blob: 3c7ee6b9f02ea689a6c37fa61d8f591809a2cc2b [file] [log] [blame]
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef TINK_SUBTLE_AES_SIV_BORINGSSL_H_
#define TINK_SUBTLE_AES_SIV_BORINGSSL_H_
#include <memory>
#include <string>
#include <utility>
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "openssl/aes.h"
#include "tink/deterministic_aead.h"
#include "tink/internal/aes_util.h"
#include "tink/internal/fips_utils.h"
#include "tink/util/secret_data.h"
#include "tink/util/status.h"
#include "tink/util/statusor.h"
namespace crypto {
namespace tink {
namespace subtle {
// AesSivBoringSsl is an implemenatation of AES-SIV-CMAC as defined in
// https://tools.ietf.org/html/rfc5297 .
// AesSivBoringSsl implements a deterministic encryption with associated
// data (i.e. the DeterministicAead interface). Hence the implementation
// below is restricted to one AD component.
//
// Thread safety: This class is thread safe and thus can be used
// concurrently.
//
// Security:
// =========
// Chatterjee, Menezes and Sarkar analyze AES-SIV in Section 5.1 of
// https://www.math.uwaterloo.ca/~ajmeneze/publications/tightness.pdf
// Their analysis shows that AES-SIV is susceptible to an attack in
// a multi-user setting. Concretely, if an attacker knows the encryption
// of a message m encrypted and authenticated with k different keys,
// then it is possible to find one of the MAC keys in time 2^b / k
// where b is the size of the MAC key. A consequence of this attack
// is that 128-bit MAC keys give unsufficient security.
// Since 192-bit AES keys are not supported by tink for voodoo reasons
// and RFC 5297 only supports same size encryption and MAC keys this
// implies that keys must be 64 bytes (2*256 bits) long.
class AesSivBoringSsl : public DeterministicAead {
public:
static crypto::tink::util::StatusOr<std::unique_ptr<DeterministicAead>> New(
const util::SecretData& key);
crypto::tink::util::StatusOr<std::string> EncryptDeterministically(
absl::string_view plaintext,
absl::string_view associated_data) const override;
crypto::tink::util::StatusOr<std::string> DecryptDeterministically(
absl::string_view ciphertext,
absl::string_view associated_data) const override;
static bool IsValidKeySizeInBytes(size_t size) { return size == 64; }
static constexpr crypto::tink::internal::FipsCompatibility kFipsStatus =
crypto::tink::internal::FipsCompatibility::kNotFips;
private:
static constexpr size_t kBlockSize = internal::AesBlockSize();
AesSivBoringSsl(util::SecretUniquePtr<AES_KEY> k1,
util::SecretUniquePtr<AES_KEY> k2)
: k1_(std::move(k1)),
k2_(std::move(k2)),
cmac_k1_(ComputeCmacK1()),
cmac_k2_(ComputeCmacK2()) {}
// Precomputes cmac_k1
util::SecretData ComputeCmacK1() const;
// Precomputes cmac_k2
util::SecretData ComputeCmacK2() const;
// Encrypts a single block using k2_.
// This is used for CMACs.
void EncryptBlock(const uint8_t in[kBlockSize],
uint8_t out[kBlockSize]) const;
// Computes a CMAC of some data.
void Cmac(absl::Span<const uint8_t> data, uint8_t mac[kBlockSize]) const;
// Computes CMAC(XorEnd(data, last)), where XorEnd
// xors the bytes in last to the last bytes in data.
// The size of the data must be at least 16 bytes.
void CmacLong(absl::Span<const uint8_t> data, const uint8_t last[kBlockSize],
uint8_t mac[kBlockSize]) const;
// Multiplying an element in GF(2^128) by its generator.
// This functions is incorrectly named "doubling" in section 2.3 of RFC 5297.
static void MultiplyByX(uint8_t block[kBlockSize]);
// Xors a block
// res = x ^ y
static void XorBlock(const uint8_t x[kBlockSize], const uint8_t y[kBlockSize],
uint8_t res[kBlockSize]);
void S2v(absl::Span<const uint8_t> aad, absl::Span<const uint8_t> msg,
uint8_t siv[kBlockSize]) const;
// Encrypts (or decrypts) `in` using an SIV `siv` and key `key`, and writes
// the result to `out`.
util::Status AesCtrCrypt(absl::string_view in, const uint8_t siv[kBlockSize],
const AES_KEY* key, absl::Span<char> out) const;
const util::SecretUniquePtr<AES_KEY> k1_;
const util::SecretUniquePtr<AES_KEY> k2_;
const util::SecretData cmac_k1_;
const util::SecretData cmac_k2_;
};
} // namespace subtle
} // namespace tink
} // namespace crypto
#endif // TINK_SUBTLE_AES_SIV_BORINGSSL_H_