This document contains instructions and Go code snippets for common tasks in Tink.
To install Tink locally run:
go get github.com/google/tink/go/...
to run all the tests locally:
cd $GOPATH/go/src/github.com/google/tink/go go test ./...
Golang Tink API also supports Bazel builds. To run the tests using bazel:
cd $GOPATH/go/src/github.com/google/tink/go bazel build ... && bazel test ...
Documentation for the Tink API can be found here.
Primitives represent cryptographic operations offered by Tink, hence they form the core of Tink API. A primitive is just an interface that specifies what operations are offered by the primitive. A primitive can have multiple implementations, and you choose a desired implementation by using a key of corresponding type (see the this section for details).
A list of primitives and their implemenations currently supported by Tink in Golang can be found here.
AEAD encryption assures the confidentiality and authenticity of the data. This primitive is CPA secure.
package main
import (
"fmt"
"log"
"github.com/google/tink/go/aead"
"github.com/google/tink/go/keyset"
)
func main() {
kh, err := keyset.NewHandle(aead.AES256GCMKeyTemplate())
if err != nil {
log.Fatal(err)
}
a, err := aead.New(kh)
if err != nil {
log.Fatal(err)
}
ct, err := a.Encrypt([]byte("this data needs to be encrypted"), []byte("associated data"))
if err != nil {
log.Fatal(err)
}
pt, err := a.Decrypt(ct, []byte("associated data"))
if err != nil {
log.Fatal(err)
}
fmt.Printf("Cipher text: %s\nPlain text: %s\n", ct, pt)
}
MAC computes a tag for a given message that can be used to authenticate a message. MAC protects data integrity as well as provides for authenticity of the message.
package main
import (
"fmt"
"log"
"github.com/google/tink/go/keyset"
"github.com/google/tink/go/mac"
)
func main() {
kh, err := keyset.NewHandle(mac.HMACSHA256Tag256KeyTemplate())
if err != nil {
log.Fatal(err)
}
m, err := mac.New(kh)
if err != nil {
log.Fatal(err)
}
mac, err := m.ComputeMAC([]byte("this data needs to be MACed"))
if err != nil {
log.Fatal(err)
}
if m.VerifyMAC(mac, []byte("this data needs to be MACed")); err != nil {
log.Fatal("MAC verification failed")
}
fmt.Println("MAC verification succeeded.")
}
Unlike AEAD, implementations of this interface are not semantically secure, because encrypting the same plaintext always yields the same ciphertext.
package main
import (
"bytes"
"fmt"
"log"
"github.com/google/tink/go/daead"
"github.com/google/tink/go/keyset"
)
func main() {
kh, err := keyset.NewHandle(daead.AESSIVKeyTemplate())
if err != nil {
log.Fatal(err)
}
d, err := daead.New(kh)
if err != nil {
log.Fatal(err)
}
ct1, err := d.EncryptDeterministically([]byte("this data needs to be encrypted"), []byte("additional data"))
if err != nil {
log.Fatal(err)
}
ct2, err := d.EncryptDeterministically([]byte("this data needs to be encrypted"), []byte("additional data"))
if err != nil {
log.Fatal(err)
}
if !bytes.Equal(ct1, ct2) {
log.Fatal("cipher texts are not equal")
}
fmt.Print("Cipher texts are equal.\n")
pt, err := d.DecryptDeterministically(ct1, []byte("additional data"))
if err != nil {
log.Fatal(err)
}
fmt.Printf("Plain text: %s\n", pt)
}
To sign data using Tink you can use ECDSA or ED25519 key templates.
package main
import (
"fmt"
"log"
"github.com/google/tink/go/keyset"
"github.com/google/tink/go/signature"
)
func main() {
khPriv, err := keyset.NewHandle(signature.ECDSAP256KeyTemplate())
if err != nil {
log.Fatal(err)
}
s, err := signature.NewSigner(khPriv)
if err != nil {
log.Fatal(err)
}
a, err := s.Sign([]byte("this data needs to be signed"))
if err != nil {
log.Fatal(err)
}
khPub, err := khPriv.Public()
if err != nil {
log.Fatal(err)
}
v, err := signature.NewVerifier(khPub)
if err != nil {
log.Fatal(err)
}
if err := v.Verify(a, []byte("this data needs to be signed")); err != nil {
log.Fatal("signature verification failed")
}
fmt.Println("Signature verification succeeded.")
}
The functionality of Hybrid Encryption is represented as a pair of primitives (interfaces):
HybridEncrypt
for encryption of dataHybridDecrypt
for decryptionImplementations of these interfaces are secure against adaptive chosen ciphertext attacks.
In addition to plaintext, the encryption takes an extra parameter, contextInfo. It usually is public data implicit from the context. It is bound to the resulting ciphertext, which allows for checking the integrity of contextInfo (but there are no guarantees in regards to the secrecy or authenticity of contextInfo).
The recipient has to generate a private keyset and share the public keyset with the sender.
Warning: DO NOT hardcode the private keyset in source code, consider encrypting it using Cloud KMS or AWS KMS (see Key Management Systems).
package main import ( "fmt" "log" "github.com/golang/protobuf/proto" "github.com/google/tink/go/hybrid" "github.com/google/tink/go/insecurecleartextkeyset" "github.com/google/tink/go/keyset" ) func main() { // Generate and persist private key. khPriv, err := keyset.NewHandle(hybrid.ECIESHKDFAES128CTRHMACSHA256KeyTemplate()) if err != nil { log.Fatal(err) } exportedPriv := &keyset.MemReaderWriter{} if err := insecurecleartextkeyset.Write(khPriv, exportedPriv); err != nil { return nil, err } ksPriv, err := proto.Marshal(exported.Keyset) if err != nil { return nil, err } // TODO: store ksPriv somewhere safe. // DO NOT hardcode the private keyset in source code, consider // encrypting it with using Cloud KMS or AWS KMS. // Export and publish public keyset. khPub, err := khPriv.Public() if err != nil { log.Fatal(err) } exportedPub := &keyset.MemReaderWriter{} if err = insecurecleartextkeyset.Write(khPub, exportedPub); err != nil { return nil, err } ksPub, err := proto.Marshal(exported.Keyset) if err != nil { return nil, err } // TODO: share ksPub with the sender. }
After receiving a public keyset from the recipient, the sender can encrypt as follows.
package main import ( "fmt" "log" "github.com/google/tink/go/hybrid" "github.com/google/tink/go/insecurecleartextkeyset" "github.com/google/tink/go/keyset" ) func main() { // TODO: obtain ksPub from the recipient (see the Preparation section). khPub, err := insecurecleartextkeyset.Read(keyset.NewBinaryReader(bytes.NewReader(ksPub))) he, err := hybrid.NewHybridEncrypt(khPub) if err != nil { log.Fatal(err) } ct, err := he.Encrypt([]byte("secret message"), []byte("context info")) if err != nil { log.Fatal(err) } fmt.Printf("Cipher text: %s\n", ct) }
The recipient uses its private keyset to decrypt as follows.
Warning: DO NOT hardcode the private keyset in source code, consider encrypting it using Cloud KMS or AWS KMS (see Key Management Systems).
package main import ( "fmt" "log" "github.com/google/tink/go/hybrid" "github.com/google/tink/go/insecurecleartextkeyset" "github.com/google/tink/go/keyset" ) func main() { // TODO: load ksPriv from storage (see the Preparation section). // DO NOT hardcode the keyset in source code, consider encrypting it // with using Cloud KMS or AWS KMS. khPriv, err := insecurecleartextkeyset.Read(keyset.NewBinaryReader(bytes.NewReader(ksPriv))) hd, err := hybrid.NewHybridDecrypt(khPriv) if err != nil { log.Fatal(err) } // TODO: receive the ct from the sender (see the Encryption section). pt, err := hd.Decrypt(ct, []byte("context info")) if err != nil { log.Fatal(err) } fmt.Printf("Plaintext text: %s\n", pt) }
Via the AEAD interface, Tink supports envelope encryption.
For example, you can perform envelope encryption with a Google Cloud KMS key at gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar
using the credentials in credentials.json
as follows:
package main import ( "fmt" "github.com/google/tink/go/aead" "github.com/google/tink/go/core/registry" "github.com/google/tink/go/integration/gcpkms" "github.com/google/tink/go/keyset" ) const ( keyURI = "gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar" // customize for your key credentialsPath = "credentials.json" ) func main() { gcpclient, err := gcpkms.NewClientWithCredentials(keyURI, credentialsPath) if err != nil { log.Fatal(err) } registry.RegisterKMSClient(gcpclient) dek := aead.AES128CTRHMACSHA256KeyTemplate() kh, err := keyset.NewHandle(aead.KMSEnvelopeAEADKeyTemplate(keyURI, dek)) if err != nil { log.Fatal(err) } a, err := aead.New(kh) if err != nil { log.Fatal(err) } ct, err := a.Encrypt([]byte("secret message"), []byte("associated data")) if err != nil { log.Fatal(err) } pt, err := a.Decrypt(ct, []byte("associated data")) if err != nil { log.Fatal(err) } fmt.Printf("Cipher text: %s\nPlain text: %s\n", ct, pt) }
To take advantage of key rotation and other key management features, you usually do not work with single keys, but with keysets. Keysets are just sets of keys with some additional parameters and metadata.
Internally Tink stores keysets as Protocol Buffers, but you can work with keysets via a wrapper called keyset handle. You can generate a new keyset and obtain its handle using a KeyTemplate. KeysetHandle objects enforce certain restrictions that prevent accidental leakage of the sensitive key material.
package main import ( "fmt" "log" "github.com/google/tink/go/aead" "github.com/google/tink/go/keyset" ) func main() { // Other key templates can also be used. kh, err := keyset.NewHandle(aead.AES128GCMKeyTemplate()) if err != nil { log.Fatal(err) } fmt.Println(kh.String()) }
Key templates are available for MAC, digital signatures, AEAD encryption, DAEAD encryption and hybrid encryption.
Key Template Type | Key Template |
---|---|
AEAD | aead.AES128CTRHMACSHA256KeyTemplate() |
AEAD | aead.AES128GCMKeyTemplate() |
AEAD | aead.AES256CTRHMACSHA256KeyTemplate() |
AEAD | aead.AES256GCMKeyTemplate() |
AEAD | aead.ChaCha20Poly1305KeyTemplate() |
AEAD | aead.XChaCha20Poly1305KeyTemplate() |
DAEAD | daead.AESSIVKeyTemplate() |
MAC | mac.HMACSHA256Tag128KeyTemplate() |
MAC | mac.HMACSHA256Tag256KeyTemplate() |
MAC | mac.HMACSHA512Tag256KeyTemplate() |
MAC | mac.HMACSHA512Tag512KeyTemplate() |
Signature | signature.ECDSAP256KeyTemplate() |
Signature | signature.ECDSAP384KeyTemplate() |
Signature | signature.ECDSAP521KeyTemplate() |
Hybrid | hybrid.ECIESHKDFAES128GCMKeyTemplate() |
Hybrid | hybrid.ECIESHKDFAES128CTRHMACSHA256KeyTemplate() |
To avoid accidental leakage of sensitive key material, one should avoid mixing keyset generation and usage in code. To support the separation of these activities Tink provides a command-line tool, Tinkey, which can be used for common key management tasks.
After generating key material, you might want to persist it to a storage system. Tink supports persisting the keys after encryption to any io.Writer and io.Reader implementations.
package main import ( "fmt" "log" "github.com/golang/protobuf/proto" "github.com/google/tink/go/aead" "github.com/google/tink/go/core/registry" "github.com/google/tink/go/integration/gcpkms" "github.com/google/tink/go/keyset" ) const ( keyURI = "gcp-kms://..." credentialsPath = "/mysecurestorage/..." ) func main() { // Generate a new key. kh1, err := keyset.NewHandle(aead.AES128GCMKeyTemplate()) if err != nil { log.Fatal(err) } // Fetch the master key from a KMS. gcpClient := gcpkms.NewClientWithCredentials(keyURI, credentialsPath) registry.RegisterKMSClient(gcpClient) backend, err := gcpClient.GetAEAD(keyURI) if err != nil { log.Fatal(err) } masterKey, err = aead.NewKMSEnvelopeAEAD(*aead.AES256GCMKeyTemplate(), backend) if err != nil { log.Fatal(err) } // An io.Reader and io.Writer implementation which simply writes to memory. memKeyset := &keyset.MemReaderWriter{} // Write encrypts the keyset handle with the master key and writes to the // io.Writer implementation (memKeyset). We recommend you encrypt the keyset // handle before persisting it. if err := kh1.Write(memKeyset, masterKey); err != nil { log.Fatal(err) } // Read reads the encrypted keyset handle back from the io.Reader implementation // and decrypts it using the master key. kh2, err := keyset.Read(memKeyset, masterKey) if err != nil { log.Fatal(err) } if !proto.Equal(kh1.Keyset(), kh2.Keyset()) { log.Fatal("key handlers are not equal") } fmt.Println("Key handlers are equal.") }