; i < numnodes; i++) /* how many */
if (all_nodes[i].parent)
all_nodes[i].parent->num_children++;
for (i = 0; i < numnodes; i++) /* here they are */
if (all_nodes[i].parent)
add_child(all_nodes[i].parent, i);
/* Ready to go */
printf("# name start end size\n");
show(all_nodes + numnodes, 0, opt_gaps);
if (gapcount && !opt_gaps)
printf("\nWARNING: unused regions found. Use -H to see them\n");
return 0;
}
/* End of human-reable stuff */
/****************************************************************************/
static const char usage[] =
"\nUsage: " MYNAME " %s [OPTIONS] FLASHIMAGE [NAME...]\n\n"
"Display (and extract) the FMAP components from a BIOS image.\n"
"\n"
"Options:\n"
" -x Extract the named sections from the file\n"
" -h Use a human-readable format\n"
" -H With -h, display any gaps\n"
" -p Use a format easy to parse by scripts\n"
" -F Use the format expected by flashrom\n"
"\n"
"Specify one or more NAMEs to dump only those sections.\n"
"\n";
static void print_help(int argc, char *argv[])
{
printf(usage, argv[0]);
}
enum {
OPT_HELP = 1000,
};
static const struct option long_opts[] = {
{"help", 0, 0, OPT_HELP},
{NULL, 0, 0, 0}
};
static int do_dump_fmap(int argc, char *argv[])
{
int c;
int errorcnt = 0;
struct stat sb;
int fd;
const FmapHeader *fmap;
int retval = 1;
opterr = 0; /* quiet, you */
while ((c = getopt_long(argc, argv, ":xpFhH", long_opts, 0)) != -1) {
switch (c) {
case 'x':
opt_extract = 1;
break;
case 'p':
opt_format = FMT_PRETTY;
break;
case 'F':
opt_format = FMT_FLASHROM;
break;
case 'H':
opt_gaps = 1;
/* fallthrough */
case 'h':
opt_format = FMT_HUMAN;
opt_overlap++;
break;
case OPT_HELP:
print_help(argc, argv);
return 0;
case '?':
fprintf(stderr, "%s: unrecognized switch: -%c\n",
argv[0], optopt);
errorcnt++;
break;
case ':':
fprintf(stderr, "%s: missing argument to -%c\n",
argv[0], optopt);
errorcnt++;
break;
default:
errorcnt++;
break;
}
}
if (errorcnt || optind >= argc) {
print_help(argc, argv);
return 1;
}
fd = open(argv[optind], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "%s: can't open %s: %s\n",
argv[0], argv[optind], strerror(errno));
return 1;
}
if (0 != fstat(fd, &sb)) {
fprintf(stderr, "%s: can't stat %s: %s\n",
argv[0], argv[optind], strerror(errno));
close(fd);
return 1;
}
base_of_rom =
mmap(0, sb.st_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (base_of_rom == (char *)-1) {
fprintf(stderr, "%s: can't mmap %s: %s\n",
argv[0], argv[optind], strerror(errno));
close(fd);
return 1;
}
close(fd); /* done with this now */
size_of_rom = sb.st_size;
fmap = fmap_find(base_of_rom, size_of_rom);
if (fmap) {
switch (opt_format) {
case FMT_HUMAN:
retval = human_fmap(fmap);
break;
case FMT_NORMAL:
printf("hit at 0x%08x\n",
(uint32_t) ((char *)fmap - (char *)base_of_rom));
/* fallthrough */
default:
retval = normal_fmap(fmap,
argc - optind - 1,
argv + optind + 1);
}
}
if (0 != munmap(base_of_rom, sb.st_size)) {
fprintf(stderr, "%s: can't munmap %s: %s\n",
argv[0], argv[optind], strerror(errno));
return 1;
}
return retval;
}
DECLARE_FUTIL_COMMAND(dump_fmap, do_dump_fmap, VBOOT_VERSION_ALL,
"Display FMAP contents from a firmware image");