blob: 991a0cf36c057deb6a3bfdd1fd943e4220c38362 [file] [log] [blame]
//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/AccessRequests.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/GenericSignatureBuilder.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeLoc.h"
#include "swift/AST/SwiftNameTranslation.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Statistic.h"
#include "clang/Basic/CharInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "InlinableText.h"
#include <algorithm>
using namespace swift;
#define DEBUG_TYPE "Serialization"
STATISTIC(NumLazyGenericEnvironments,
"# of lazily-deserialized generic environments known");
STATISTIC(NumLazyGenericEnvironmentsLoaded,
"# of lazily-deserialized generic environments loaded");
#define DECL(Id, _) \
static_assert((DeclKind::Id == DeclKind::Module) ^ \
IsTriviallyDestructible<Id##Decl>::value, \
"Decls are BumpPtrAllocated; the destructor is never called");
#include "swift/AST/DeclNodes.def"
static_assert(IsTriviallyDestructible<ParameterList>::value,
"ParameterLists are BumpPtrAllocated; the d'tor is never called");
static_assert(IsTriviallyDestructible<GenericParamList>::value,
"GenericParamLists are BumpPtrAllocated; the d'tor isn't called");
const clang::MacroInfo *ClangNode::getAsMacro() const {
if (auto MM = getAsModuleMacro())
return MM->getMacroInfo();
return getAsMacroInfo();
}
clang::SourceLocation ClangNode::getLocation() const {
if (auto D = getAsDecl())
return D->getLocation();
if (auto M = getAsMacro())
return M->getDefinitionLoc();
return clang::SourceLocation();
}
clang::SourceRange ClangNode::getSourceRange() const {
if (auto D = getAsDecl())
return D->getSourceRange();
if (auto M = getAsMacro())
return clang::SourceRange(M->getDefinitionLoc(), M->getDefinitionEndLoc());
return clang::SourceLocation();
}
const clang::Module *ClangNode::getClangModule() const {
if (auto *M = getAsModule())
return M;
if (auto *ID = dyn_cast_or_null<clang::ImportDecl>(getAsDecl()))
return ID->getImportedModule();
return nullptr;
}
// Only allow allocation of Decls using the allocator in ASTContext.
void *Decl::operator new(size_t Bytes, const ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
// Only allow allocation of Modules using the allocator in ASTContext.
void *ModuleDecl::operator new(size_t Bytes, const ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Decl::getKindName(DeclKind K) {
switch (K) {
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("bad DeclKind");
}
DescriptiveDeclKind Decl::getDescriptiveKind() const {
#define TRIVIAL_KIND(Kind) \
case DeclKind::Kind: \
return DescriptiveDeclKind::Kind
switch (getKind()) {
TRIVIAL_KIND(Import);
TRIVIAL_KIND(Extension);
TRIVIAL_KIND(EnumCase);
TRIVIAL_KIND(TopLevelCode);
TRIVIAL_KIND(IfConfig);
TRIVIAL_KIND(PoundDiagnostic);
TRIVIAL_KIND(PatternBinding);
TRIVIAL_KIND(PrecedenceGroup);
TRIVIAL_KIND(InfixOperator);
TRIVIAL_KIND(PrefixOperator);
TRIVIAL_KIND(PostfixOperator);
TRIVIAL_KIND(TypeAlias);
TRIVIAL_KIND(GenericTypeParam);
TRIVIAL_KIND(AssociatedType);
TRIVIAL_KIND(Protocol);
TRIVIAL_KIND(Subscript);
TRIVIAL_KIND(Constructor);
TRIVIAL_KIND(Destructor);
TRIVIAL_KIND(EnumElement);
TRIVIAL_KIND(Param);
TRIVIAL_KIND(Module);
TRIVIAL_KIND(MissingMember);
case DeclKind::Enum:
return cast<EnumDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericEnum
: DescriptiveDeclKind::Enum;
case DeclKind::Struct:
return cast<StructDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericStruct
: DescriptiveDeclKind::Struct;
case DeclKind::Class:
return cast<ClassDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericClass
: DescriptiveDeclKind::Class;
case DeclKind::Var: {
auto var = cast<VarDecl>(this);
switch (var->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
if (var->getDeclContext()->isTypeContext())
return DescriptiveDeclKind::Property;
return var->isLet() ? DescriptiveDeclKind::Let
: DescriptiveDeclKind::Var;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticProperty;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassProperty;
}
}
case DeclKind::Accessor: {
auto accessor = cast<AccessorDecl>(this);
switch (accessor->getAccessorKind()) {
case AccessorKind::Get:
return DescriptiveDeclKind::Getter;
case AccessorKind::Set:
return DescriptiveDeclKind::Setter;
case AccessorKind::WillSet:
return DescriptiveDeclKind::WillSet;
case AccessorKind::DidSet:
return DescriptiveDeclKind::DidSet;
case AccessorKind::Address:
return DescriptiveDeclKind::Addressor;
case AccessorKind::MutableAddress:
return DescriptiveDeclKind::MutableAddressor;
case AccessorKind::Read:
return DescriptiveDeclKind::ReadAccessor;
case AccessorKind::Modify:
return DescriptiveDeclKind::ModifyAccessor;
}
llvm_unreachable("bad accessor kind");
}
case DeclKind::Func: {
auto func = cast<FuncDecl>(this);
if (func->isOperator())
return DescriptiveDeclKind::OperatorFunction;
if (func->getDeclContext()->isLocalContext())
return DescriptiveDeclKind::LocalFunction;
if (func->getDeclContext()->isModuleScopeContext())
return DescriptiveDeclKind::GlobalFunction;
// We have a method.
switch (func->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return DescriptiveDeclKind::Method;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticMethod;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassMethod;
}
}
}
#undef TRIVIAL_KIND
llvm_unreachable("bad DescriptiveDeclKind");
}
StringRef Decl::getDescriptiveKindName(DescriptiveDeclKind K) {
#define ENTRY(Kind, String) case DescriptiveDeclKind::Kind: return String
switch (K) {
ENTRY(Import, "import");
ENTRY(Extension, "extension");
ENTRY(EnumCase, "case");
ENTRY(TopLevelCode, "top-level code");
ENTRY(IfConfig, "conditional block");
ENTRY(PoundDiagnostic, "diagnostic");
ENTRY(PatternBinding, "pattern binding");
ENTRY(Var, "var");
ENTRY(Param, "parameter");
ENTRY(Let, "let");
ENTRY(Property, "property");
ENTRY(StaticProperty, "static property");
ENTRY(ClassProperty, "class property");
ENTRY(PrecedenceGroup, "precedence group");
ENTRY(InfixOperator, "infix operator");
ENTRY(PrefixOperator, "prefix operator");
ENTRY(PostfixOperator, "postfix operator");
ENTRY(TypeAlias, "type alias");
ENTRY(GenericTypeParam, "generic parameter");
ENTRY(AssociatedType, "associated type");
ENTRY(Type, "type");
ENTRY(Enum, "enum");
ENTRY(Struct, "struct");
ENTRY(Class, "class");
ENTRY(Protocol, "protocol");
ENTRY(GenericEnum, "generic enum");
ENTRY(GenericStruct, "generic struct");
ENTRY(GenericClass, "generic class");
ENTRY(GenericType, "generic type");
ENTRY(Subscript, "subscript");
ENTRY(Constructor, "initializer");
ENTRY(Destructor, "deinitializer");
ENTRY(LocalFunction, "local function");
ENTRY(GlobalFunction, "global function");
ENTRY(OperatorFunction, "operator function");
ENTRY(Method, "instance method");
ENTRY(StaticMethod, "static method");
ENTRY(ClassMethod, "class method");
ENTRY(Getter, "getter");
ENTRY(Setter, "setter");
ENTRY(WillSet, "willSet observer");
ENTRY(DidSet, "didSet observer");
ENTRY(Addressor, "address accessor");
ENTRY(MutableAddressor, "mutableAddress accessor");
ENTRY(ReadAccessor, "_read accessor");
ENTRY(ModifyAccessor, "_modify accessor");
ENTRY(EnumElement, "enum case");
ENTRY(Module, "module");
ENTRY(MissingMember, "missing member placeholder");
ENTRY(Requirement, "requirement");
}
#undef ENTRY
llvm_unreachable("bad DescriptiveDeclKind");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
StaticSpellingKind SSK) {
switch (SSK) {
case StaticSpellingKind::None:
return OS << "<none>";
case StaticSpellingKind::KeywordStatic:
return OS << "'static'";
case StaticSpellingKind::KeywordClass:
return OS << "'class'";
}
llvm_unreachable("bad StaticSpellingKind");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
ReferenceOwnership RO) {
if (RO == ReferenceOwnership::Strong)
return OS << "'strong'";
return OS << "'" << keywordOf(RO) << "'";
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
SelfAccessKind SAK) {
switch (SAK) {
case SelfAccessKind::NonMutating: return OS << "'nonmutating'";
case SelfAccessKind::Mutating: return OS << "'mutating'";
case SelfAccessKind::__Consuming: return OS << "'__consuming'";
}
llvm_unreachable("Unknown SelfAccessKind");
}
DeclContext *Decl::getInnermostDeclContext() const {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return const_cast<AbstractFunctionDecl*>(func);
if (auto subscript = dyn_cast<SubscriptDecl>(this))
return const_cast<SubscriptDecl*>(subscript);
if (auto type = dyn_cast<GenericTypeDecl>(this))
return const_cast<GenericTypeDecl*>(type);
if (auto ext = dyn_cast<ExtensionDecl>(this))
return const_cast<ExtensionDecl*>(ext);
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
return const_cast<TopLevelCodeDecl*>(topLevel);
return getDeclContext();
}
void Decl::setDeclContext(DeclContext *DC) {
Context = DC;
}
bool Decl::isUserAccessible() const {
if (auto VD = dyn_cast<ValueDecl>(this)) {
return VD->isUserAccessible();
}
return true;
}
bool Decl::canHaveComment() const {
return !this->hasClangNode() &&
(isa<ValueDecl>(this) || isa<ExtensionDecl>(this)) &&
!isa<ParamDecl>(this) &&
(!isa<AbstractTypeParamDecl>(this) || isa<AssociatedTypeDecl>(this));
}
ModuleDecl *Decl::getModuleContext() const {
return getDeclContext()->getParentModule();
}
/// Retrieve the diagnostic engine for diagnostics emission.
DiagnosticEngine &Decl::getDiags() const {
return getASTContext().Diags;
}
// Helper functions to verify statically whether source-location
// functions have been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)() const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
SourceRange Decl::getSourceRange() const {
switch (getKind()) {
#define DECL(ID, PARENT) \
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
#ID "Decl is missing getSourceRange()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
SourceRange Decl::getSourceRangeIncludingAttrs() const {
auto Range = getSourceRange();
// Attributes on AccessorDecl may syntactically belong to PatternBindingDecl.
// e.g. 'override'.
if (auto *AD = dyn_cast<AccessorDecl>(this)) {
// If this is implicit getter, accessor range should not include attributes.
if (!AD->getAccessorKeywordLoc().isValid())
return Range;
// Otherwise, include attributes directly attached to the accessor.
SourceLoc VarLoc = AD->getStorage()->getStartLoc();
for (auto Attr : getAttrs()) {
if (!Attr->getRange().isValid())
continue;
SourceLoc AttrStartLoc = Attr->getRangeWithAt().Start;
if (getASTContext().SourceMgr.isBeforeInBuffer(VarLoc, AttrStartLoc))
Range.widen(AttrStartLoc);
}
return Range;
}
// Attributes on VarDecl syntactically belong to PatternBindingDecl.
if (isa<VarDecl>(this))
return Range;
// Attributes on PatternBindingDecls are attached to VarDecls in AST.
if (auto *PBD = dyn_cast<PatternBindingDecl>(this)) {
for (auto Entry : PBD->getPatternList())
Entry.getPattern()->forEachVariable([&](VarDecl *VD) {
for (auto Attr : VD->getAttrs())
if (Attr->getRange().isValid())
Range.widen(Attr->getRangeWithAt());
});
}
for (auto Attr : getAttrs()) {
if (Attr->getRange().isValid())
Range.widen(Attr->getRangeWithAt());
}
return Range;
}
SourceLoc Decl::getLoc() const {
switch (getKind()) {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 1, \
#ID "Decl is missing getLoc()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getLoc();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
bool AbstractStorageDecl::isTransparent() const {
return getAttrs().hasAttribute<TransparentAttr>();
}
bool AbstractFunctionDecl::isTransparent() const {
// Check if the declaration had the attribute.
if (getAttrs().hasAttribute<TransparentAttr>())
return true;
// If this is an accessor, check if the transparent attribute was set
// on the storage decl.
if (const auto *AD = dyn_cast<AccessorDecl>(this)) {
return AD->getStorage()->isTransparent();
}
return false;
}
bool Decl::isPrivateStdlibDecl(bool treatNonBuiltinProtocolsAsPublic) const {
const Decl *D = this;
if (auto ExtD = dyn_cast<ExtensionDecl>(D)) {
Type extTy = ExtD->getExtendedType();
return extTy.isPrivateStdlibType(treatNonBuiltinProtocolsAsPublic);
}
DeclContext *DC = D->getDeclContext()->getModuleScopeContext();
if (DC->getParentModule()->isBuiltinModule() ||
DC->getParentModule()->isSwiftShimsModule())
return true;
if (!DC->getParentModule()->isSystemModule())
return false;
auto FU = dyn_cast<FileUnit>(DC);
if (!FU)
return false;
// Check for Swift module and overlays.
if (!DC->getParentModule()->isStdlibModule() &&
FU->getKind() != FileUnitKind::SerializedAST)
return false;
auto hasInternalParameter = [](const ParameterList *params) -> bool {
for (auto param : *params) {
if (param->hasName() && param->getNameStr().startswith("_"))
return true;
auto argName = param->getArgumentName();
if (!argName.empty() && argName.str().startswith("_"))
return true;
}
return false;
};
if (auto AFD = dyn_cast<AbstractFunctionDecl>(D)) {
// If it's a function with a parameter with leading underscore, it's a
// private function.
if (hasInternalParameter(AFD->getParameters()))
return true;
}
if (auto SubscriptD = dyn_cast<SubscriptDecl>(D)) {
if (hasInternalParameter(SubscriptD->getIndices()))
return true;
}
if (auto PD = dyn_cast<ProtocolDecl>(D)) {
if (PD->getAttrs().hasAttribute<ShowInInterfaceAttr>())
return false;
StringRef NameStr = PD->getNameStr();
if (NameStr.startswith("_Builtin"))
return true;
if (NameStr.startswith("_ExpressibleBy"))
return true;
if (treatNonBuiltinProtocolsAsPublic)
return false;
}
if (auto ImportD = dyn_cast<ImportDecl>(D)) {
if (auto *Mod = ImportD->getModule()) {
if (Mod->isSwiftShimsModule())
return true;
}
}
auto VD = dyn_cast<ValueDecl>(D);
if (!VD || !VD->hasName())
return false;
// If the name has leading underscore then it's a private symbol.
if (!VD->getBaseName().isSpecial() &&
VD->getBaseName().getIdentifier().str().startswith("_"))
return true;
return false;
}
bool Decl::isWeakImported(ModuleDecl *fromModule,
AvailabilityContext fromContext) const {
// For a Clang declaration, trust Clang.
if (auto clangDecl = getClangDecl()) {
return clangDecl->isWeakImported();
}
auto *containingModule = getModuleContext();
if (containingModule == fromModule)
return false;
auto containingContext =
AvailabilityInference::availableRange(this,
containingModule->getASTContext());
if (!fromContext.isContainedIn(containingContext))
return true;
if (getAttrs().hasAttribute<WeakLinkedAttr>())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(this))
return accessor->getStorage()->isWeakImported(fromModule, fromContext);
if (auto *dtor = dyn_cast<DestructorDecl>(this))
return cast<ClassDecl>(dtor->getDeclContext())->isWeakImported(
fromModule, fromContext);
auto *dc = getDeclContext();
if (auto *ext = dyn_cast<ExtensionDecl>(dc))
return ext->isWeakImported(fromModule, fromContext);
if (auto *ntd = dyn_cast<NominalTypeDecl>(dc))
return ntd->isWeakImported(fromModule, fromContext);
return false;
}
GenericParamList::GenericParamList(SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc)
: Brackets(LAngleLoc, RAngleLoc), NumParams(Params.size()),
WhereLoc(WhereLoc), Requirements(Requirements),
OuterParameters(nullptr),
FirstTrailingWhereArg(Requirements.size())
{
std::uninitialized_copy(Params.begin(), Params.end(),
getTrailingObjects<GenericTypeParamDecl *>());
}
GenericParamList *
GenericParamList::create(ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc RAngleLoc) {
unsigned Size = totalSizeToAlloc<GenericTypeParamDecl *>(Params.size());
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params, SourceLoc(),
MutableArrayRef<RequirementRepr>(),
RAngleLoc);
}
GenericParamList *
GenericParamList::create(const ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
ArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc) {
unsigned Size = totalSizeToAlloc<GenericTypeParamDecl *>(Params.size());
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params,
WhereLoc,
Context.AllocateCopy(Requirements),
RAngleLoc);
}
GenericParamList *
GenericParamList::clone(DeclContext *dc) const {
auto &ctx = dc->getASTContext();
SmallVector<GenericTypeParamDecl *, 2> params;
for (auto param : getParams()) {
auto *newParam = new (ctx) GenericTypeParamDecl(
dc, param->getName(), param->getNameLoc(),
GenericTypeParamDecl::InvalidDepth,
param->getIndex());
params.push_back(newParam);
SmallVector<TypeLoc, 2> inherited;
for (auto loc : param->getInherited())
inherited.push_back(loc.clone(ctx));
newParam->setInherited(ctx.AllocateCopy(inherited));
}
SmallVector<RequirementRepr, 2> requirements;
for (auto reqt : getRequirements()) {
switch (reqt.getKind()) {
case RequirementReprKind::TypeConstraint: {
auto first = reqt.getSubjectLoc();
auto second = reqt.getConstraintLoc();
reqt = RequirementRepr::getTypeConstraint(
first.clone(ctx),
reqt.getSeparatorLoc(),
second.clone(ctx));
break;
}
case RequirementReprKind::SameType: {
auto first = reqt.getFirstTypeLoc();
auto second = reqt.getSecondTypeLoc();
reqt = RequirementRepr::getSameType(
first.clone(ctx),
reqt.getSeparatorLoc(),
second.clone(ctx));
break;
}
case RequirementReprKind::LayoutConstraint: {
auto first = reqt.getSubjectLoc();
auto layout = reqt.getLayoutConstraintLoc();
reqt = RequirementRepr::getLayoutConstraint(
first.clone(ctx),
reqt.getSeparatorLoc(),
layout);
break;
}
}
requirements.push_back(reqt);
}
return GenericParamList::create(ctx,
getLAngleLoc(),
params,
getWhereLoc(),
requirements,
getRAngleLoc());
}
void GenericParamList::addTrailingWhereClause(
ASTContext &ctx,
SourceLoc trailingWhereLoc,
ArrayRef<RequirementRepr> trailingRequirements) {
assert(TrailingWhereLoc.isInvalid() &&
"Already have a trailing where clause?");
TrailingWhereLoc = trailingWhereLoc;
FirstTrailingWhereArg = Requirements.size();
// Create a unified set of requirements.
auto newRequirements = ctx.AllocateUninitialized<RequirementRepr>(
Requirements.size() + trailingRequirements.size());
std::memcpy(newRequirements.data(), Requirements.data(),
Requirements.size() * sizeof(RequirementRepr));
std::memcpy(newRequirements.data() + Requirements.size(),
trailingRequirements.data(),
trailingRequirements.size() * sizeof(RequirementRepr));
Requirements = newRequirements;
}
void GenericParamList::setDepth(unsigned depth) {
for (auto param : *this)
param->setDepth(depth);
}
TrailingWhereClause::TrailingWhereClause(
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements)
: WhereLoc(whereLoc),
NumRequirements(requirements.size())
{
std::uninitialized_copy(requirements.begin(), requirements.end(),
getTrailingObjects<RequirementRepr>());
}
TrailingWhereClause *TrailingWhereClause::create(
ASTContext &ctx,
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements) {
unsigned size = totalSizeToAlloc<RequirementRepr>(requirements.size());
void *mem = ctx.Allocate(size, alignof(TrailingWhereClause));
return new (mem) TrailingWhereClause(whereLoc, requirements);
}
TypeArrayView<GenericTypeParamType>
GenericContext::getInnermostGenericParamTypes() const {
if (auto sig = getGenericSignature())
return sig->getInnermostGenericParams();
else
return { };
}
/// Retrieve the generic requirements.
ArrayRef<Requirement> GenericContext::getGenericRequirements() const {
if (auto sig = getGenericSignature())
return sig->getRequirements();
else
return { };
}
void GenericContext::setGenericParams(GenericParamList *params) {
GenericParams = params;
if (GenericParams) {
for (auto param : *GenericParams)
param->setDeclContext(this);
}
}
GenericSignature *GenericContext::getGenericSignature() const {
if (auto genericEnv = GenericSigOrEnv.dyn_cast<GenericEnvironment *>())
return genericEnv->getGenericSignature();
if (auto genericSig = GenericSigOrEnv.dyn_cast<GenericSignature *>())
return genericSig;
// The signature of a Protocol is trivial (Self: TheProtocol) so let's compute
// it.
if (auto PD = dyn_cast<ProtocolDecl>(this))
return getGenericEnvironment()->getGenericSignature();
return nullptr;
}
GenericEnvironment *GenericContext::getGenericEnvironment() const {
// Fast case: we already have a generic environment.
if (auto genericEnv = GenericSigOrEnv.dyn_cast<GenericEnvironment *>())
return genericEnv;
// If we only have a generic signature, build the generic environment.
if (GenericSigOrEnv.dyn_cast<GenericSignature *>())
return getLazyGenericEnvironmentSlow();
// The signature of a Protocol is trivial (Self: TheProtocol) so let's compute
// it.
if (auto PD = dyn_cast<ProtocolDecl>(this)) {
const_cast<ProtocolDecl *>(PD)->createGenericParamsIfMissing();
auto self = PD->getSelfInterfaceType()->castTo<GenericTypeParamType>();
auto req =
Requirement(RequirementKind::Conformance, self, PD->getDeclaredType());
auto *genericSig = GenericSignature::get({self}, {req});
// Save it for next time.
const_cast<GenericContext *>(this)
->setGenericEnvironment(genericSig->createGenericEnvironment());
return getGenericEnvironment();
}
return nullptr;
}
bool GenericContext::hasLazyGenericEnvironment() const {
return GenericSigOrEnv.dyn_cast<GenericSignature *>() != nullptr;
}
void GenericContext::setGenericEnvironment(GenericEnvironment *genericEnv) {
assert((GenericSigOrEnv.isNull() ||
getGenericSignature()->getCanonicalSignature() ==
genericEnv->getGenericSignature()->getCanonicalSignature()) &&
"set a generic environment with a different generic signature");
this->GenericSigOrEnv = genericEnv;
if (genericEnv)
genericEnv->setOwningDeclContext(this);
}
GenericEnvironment *
GenericContext::getLazyGenericEnvironmentSlow() const {
assert(GenericSigOrEnv.is<GenericSignature *>() &&
"not a lazily deserialized generic environment");
auto contextData = getASTContext().getOrCreateLazyGenericContextData(
this, nullptr);
auto *genericEnv = contextData->loader->loadGenericEnvironment(
this, contextData->genericEnvData);
const_cast<GenericContext *>(this)->setGenericEnvironment(genericEnv);
++NumLazyGenericEnvironmentsLoaded;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (getASTContext().Stats)
getASTContext().Stats->getFrontendCounters().NumLazyGenericEnvironmentsLoaded++;
return genericEnv;
}
void GenericContext::setLazyGenericEnvironment(LazyMemberLoader *lazyLoader,
GenericSignature *genericSig,
uint64_t genericEnvData) {
assert(GenericSigOrEnv.isNull() && "already have a generic signature");
GenericSigOrEnv = genericSig;
auto contextData =
getASTContext().getOrCreateLazyGenericContextData(this, lazyLoader);
contextData->genericEnvData = genericEnvData;
++NumLazyGenericEnvironments;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (getASTContext().Stats)
getASTContext().Stats->getFrontendCounters().NumLazyGenericEnvironments++;
}
SourceRange GenericContext::getGenericTrailingWhereClauseSourceRange() const {
if (!isGeneric())
return SourceRange();
return getGenericParams()->getTrailingWhereClauseSourceRange();
}
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
SourceLoc ImportLoc, ImportKind Kind,
SourceLoc KindLoc,
ArrayRef<AccessPathElement> Path,
ClangNode ClangN) {
assert(!Path.empty());
assert(Kind == ImportKind::Module || Path.size() > 1);
assert(ClangN.isNull() || ClangN.getAsModule() ||
isa<clang::ImportDecl>(ClangN.getAsDecl()));
size_t Size = totalSizeToAlloc<AccessPathElement>(Path.size());
void *ptr = allocateMemoryForDecl<ImportDecl>(Ctx, Size, !ClangN.isNull());
auto D = new (ptr) ImportDecl(DC, ImportLoc, Kind, KindLoc, Path);
if (ClangN)
D->setClangNode(ClangN);
return D;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
SourceLoc KindLoc, ArrayRef<AccessPathElement> Path)
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc) {
Bits.ImportDecl.NumPathElements = Path.size();
assert(Bits.ImportDecl.NumPathElements == Path.size() && "Truncation error");
Bits.ImportDecl.ImportKind = static_cast<unsigned>(K);
assert(getImportKind() == K && "not enough bits for ImportKind");
std::uninitialized_copy(Path.begin(), Path.end(),
getTrailingObjects<AccessPathElement>());
}
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::PrecedenceGroup:
case DeclKind::MissingMember:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
case DeclKind::Param:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::TypeAlias: {
Type type = cast<TypeAliasDecl>(VD)->getDeclaredInterfaceType();
auto *nominal = type->getAnyNominal();
if (!nominal)
return ImportKind::Type;
return getBestImportKind(nominal);
}
case DeclKind::Accessor:
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
case DeclKind::Module:
return ImportKind::Module;
}
llvm_unreachable("bad DeclKind");
}
Optional<ImportKind>
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
assert(!Decls.empty());
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
// FIXME: Only functions can be overloaded.
if (Decls.size() == 1)
return FirstKind;
if (FirstKind != ImportKind::Func)
return None;
for (auto NextDecl : Decls.slice(1)) {
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
return None;
}
return FirstKind;
}
void NominalTypeDecl::setConformanceLoader(LazyMemberLoader *lazyLoader,
uint64_t contextData) {
assert(!Bits.NominalTypeDecl.HasLazyConformances &&
"Already have lazy conformances");
Bits.NominalTypeDecl.HasLazyConformances = true;
ASTContext &ctx = getASTContext();
auto contextInfo = ctx.getOrCreateLazyIterableContextData(this, lazyLoader);
contextInfo->allConformancesData = contextData;
}
std::pair<LazyMemberLoader *, uint64_t>
NominalTypeDecl::takeConformanceLoaderSlow() {
assert(Bits.NominalTypeDecl.HasLazyConformances && "not lazy conformances");
Bits.NominalTypeDecl.HasLazyConformances = false;
auto contextInfo =
getASTContext().getOrCreateLazyIterableContextData(this, nullptr);
return { contextInfo->loader, contextInfo->allConformancesData };
}
ExtensionDecl::ExtensionDecl(SourceLoc extensionLoc,
TypeLoc extendedType,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause)
: GenericContext(DeclContextKind::ExtensionDecl, parent),
Decl(DeclKind::Extension, parent),
IterableDeclContext(IterableDeclContextKind::ExtensionDecl),
ExtensionLoc(extensionLoc),
ExtendedType(extendedType),
Inherited(inherited)
{
Bits.ExtensionDecl.DefaultAndMaxAccessLevel = 0;
Bits.ExtensionDecl.HasLazyConformances = false;
setTrailingWhereClause(trailingWhereClause);
}
ExtensionDecl *ExtensionDecl::create(ASTContext &ctx, SourceLoc extensionLoc,
TypeLoc extendedType,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause,
ClangNode clangNode) {
unsigned size = sizeof(ExtensionDecl);
void *declPtr = allocateMemoryForDecl<ExtensionDecl>(ctx, size,
!clangNode.isNull());
// Construct the extension.
auto result = ::new (declPtr) ExtensionDecl(extensionLoc, extendedType,
inherited, parent,
trailingWhereClause);
if (clangNode)
result->setClangNode(clangNode);
return result;
}
void ExtensionDecl::setConformanceLoader(LazyMemberLoader *lazyLoader,
uint64_t contextData) {
assert(!Bits.ExtensionDecl.HasLazyConformances &&
"Already have lazy conformances");
Bits.ExtensionDecl.HasLazyConformances = true;
ASTContext &ctx = getASTContext();
auto contextInfo = ctx.getOrCreateLazyIterableContextData(this, lazyLoader);
contextInfo->allConformancesData = contextData;
}
std::pair<LazyMemberLoader *, uint64_t>
ExtensionDecl::takeConformanceLoaderSlow() {
assert(Bits.ExtensionDecl.HasLazyConformances && "no conformance loader?");
Bits.ExtensionDecl.HasLazyConformances = false;
auto contextInfo =
getASTContext().getOrCreateLazyIterableContextData(this, nullptr);
return { contextInfo->loader, contextInfo->allConformancesData };
}
NominalTypeDecl *ExtensionDecl::getExtendedNominal() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
ExtendedNominalRequest{const_cast<ExtensionDecl *>(this)}, nullptr);
}
bool ExtensionDecl::isConstrainedExtension() const {
// Non-generic extension.
if (!getGenericSignature())
return false;
auto nominal = getExtendedNominal();
assert(nominal);
// If the generic signature differs from that of the nominal type, it's a
// constrained extension.
return getGenericSignature()->getCanonicalSignature()
!= nominal->getGenericSignature()->getCanonicalSignature();
}
bool ExtensionDecl::isEquivalentToExtendedContext() const {
auto decl = getExtendedNominal();
return getParentModule() == decl->getParentModule()
&& !isConstrainedExtension()
&& !getDeclaredInterfaceType()->isExistentialType();
}
AccessLevel ExtensionDecl::getDefaultAccessLevel() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
DefaultAndMaxAccessLevelRequest{const_cast<ExtensionDecl *>(this)},
{AccessLevel::Private, AccessLevel::Private}).first;
}
AccessLevel ExtensionDecl::getMaxAccessLevel() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
DefaultAndMaxAccessLevelRequest{const_cast<ExtensionDecl *>(this)},
{AccessLevel::Private, AccessLevel::Private}).second;
}
/// Clone the given generic parameters in the given list. We don't need any
/// of the requirements, because they will be inferred.
static GenericParamList *cloneGenericParams(ASTContext &ctx,
ExtensionDecl *ext,
GenericParamList *fromParams) {
// Clone generic parameters.
SmallVector<GenericTypeParamDecl *, 2> toGenericParams;
for (auto fromGP : *fromParams) {
// Create the new generic parameter.
auto toGP = new (ctx) GenericTypeParamDecl(ext, fromGP->getName(),
SourceLoc(),
fromGP->getDepth(),
fromGP->getIndex());
toGP->setImplicit(true);
// Record new generic parameter.
toGenericParams.push_back(toGP);
}
return GenericParamList::create(ctx, SourceLoc(), toGenericParams,
SourceLoc());
}
static GenericParamList *
createExtensionGenericParams(ASTContext &ctx,
ExtensionDecl *ext,
NominalTypeDecl *nominal) {
// Collect generic parameters from all outer contexts.
SmallVector<GenericParamList *, 2> allGenericParams;
nominal->forEachGenericContext([&](GenericParamList *gpList) {
allGenericParams.push_back(
cloneGenericParams(ctx, ext, gpList));
});
GenericParamList *toParams = nullptr;
for (auto *gpList : reversed(allGenericParams)) {
gpList->setOuterParameters(toParams);
toParams = gpList;
}
return toParams;
}
void ExtensionDecl::createGenericParamsIfMissing(NominalTypeDecl *nominal) {
if (getGenericParams())
return;
// Hack to force generic parameter lists of protocols to be created if the
// nominal is an (invalid) nested type of a protocol.
DeclContext *outerDC = nominal;
while (!outerDC->isModuleScopeContext()) {
if (auto *proto = dyn_cast<ProtocolDecl>(outerDC))
proto->createGenericParamsIfMissing();
outerDC = outerDC->getParent();
}
// Create the generic parameter list for the extension by cloning the
// generic parameter lists of the nominal and any of its parent types.
auto &ctx = getASTContext();
auto *genericParams = createExtensionGenericParams(ctx, this, nominal);
setGenericParams(genericParams);
// Protocol extensions need an inheritance clause due to how name lookup
// is implemented.
if (auto *proto = dyn_cast<ProtocolDecl>(nominal)) {
auto protoType = proto->getDeclaredType();
TypeLoc selfInherited[1] = { TypeLoc::withoutLoc(protoType) };
genericParams->getParams().front()->setInherited(
ctx.AllocateCopy(selfInherited));
}
// Set the depth of every generic parameter.
unsigned depth = nominal->getGenericContextDepth();
for (auto *outerParams = genericParams;
outerParams != nullptr;
outerParams = outerParams->getOuterParameters())
outerParams->setDepth(depth--);
// If we have a trailing where clause, deal with it now.
// For now, trailing where clauses are only permitted on protocol extensions.
if (auto trailingWhereClause = getTrailingWhereClause()) {
if (genericParams) {
// Merge the trailing where clause into the generic parameter list.
// FIXME: Long-term, we'd like clients to deal with the trailing where
// clause explicitly, but for now it's far more direct to represent
// the trailing where clause as part of the requirements.
genericParams->addTrailingWhereClause(
getASTContext(),
trailingWhereClause->getWhereLoc(),
trailingWhereClause->getRequirements());
}
// If there's no generic parameter list, the where clause is diagnosed
// in typeCheckDecl().
}
}
PatternBindingDecl::PatternBindingDecl(SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent)
: Decl(DeclKind::PatternBinding, Parent),
StaticLoc(StaticLoc), VarLoc(VarLoc) {
Bits.PatternBindingDecl.IsStatic = StaticLoc.isValid();
Bits.PatternBindingDecl.StaticSpelling =
static_cast<unsigned>(StaticSpelling);
Bits.PatternBindingDecl.NumPatternEntries = NumPatternEntries;
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling, SourceLoc VarLoc,
Pattern *Pat, SourceLoc EqualLoc, Expr *E,
DeclContext *Parent) {
DeclContext *BindingInitContext = nullptr;
if (!Parent->isLocalContext())
BindingInitContext = new (Ctx) PatternBindingInitializer(Parent);
auto PBE = PatternBindingEntry(Pat, EqualLoc, E, BindingInitContext);
auto *Result = create(Ctx, StaticLoc, StaticSpelling, VarLoc, PBE, Parent);
if (BindingInitContext)
cast<PatternBindingInitializer>(BindingInitContext)->setBinding(Result, 0);
return Result;
}
PatternBindingDecl *PatternBindingDecl::createImplicit(
ASTContext &Ctx, StaticSpellingKind StaticSpelling, Pattern *Pat, Expr *E,
DeclContext *Parent, SourceLoc VarLoc) {
auto *Result = create(Ctx, /*StaticLoc*/ SourceLoc(), StaticSpelling, VarLoc,
Pat, /*EqualLoc*/ SourceLoc(), E, Parent);
Result->setImplicit();
return Result;
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
ArrayRef<PatternBindingEntry> PatternList,
DeclContext *Parent) {
size_t Size = totalSizeToAlloc<PatternBindingEntry>(PatternList.size());
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
/*ClangNode*/false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
PatternList.size(), Parent);
// Set up the patterns.
auto entries = PBD->getMutablePatternList();
unsigned elt = 0U-1;
for (auto pe : PatternList) {
++elt;
auto &newEntry = entries[elt];
newEntry = pe; // This should take care of initializer with flags
DeclContext *initContext = pe.getInitContext();
if (!initContext && !Parent->isLocalContext()) {
auto pbi = new (Ctx) PatternBindingInitializer(Parent);
pbi->setBinding(PBD, elt);
initContext = pbi;
}
PBD->setPattern(elt, pe.getPattern(), initContext);
}
return PBD;
}
PatternBindingDecl *PatternBindingDecl::createDeserialized(
ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent) {
size_t Size = totalSizeToAlloc<PatternBindingEntry>(NumPatternEntries);
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
/*ClangNode*/false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
NumPatternEntries, Parent);
for (auto &entry : PBD->getMutablePatternList()) {
entry = PatternBindingEntry(/*Pattern*/ nullptr, /*EqualLoc*/ SourceLoc(),
/*Init*/ nullptr, /*InitContext*/ nullptr);
}
return PBD;
}
ParamDecl *PatternBindingInitializer::getImplicitSelfDecl() {
if (SelfParam)
return SelfParam;
if (auto singleVar = getInitializedLazyVar()) {
auto DC = singleVar->getDeclContext();
if (DC->isTypeContext()) {
auto specifier = (DC->getDeclaredInterfaceType()->hasReferenceSemantics()
? VarDecl::Specifier::Default
: VarDecl::Specifier::InOut);
ASTContext &C = DC->getASTContext();
SelfParam = new (C) ParamDecl(specifier, SourceLoc(), SourceLoc(),
Identifier(), singleVar->getLoc(),
C.Id_self, this);
SelfParam->setImplicit();
SelfParam->setInterfaceType(DC->getSelfInterfaceType());
SelfParam->setValidationToChecked();
}
}
return SelfParam;
}
VarDecl *PatternBindingInitializer::getInitializedLazyVar() const {
if (auto var = getBinding()->getSingleVar()) {
if (var->getAttrs().hasAttribute<LazyAttr>())
return var;
}
return nullptr;
}
unsigned PatternBindingDecl::getPatternEntryIndexForVarDecl(const VarDecl *VD) const {
assert(VD && "Cannot find a null VarDecl");
auto List = getPatternList();
if (List.size() == 1) {
assert(List[0].getPattern()->containsVarDecl(VD) &&
"Single entry PatternBindingDecl is set up wrong");
return 0;
}
unsigned Result = 0;
for (auto entry : List) {
if (entry.getPattern()->containsVarDecl(VD))
return Result;
++Result;
}
assert(0 && "PatternBindingDecl doesn't bind the specified VarDecl!");
return ~0U;
}
SourceRange PatternBindingEntry::getOrigInitRange() const {
auto Init = getInitAsWritten();
return Init ? Init->getSourceRange() : SourceRange();
}
void PatternBindingEntry::setInit(Expr *E) {
auto F = PatternAndFlags.getInt();
if (E) {
PatternAndFlags.setInt(F - Flags::Removed);
} else {
PatternAndFlags.setInt(F | Flags::Removed);
}
InitExpr.Node = E;
InitContextAndIsText.setInt(false);
}
VarDecl *PatternBindingEntry::getAnchoringVarDecl() const {
SmallVector<VarDecl *, 8> variables;
getPattern()->collectVariables(variables);
assert(!variables.empty());
return variables[0];
}
SourceRange PatternBindingEntry::getSourceRange(bool omitAccessors) const {
// Patterns end at the initializer, if present.
SourceLoc endLoc = getOrigInitRange().End;
// If we're not banned from handling accessors, they follow the initializer.
if (!omitAccessors) {
getPattern()->forEachVariable([&](VarDecl *var) {
auto accessorsEndLoc = var->getBracesRange().End;
if (accessorsEndLoc.isValid())
endLoc = accessorsEndLoc;
});
}
// If we didn't find an end yet, check the pattern.
if (endLoc.isInvalid())
endLoc = getPattern()->getEndLoc();
SourceLoc startLoc = getPattern()->getStartLoc();
if (startLoc.isValid() != endLoc.isValid()) return SourceRange();
return SourceRange(startLoc, endLoc);
}
bool PatternBindingEntry::hasInitStringRepresentation() const {
if (InitContextAndIsText.getInt())
return !InitStringRepresentation.empty();
return getInit() && getInit()->getSourceRange().isValid();
}
StringRef PatternBindingEntry::getInitStringRepresentation(
SmallVectorImpl<char> &scratch) const {
assert(hasInitStringRepresentation() &&
"must check if pattern has string representation");
if (InitContextAndIsText.getInt() && !InitStringRepresentation.empty())
return InitStringRepresentation;
auto &sourceMgr = getAnchoringVarDecl()->getASTContext().SourceMgr;
auto init = getInit();
return extractInlinableText(sourceMgr, init, scratch);
}
SourceRange PatternBindingDecl::getSourceRange() const {
SourceLoc startLoc = getStartLoc();
SourceLoc endLoc = getPatternList().back().getSourceRange().End;
if (startLoc.isValid() != endLoc.isValid()) return SourceRange();
return { startLoc, endLoc };
}
static StaticSpellingKind getCorrectStaticSpellingForDecl(const Decl *D) {
if (!D->getDeclContext()->getSelfClassDecl())
return StaticSpellingKind::KeywordStatic;
return StaticSpellingKind::KeywordClass;
}
StaticSpellingKind PatternBindingDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
if (getStaticSpelling() != StaticSpellingKind::None)
return getStaticSpelling();
return getCorrectStaticSpellingForDecl(this);
}
bool PatternBindingDecl::hasStorage() const {
// Walk the pattern, to check to see if any of the VarDecls included in it
// have storage.
for (auto entry : getPatternList())
if (entry.getPattern()->hasStorage())
return true;
return false;
}
void PatternBindingDecl::setPattern(unsigned i, Pattern *P,
DeclContext *InitContext) {
auto PatternList = getMutablePatternList();
PatternList[i].setPattern(P);
PatternList[i].setInitContext(InitContext);
// Make sure that any VarDecl's contained within the pattern know about this
// PatternBindingDecl as their parent.
if (P)
P->forEachVariable([&](VarDecl *VD) {
VD->setParentPatternBinding(this);
});
}
VarDecl *PatternBindingDecl::getSingleVar() const {
if (getNumPatternEntries() == 1)
return getPatternList()[0].getPattern()->getSingleVar();
return nullptr;
}
bool VarDecl::isInitExposedToClients() const {
auto parent = dyn_cast<NominalTypeDecl>(getDeclContext());
if (!parent) return false;
if (!hasInitialValue()) return false;
if (isStatic()) return false;
return parent->getAttrs().hasAttribute<FixedLayoutAttr>();
}
/// Check whether the given type representation will be
/// default-initializable.
static bool isDefaultInitializable(const TypeRepr *typeRepr) {
// Look through most attributes.
if (const auto attributed = dyn_cast<AttributedTypeRepr>(typeRepr)) {
// Ownership kinds have optionalness requirements.
if (optionalityOf(attributed->getAttrs().getOwnership()) ==
ReferenceOwnershipOptionality::Required)
return true;
return isDefaultInitializable(attributed->getTypeRepr());
}
// Optional types are default-initializable.
if (isa<OptionalTypeRepr>(typeRepr) ||
isa<ImplicitlyUnwrappedOptionalTypeRepr>(typeRepr))
return true;
// Tuple types are default-initializable if all of their element
// types are.
if (const auto tuple = dyn_cast<TupleTypeRepr>(typeRepr)) {
// ... but not variadic ones.
if (tuple->hasEllipsis())
return false;
for (const auto elt : tuple->getElements()) {
if (!isDefaultInitializable(elt.Type))
return false;
}
return true;
}
// Not default initializable.
return false;
}
// @NSManaged properties never get default initialized, nor do debugger
// variables and immutable properties.
bool Pattern::isNeverDefaultInitializable() const {
bool result = false;
forEachVariable([&](const VarDecl *var) {
if (var->getAttrs().hasAttribute<NSManagedAttr>())
return;
if (var->isDebuggerVar() ||
var->isLet())
result = true;
});
return result;
}
bool PatternBindingDecl::isDefaultInitializable(unsigned i) const {
const auto entry = getPatternList()[i];
// If it has an initializer expression, this is trivially true.
if (entry.getInit())
return true;
if (entry.getPattern()->isNeverDefaultInitializable())
return false;
// If the pattern is typed as optional (or tuples thereof), it is
// default initializable.
if (const auto typedPattern = dyn_cast<TypedPattern>(entry.getPattern())) {
if (const auto typeRepr = typedPattern->getTypeLoc().getTypeRepr()) {
if (::isDefaultInitializable(typeRepr))
return true;
} else if (typedPattern->isImplicit()) {
// Lazy vars have implicit storage assigned to back them. Because the
// storage is implicit, the pattern is typed and has a TypeLoc, but not a
// TypeRepr.
//
// All lazy storage is implicitly default initializable, though, because
// lazy backing storage is optional.
if (const auto *varDecl = typedPattern->getSingleVar())
// Lazy storage is never user accessible.
if (!varDecl->isUserAccessible())
if (typedPattern->getTypeLoc().getType()->getOptionalObjectType())
return true;
}
}
// Otherwise, we can't default initialize this binding.
return false;
}
SourceLoc TopLevelCodeDecl::getStartLoc() const {
return Body->getStartLoc();
}
SourceRange TopLevelCodeDecl::getSourceRange() const {
return Body->getSourceRange();
}
SourceRange IfConfigDecl::getSourceRange() const {
return SourceRange(getLoc(), EndLoc);
}
static bool isPolymorphic(const AbstractStorageDecl *storage) {
if (storage->isObjCDynamic())
return true;
// Imported declarations behave like they are dynamic, even if they're
// not marked as such explicitly.
if (storage->isObjC() && storage->hasClangNode())
return true;
if (auto *classDecl = dyn_cast<ClassDecl>(storage->getDeclContext())) {
if (storage->isFinal() || classDecl->isFinal())
return false;
return true;
}
if (isa<ProtocolDecl>(storage->getDeclContext()))
return true;
return false;
}
static bool isDirectToStorageAccess(const AccessorDecl *accessor,
const VarDecl *var, bool isAccessOnSelf) {
// All accesses have ordinary semantics except those to variables
// with storage from within their own accessors.
if (accessor->getStorage() != var)
return false;
if (!var->hasStorage())
return false;
// In Swift 5 and later, the access must also be a member access on 'self'.
if (!isAccessOnSelf &&
var->getDeclContext()->isTypeContext() &&
var->getASTContext().isSwiftVersionAtLeast(5))
return false;
// As a special case, 'read' and 'modify' coroutines with forced static
// dispatch must use ordinary semantics, so that the 'modify' coroutine for a
// 'dynamic' property uses Objective-C message sends and not direct access to
// storage.
if (accessor->hasForcedStaticDispatch())
return false;
return true;
}
/// Determines the access semantics to use in a DeclRefExpr or
/// MemberRefExpr use of this value in the specified context.
AccessSemantics
ValueDecl::getAccessSemanticsFromContext(const DeclContext *UseDC,
bool isAccessOnSelf) const {
// The condition most likely to fast-path us is not being in an accessor,
// so we check that first.
if (auto *accessor = dyn_cast<AccessorDecl>(UseDC)) {
if (auto *var = dyn_cast<VarDecl>(this)) {
if (isDirectToStorageAccess(accessor, var, isAccessOnSelf))
return AccessSemantics::DirectToStorage;
}
}
// Otherwise, it's a semantically normal access. The client should be
// able to figure out the most efficient way to do this access.
return AccessSemantics::Ordinary;
}
static AccessStrategy
getDirectReadAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getReadImpl()) {
case ReadImplKind::Stored:
return AccessStrategy::getStorage();
case ReadImplKind::Inherited:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Get,
/*dispatch*/ false);
case ReadImplKind::Get:
return AccessStrategy::getAccessor(AccessorKind::Get,
/*dispatch*/ false);
case ReadImplKind::Address:
return AccessStrategy::getAccessor(AccessorKind::Address,
/*dispatch*/ false);
case ReadImplKind::Read:
return AccessStrategy::getAccessor(AccessorKind::Read,
/*dispatch*/ false);
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getDirectWriteAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getWriteImpl()) {
case WriteImplKind::Immutable:
assert(isa<VarDecl>(storage) && cast<VarDecl>(storage)->isLet() &&
"mutation of a immutable variable that isn't a let");
return AccessStrategy::getStorage();
case WriteImplKind::Stored:
return AccessStrategy::getStorage();
case WriteImplKind::StoredWithObservers:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::InheritedWithObservers:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::Set:
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::MutableAddress:
return AccessStrategy::getAccessor(AccessorKind::MutableAddress,
/*dispatch*/ false);
case WriteImplKind::Modify:
return AccessStrategy::getAccessor(AccessorKind::Modify,
/*dispatch*/ false);
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getOpaqueReadAccessStrategy(const AbstractStorageDecl *storage, bool dispatch);
static AccessStrategy
getOpaqueWriteAccessStrategy(const AbstractStorageDecl *storage, bool dispatch);
static AccessStrategy
getDirectReadWriteAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getReadWriteImpl()) {
case ReadWriteImplKind::Immutable:
assert(isa<VarDecl>(storage) && cast<VarDecl>(storage)->isLet() &&
"mutation of a immutable variable that isn't a let");
return AccessStrategy::getStorage();
case ReadWriteImplKind::Stored: {
// If the storage isDynamic (and not @objc) use the accessors.
if (storage->isNativeDynamic())
return AccessStrategy::getMaterializeToTemporary(
getOpaqueReadAccessStrategy(storage, false),
getOpaqueWriteAccessStrategy(storage, false));
return AccessStrategy::getStorage();
}
case ReadWriteImplKind::MutableAddress:
return AccessStrategy::getAccessor(AccessorKind::MutableAddress,
/*dispatch*/ false);
case ReadWriteImplKind::Modify:
return AccessStrategy::getAccessor(AccessorKind::Modify,
/*dispatch*/ false);
case ReadWriteImplKind::MaterializeToTemporary:
return AccessStrategy::getMaterializeToTemporary(
getDirectReadAccessStrategy(storage),
getDirectWriteAccessStrategy(storage));
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getOpaqueReadAccessStrategy(const AbstractStorageDecl *storage, bool dispatch) {
if (storage->requiresOpaqueReadCoroutine())
return AccessStrategy::getAccessor(AccessorKind::Read, dispatch);
return AccessStrategy::getAccessor(AccessorKind::Get, dispatch);
}
static AccessStrategy
getOpaqueWriteAccessStrategy(const AbstractStorageDecl *storage, bool dispatch){
return AccessStrategy::getAccessor(AccessorKind::Set, dispatch);
}
static AccessStrategy
getOpaqueReadWriteAccessStrategy(const AbstractStorageDecl *storage,
bool dispatch) {
if (storage->requiresOpaqueModifyCoroutine())
return AccessStrategy::getAccessor(AccessorKind::Modify, dispatch);
return AccessStrategy::getMaterializeToTemporary(
getOpaqueReadAccessStrategy(storage, dispatch),
getOpaqueWriteAccessStrategy(storage, dispatch));
}
static AccessStrategy
getOpaqueAccessStrategy(const AbstractStorageDecl *storage,
AccessKind accessKind, bool dispatch) {
switch (accessKind) {
case AccessKind::Read:
return getOpaqueReadAccessStrategy(storage, dispatch);
case AccessKind::Write:
return getOpaqueWriteAccessStrategy(storage, dispatch);
case AccessKind::ReadWrite:
return getOpaqueReadWriteAccessStrategy(storage, dispatch);
}
llvm_unreachable("bad access kind");
}
AccessStrategy
AbstractStorageDecl::getAccessStrategy(AccessSemantics semantics,
AccessKind accessKind,
ModuleDecl *module,
ResilienceExpansion expansion) const {
switch (semantics) {
case AccessSemantics::DirectToStorage:
assert(hasStorage());
return AccessStrategy::getStorage();
case AccessSemantics::Ordinary:
// Skip these checks for local variables, both because they're unnecessary
// and because we won't necessarily have computed access.
if (!getDeclContext()->isLocalContext()) {
// If the property is defined in a non-final class or a protocol, the
// accessors are dynamically dispatched, and we cannot do direct access.
if (isPolymorphic(this))
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ true);
if (isNativeDynamic())
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ false);
// If the storage is resilient from the given module and resilience
// expansion, we cannot use direct access.
//
// If we end up here with a stored property of a type that's resilient
// from some resilience domain, we cannot do direct access.
//
// As an optimization, we do want to perform direct accesses of stored
// properties declared inside the same resilience domain as the access
// context.
//
// This is done by using DirectToStorage semantics above, with the
// understanding that the access semantics are with respect to the
// resilience domain of the accessor's caller.
bool resilient;
if (module)
resilient = isResilient(module, expansion);
else
resilient = isResilient();
if (resilient)
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ false);
}
LLVM_FALLTHROUGH;
case AccessSemantics::DirectToImplementation:
switch (accessKind) {
case AccessKind::Read:
return getDirectReadAccessStrategy(this);
case AccessKind::Write:
return getDirectWriteAccessStrategy(this);
case AccessKind::ReadWrite:
return getDirectReadWriteAccessStrategy(this);
}
llvm_unreachable("bad access kind");
}
llvm_unreachable("bad access semantics");
}
bool AbstractStorageDecl::requiresOpaqueAccessor(AccessorKind kind) const {
switch (kind) {
case AccessorKind::Get:
return requiresOpaqueGetter();
case AccessorKind::Set:
return requiresOpaqueSetter();
case AccessorKind::Read:
return requiresOpaqueReadCoroutine();
case AccessorKind::Modify:
return requiresOpaqueModifyCoroutine();
// Other accessors are never part of the opaque-accessors set.
#define OPAQUE_ACCESSOR(ID, KEYWORD)
#define ACCESSOR(ID) \
case AccessorKind::ID:
#include "swift/AST/AccessorKinds.def"
return false;
}
llvm_unreachable("bad accessor kind");
}
bool AbstractStorageDecl::requiresOpaqueModifyCoroutine() const {
// Only for mutable storage.
if (!supportsMutation())
return false;
// Imported storage declarations don't have eagerly-generated modify
// accessors.
if (hasClangNode())
return false;
// Dynamic storage suppresses the modify coroutine.
// If we add a Swift-native concept of `dynamic`, this should be restricted
// to the ObjC-supported concept.
if (isObjCDynamic())
return false;
// Requirements of ObjC protocols don't support the modify coroutine.
auto *dc = getDeclContext();
if (auto protoDecl = dyn_cast<ProtocolDecl>(dc))
if (protoDecl->isObjC())
return false;
return true;
}
void AbstractStorageDecl::visitExpectedOpaqueAccessors(
llvm::function_ref<void (AccessorKind)> visit) const {
if (requiresOpaqueGetter())
visit(AccessorKind::Get);
if (requiresOpaqueReadCoroutine())
visit(AccessorKind::Read);
// All mutable storage should have a setter.
if (requiresOpaqueSetter())
visit(AccessorKind::Set);
// Include the modify coroutine if it's required.
if (requiresOpaqueModifyCoroutine())
visit(AccessorKind::Modify);
}
void AbstractStorageDecl::visitOpaqueAccessors(
llvm::function_ref<void (AccessorDecl*)> visit) const {
visitExpectedOpaqueAccessors([&](AccessorKind kind) {
auto accessor = getAccessor(kind);
assert(accessor && "didn't have expected opaque accessor");
visit(accessor);
});
}
static bool hasPrivateOrFilePrivateFormalAccess(const ValueDecl *D) {
return D->getFormalAccess() <= AccessLevel::FilePrivate;
}
/// Returns true if one of the ancestor DeclContexts of this ValueDecl is either
/// marked private or fileprivate or is a local context.
static bool isInPrivateOrLocalContext(const ValueDecl *D) {
const DeclContext *DC = D->getDeclContext();
if (!DC->isTypeContext()) {
assert((DC->isModuleScopeContext() || DC->isLocalContext()) &&
"unexpected context kind");
return DC->isLocalContext();
}
auto *nominal = DC->getSelfNominalTypeDecl();
if (nominal == nullptr)
return false;
if (hasPrivateOrFilePrivateFormalAccess(nominal))
return true;
return isInPrivateOrLocalContext(nominal);
}
bool ValueDecl::isOutermostPrivateOrFilePrivateScope() const {
return hasPrivateOrFilePrivateFormalAccess(this) &&
!isInPrivateOrLocalContext(this);
}
bool AbstractStorageDecl::isFormallyResilient() const {
// Check for an explicit @_fixed_layout attribute.
if (getAttrs().hasAttribute<FixedLayoutAttr>())
return false;
// If we're an instance property of a nominal type, query the type.
auto *dc = getDeclContext();
if (!isStatic())
if (auto *nominalDecl = dc->getSelfNominalTypeDecl())
return nominalDecl->isResilient();
// Non-public global and static variables always have a
// fixed layout.
if (!getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true).isPublic())
return false;
return true;
}
bool AbstractStorageDecl::isResilient() const {
if (!isFormallyResilient())
return false;
return getModuleContext()->isResilient();
}
bool AbstractStorageDecl::isResilient(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return isResilient();
case ResilienceExpansion::Maximal:
return M != getModuleContext() && isResilient();
}
llvm_unreachable("bad resilience expansion");
}
static bool isValidKeyPathComponent(AbstractStorageDecl *decl) {
// If this property or subscript is not an override, we can reference it
// from a keypath component.
auto base = decl->getOverriddenDecl();
if (!base)
return true;
// Otherwise, we can only reference it if the type is not ABI-compatible
// with the type of the base.
//
// If the type is ABI compatible with the type of the base, we have to
// reference the base instead.
auto baseInterfaceTy = base->getInterfaceType();
auto derivedInterfaceTy = decl->getInterfaceType();
auto selfInterfaceTy = decl->getDeclContext()->getDeclaredInterfaceType();
auto overrideInterfaceTy = selfInterfaceTy->adjustSuperclassMemberDeclType(
base, decl, baseInterfaceTy);
return !derivedInterfaceTy->matches(overrideInterfaceTy,
TypeMatchFlags::AllowABICompatible);
}
void AbstractStorageDecl::computeIsValidKeyPathComponent() {
setIsValidKeyPathComponent(::isValidKeyPathComponent(this));
}
bool ValueDecl::isInstanceMember() const {
DeclContext *DC = getDeclContext();
if (!DC->isTypeContext())
return false;
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::PrecedenceGroup:
case DeclKind::MissingMember:
llvm_unreachable("Not a ValueDecl");
case DeclKind::Class:
case DeclKind::Enum:
case DeclKind::Protocol:
case DeclKind::Struct:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
// Types are not instance members.
return false;
case DeclKind::Constructor:
// Constructors are not instance members.
return false;
case DeclKind::Destructor:
// Destructors are technically instance members, although they
// can't actually be referenced as such.
return true;
case DeclKind::Func:
case DeclKind::Accessor:
// Non-static methods are instance members.
return !cast<FuncDecl>(this)->isStatic();
case DeclKind::EnumElement:
case DeclKind::Param:
// enum elements and function parameters are not instance members.
return false;
case DeclKind::Subscript:
case DeclKind::Var:
// Non-static variables and subscripts are instance members.
return !cast<AbstractStorageDecl>(this)->isStatic();
case DeclKind::Module:
// Modules are never instance members.
return false;
}
llvm_unreachable("bad DeclKind");
}
unsigned ValueDecl::getLocalDiscriminator() const {
return LocalDiscriminator;
}
void ValueDecl::setLocalDiscriminator(unsigned index) {
assert(getDeclContext()->isLocalContext());
assert(LocalDiscriminator == 0 && "LocalDiscriminator is set multiple times");
LocalDiscriminator = index;
}
ValueDecl *ValueDecl::getOverriddenDecl() const {
auto overridden = getOverriddenDecls();
if (overridden.empty()) return nullptr;
// FIXME: Arbitrarily pick the first overridden declaration.
return overridden.front();
}
bool ValueDecl::overriddenDeclsComputed() const {
return LazySemanticInfo.hasOverriddenComputed;
}
bool swift::conflicting(const OverloadSignature& sig1,
const OverloadSignature& sig2,
bool skipProtocolExtensionCheck) {
// A member of a protocol extension never conflicts with a member of a
// protocol.
if (!skipProtocolExtensionCheck &&
sig1.InProtocolExtension != sig2.InProtocolExtension)
return false;
// If the base names are different, they can't conflict.
if (sig1.Name.getBaseName() != sig2.Name.getBaseName())
return false;
// If one is an operator and the other is not, they can't conflict.
if (sig1.UnaryOperator != sig2.UnaryOperator)
return false;
// If one is an instance and the other is not, they can't conflict.
if (sig1.IsInstanceMember != sig2.IsInstanceMember)
return false;
// If one is a compound name and the other is not, they do not conflict
// if one is a property and the other is a non-nullary function.
if (sig1.Name.isCompoundName() != sig2.Name.isCompoundName()) {
return !((sig1.IsVariable && !sig2.Name.getArgumentNames().empty()) ||
(sig2.IsVariable && !sig1.Name.getArgumentNames().empty()));
}
return sig1.Name == sig2.Name;
}
bool swift::conflicting(ASTContext &ctx,
const OverloadSignature& sig1, CanType sig1Type,
const OverloadSignature& sig2, CanType sig2Type,
bool *wouldConflictInSwift5,
bool skipProtocolExtensionCheck) {
// If the signatures don't conflict to begin with, we're done.
if (!conflicting(sig1, sig2, skipProtocolExtensionCheck))
return false;
// Functions and enum elements do not conflict with each other if their types
// are different.
if (((sig1.IsFunction && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsFunction)) &&
sig1Type != sig2Type) {
return false;
}
// Nominal types and enum elements always conflict with each other.
if ((sig1.IsNominal && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsNominal)) {
return true;
}
// Typealiases and enum elements always conflict with each other.
if ((sig1.IsTypeAlias && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsTypeAlias)) {
return true;
}
// Enum elements always conflict with each other. At this point, they
// have the same base name but different types.
if (sig1.IsEnumElement && sig2.IsEnumElement) {
return true;
}
// Functions always conflict with non-functions with the same signature.
// In practice, this only applies for zero argument functions.
if (sig1.IsFunction != sig2.IsFunction)
return true;
// Variables always conflict with non-variables with the same signature.
// (e.g variables with zero argument functions, variables with type
// declarations)
if (sig1.IsVariable != sig2.IsVariable) {
// Prior to Swift 5, we permitted redeclarations of variables as different
// declarations if the variable was declared in an extension of a generic
// type. Make sure we maintain this behaviour in versions < 5.
if (!ctx.isSwiftVersionAtLeast(5)) {
if ((sig1.IsVariable && sig1.InExtensionOfGenericType) ||
(sig2.IsVariable && sig2.InExtensionOfGenericType)) {
if (wouldConflictInSwift5)
*wouldConflictInSwift5 = true;
return false;
}
}
return true;
}
// Otherwise, the declarations conflict if the overload types are the same.
if (sig1Type != sig2Type)
return false;
// The Swift 5 overload types are the same, but similar to the above, prior to
// Swift 5, a variable not in an extension of a generic type got a null
// overload type instead of a function type as it does now, so we really
// follow that behaviour and warn if there's going to be a conflict in future.
if (!ctx.isSwiftVersionAtLeast(5)) {
auto swift4Sig1Type = sig1.IsVariable && !sig1.InExtensionOfGenericType
? CanType()
: sig1Type;
auto swift4Sig2Type = sig1.IsVariable && !sig2.InExtensionOfGenericType
? CanType()
: sig1Type;
if (swift4Sig1Type != swift4Sig2Type) {
// Old was different to the new behaviour!
if (wouldConflictInSwift5)
*wouldConflictInSwift5 = true;
return false;
}
}
return true;
}
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels);
/// Map a type within the signature of a declaration.
static Type mapSignatureType(ASTContext &ctx, Type type) {
return type.transform([&](Type type) -> Type {
if (type->is<FunctionType>()) {
return mapSignatureFunctionType(ctx, type, false, false, false, 1);
}
return type;
});
}
/// Map a signature type for a parameter.
static Type mapSignatureParamType(ASTContext &ctx, Type type) {
return mapSignatureType(ctx, type);
}
/// Map an ExtInfo for a function type.
///
/// When checking if two signatures should be equivalent for overloading,
/// we may need to compare the extended information.
///
/// In the type of the function declaration, none of the extended information
/// is relevant. We cannot overload purely on 'throws' or the calling
/// convention of the declaration itself.
///
/// For function parameter types, we do want to be able to overload on
/// 'throws', since that is part of the mangled symbol name, but not
/// @noescape.
static AnyFunctionType::ExtInfo
mapSignatureExtInfo(AnyFunctionType::ExtInfo info,
bool topLevelFunction) {
if (topLevelFunction)
return AnyFunctionType::ExtInfo();
return AnyFunctionType::ExtInfo()
.withRepresentation(info.getRepresentation())
.withThrows(info.throws());
}
/// Map a function's type to the type used for computing signatures,
/// which involves stripping some attributes, stripping default arguments,
/// transforming implicitly unwrapped optionals into strict optionals,
/// stripping 'inout' on the 'self' parameter etc.
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels) {
if (type->hasError()) {
return type;
}
if (curryLevels == 0) {
// In an initializer, ignore optionality.
if (isInitializer) {
if (auto objectType = type->getOptionalObjectType()) {
type = objectType;
}
}
return mapSignatureParamType(ctx, type);
}
auto funcTy = type->castTo<AnyFunctionType>();
SmallVector<AnyFunctionType::Param, 4> newParams;
for (const auto &param : funcTy->getParams()) {
auto newParamType = mapSignatureParamType(ctx, param.getPlainType());
ParameterTypeFlags newFlags = param.getParameterFlags().withEscaping(false);
// For the 'self' of a method, strip off 'inout'.
if (isMethod) {
newFlags = newFlags.withInOut(false);
}
AnyFunctionType::Param newParam(newParamType, param.getLabel(), newFlags);
newParams.push_back(newParam);
}
// Map the result type.
auto resultTy = mapSignatureFunctionType(
ctx, funcTy->getResult(), topLevelFunction, false, isInitializer,
curryLevels - 1);
// Map various attributes differently depending on if we're looking at
// the declaration, or a function parameter type.
AnyFunctionType::ExtInfo info = mapSignatureExtInfo(
funcTy->getExtInfo(), topLevelFunction);
// Rebuild the resulting function type.
if (auto genericFuncTy = dyn_cast<GenericFunctionType>(funcTy))
return GenericFunctionType::get(genericFuncTy->getGenericSignature(),
newParams, resultTy, info);
return FunctionType::get(newParams, resultTy, info);
}
OverloadSignature ValueDecl::getOverloadSignature() const {
OverloadSignature signature;
signature.Name = getFullName();
signature.InProtocolExtension
= static_cast<bool>(getDeclContext()->getExtendedProtocolDecl());
signature.IsInstanceMember = isInstanceMember();
signature.IsVariable = isa<VarDecl>(this);
signature.IsFunction = isa<AbstractFunctionDecl>(this);
signature.IsEnumElement = isa<EnumElementDecl>(this);
signature.IsNominal = isa<NominalTypeDecl>(this);
signature.IsTypeAlias = isa<TypeAliasDecl>(this);
// Unary operators also include prefix/postfix.
if (auto func = dyn_cast<FuncDecl>(this)) {
if (func->isUnaryOperator()) {
signature.UnaryOperator = func->getAttrs().getUnaryOperatorKind();
}
}
if (auto *extension = dyn_cast<ExtensionDecl>(getDeclContext()))
if (extension->isGeneric())
signature.InExtensionOfGenericType = true;
return signature;
}
CanType ValueDecl::getOverloadSignatureType() const {
if (auto *afd = dyn_cast<AbstractFunctionDecl>(this)) {
bool isMethod = afd->hasImplicitSelfDecl();
return mapSignatureFunctionType(
getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true,
isMethod,
/*isInitializer=*/isa<ConstructorDecl>(afd),
isMethod ? 2 : 1)->getCanonicalType();
}
if (isa<AbstractStorageDecl>(this)) {
// First, get the default overload signature type for the decl. For vars,
// this is the empty tuple type, as variables cannot be overloaded directly
// by type. For subscripts, it's their interface type.
CanType defaultSignatureType;
if (isa<VarDecl>(this)) {
defaultSignatureType = TupleType::getEmpty(getASTContext());
} else {
defaultSignatureType = mapSignatureFunctionType(
getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true,
/*isMethod=*/false,
/*isInitializer=*/false,
1)->getCanonicalType();
}
// We want to curry the default signature type with the 'self' type of the
// given context (if any) in order to ensure the overload signature type
// is unique across different contexts, such as between a protocol extension
// and struct decl.
return defaultSignatureType->addCurriedSelfType(getDeclContext())
->getCanonicalType();
}
if (isa<EnumElementDecl>(this)) {
auto mappedType = mapSignatureFunctionType(
getASTContext(), getInterfaceType(), /*topLevelFunction=*/false,
/*isMethod=*/false, /*isInitializer=*/false, /*curryLevels=*/0);
return mappedType->getCanonicalType();
}
// Note: If you add more cases to this function, you should update the
// implementation of the swift::conflicting overload that deals with
// overload types, in order to account for cases where the overload types
// don't match, but the decls differ and therefore always conflict.
return CanType();
}
llvm::TinyPtrVector<ValueDecl *> ValueDecl::getOverriddenDecls() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
OverriddenDeclsRequest{const_cast<ValueDecl *>(this)}, {});
}
void ValueDecl::setOverriddenDecls(ArrayRef<ValueDecl *> overridden) {
llvm::TinyPtrVector<ValueDecl *> overriddenVec(overridden);
OverriddenDeclsRequest request{const_cast<ValueDecl *>(this)};
request.cacheResult(overriddenVec);
}
bool ValueDecl::isObjC() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsObjCRequest{const_cast<ValueDecl *>(this)},
getAttrs().hasAttribute<ObjCAttr>());
}
void ValueDecl::setIsObjC(bool value) {
assert(!LazySemanticInfo.isObjCComputed || LazySemanticInfo.isObjC == value);
if (LazySemanticInfo.isObjCComputed) {
assert(LazySemanticInfo.isObjC == value);
return;
}
LazySemanticInfo.isObjCComputed = true;
LazySemanticInfo.isObjC = value;
}
bool ValueDecl::isDynamic() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsDynamicRequest{const_cast<ValueDecl *>(this)},
getAttrs().hasAttribute<DynamicAttr>());
}
void ValueDecl::setIsDynamic(bool value) {
assert(!LazySemanticInfo.isDynamicComputed ||
LazySemanticInfo.isDynamic == value);
if (LazySemanticInfo.isDynamicComputed) {
assert(LazySemanticInfo.isDynamic == value);
return;
}
LazySemanticInfo.isDynamicComputed = true;
LazySemanticInfo.isDynamic = value;
}
bool ValueDecl::canBeAccessedByDynamicLookup() const {
if (!hasName())
return false;
// Dynamic lookup can only find class and protocol members, or extensions of
// classes.
auto nominalDC = getDeclContext()->getSelfNominalTypeDecl();
if (!nominalDC ||
(!isa<ClassDecl>(nominalDC) && !isa<ProtocolDecl>(nominalDC)))
return false;
// Dynamic lookup cannot find results within a non-protocol generic context,
// because there is no sensible way to infer the generic arguments.
if (getDeclContext()->isGenericContext() && !isa<ProtocolDecl>(nominalDC))
return false;
// Dynamic lookup can find functions, variables, and subscripts.
if (!isa<FuncDecl>(this) && !isa<VarDecl>(this) && !isa<SubscriptDecl>(this))
return false;
// Dynamic lookup can only find @objc members.
if (!isObjC())
return false;
return true;
}
ArrayRef<ValueDecl *>
ValueDecl::getSatisfiedProtocolRequirements(bool Sorted) const {
// Dig out the nominal type.
NominalTypeDecl *NTD = getDeclContext()->getSelfNominalTypeDecl();
if (!NTD || isa<ProtocolDecl>(NTD))
return {};
return NTD->getSatisfiedProtocolRequirementsForMember(this, Sorted);
}
bool ValueDecl::isProtocolRequirement() const {
assert(isa<ProtocolDecl>(getDeclContext()));
if (isa<AccessorDecl>(this) ||
isa<TypeAliasDecl>(this) ||
isa<NominalTypeDecl>(this))
return false;
return true;
}
bool ValueDecl::hasInterfaceType() const {
return !TypeAndAccess.getPointer().isNull();
}
Type ValueDecl::getInterfaceType() const {
assert(hasInterfaceType() && "No interface type was set");
return TypeAndAccess.getPointer();
}
void ValueDecl::setInterfaceType(Type type) {
if (type) {
assert(!type->hasTypeVariable() && "Type variable in interface type");
assert(!type->is<InOutType>() && "Interface type must be materializable");
// ParamDecls in closure contexts can have type variables
// archetype in them during constraint generation.
if (!(isa<ParamDecl>(this) && isa<AbstractClosureExpr>(getDeclContext()))) {
assert(!type->hasArchetype() &&
"Archetype in interface type");
}
if (type->hasError())
setInvalid();
}
TypeAndAccess.setPointer(type);
}
bool ValueDecl::hasValidSignature() const {
if (!hasInterfaceType())
return false;
// FIXME -- The build blows up if the correct code is used:
// return getValidationState() > ValidationState::CheckingWithValidSignature;
return getValidationState() != ValidationState::Checking;
}
Optional<ObjCSelector> ValueDecl::getObjCRuntimeName(
bool skipIsObjCResolution) const {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func->getObjCSelector(DeclName(), skipIsObjCResolution);
ASTContext &ctx = getASTContext();
auto makeSelector = [&](Identifier name) -> ObjCSelector {
return ObjCSelector(ctx, 0, { name });
};
if (auto classDecl = dyn_cast<ClassDecl>(this)) {
SmallString<32> scratch;
return makeSelector(
ctx.getIdentifier(classDecl->getObjCRuntimeName(scratch)));
}
if (auto protocol = dyn_cast<ProtocolDecl>(this)) {
SmallString<32> scratch;
return makeSelector(
ctx.getIdentifier(protocol->getObjCRuntimeName(scratch)));
}
if (auto var = dyn_cast<VarDecl>(this))
return makeSelector(var->getObjCPropertyName());
return None;
}
bool ValueDecl::canInferObjCFromRequirement(ValueDecl *requirement) {
// Only makes sense for a requirement of an @objc protocol.
auto proto = cast<ProtocolDecl>(requirement->getDeclContext());
if (!proto->isObjC()) return false;
// Only makes sense when this declaration is within a nominal type
// or extension thereof.
auto nominal = getDeclContext()->getSelfNominalTypeDecl();
if (!nominal) return false;
// If there is already an @objc attribute with an explicit name, we
// can't infer a name (it's already there).
if (auto objcAttr = getAttrs().getAttribute<ObjCAttr>()) {
if (!objcAttr->isNameImplicit()) return false;
}
// If the nominal type doesn't conform to the protocol at all, we
// cannot infer @objc no matter what we do.
SmallVector<ProtocolConformance *, 1> conformances;
if (!nominal->lookupConformance(getModuleContext(), proto, conformances))
return false;
// If any of the conformances is attributed to the context in which
// this declaration resides, we can infer @objc or the Objective-C
// name.
auto dc = getDeclContext();
for (auto conformance : conformances) {
if (conformance->getDeclContext() == dc)
return true;
}
// Nothing to infer from.
return false;
}
SourceLoc ValueDecl::getAttributeInsertionLoc(bool forModifier) const {
if (isImplicit())
return SourceLoc();
if (auto var = dyn_cast<VarDecl>(this)) {
// [attrs] var ...
// The attributes are part of the VarDecl, but the 'var' is part of the PBD.
SourceLoc resultLoc = var->getAttrs().getStartLoc(forModifier);
if (resultLoc.isValid()) {
return resultLoc;
} else if (auto pbd = var->getParentPatternBinding()) {
return pbd->getStartLoc();
} else {
return var->getStartLoc();
}
}
SourceLoc resultLoc = getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : getStartLoc();
}
/// Returns true if \p VD needs to be treated as publicly-accessible
/// at the SIL, LLVM, and machine levels due to being @usableFromInline.
bool ValueDecl::isUsableFromInline() const {
assert(getFormalAccess() == AccessLevel::Internal);
if (getAttrs().hasAttribute<UsableFromInlineAttr>() ||
getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>() ||
getAttrs().hasAttribute<InlinableAttr>())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(this)) {
auto *storage = accessor->getStorage();
if (storage->getAttrs().hasAttribute<UsableFromInlineAttr>() ||
storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>() ||
storage->getAttrs().hasAttribute<InlinableAttr>())
return true;
}
if (auto *EED = dyn_cast<EnumElementDecl>(this))
if (EED->getParentEnum()->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
if (auto *containingProto = dyn_cast<ProtocolDecl>(getDeclContext())) {
if (containingProto->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
}
if (auto *DD = dyn_cast<DestructorDecl>(this))
if (auto *CD = dyn_cast<ClassDecl>(DD->getDeclContext()))
if (CD->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
return false;
}
bool ValueDecl::shouldHideFromEditor() const {
// Hide private stdlib declarations.
if (isPrivateStdlibDecl(/*treatNonBuiltinProtocolsAsPublic*/ false) ||
// ShowInInterfaceAttr is for decls to show in interface as exception but
// they are not intended to be used directly.
getAttrs().hasAttribute<ShowInInterfaceAttr>())
return true;
if (AvailableAttr::isUnavailable(this))
return true;
if (auto *ClangD = getClangDecl()) {
if (ClangD->hasAttr<clang::SwiftPrivateAttr>())
return true;
}
if (!isUserAccessible())
return true;
// Hide editor placeholders.
if (getBaseName().isEditorPlaceholder())
return true;
return false;
}
/// Return maximally open access level which could be associated with the
/// given declaration accounting for @testable importers.
static AccessLevel getMaximallyOpenAccessFor(const ValueDecl *decl) {
// Non-final classes are considered open to @testable importers.
if (auto cls = dyn_cast<ClassDecl>(decl)) {
if (!cls->isFinal())
return AccessLevel::Open;
// Non-final overridable class members are considered open to
// @testable importers.
} else if (decl->isPotentiallyOverridable()) {
if (!cast<ValueDecl>(decl)->isFinal())
return AccessLevel::Open;
}
// Everything else is considered public.
return AccessLevel::Public;
}
/// Adjust \p access based on whether \p VD is \@usableFromInline or has been
/// testably imported from \p useDC.
///
/// \p access isn't always just `VD->getFormalAccess()` because this adjustment
/// may be for a write, in which case the setter's access might be used instead.
static AccessLevel getAdjustedFormalAccess(const ValueDecl *VD,
AccessLevel access,
const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
// If access control is disabled in the current context, adjust
// access level of the current declaration to be as open as possible.
if (useDC && VD->getASTContext().isAccessControlDisabled())
return getMaximallyOpenAccessFor(VD);
if (treatUsableFromInlineAsPublic &&
access == AccessLevel::Internal &&
VD->isUsableFromInline()) {
return AccessLevel::Public;
}
if (useDC) {
// Check whether we need to modify the access level based on
// @testable/@_private import attributes.
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
if (!useSF) return access;
if (useSF->hasTestableOrPrivateImport(access, VD))
return getMaximallyOpenAccessFor(VD);
}
return access;
}
/// Convenience overload that uses `VD->getFormalAccess()` as the access to
/// adjust.
static AccessLevel
getAdjustedFormalAccess(const ValueDecl *VD, const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
return getAdjustedFormalAccess(VD, VD->getFormalAccess(), useDC,
treatUsableFromInlineAsPublic);
}
AccessLevel ValueDecl::getEffectiveAccess() const {
auto effectiveAccess =
getAdjustedFormalAccess(this, /*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
// Handle @testable/@_private(sourceFile:)
switch (effectiveAccess) {
case AccessLevel::Open:
break;
case AccessLevel::Public:
case AccessLevel::Internal:
if (getModuleContext()->isTestingEnabled() ||
getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
case AccessLevel::FilePrivate:
if (getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
case AccessLevel::Private:
effectiveAccess = AccessLevel::FilePrivate;
if (getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
}
auto restrictToEnclosing = [this](AccessLevel effectiveAccess,
AccessLevel enclosingAccess) -> AccessLevel{
if (effectiveAccess == AccessLevel::Open &&
enclosingAccess == AccessLevel::Public &&
isa<NominalTypeDecl>(this)) {
// Special case: an open class may be contained in a public
// class/struct/enum. Leave effectiveAccess as is.
return effectiveAccess;
}
return std::min(effectiveAccess, enclosingAccess);
};
if (auto enclosingNominal = dyn_cast<NominalTypeDecl>(getDeclContext())) {
effectiveAccess =
restrictToEnclosing(effectiveAccess,
enclosingNominal->getEffectiveAccess());
} else if (auto enclosingExt = dyn_cast<ExtensionDecl>(getDeclContext())) {
// Just check the base type. If it's a constrained extension, Sema should
// have already enforced access more strictly.
if (auto nominal = enclosingExt->getExtendedNominal()) {
effectiveAccess =
restrictToEnclosing(effectiveAccess, nominal->getEffectiveAccess());
}
} else if (getDeclContext()->isLocalContext()) {
effectiveAccess = AccessLevel::FilePrivate;
}
return effectiveAccess;
}
AccessLevel ValueDecl::getFormalAccess() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
AccessLevelRequest{const_cast<ValueDecl *>(this)}, AccessLevel::Private);
}
bool ValueDecl::hasOpenAccess(const DeclContext *useDC) const {
assert(isa<ClassDecl>(this) || isa<ConstructorDecl>(this) ||
isPotentiallyOverridable());
AccessLevel access =
getAdjustedFormalAccess(this, useDC,
/*treatUsableFromInlineAsPublic*/false);
return access == AccessLevel::Open;
}
/// Given the formal access level for using \p VD, compute the scope where
/// \p VD may be accessed, taking \@usableFromInline, \@testable imports,
/// and enclosing access levels into account.
///
/// \p access isn't always just `VD->getFormalAccess()` because this adjustment
/// may be for a write, in which case the setter's access might be used instead.
static AccessScope
getAccessScopeForFormalAccess(const ValueDecl *VD,
AccessLevel formalAccess,
const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
AccessLevel access = getAdjustedFormalAccess(VD, formalAccess, useDC,
treatUsableFromInlineAsPublic);
const DeclContext *resultDC = VD->getDeclContext();
while (!resultDC->isModuleScopeContext()) {
if (isa<TopLevelCodeDecl>(resultDC)) {
return AccessScope(resultDC->getModuleScopeContext(),
access == AccessLevel::Private);
}
if (resultDC->isLocalContext() || access == AccessLevel::Private)
return AccessScope(resultDC, /*private*/true);
if (auto enclosingNominal = dyn_cast<NominalTypeDecl>(resultDC)) {
auto enclosingAccess =
getAdjustedFormalAccess(enclosingNominal, useDC,
treatUsableFromInlineAsPublic);
access = std::min(access, enclosingAccess);
} else if (auto enclosingExt = dyn_cast<ExtensionDecl>(resultDC)) {
// Just check the base type. If it's a constrained extension, Sema should
// have already enforced access more strictly.
if (auto nominal = enclosingExt->getExtendedNominal()) {
if (nominal->getParentModule() == enclosingExt->getParentModule()) {
auto nominalAccess =
getAdjustedFormalAccess(nominal, useDC,
treatUsableFromInlineAsPublic);
access = std::min(access, nominalAccess);
}
}
} else {
llvm_unreachable("unknown DeclContext kind");
}
resultDC = resultDC->getParent();
}
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
assert(resultDC->isModuleScopeContext());
return AccessScope(resultDC, access == AccessLevel::Private);
case AccessLevel::Internal:
return AccessScope(resultDC->getParentModule());
case AccessLevel::Public:
case AccessLevel::Open:
return AccessScope::getPublic();
}
llvm_unreachable("unknown access level");
}
AccessScope
ValueDecl::getFormalAccessScope(const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) const {
return getAccessScopeForFormalAccess(this, getFormalAccess(), useDC,
treatUsableFromInlineAsPublic);
}
/// Checks if \p VD may be used from \p useDC, taking \@testable imports into
/// account.
///
/// Whenever the enclosing context of \p VD is usable from \p useDC, this
/// should compute the same result as checkAccess, below, but more slowly.
///
/// See ValueDecl::isAccessibleFrom for a description of \p forConformance.
static bool checkAccessUsingAccessScopes(const DeclContext *useDC,
const ValueDecl *VD,
AccessLevel access) {
if (VD->getASTContext().isAccessControlDisabled())
return true;
AccessScope accessScope =
getAccessScopeForFormalAccess(VD, access, useDC,
/*treatUsableFromInlineAsPublic*/false);
return accessScope.getDeclContext() == useDC ||
AccessScope(useDC).isChildOf(accessScope);
}
/// Checks if \p VD may be used from \p useDC, taking \@testable imports into
/// account.
///
/// When \p access is the same as `VD->getFormalAccess()` and the enclosing
/// context of \p VD is usable from \p useDC, this ought to be the same as
/// getting the AccessScope for `VD` and checking if \p useDC is within it.
/// However, there's a source compatibility hack around protocol extensions
/// that makes it not quite the same.
///
/// See ValueDecl::isAccessibleFrom for a description of \p forConformance.
static bool checkAccess(const DeclContext *useDC, const ValueDecl *VD,
bool forConformance,
llvm::function_ref<AccessLevel()> getAccessLevel) {
if (VD->getASTContext().isAccessControlDisabled())
return true;
auto access = getAccessLevel();
auto *sourceDC = VD->getDeclContext();
// Preserve "fast path" behavior for everything inside
// protocol extensions and operators, otherwise allow access
// check declarations inside inaccessible members via slower
// access scope based check, which is helpful for diagnostics.
if (!(sourceDC->getSelfProtocolDecl() || VD->isOperator()))
return checkAccessUsingAccessScopes(useDC, VD, access);
if (!forConformance) {
if (auto *proto = sourceDC->getSelfProtocolDecl()) {
// FIXME: Swift 4.1 allowed accessing protocol extension methods that were
// marked 'public' if the protocol was '@_versioned' (now
// '@usableFromInline'). Which works at the ABI level, so let's keep
// supporting that here by explicitly checking for it.
if (access == AccessLevel::Public &&
proto->getFormalAccess() == AccessLevel::Internal &&
proto->isUsableFromInline()) {
return true;
}
// Skip the fast path below and just compare access scopes.
return checkAccessUsingAccessScopes(useDC, VD, access);
}
}
// Fast path: assume that the client context already has access to our parent
// DeclContext, and only check what might be different about this declaration.
if (!useDC)
return access >= AccessLevel::Public;
switch (access) {
case AccessLevel::Private:
if (useDC != sourceDC) {
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
if (useSF && useSF->hasTestableOrPrivateImport(access, VD))
return true;
}
return (useDC == sourceDC ||
AccessScope::allowsPrivateAccess(useDC, sourceDC));
case AccessLevel::FilePrivate:
if (useDC->getModuleScopeContext() != sourceDC->getModuleScopeContext()) {
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
return useSF && useSF->hasTestableOrPrivateImport(access, VD);
}
return true;
case AccessLevel::Internal: {
const ModuleDecl *sourceModule = sourceDC->getParentModule();
const DeclContext *useFile = useDC->getModuleScopeContext();
if (useFile->getParentModule() == sourceModule)
return true;
auto *useSF = dyn_cast<SourceFile>(useFile);
return useSF && useSF->hasTestableOrPrivateImport(access, sourceModule);
}
case AccessLevel::Public:
case AccessLevel::Open:
return true;
}
llvm_unreachable("bad access level");
}
bool ValueDecl::isAccessibleFrom(const DeclContext *useDC,
bool forConformance) const {
return checkAccess(useDC, this, forConformance,
[&]() { return getFormalAccess(); });
}
bool AbstractStorageDecl::isSetterAccessibleFrom(const DeclContext *DC,
bool forConformance) const {
assert(isSettable(DC));
// If a stored property does not have a setter, it is still settable from the
// designated initializer constructor. In this case, don't check setter
// access; it is not set.
if (hasStorage() && !isSettable(nullptr))
return true;
if (isa<ParamDecl>(this))
return true;
return checkAccess(DC, this, forConformance,
[&]() { return getSetterFormalAccess(); });
}
void ValueDecl::copyFormalAccessFrom(const ValueDecl *source,
bool sourceIsParentContext) {
assert(!hasAccess());
AccessLevel access = source->getFormalAccess();
// To make something have the same access as a 'private' parent, it has to
// be 'fileprivate' or greater.
if (sourceIsParentContext && access == AccessLevel::Private)
access = AccessLevel::FilePrivate;
// Only certain declarations can be 'open'.
if (access == AccessLevel::Open && !isPotentiallyOverridable()) {
assert(!isa<ClassDecl>(this) &&
"copying 'open' onto a class has complications");
access = AccessLevel::Public;
}
setAccess(access);
// Inherit the @usableFromInline attribute.
if (source->getAttrs().hasAttribute<UsableFromInlineAttr>() &&
!getAttrs().hasAttribute<UsableFromInlineAttr>() &&
!getAttrs().hasAttribute<InlinableAttr>() &&
DeclAttribute::canAttributeAppearOnDecl(DAK_UsableFromInline, this)) {
auto &ctx = getASTContext();
auto *clonedAttr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
getAttrs().add(clonedAttr);
}
}
Type TypeDecl::getDeclaredInterfaceType() const {
if (auto *NTD = dyn_cast<NominalTypeDecl>(this))
return NTD->getDeclaredInterfaceType();
if (auto *ATD = dyn_cast<AssociatedTypeDecl>(this)) {
auto &ctx = getASTContext();
auto selfTy = getDeclContext()->getSelfInterfaceType();
if (!selfTy)
return ErrorType::get(ctx);
return DependentMemberType::get(
selfTy, const_cast<AssociatedTypeDecl *>(ATD));
}
Type interfaceType = hasInterfaceType() ? getInterfaceType() : nullptr;
if (interfaceType.isNull() || interfaceType->is<ErrorType>())
return interfaceType;
if (isa<ModuleDecl>(this))
return interfaceType;
return interfaceType->castTo<MetatypeType>()->getInstanceType();
}
int TypeDecl::compare(const TypeDecl *type1, const TypeDecl *type2) {
// Order based on the enclosing declaration.
auto dc1 = type1->getDeclContext();
auto dc2 = type2->getDeclContext();
// Prefer lower depths.
auto depth1 = dc1->getSemanticDepth();
auto depth2 = dc2->getSemanticDepth();
if (depth1 != depth2)
return depth1 < depth2 ? -1 : +1;
// Prefer module names earlier in the alphabet.
if (dc1->isModuleScopeContext() && dc2->isModuleScopeContext()) {
auto module1 = dc1->getParentModule();
auto module2 = dc2->getParentModule();
if (int result = module1->getName().str().compare(module2->getName().str()))
return result;
}
auto nominal1 = dc1->getSelfNominalTypeDecl();
auto nominal2 = dc2->getSelfNominalTypeDecl();
if (static_cast<bool>(nominal1) != static_cast<bool>(nominal2)) {
return static_cast<bool>(nominal1) ? -1 : +1;
}
if (nominal1 && nominal2) {
if (int result = compare(nominal1, nominal2))
return result;
}
if (int result = type1->getBaseName().getIdentifier().str().compare(
type2->getBaseName().getIdentifier().str()))
return result;
// Error case: two type declarations that cannot be distinguished.
if (type1 < type2)
return -1;
if (type1 > type2)
return +1;
return 0;
}
bool NominalTypeDecl::isFormallyResilient() const {
// Private and (unversioned) internal types always have a
// fixed layout.
if (!getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true).isPublic())
return false;
// Check for an explicit @_fixed_layout or @_frozen attribute.
if (getAttrs().hasAttribute<FixedLayoutAttr>() ||
getAttrs().hasAttribute<FrozenAttr>()) {
return false;
}
// Structs and enums imported from C *always* have a fixed layout.
// We know their size, and pass them as values in SIL and IRGen.
if (hasClangNode())
return false;
// @objc enums and protocols always have a fixed layout.
if ((isa<EnumDecl>(this) || isa<ProtocolDecl>(this)) && isObjC())
return false;
// Otherwise, the declaration behaves as if it was accessed via indirect
// "resilient" interfaces, even if the module is not built with resilience.
return true;
}
bool NominalTypeDecl::isResilient() const {
if (!isFormallyResilient())
return false;
return getModuleContext()->isResilient();
}
bool NominalTypeDecl::isResilient(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return isResilient();
case ResilienceExpansion::Maximal:
return M != getModuleContext() && isResilient();
}
llvm_unreachable("bad resilience expansion");
}
void NominalTypeDecl::computeType() {
assert(!hasInterfaceType());
ASTContext &ctx = getASTContext();
// A protocol has an implicit generic parameter list consisting of a single
// generic parameter, Self, that conforms to the protocol itself. This
// parameter is always implicitly bound.
//
// If this protocol has been deserialized, it already has generic parameters.
// Don't add them again.
if (auto proto = dyn_cast<ProtocolDecl>(this))
proto->createGenericParamsIfMissing();
Type declaredInterfaceTy = getDeclaredInterfaceType();
setInterfaceType(MetatypeType::get(declaredInterfaceTy, ctx));
if (declaredInterfaceTy->hasError())
setInvalid();
}
enum class DeclTypeKind : unsigned {
DeclaredType,
DeclaredInterfaceType
};
static Type computeNominalType(NominalTypeDecl *decl, DeclTypeKind kind) {
ASTContext &ctx = decl->getASTContext();
// Get the parent type.
Type Ty;
DeclContext *dc = decl->getDeclContext();
if (dc->isTypeContext()) {
switch (kind) {
case DeclTypeKind::DeclaredType: {
auto *nominal = dc->getSelfNominalTypeDecl();
if (nominal)
Ty = nominal->getDeclaredType();
break;
}
case DeclTypeKind::DeclaredInterfaceType:
Ty = dc->getDeclaredInterfaceType();
if (Ty->is<ErrorType>())
Ty = Type();
break;
}
}
if (decl->getGenericParams() &&
!isa<ProtocolDecl>(decl)) {
switch (kind) {
case DeclTypeKind::DeclaredType:
return UnboundGenericType::get(decl, Ty, ctx);
case DeclTypeKind::DeclaredInterfaceType: {
// Note that here, we need to be able to produce a type
// before the decl has been validated, so we rely on
// the generic parameter list directly instead of looking
// at the signature.
SmallVector<Type, 4> args;
for (auto param : decl->getGenericParams()->getParams())
args.push_back(param->getDeclaredInterfaceType());
return BoundGenericType::get(decl, Ty, args);
}
}
llvm_unreachable("Unhandled DeclTypeKind in switch.");
} else {
return NominalType::get(decl, Ty, ctx);
}
}
Type NominalTypeDecl::getDeclaredType() const {
if (DeclaredTy)
return DeclaredTy;
auto *decl = const_cast<NominalTypeDecl *>(this);
decl->DeclaredTy = computeNominalType(decl, DeclTypeKind::DeclaredType);
return DeclaredTy;
}
Type NominalTypeDecl::getDeclaredTypeInContext() const {
if (DeclaredTyInContext)
return DeclaredTyInContext;
auto *decl = const_cast<NominalTypeDecl *>(this);
auto interfaceType = getDeclaredInterfaceType();
decl->DeclaredTyInContext = mapTypeIntoContext(interfaceType);
return DeclaredTyInContext;
}
Type NominalTypeDecl::getDeclaredInterfaceType() const {
if (DeclaredInterfaceTy)
return DeclaredInterfaceTy;
auto *decl = const_cast<NominalTypeDecl *>(this);
decl->DeclaredInterfaceTy = computeNominalType(decl,
DeclTypeKind::DeclaredInterfaceType);
return DeclaredInterfaceTy;
}
void NominalTypeDecl::prepareExtensions() {
// Types in local contexts can't have extensions
if (getLocalContext() != nullptr) {
return;
}
auto &context = Decl::getASTContext();
// If our list of extensions is out of date, update it now.
if (context.getCurrentGeneration() > ExtensionGeneration) {
unsigned previousGeneration = ExtensionGeneration;
ExtensionGeneration = context.getCurrentGeneration();
context.loadExtensions(this, previousGeneration);
}
}
ExtensionRange NominalTypeDecl::getExtensions() {
prepareExtensions();
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
}
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
assert(!extension->alreadyBoundToNominal() && "Already added extension");
extension->NextExtension.setInt(true);
// First extension; set both first and last.
if (!FirstExtension) {
FirstExtension = extension;
LastExtension = extension;
return;
}
// Add to the end of the list.
LastExtension->NextExtension.setPointer(extension);
LastExtension = extension;
addedExtension(extension);
}
auto NominalTypeDecl::getStoredProperties(bool skipInaccessible) const
-> StoredPropertyRange {
// Clang-imported classes never have stored properties.
if (hasClangNode() && isa<ClassDecl>(this))
return StoredPropertyRange(DeclRange(nullptr, nullptr),
ToStoredProperty(skipInaccessible));
return StoredPropertyRange(getMembers(),
ToStoredProperty(skipInaccessible));
}
bool NominalTypeDecl::isOptionalDecl() const {
return this == getASTContext().getOptionalDecl();
}
Optional<KeyPathTypeKind> NominalTypeDecl::getKeyPathTypeKind() const {
auto &ctx = getASTContext();
#define CASE(NAME) if (this == ctx.get##NAME##Decl()) return KPTK_##NAME;
CASE(KeyPath)
CASE(WritableKeyPath)
CASE(ReferenceWritableKeyPath)
CASE(AnyKeyPath)
CASE(PartialKeyPath)
#undef CASE
return None;
}
GenericTypeDecl::GenericTypeDecl(DeclKind K, DeclContext *DC,
Identifier name, SourceLoc nameLoc,
MutableArrayRef<TypeLoc> inherited,
GenericParamList *GenericParams) :
GenericContext(DeclContextKind::GenericTypeDecl, DC),
TypeDecl(K, DC, name, nameLoc, inherited) {
setGenericParams(GenericParams);
}
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, SourceLoc EqualLoc,
Identifier Name, SourceLoc NameLoc,
GenericParamList *GenericParams, DeclContext *DC)
: GenericTypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}, GenericParams),
TypeAliasLoc(TypeAliasLoc), EqualLoc(EqualLoc) {
Bits.TypeAliasDecl.IsCompatibilityAlias = false;
Bits.TypeAliasDecl.IsDebuggerAlias = false;
}
SourceRange TypeAliasDecl::getSourceRange() const {
auto TrailingWhereClauseSourceRange = getGenericTrailingWhereClauseSourceRange();
if (TrailingWhereClauseSourceRange.isValid())
return { TypeAliasLoc, TrailingWhereClauseSourceRange.End };
if (UnderlyingTy.hasLocation())
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
return { TypeAliasLoc, getNameLoc() };
}
void TypeAliasDecl::setUnderlyingType(Type underlying) {
setValidationToChecked();
// lldb creates global typealiases containing archetypes
// sometimes...
if (underlying->hasArchetype() && isGenericContext())
underlying = underlying->mapTypeOutOfContext();
UnderlyingTy.setType(underlying);
// FIXME -- if we already have an interface type, we're changing the
// underlying type. See the comment in the ProtocolDecl case of
// validateDecl().
if (!hasInterfaceType()) {
// Set the interface type of this declaration.
ASTContext &ctx = getASTContext();
auto *genericSig = getGenericSignature();
auto subs = SubstitutionMap::get(
genericSig, [&](SubstitutableType *type) -> Type { return type; },
MakeAbstractConformanceForGenericType());
Type parent;
auto parentDC = getDeclContext();
if (parentDC->isTypeContext())
parent = parentDC->getDeclaredInterfaceType();
auto sugaredType = TypeAliasType::get(this, parent, subs, underlying);
setInterfaceType(MetatypeType::get(sugaredType, ctx));
}
}
UnboundGenericType *TypeAliasDecl::getUnboundGenericType() const {
assert(getGenericParams());
Type parentTy;
auto parentDC = getDeclContext();
if (auto nominal = parentDC->getSelfNominalTypeDecl())
parentTy = nominal->getDeclaredType();
return UnboundGenericType::get(
const_cast<TypeAliasDecl *>(this),
parentTy, getASTContext());
}
Type AbstractTypeParamDecl::getSuperclass() const {
auto *genericEnv = getDeclContext()->getGenericEnvironmentOfContext();
assert(genericEnv != nullptr && "Too much circularity");
auto contextTy = genericEnv->mapTypeIntoContext(getDeclaredInterfaceType());
if (auto *archetype = contextTy->getAs<ArchetypeType>())
return archetype->getSuperclass();
// FIXME: Assert that this is never queried.
return nullptr;
}
ArrayRef<ProtocolDecl *>
AbstractTypeParamDecl::getConformingProtocols() const {
auto *genericEnv = getDeclContext()->getGenericEnvironmentOfContext();
assert(genericEnv != nullptr && "Too much circularity");
auto contextTy = genericEnv->mapTypeIntoContext(getDeclaredInterfaceType());
if (auto *archetype = contextTy->getAs<ArchetypeType>())
return archetype->getConformsTo();
// FIXME: Assert that this is never queried.
return { };
}
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
SourceLoc nameLoc,
unsigned depth, unsigned index)
: AbstractTypeParamDecl(DeclKind::GenericTypeParam, dc, name, nameLoc) {
Bits.GenericTypeParamDecl.Depth = depth;
assert(Bits.GenericTypeParamDecl.Depth == depth && "Truncation");
Bits.GenericTypeParamDecl.Index = index;
assert(Bits.GenericTypeParamDecl.Index == index && "Truncation");
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this);
setInterfaceType(MetatypeType::get(type, ctx));
}
SourceRange GenericTypeParamDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(getNameLoc(), endLoc);
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TypeLoc defaultDefinition,
TrailingWhereClause *trailingWhere)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition),
TrailingWhere(trailingWhere) {
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TrailingWhereClause *trailingWhere,
LazyMemberLoader *definitionResolver,
uint64_t resolverData)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), TrailingWhere(trailingWhere),
Resolver(definitionResolver), ResolverContextData(resolverData) {
assert(Resolver && "missing resolver");
}
void AssociatedTypeDecl::computeType() {
assert(!hasInterfaceType());
auto &ctx = getASTContext();
auto interfaceTy = getDeclaredInterfaceType();
setInterfaceType(MetatypeType::get(interfaceTy, ctx));
}
TypeLoc &AssociatedTypeDecl::getDefaultDefinitionLoc() {
if (Resolver) {
DefaultDefinition =
Resolver->loadAssociatedTypeDefault(this, ResolverContextData);
Resolver = nullptr;
}
return DefaultDefinition;
}
SourceRange AssociatedTypeDecl::getSourceRange() const {
SourceLoc endLoc;
if (auto TWC = getTrailingWhereClause()) {
endLoc = TWC->getSourceRange().End;
} else if (getDefaultDefinitionLoc().hasLocation()) {
endLoc = getDefaultDefinitionLoc().getSourceRange().End;
} else if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
} else {
endLoc = getNameLoc();
}
return SourceRange(KeywordLoc, endLoc);
}
llvm::TinyPtrVector<AssociatedTypeDecl *>
AssociatedTypeDecl::getOverriddenDecls() const {
// FIXME: Performance hack because we end up looking at the overridden
// declarations of an associated type a *lot*.
OverriddenDeclsRequest request{const_cast<AssociatedTypeDecl *>(this)};
llvm::TinyPtrVector<ValueDecl *> overridden;
if (auto cached = request.getCachedResult())
overridden = std::move(*cached);
else
overridden = AbstractTypeParamDecl::getOverriddenDecls();
llvm::TinyPtrVector<AssociatedTypeDecl *> assocTypes;
for (auto decl : overridden) {
assocTypes.push_back(cast<AssociatedTypeDecl>(decl));
}
return assocTypes;
}
namespace {
static AssociatedTypeDecl *getAssociatedTypeAnchor(
const AssociatedTypeDecl *ATD,
llvm::SmallSet<const AssociatedTypeDecl *, 8> &searched) {
auto overridden = ATD->getOverriddenDecls();
// If this declaration does not override any other declarations, it's
// the anchor.
if (overridden.empty()) return const_cast<AssociatedTypeDecl *>(ATD);
// Find the best anchor among the anchors of the overridden decls and avoid
// reentrancy when erroneous cyclic protocols exist.
AssociatedTypeDecl *bestAnchor = nullptr;
for (auto assocType : overridden) {
if (!searched.insert(assocType).second)
continue;
auto anchor = getAssociatedTypeAnchor(assocType, searched);
if (!anchor)
continue;
if (!bestAnchor || AbstractTypeParamDecl::compare(anchor, bestAnchor) < 0)
bestAnchor = anchor;
}
return bestAnchor;
}
};
AssociatedTypeDecl *AssociatedTypeDecl::getAssociatedTypeAnchor() const {
llvm::SmallSet<const AssociatedTypeDecl *, 8> searched;
return ::getAssociatedTypeAnchor(this, searched);
}
EnumDecl::EnumDecl(SourceLoc EnumLoc,
Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
GenericParams),
EnumLoc(EnumLoc)
{
Bits.EnumDecl.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
Bits.EnumDecl.HasAssociatedValues
= static_cast<unsigned>(AssociatedValueCheck::Unchecked);
Bits.EnumDecl.HasAnyUnavailableValues
= false;
}
Type EnumDecl::getRawType() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
EnumRawTypeRequest{const_cast<EnumDecl *>(this),
TypeResolutionStage::Interface}, Type());
}
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
GenericParams),
StructLoc(StructLoc)
{
Bits.StructDecl.HasUnreferenceableStorage = false;
}
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
GenericParams),
ClassLoc(ClassLoc) {
Bits.ClassDecl.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
Bits.ClassDecl.RequiresStoredPropertyInits = 0;
Bits.ClassDecl.InheritsSuperclassInits = 0;
Bits.ClassDecl.RawForeignKind = 0;
Bits.ClassDecl.HasDestructorDecl = 0;
Bits.ClassDecl.Ancestry = 0;
Bits.ClassDecl.AncestryComputed = 0;
Bits.ClassDecl.HasMissingDesignatedInitializers = 0;
Bits.ClassDecl.HasMissingVTableEntries = 0;
}
bool ClassDecl::hasResilientMetadata() const {
// Imported classes don't have a vtable, etc, at all.
if (hasClangNode())
return false;
// If the module is not resilient, neither is the class metadata.
if (!getModuleContext()->isResilient())
return false;
// If the class is not public, we can't use it outside the module at all.
if (!getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true).isPublic())
return false;
// Otherwise we access metadata members, such as vtable entries, resiliently.
return true;
}
bool ClassDecl::hasResilientMetadata(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return hasResilientMetadata();
case ResilienceExpansion::Maximal:
return M != getModuleContext() && hasResilientMetadata();
}
llvm_unreachable("bad resilience expansion");
}
DestructorDecl *ClassDecl::getDestructor() {
auto results = lookupDirect(DeclBaseName::createDestructor());
assert(!results.empty() && "Class without destructor?");
assert(results.size() == 1 && "More than one destructor?");
return cast<DestructorDecl>(results.front());
}
void ClassDecl::addImplicitDestructor() {
if (hasDestructor() || isInvalid())
return;
auto &ctx = getASTContext();
auto *DD = new (ctx) DestructorDecl(getLoc(), this);
DD->setImplicit();
DD->setValidationToChecked();
// Create an empty body for the destructor.
DD->setBody(BraceStmt::create(ctx, getLoc(), { }, getLoc(), true));
addMember(DD);
// Propagate access control and versioned-ness.
DD->copyFormalAccessFrom(this, /*sourceIsParentContext*/true);
// Wire up generic environment of DD.
DD->setGenericEnvironment(getGenericEnvironmentOfContext());
// Mark DD as ObjC, as all dtors are.
DD->setIsObjC(getASTContext().LangOpts.EnableObjCInterop);
if (getASTContext().LangOpts.EnableObjCInterop) {
recordObjCMethod(DD, DD->getObjCSelector());
}
// Assign DD the interface type (Self) -> () -> ()
DD->computeType();
}
bool ClassDecl::hasMissingDesignatedInitializers() const {
auto *mutableThis = const_cast<ClassDecl *>(this);
auto flags = OptionSet<LookupDirectFlags>();
flags |= LookupDirectFlags::IgnoreNewExtensions;
(void)mutableThis->lookupDirect(DeclBaseName::createConstructor(),
flags);
return Bits.ClassDecl.HasMissingDesignatedInitializers;
}
bool ClassDecl::hasMissingVTableEntries() const {
(void)getMembers();
return Bits.ClassDecl.HasMissingVTableEntries;
}
bool ClassDecl::inheritsSuperclassInitializers(LazyResolver *resolver) {
// Check whether we already have a cached answer.
if (addedImplicitInitializers())
return Bits.ClassDecl.InheritsSuperclassInits;
// If there's no superclass, there's nothing to inherit.
ClassDecl *superclassDecl;
if (!(superclassDecl = getSuperclassDecl())) {
setAddedImplicitInitializers();
return false;
}
// If the superclass has known-missing designated initializers, inheriting
// is unsafe.
if (superclassDecl->hasMissingDesignatedInitializers())
return false;
// Otherwise, do all the work of resolving constructors, which will also
// calculate the right answer.
if (resolver == nullptr)
resolver = getASTContext().getLazyResolver();
if (resolver)
resolver->resolveImplicitConstructors(this);
return Bits.ClassDecl.InheritsSuperclassInits;
}
AncestryOptions ClassDecl::checkAncestry() const {
// See if we've already computed this.
if (Bits.ClassDecl.AncestryComputed)
return AncestryOptions(Bits.ClassDecl.Ancestry);
llvm::SmallPtrSet<const ClassDecl *, 8> visited;
AncestryOptions result;
const ClassDecl *CD = this;
auto *M = getParentModule();
do {
// If we hit circularity, we will diagnose at some point in typeCheckDecl().
// However we have to explicitly guard against that here because we get
// called as part of validateDecl().
if (!visited.insert(CD).second)
break;
if (CD->isGenericContext())
result |= AncestryFlags::Generic;
// Note: it's OK to check for @objc explicitly instead of calling isObjC()
// to infer it since we're going to visit every superclass.
if (CD->getAttrs().hasAttribute<ObjCAttr>())
result |= AncestryFlags::ObjC;
if (CD->getAttrs().hasAttribute<ObjCMembersAttr>())
result |= AncestryFlags::ObjCMembers;
if (CD->hasClangNode())
result |= AncestryFlags::ClangImported;
if (CD->hasResilientMetadata())
result |= AncestryFlags::Resilient;
if (CD->hasResilientMetadata(M, ResilienceExpansion::Maximal))
result |= AncestryFlags::ResilientOther;
CD = CD->getSuperclassDecl();
} while (CD != nullptr);
// Save the result for later.
const_cast<ClassDecl *>(this)->Bits.ClassDecl.Ancestry = result.toRaw();
const_cast<ClassDecl *>(this)->Bits.ClassDecl.AncestryComputed = 1;
return result;
}
bool ClassDecl::isSuperclassOf(ClassDecl *other) const {
llvm::SmallPtrSet<const ClassDecl *, 8> visited;
do {
if (!visited.insert(other).second)
break;
if (this == other)
return true;
other = other->getSuperclassDecl();
} while (other != nullptr);
return false;
}
ClassDecl::MetaclassKind ClassDecl::getMetaclassKind() const {
assert(getASTContext().LangOpts.EnableObjCInterop &&
"querying metaclass kind without objc interop");
auto objc = checkAncestry(AncestryFlags::ObjC);
return objc ? MetaclassKind::ObjC : MetaclassKind::SwiftStub;
}
/// Mangle the name of a protocol or class for use in the Objective-C
/// runtime.
static StringRef mangleObjCRuntimeName(const NominalTypeDecl *nominal,
llvm::SmallVectorImpl<char> &buffer) {
{
Mangle::ASTMangler Mangler;
std::string MangledName = Mangler.mangleObjCRuntimeName(nominal);
buffer.clear();
llvm::raw_svector_ostream os(buffer);
os << MangledName;
}
assert(buffer.size() && "Invalid buffer size");
return StringRef(buffer.data(), buffer.size());
}
StringRef ClassDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is a Clang declaration, use it's runtime name.
if (auto objcClass
= dyn_cast_or_null<clang::ObjCInterfaceDecl>(getClangDecl()))
return objcClass->getObjCRuntimeNameAsString();
// If there is an 'objc' attribute with a name, use that name.
if (auto attr = getAttrs().getAttribute<ObjCRuntimeNameAttr>())
return attr->Name;
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this class.
return mangleObjCRuntimeName(this, buffer);
}
ArtificialMainKind ClassDecl::getArtificialMainKind() const {
if (getAttrs().hasAttribute<UIApplicationMainAttr>())
return ArtificialMainKind::UIApplicationMain;
if (getAttrs().hasAttribute<NSApplicationMainAttr>())
return ArtificialMainKind::NSApplicationMain;
llvm_unreachable("class has no @ApplicationMain attr?!");
}
AbstractFunctionDecl *
ClassDecl::findOverridingDecl(const AbstractFunctionDecl *Method) const {
auto Members = getMembers();
for (auto M : Members) {
auto *CurMethod = dyn_cast<AbstractFunctionDecl>(M);
if (!CurMethod)
continue;
if (CurMethod->isOverridingDecl(Method)) {
return CurMethod;
}
}
return nullptr;
}
bool AbstractFunctionDecl::isOverridingDecl(
const AbstractFunctionDecl *Method) const {
const AbstractFunctionDecl *CurMethod = this;
while (CurMethod) {
if (CurMethod == Method)
return true;
CurMethod = CurMethod->getOverriddenDecl();
}
return false;
}
AbstractFunctionDecl *
ClassDecl::findImplementingMethod(const AbstractFunctionDecl *Method) const {
const ClassDecl *C = this;
while (C) {
auto Members = C->getMembers();
for (auto M : Members) {
auto *CurMethod = dyn_cast<AbstractFunctionDecl>(M);
if (!CurMethod)
continue;
if (Method == CurMethod)
return CurMethod;
if (CurMethod->isOverridingDecl(Method)) {
// This class implements a method
return CurMethod;
}
}
// Check the superclass
C = C->getSuperclassDecl();
}
return nullptr;
}
bool ClassDecl::walkSuperclasses(
llvm::function_ref<TypeWalker::Action(ClassDecl *)> fn) const {
SmallPtrSet<ClassDecl *, 8> seen;
auto *cls = const_cast<ClassDecl *>(this);
while (cls && seen.insert(cls).second) {
switch (fn(cls)) {
case TypeWalker::Action::Stop:
return true;
case TypeWalker::Action::SkipChildren:
return false;
case TypeWalker::Action::Continue:
cls = cls->getSuperclassDecl();
continue;
}
}
return false;
}
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
ArrayRef<EnumElementDecl *> Elements,
DeclContext *DC) {
void *buf = DC->getASTContext()
.Allocate(sizeof(EnumCaseDecl) +
sizeof(EnumElementDecl*) * Elements.size(),
alignof(EnumCaseDecl));
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
}
EnumElementDecl *EnumDecl::getElement(Identifier Name) const {
// FIXME: Linear search is not great for large enum decls.
for (EnumElementDecl *Elt : getAllElements())
if (Elt->getName() == Name)
return Elt;
return nullptr;
}
bool EnumDecl::hasPotentiallyUnavailableCaseValue() const {
switch (static_cast<AssociatedValueCheck>(Bits.EnumDecl.HasAssociatedValues)) {
case AssociatedValueCheck::Unchecked:
// Compute below
this->hasOnlyCasesWithoutAssociatedValues();
LLVM_FALLTHROUGH;
default:
return static_cast<bool>(Bits.EnumDecl.HasAnyUnavailableValues);
}
}
bool EnumDecl::hasOnlyCasesWithoutAssociatedValues() const {
// Check whether we already have a cached answer.
switch (static_cast<AssociatedValueCheck>(
Bits.EnumDecl.HasAssociatedValues)) {
case AssociatedValueCheck::Unchecked:
// Compute below.
break;
case AssociatedValueCheck::NoAssociatedValues:
return true;
case AssociatedValueCheck::HasAssociatedValues:
return false;
}
for (auto elt : getAllElements()) {
for (auto Attr : elt->getAttrs()) {
if (auto AvAttr = dyn_cast<AvailableAttr>(Attr)) {
if (!AvAttr->isInvalid()) {
const_cast<EnumDecl*>(this)->Bits.EnumDecl.HasAnyUnavailableValues
= true;
}
}
}
if (elt->hasAssociatedValues()) {
const_cast<EnumDecl*>(this)->Bits.EnumDecl.HasAssociatedValues
= static_cast<unsigned>(AssociatedValueCheck::HasAssociatedValues);
return false;
}
}
const_cast<EnumDecl*>(this)->Bits.EnumDecl.HasAssociatedValues
= static_cast<unsigned>(AssociatedValueCheck::NoAssociatedValues);
return true;
}
bool EnumDecl::isFormallyExhaustive(const DeclContext *useDC) const {
// Enums explicitly marked frozen are exhaustive.
if (getAttrs().hasAttribute<FrozenAttr>())
return true;
// Objective-C enums /not/ marked frozen are /not/ exhaustive.
// Note: This implicitly holds @objc enums defined in Swift to a higher
// standard!
if (hasClangNode())
return false;
// Non-imported enums in non-resilient modules are exhaustive.
const ModuleDecl *containingModule = getModuleContext();
if (!containingModule->isResilient())
return true;
// Non-public, non-versioned enums are always exhaustive.
AccessScope accessScope = getFormalAccessScope(/*useDC*/nullptr,
/*respectVersioned*/true);
if (!accessScope.isPublic())
return true;
// All other checks are use-site specific; with no further information, the
// enum must be treated non-exhaustively.
if (!useDC)
return false;
// Enums in the same module as the use site are exhaustive /unless/ the use
// site is inlinable.
if (useDC->getParentModule() == containingModule)
if (useDC->getResilienceExpansion() == ResilienceExpansion::Maximal)
return true;
// Testably imported enums are exhaustive, on the grounds that only the author
// of the original library can import it testably.
if (auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext()))
if (useSF->hasTestableOrPrivateImport(AccessLevel::Internal,
containingModule))
return true;
// Otherwise, the enum is non-exhaustive.
return false;
}
bool EnumDecl::isEffectivelyExhaustive(ModuleDecl *M,
ResilienceExpansion expansion) const {
// Generated Swift code commits to handling garbage values of @objc enums,
// whether imported or not, to deal with C's loose rules around enums.
// This covers both frozen and non-frozen @objc enums.
if (isObjC())
return false;
// Otherwise, the only non-exhaustive cases are those that don't have a fixed
// layout.
assert(isFormallyExhaustive(M) == !isResilient(M,ResilienceExpansion::Maximal)
&& "ignoring the effects of @inlinable, @testable, and @objc, "
"these should match up");
return !isResilient(M, expansion);
}
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
SourceLoc NameLoc, Identifier Name,
MutableArrayRef<TypeLoc> Inherited,
TrailingWhereClause *TrailingWhere)
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
nullptr),
ProtocolLoc(ProtocolLoc) {
Bits.ProtocolDecl.RequiresClassValid = false;
Bits.ProtocolDecl.RequiresClass = false;
Bits.ProtocolDecl.ExistentialConformsToSelfValid = false;
Bits.ProtocolDecl.ExistentialConformsToSelf = false;
Bits.ProtocolDecl.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
Bits.ProtocolDecl.InheritedProtocolsValid = 0;
Bits.ProtocolDecl.NumRequirementsInSignature = 0;
Bits.ProtocolDecl.HasMissingRequirements = false;
Bits.ProtocolDecl.KnownProtocol = 0;
setTrailingWhereClause(TrailingWhere);
}
ArrayRef<ProtocolDecl *>
ProtocolDecl::getInheritedProtocolsSlow() {
Bits.ProtocolDecl.InheritedProtocolsValid = true;
llvm::SmallVector<ProtocolDecl *, 2> result;
SmallPtrSet<const ProtocolDecl *, 2> known;
known.insert(this);
bool anyObject = false;
for (const auto found :
getDirectlyInheritedNominalTypeDecls(
const_cast<ProtocolDecl *>(this), anyObject)) {
if (auto proto = dyn_cast<ProtocolDecl>(found.second)) {
if (known.insert(proto).second)
result.push_back(proto);
}
}
auto &ctx = getASTContext();
InheritedProtocols = ctx.AllocateCopy(result);
return InheritedProtocols;
}
llvm::TinyPtrVector<AssociatedTypeDecl *>
ProtocolDecl::getAssociatedTypeMembers() const {
llvm::TinyPtrVector<AssociatedTypeDecl *> result;
// Clang-imported protocols never have associated types.
if (hasClangNode())
return result;
// Deserialized @objc protocols never have associated types.
if (!getParentSourceFile() && isObjC())
return result;
// Find the associated type declarations.
for (auto member : getMembers()) {
if (auto ATD = dyn_cast<AssociatedTypeDecl>(member)) {
result.push_back(ATD);
}
}
return result;
}
Type ProtocolDecl::getSuperclass() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassTypeRequest{const_cast<ProtocolDecl *>(this),
TypeResolutionStage::Interface},
Type());
}
ClassDecl *ProtocolDecl::getSuperclassDecl() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassDeclRequest{const_cast<ProtocolDecl *>(this)}, nullptr);
}
void ProtocolDecl::setSuperclass(Type superclass) {
assert((!superclass || !superclass->hasArchetype())
&& "superclass must be interface type");
LazySemanticInfo.SuperclassType.setPointerAndInt(superclass, true);
LazySemanticInfo.SuperclassDecl.setPointerAndInt(
superclass ? superclass->getClassOrBoundGenericClass() : nullptr,
true);
}
bool ProtocolDecl::walkInheritedProtocols(
llvm::function_ref<TypeWalker::Action(ProtocolDecl *)> fn) const {
auto self = const_cast<ProtocolDecl *>(this);
// Visit all of the inherited protocols.
SmallPtrSet<ProtocolDecl *, 8> visited;
SmallVector<ProtocolDecl *, 4> stack;
stack.push_back(self);
visited.insert(self);
while (!stack.empty()) {
// Pull the next protocol off the stack.
auto proto = stack.back();
stack.pop_back();
switch (fn(proto)) {
case TypeWalker::Action::Stop:
return true;
case TypeWalker::Action::Continue:
// Add inherited protocols to the stack.
for (auto inherited : proto->getInheritedProtocols()) {
if (visited.insert(inherited).second)
stack.push_back(inherited);
}
break;
case TypeWalker::Action::SkipChildren:
break;
}
}
return false;
}
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *super) const {
if (this == super)
return false;
return walkInheritedProtocols([super](ProtocolDecl *inherited) {
if (inherited == super)
return TypeWalker::Action::Stop;
return TypeWalker::Action::Continue;
});
}
bool ProtocolDecl::requiresClassSlow() {
// Set this first to catch (invalid) circular inheritance.
Bits.ProtocolDecl.RequiresClassValid = true;
Bits.ProtocolDecl.RequiresClass = false;
// Quick check: @objc protocols require a class.
if (isObjC())
return Bits.ProtocolDecl.RequiresClass = true;
// Determine the set of nominal types that this protocol inherits.
bool anyObject = false;
auto allInheritedNominals =
getDirectlyInheritedNominalTypeDecls(this, anyObject);
// Quick check: do we inherit AnyObject?
if (anyObject) {
Bits.ProtocolDecl.RequiresClass = true;
return true;
}
// Look through all of the inherited nominals for a superclass or a
// class-bound protocol.
for (const auto found : allInheritedNominals) {
// Superclass bound.
if (isa<ClassDecl>(found.second))
return Bits.ProtocolDecl.RequiresClass = true;
// A protocol that might be class-constrained;
if (auto proto = dyn_cast<ProtocolDecl>(found.second)) {
if (proto->requiresClass())
return Bits.ProtocolDecl.RequiresClass = true;
}
}
return Bits.ProtocolDecl.RequiresClass;
}
bool ProtocolDecl::requiresSelfConformanceWitnessTable() const {
return isSpecificProtocol(KnownProtocolKind::Error);
}
bool ProtocolDecl::existentialConformsToSelfSlow() {
// Assume for now that the existential conforms to itself; this
// prevents circularity issues.
Bits.ProtocolDecl.ExistentialConformsToSelfValid = true;
Bits.ProtocolDecl.ExistentialConformsToSelf = true;
// If it's not @objc, it conforms to itself only if it has a
// self-conformance witness table.
if (!isObjC()) {
bool hasSelfConformance = requiresSelfConformanceWitnessTable();
Bits.ProtocolDecl.ExistentialConformsToSelf = hasSelfConformance;
return hasSelfConformance;
}
// Check whether this protocol conforms to itself.
for (auto member : getMembers()) {
if (member->isInvalid())
continue;
if (auto vd = dyn_cast<ValueDecl>(member)) {
if (!vd->isInstanceMember()) {
// A protocol cannot conform to itself if it has static members.
Bits.ProtocolDecl.ExistentialConformsToSelf = false;
return false;
}
}
}
// Check whether any of the inherited protocols fail to conform to
// themselves.
for (auto proto : getInheritedProtocols()) {
if (!proto->existentialConformsToSelf()) {
Bits.ProtocolDecl.ExistentialConformsToSelf = false;
return false;
}
}
return true;
}
/// Classify usages of Self in the given type.
static SelfReferenceKind
findProtocolSelfReferences(const ProtocolDecl *proto, Type type,
bool skipAssocTypes) {
// Tuples preserve variance.
if (auto tuple = type->getAs<TupleType>()) {
auto kind = SelfReferenceKind::None();
for (auto &elt : tuple->getElements()) {
kind |= findProtocolSelfReferences(proto, elt.getType(), skipAssocTypes);
}
return kind;
}
// Function preserve variance in the result type, and flip variance in
// the parameter type.
if (auto funcTy = type->getAs<AnyFunctionType>()) {
auto inputKind = SelfReferenceKind::None();
for (auto param : funcTy->getParams()) {
// inout parameters are invariant.
if (param.isInOut()) {
if (findProtocolSelfReferences(proto, param.getPlainType(),
skipAssocTypes)) {
return SelfReferenceKind::Other();
}
}
inputKind |= findProtocolSelfReferences(proto, param.getParameterType(),
skipAssocTypes);
}
auto resultKind = findProtocolSelfReferences(proto, funcTy->getResult(),
skipAssocTypes);
auto kind = inputKind.flip();
kind |= resultKind;
return kind;
}
// Metatypes preserve variance.
if (auto metaTy = type->getAs<MetatypeType>()) {
return findProtocolSelfReferences(proto, metaTy->getInstanceType(),
skipAssocTypes);
}
// Optionals preserve variance.
if (auto optType = type->getOptionalObjectType()) {
return findProtocolSelfReferences(proto, optType,
skipAssocTypes);
}
// DynamicSelfType preserves variance.
// FIXME: This shouldn't ever appear in protocol requirement
// signatures.
if (auto selfType = type->getAs<DynamicSelfType>()) {
return findProtocolSelfReferences(proto, selfType->getSelfType(),
skipAssocTypes);
}
// Bound generic types are invariant.
if (auto boundGenericType = type->getAs<BoundGenericType>()) {
for (auto paramType : boundGenericType->getGenericArgs()) {
if (findProtocolSelfReferences(proto, paramType,
skipAssocTypes)) {
return SelfReferenceKind::Other();
}
}
}
// A direct reference to 'Self' is covariant.
if (proto->getSelfInterfaceType()->isEqual(type))
return SelfReferenceKind::Result();
// Special handling for associated types.
if (!skipAssocTypes && type->is<DependentMemberType>()) {
type = type->getRootGenericParam();
if (proto->getSelfInterfaceType()->isEqual(type))
return SelfReferenceKind::Other();
}
return SelfReferenceKind::None();
}
/// Find Self references in a generic signature's same-type requirements.
static SelfReferenceKind
findProtocolSelfReferences(const ProtocolDecl *protocol,
GenericSignature *genericSig){
if (!genericSig) return SelfReferenceKind::None();
auto selfTy = protocol->getSelfInterfaceType();
for (const auto &req : genericSig->getRequirements()) {
if (req.getKind() != RequirementKind::SameType)
continue;
if (req.getFirstType()->isEqual(selfTy) ||
req.getSecondType()->isEqual(selfTy))
return SelfReferenceKind::Requirement();
}
return SelfReferenceKind::None();
}
/// Find Self references within the given requirement.
SelfReferenceKind
ProtocolDecl::findProtocolSelfReferences(const ValueDecl *value,
bool allowCovariantParameters,
bool skipAssocTypes) const {
// Types never refer to 'Self'.
if (isa<TypeDecl>(value))
return SelfReferenceKind::None();
auto type = value->getInterfaceType();
// FIXME: Deal with broken recursion.
if (!type)
return SelfReferenceKind::None();
// Skip invalid declarations.
if (type->hasError())
return SelfReferenceKind::None();
if (auto func = dyn_cast<AbstractFunctionDecl>(value)) {
// Skip the 'self' parameter.
type = type->castTo<AnyFunctionType>()->getResult();
// Methods of non-final classes can only contain a covariant 'Self'
// as a function result type.
if (!allowCovariantParameters) {
auto inputKind = SelfReferenceKind::None();
for (auto param : type->castTo<AnyFunctionType>()->getParams()) {
// inout parameters are invariant.
if (param.isInOut()) {
if (::findProtocolSelfReferences(this, param.getPlainType(),
skipAssocTypes)) {
return SelfReferenceKind::Other();
}
}
inputKind |= ::findProtocolSelfReferences(this, param.getParameterType(),
skipAssocTypes);
}
if (inputKind.parameter)
return SelfReferenceKind::Other();
}
// Check the requirements of a generic function.
if (func->isGeneric()) {
if (auto result =
::findProtocolSelfReferences(this, func->getGenericSignature()))
return result;
}
return ::findProtocolSelfReferences(this, type,
skipAssocTypes);
} else if (auto subscript = dyn_cast<SubscriptDecl>(value)) {
// Check the requirements of a generic subscript.
if (subscript->isGeneric()) {
if (auto result =
::findProtocolSelfReferences(this,
subscript->getGenericSignature()))
return result;
}
return ::findProtocolSelfReferences(this, type,
skipAssocTypes);
} else {
if (::findProtocolSelfReferences(this, type,
skipAssocTypes)) {
return SelfReferenceKind::Other();
}
return SelfReferenceKind::None();
}
}
bool ProtocolDecl::isAvailableInExistential(const ValueDecl *decl) const {
// If the member type uses 'Self' in non-covariant position,
// we cannot use the existential type.
auto selfKind = findProtocolSelfReferences(decl,
/*allowCovariantParameters=*/true,
/*skipAssocTypes=*/false);
if (selfKind.parameter || selfKind.other)
return false;
return true;
}
bool ProtocolDecl::existentialTypeSupportedSlow(LazyResolver *resolver) {
// Assume for now that the existential type is supported; this
// prevents circularity issues.
Bits.ProtocolDecl.ExistentialTypeSupportedValid = true;
Bits.ProtocolDecl.ExistentialTypeSupported = true;
// ObjC protocols can always be existential.
if (isObjC())
return true;
for (auto member : getMembers()) {
// Check for associated types.
if (isa<AssociatedTypeDecl>(member)) {
// An existential type cannot be used if the protocol has an
// associated type.
Bits.ProtocolDecl.ExistentialTypeSupported = false;
return false;
}
// For value members, look at their type signatures.
if (auto valueMember = dyn_cast<ValueDecl>(member)) {
if (resolver && !valueMember->hasInterfaceType())
resolver->resolveDeclSignature(valueMember);
if (!isAvailableInExistential(valueMember)) {
Bits.ProtocolDecl.ExistentialTypeSupported = false;
return false;
}
}
}
// Check whether all of the inherited protocols can have existential
// types themselves.
for (auto proto : getInheritedProtocols()) {
if (!proto->existentialTypeSupported(resolver)) {
Bits.ProtocolDecl.ExistentialTypeSupported = false;
return false;
}
}
return true;
}
StringRef ProtocolDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this protocol.
return mangleObjCRuntimeName(this, buffer);
}
void ProtocolDecl::createGenericParamsIfMissing() {
if (getGenericParams())
return;
// The generic parameter 'Self'.
auto &ctx = getASTContext();
auto selfId = ctx.Id_Self;
auto selfDecl = new (ctx) GenericTypeParamDecl(
this, selfId,
SourceLoc(),
/*depth=*/getGenericContextDepth() + 1, /*index=*/0);
auto protoType = getDeclaredType();
TypeLoc selfInherited[1] = { TypeLoc::withoutLoc(protoType) };
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
auto result = GenericParamList::create(ctx, SourceLoc(), selfDecl,
SourceLoc());
setGenericParams(result);
}
void ProtocolDecl::computeRequirementSignature() {
assert(!RequirementSignature && "already computed requirement signature");
// Compute and record the signature.
auto requirementSig =
GenericSignatureBuilder::computeRequirementSignature(this);
RequirementSignature = requirementSig->getRequirements().data();
assert(RequirementSignature != nullptr);
Bits.ProtocolDecl.NumRequirementsInSignature =
requirementSig->getRequirements().size();
}
void ProtocolDecl::setRequirementSignature(ArrayRef<Requirement> requirements) {
assert(!RequirementSignature && "already computed requirement signature");
if (requirements.empty()) {
RequirementSignature = reinterpret_cast<Requirement *>(this + 1);
Bits.ProtocolDecl.NumRequirementsInSignature = 0;
} else {
RequirementSignature = getASTContext().AllocateCopy(requirements).data();
Bits.ProtocolDecl.NumRequirementsInSignature = requirements.size();
}
}
void ProtocolDecl::computeKnownProtocolKind() const {
auto module = getModuleContext();
if (module != module->getASTContext().getStdlibModule() &&
!module->getName().is("Foundation")) {
const_cast<ProtocolDecl *>(this)->Bits.ProtocolDecl.KnownProtocol = 1;
return;
}
unsigned value =
llvm::StringSwitch<unsigned>(getBaseName().userFacingName())
#define PROTOCOL_WITH_NAME(Id, Name) \
.Case(Name, static_cast<unsigned>(KnownProtocolKind::Id) + 2)
#include "swift/AST/KnownProtocols.def"
.Default(1);
const_cast<ProtocolDecl *>(this)->Bits.ProtocolDecl.KnownProtocol = value;
}
void AbstractStorageDecl::overwriteImplInfo(StorageImplInfo implInfo) {
setFieldsFromImplInfo(implInfo);
Accessors.getPointer()->overwriteImplInfo(implInfo);
}
bool AbstractStorageDecl::hasPrivateAccessor() const {
for (auto accessor : getAllAccessors()) {
if (hasPrivateOrFilePrivateFormalAccess(accessor))
return true;
}
return false;
}
bool AbstractStorageDecl::hasDidSetOrWillSetDynamicReplacement() const {
if (auto *func = getDidSetFunc())
return func->getAttrs().hasAttribute<DynamicReplacementAttr>();
if (auto *func = getWillSetFunc())
return func->getAttrs().hasAttribute<DynamicReplacementAttr>();
return false;
}
void AbstractStorageDecl::setAccessors(StorageImplInfo implInfo,
SourceLoc lbraceLoc,
ArrayRef<AccessorDecl *> accessors,
SourceLoc rbraceLoc) {
setFieldsFromImplInfo(implInfo);
// This method is called after we've already recorded an accessors clause
// only on recovery paths and only when that clause was empty.
auto record = Accessors.getPointer();
if (record) {
assert(record->getAllAccessors().empty());
for (auto accessor : accessors) {
(void) record->addOpaqueAccessor(accessor);
}
} else {
record = AccessorRecord::create(getASTContext(),
SourceRange(lbraceLoc, rbraceLoc),
implInfo, accessors);
Accessors.setPointer(record);
}
}
// Compute the number of opaque accessors.
const size_t NumOpaqueAccessors =
0
#define ACCESSOR(ID)
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
+ 1
#include "swift/AST/AccessorKinds.def"
;
AbstractStorageDecl::AccessorRecord *
AbstractStorageDecl::AccessorRecord::create(ASTContext &ctx,
SourceRange braces,
StorageImplInfo storageInfo,
ArrayRef<AccessorDecl*> accessors) {
// Silently cap the number of accessors we store at a number that should
// be easily sufficient for all the valid cases, including space for adding
// implicit opaque accessors later.
//
// We should have already emitted a diagnostic in the parser if we have
// this many accessors, because most of them will necessarily be redundant.
if (accessors.size() + NumOpaqueAccessors > MaxNumAccessors) {
accessors = accessors.slice(0, MaxNumAccessors - NumOpaqueAccessors);
}
// Make sure that we have enough space to add implicit opaque accessors later.
size_t numMissingOpaque = NumOpaqueAccessors;
{
#define ACCESSOR(ID)
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
bool has##ID = false;
#include "swift/AST/AccessorKinds.def"
for (auto accessor : accessors) {
switch (accessor->getAccessorKind()) {
#define ACCESSOR(ID) \
case AccessorKind::ID: \
continue;
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
case AccessorKind::ID: \
if (!has##ID) { \
has##ID = true; \
numMissingOpaque--; \
} \
continue;
#include "swift/AST/AccessorKinds.def"
}
llvm_unreachable("bad accessor kind");
}
}
auto accessorsCapacity = AccessorIndex(accessors.size() + numMissingOpaque);
void *mem = ctx.Allocate(totalSizeToAlloc<AccessorDecl*>(accessorsCapacity),
alignof(AccessorRecord));
return new (mem) AccessorRecord(braces, storageInfo,
accessors, accessorsCapacity);
}
AbstractStorageDecl::AccessorRecord::AccessorRecord(SourceRange braces,
StorageImplInfo implInfo,
ArrayRef<AccessorDecl *> accessors,
AccessorIndex accessorsCapacity)
: Braces(braces), ImplInfo(implInfo), NumAccessors(accessors.size()),
AccessorsCapacity(accessorsCapacity), AccessorIndices{} {
// Copy the complete accessors list into place.
memcpy(getAccessorsBuffer().data(), accessors.data(),
accessors.size() * sizeof(AccessorDecl*));
// Register all the accessors.
for (auto index : indices(accessors)) {
(void) registerAccessor(accessors[index], index);
}
}
void AbstractStorageDecl::AccessorRecord::addOpaqueAccessor(AccessorDecl *decl){
assert(decl);
// Add the accessor to the array.
assert(NumAccessors < AccessorsCapacity);
AccessorIndex index = NumAccessors++;
getAccessorsBuffer()[index] = decl;
// Register it.
bool isUnique = registerAccessor(decl, index);
assert(isUnique && "adding opaque accessor that's already present");
(void) isUnique;
}
/// Register that we have an accessor of the given kind.
bool AbstractStorageDecl::AccessorRecord::registerAccessor(AccessorDecl *decl,
AccessorIndex index){
// Remember that we have at least one accessor of this kind.
auto &indexSlot = AccessorIndices[unsigned(decl->getAccessorKind())];
if (indexSlot) {
return false;
} else {
indexSlot = index + 1;
assert(getAccessor(decl->getAccessorKind()) == decl);
return true;
}
}
AccessLevel
AbstractStorageDecl::getSetterFormalAccess() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SetterAccessLevelRequest{const_cast<AbstractStorageDecl *>(this)},
AccessLevel::Private);
}
#ifndef NDEBUG
static bool isAccessor(AccessorDecl *accessor, AccessorKind kind,
AbstractStorageDecl *storage) {
// TODO: this should check that the accessor belongs to this storage, but
// the Clang importer currently likes to violate that condition.
return (accessor && accessor->getAccessorKind() == kind);
}
#endif
void AbstractStorageDecl::setComputedSetter(AccessorDecl *setter) {
assert(getImplInfo().getReadImpl() == ReadImplKind::Get);
assert(!getImplInfo().supportsMutation());
assert(getGetter() && "sanity check: missing getter");
assert(!getSetter() && "already has a setter");
assert(hasClangNode() && "should only be used for ObjC properties");
assert(isAccessor(setter, AccessorKind::Set, this));
assert(setter && "should not be called for readonly properties");
overwriteImplInfo(StorageImplInfo::getMutableComputed());
Accessors.getPointer()->addOpaqueAccessor(setter);
}
void
AbstractStorageDecl::setSynthesizedGetter(AccessorDecl *accessor) {
assert(!getGetter() && "declaration doesn't already have getter!");
assert(isAccessor(accessor, AccessorKind::Get, this));
auto accessors = Accessors.getPointer();
if (!accessors) {
accessors = AccessorRecord::create(getASTContext(), SourceRange(),
getImplInfo(), {});
Accessors.setPointer(accessors);
}
accessors->addOpaqueAccessor(accessor);
}
void
AbstractStorageDecl::setSynthesizedReadCoroutine(AccessorDecl *accessor) {
assert(!getReadCoroutine() && "already has a read accessor");
assert(isAccessor(accessor, AccessorKind::Read, this));
auto accessors = Accessors.getPointer();
if (!accessors) {
accessors = AccessorRecord::create(getASTContext(), SourceRange(),
getImplInfo(), {});
Accessors.setPointer(accessors);
}
accessors->addOpaqueAccessor(accessor);
}
void
AbstractStorageDecl::setSynthesizedSetter(AccessorDecl *accessor) {
assert((getGetter() || getReadCoroutine()) &&
"declaration doesn't already have getter!");
assert(supportsMutation() && "adding setter to immutable storage");
assert(isAccessor(accessor, AccessorKind::Set, this));
Accessors.getPointer()->addOpaqueAccessor(accessor);
}
void
AbstractStorageDecl::setSynthesizedModifyCoroutine(AccessorDecl *accessor) {
assert((getGetter() || getReadCoroutine()) &&
"declaration doesn't already have getter!");
assert(getSetter() && "declaration doesn't already have setter!");
assert(supportsMutation() && "adding modify to immutable storage");
assert(!getModifyCoroutine() && "already has a modify accessor");
assert(isAccessor(accessor, AccessorKind::Modify, this));
Accessors.getPointer()->addOpaqueAccessor(accessor);
}
static Optional<ObjCSelector>
getNameFromObjcAttribute(const ObjCAttr *attr, DeclName preferredName) {
if (!attr)
return None;
if (auto name = attr->getName()) {
if (attr->isNameImplicit()) {
// preferredName > implicit name, because implicit name is just cached
// actual name.
if (!preferredName)
return *name;
} else {
// explicit name > preferred name.
return *name;
}
}
return None;
}
ObjCSelector
AbstractStorageDecl::getObjCGetterSelector(Identifier preferredName) const {
// If the getter has an @objc attribute with a name, use that.
if (auto getter = getGetter()) {
if (auto name = getNameFromObjcAttribute(getter->getAttrs().
getAttribute<ObjCAttr>(), preferredName))
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind()) {
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 1, ctx.Id_objectAtIndexedSubscript);
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 1, ctx.Id_objectForKeyedSubscript);
}
}
// The getter selector is the property name itself.
auto var = cast<VarDecl>(this);
auto name = var->getObjCPropertyName();
// Use preferred name is specified.
if (!preferredName.empty())
name = preferredName;
return VarDecl::getDefaultObjCGetterSelector(ctx, name);
}
ObjCSelector
AbstractStorageDecl::getObjCSetterSelector(Identifier preferredName) const {
// If the setter has an @objc attribute with a name, use that.
auto setter = getSetter();
auto objcAttr = setter ? setter->getAttrs().getAttribute<ObjCAttr>()
: nullptr;
if (auto name = getNameFromObjcAttribute(objcAttr, DeclName(preferredName))) {
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind()) {
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_atIndexedSubscript });
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_forKeyedSubscript });
}
}
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
// property name capitalized and preceded by 'set'.
auto var = cast<VarDecl>(this);
Identifier Name = var->getObjCPropertyName();
if (!preferredName.empty())
Name = preferredName;
auto result = VarDecl::getDefaultObjCSetterSelector(ctx, Name);
// Cache the result, so we don't perform string manipulation again.
if (objcAttr && preferredName.empty())
const_cast<ObjCAttr *>(objcAttr)->setName(result, /*implicit=*/true);
return result;
}
SourceLoc AbstractStorageDecl::getOverrideLoc() const {
if (auto *Override = getAttrs().getAttribute<OverrideAttr>())
return Override->getLocation();
return SourceLoc();
}
Type AbstractStorageDecl::getValueInterfaceType() const {
if (auto var = dyn_cast<VarDecl>(this))
return var->getInterfaceType()->getReferenceStorageReferent();
return cast<SubscriptDecl>(this)->getElementInterfaceType();
}
Type VarDecl::getType() const {
if (!typeInContext) {
const_cast<VarDecl *>(this)->typeInContext =
getDeclContext()->mapTypeIntoContext(
getInterfaceType());
}
return typeInContext;
}
void VarDecl::setType(Type t) {
assert(t.isNull() || !t->is<InOutType>());
typeInContext = t;
}
void VarDecl::markInvalid() {
auto &Ctx = getASTContext();
setType(ErrorType::get(Ctx));
setInterfaceType(ErrorType::get(Ctx));
}
/// Returns whether the var is settable in the specified context: this
/// is either because it is a stored var, because it has a custom setter, or
/// is a let member in an initializer.
bool VarDecl::isSettable(const DeclContext *UseDC,
const DeclRefExpr *base) const {
// If this is a 'var' decl, then we're settable if we have storage or a
// setter.
if (!isImmutable())
return supportsMutation();
// If the decl has a value bound to it but has no PBD, then it is
// initialized.
if (hasNonPatternBindingInit())
return false;
// 'let' parameters are never settable.
if (isa<ParamDecl>(this))
return false;
// Properties in structs/classes are only ever mutable in their designated
// initializer(s).
if (isInstanceMember()) {
auto *CD = dyn_cast_or_null<ConstructorDecl>(UseDC);
if (!CD) return false;
auto *CDC = CD->getDeclContext();
// 'let' properties are not valid inside protocols.
if (CDC->getExtendedProtocolDecl())
return false;
// If this init is defined inside of the same type (or in an extension
// thereof) as the let property, then it is mutable.
if (!CDC->isTypeContext() ||
CDC->getSelfNominalTypeDecl() !=
getDeclContext()->getSelfNominalTypeDecl())
return false;
if (base && CD->getImplicitSelfDecl() != base->getDecl())
return false;
// If this is a convenience initializer (i.e. one that calls
// self.init), then let properties are never mutable in it. They are
// only mutable in designated initializers.
if (CD->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating)
return false;
return true;
}
// If the decl has an explicitly written initializer with a pattern binding,
// then it isn't settable.
if (getParentInitializer() != nullptr)
return false;
// Normal lets (e.g. globals) are only mutable in the context of the
// declaration. To handle top-level code properly, we look through
// the TopLevelCode decl on the use (if present) since the vardecl may be
// one level up.
if (getDeclContext() == UseDC)
return true;
if (UseDC && isa<TopLevelCodeDecl>(UseDC) &&
getDeclContext() == UseDC->getParent())
return true;
return false;
}
bool VarDecl::isLazilyInitializedGlobal() const {
assert(!getDeclContext()->isLocalContext() &&
"not a global variable!");
assert(hasStorage() && "not a stored global variable!");
// Imports from C are never lazily initialized.
if (hasClangNode())
return false;
if (isDebuggerVar())
return false;
// Top-level global variables in the main source file and in the REPL are not
// lazily initialized.
auto sourceFileContext = dyn_cast<SourceFile>(getDeclContext());
if (!sourceFileContext)
return true;
return !sourceFileContext->isScriptMode();
}
bool SubscriptDecl::isSettable() const {
return supportsMutation();
}
SourceRange VarDecl::getSourceRange() const {
if (auto Param = dyn_cast<ParamDecl>(this))
return Param->getSourceRange();
return getNameLoc();
}
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
// For a parameter, map back to its parameter to get the TypeLoc.
if (auto *PD = dyn_cast<ParamDecl>(this)) {
if (auto typeRepr = PD->getTypeLoc().getTypeRepr())
return typeRepr->getSourceRange();
}
Pattern *Pat = getParentPattern();
if (!Pat || Pat->isImplicit())
return SourceRange();
if (auto *VP = dyn_cast<VarPattern>(Pat))
Pat = VP->getSubPattern();
if (auto *TP = dyn_cast<TypedPattern>(Pat))
if (auto typeRepr = TP->getTypeLoc().getTypeRepr())
return typeRepr->getSourceRange();
return SourceRange();
}
static Optional<std::pair<CaseStmt *, Pattern *>>
findParentPatternCaseStmtAndPattern(const VarDecl *inputVD) {
auto getMatchingPattern = [&](CaseStmt *cs) -> Pattern * {
// Check if inputVD is in our case body var decls if we have any. If we do,
// treat its pattern as our first case label item pattern.
for (auto *vd : cs->getCaseBodyVariablesOrEmptyArray()) {
if (vd == inputVD) {
return cs->getMutableCaseLabelItems().front().getPattern();
}
}
// Then check the rest of our case label items.
for (auto &item : cs->getMutableCaseLabelItems()) {
if (item.getPattern()->containsVarDecl(inputVD)) {
return item.getPattern();
}
}
// Otherwise return false if we do not find anything.
return nullptr;
};
// First find our canonical var decl. This is the VarDecl corresponding to the
// first case label item of the first case block in the fallthrough chain that
// our case block is within. Grab the case stmt associated with that var decl
// and start traveling down the fallthrough chain looking for the case
// statement that the input VD belongs to by using getMatchingPattern().
auto *canonicalVD = inputVD->getCanonicalVarDecl();
auto *caseStmt =
dyn_cast_or_null<CaseStmt>(canonicalVD->getParentPatternStmt());
if (!caseStmt)
return None;
if (auto *p = getMatchingPattern(caseStmt))
return std::make_pair(caseStmt, p);
while ((caseStmt = caseStmt->getFallthroughDest().getPtrOrNull())) {
if (auto *p = getMatchingPattern(caseStmt))
return std::make_pair(caseStmt, p);
}
return None;
}
VarDecl *VarDecl::getCanonicalVarDecl() const {
// Any var decl without a parent var decl is canonical. This means that before
// type checking, all var decls are canonical.
auto *cur = const_cast<VarDecl *>(this);
auto *vd = cur->getParentVarDecl();
if (!vd)
return cur;
#ifndef NDEBUG
// Make sure that we don't get into an infinite loop.
SmallPtrSet<VarDecl *, 8> visitedDecls;
visitedDecls.insert(vd);
visitedDecls.insert(cur);
#endif
while (vd) {
cur = vd;
vd = vd->getParentVarDecl();
assert((!vd || visitedDecls.insert(vd).second) && "Infinite loop ?!");
}
return cur;
}
Stmt *VarDecl::getRecursiveParentPatternStmt() const {
// If our parent is already a pattern stmt, just return that.
if (auto *stmt = getParentPatternStmt())
return stmt;
// Otherwise, see if we have a parent var decl. If we do not, then return
// nullptr. Otherwise, return the case stmt that we found.
auto result = findParentPatternCaseStmtAndPattern(this);
if (!result.hasValue())
return nullptr;
return result->first;
}
/// Return the Pattern involved in initializing this VarDecl. Recall that the
/// Pattern may be involved in initializing more than just this one vardecl
/// though. For example, if this is a VarDecl for "x", the pattern may be
/// "(x, y)" and the initializer on the PatternBindingDecl may be "(1,2)" or
/// "foo()".
///
/// If this has no parent pattern binding decl or statement associated, it
/// returns null.
///
Pattern *VarDecl::getParentPattern() const {
// If this has a PatternBindingDecl parent, use its pattern.
if (auto *PBD = getParentPatternBinding())
return PBD->getPatternEntryForVarDecl(this).getPattern();
// If this is a statement parent, dig the pattern out of it.
if (auto *stmt = getParentPatternStmt()) {
if (auto *FES = dyn_cast<ForEachStmt>(stmt))
return FES->getPattern();
if (auto *CS = dyn_cast<CatchStmt>(stmt))
return CS->getErrorPattern();
if (auto *cs = dyn_cast<CaseStmt>(stmt)) {
// In a case statement, search for the pattern that contains it. This is
// a bit silly, because you can't have something like "case x, y:" anyway.
for (auto items : cs->getCaseLabelItems()) {
if (items.getPattern()->containsVarDecl(this))
return items.getPattern();
}
}
if (auto *LCS = dyn_cast<LabeledConditionalStmt>(stmt)) {
for (auto &elt : LCS->getCond())
if (auto pat = elt.getPatternOrNull())
if (pat->containsVarDecl(this))
return pat;
}
//stmt->dump();
assert(0 && "Unknown parent pattern statement?");
}
// Otherwise, check if we have to walk our case stmt's var decl list to find
// the pattern.
if (auto caseStmtPatternPair = findParentPatternCaseStmtAndPattern(this)) {
return caseStmtPatternPair->second;
}
// Otherwise, this is a case we do not know or understand. Return nullptr to
// signal we do not have any information.
return nullptr;
}
NullablePtr<VarDecl>
VarDecl::getCorrespondingFirstCaseLabelItemVarDecl() const {
if (!hasName())
return nullptr;
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return nullptr;
auto *pattern = caseStmt->getCaseLabelItems().front().getPattern();
SmallVector<VarDecl *, 8> vars;
pattern->collectVariables(vars);
for (auto *vd : vars) {
if (vd->hasName() && vd->getName() == getName())
return vd;
}
return nullptr;
}
bool VarDecl::isCaseBodyVariable() const {
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return false;
return llvm::any_of(caseStmt->getCaseBodyVariablesOrEmptyArray(),
[&](VarDecl *vd) { return vd == this; });
}
NullablePtr<VarDecl> VarDecl::getCorrespondingCaseBodyVariable() const {
// Only var decls associated with case statements can have child var decls.
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return nullptr;
// If this var decl doesn't have a name, it can not have a corresponding case
// body variable.
if (!hasName())
return nullptr;
auto name = getName();
// A var decl associated with a case stmt implies that the case stmt has body
// var decls. So we can access the optional value here without worry.
auto caseBodyVars = *caseStmt->getCaseBodyVariables();
auto result = llvm::find_if(caseBodyVars, [&](VarDecl *caseBodyVar) {
return caseBodyVar->getName() == name;
});
return (result != caseBodyVars.end()) ? *result : nullptr;
}
bool VarDecl::isSelfParameter() const {
if (isa<ParamDecl>(this)) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDeclContext()))
return AFD->getImplicitSelfDecl(/*createIfNeeded=*/false) == this;
if (auto *PBI = dyn_cast<PatternBindingInitializer>(getDeclContext()))
return PBI->getImplicitSelfDecl() == this;
}
return false;
}
void VarDecl::setSpecifier(Specifier specifier) {
Bits.VarDecl.Specifier = static_cast<unsigned>(specifier);
setSupportsMutationIfStillStored(
StorageIsMutable_t(!isImmutableSpecifier(specifier)));
}
bool VarDecl::isAnonClosureParam() const {
auto name = getName();
if (name.empty())
return false;
auto nameStr = name.str();
if (nameStr.empty())
return false;
return nameStr[0] == '$';
}
StaticSpellingKind AbstractStorageDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (auto *PBD = VD->getParentPatternBinding()) {
if (PBD->getStaticSpelling() != StaticSpellingKind::None)
return PBD->getStaticSpelling();
}
} else if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
return SD->getStaticSpelling();
}
return getCorrectStaticSpellingForDecl(this);
}
Identifier VarDecl::getObjCPropertyName() const {
if (auto attr = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = attr->getName())
return name->getSelectorPieces()[0];
}
return getName();
}
ObjCSelector VarDecl::getDefaultObjCGetterSelector(ASTContext &ctx,
Identifier propertyName) {
return ObjCSelector(ctx, 0, propertyName);
}
ObjCSelector VarDecl::getDefaultObjCSetterSelector(ASTContext &ctx,
Identifier propertyName) {
llvm::SmallString<16> scratch;
scratch += "set";
camel_case::appendSentenceCase(scratch, propertyName.str());
return ObjCSelector(ctx, 1, ctx.getIdentifier(scratch));
}
/// If this is a simple 'let' constant, emit a note with a fixit indicating
/// that it can be rewritten to a 'var'. This is used in situations where the
/// compiler detects obvious attempts to mutate a constant.
void VarDecl::emitLetToVarNoteIfSimple(DeclContext *UseDC) const {
// If it isn't a 'let', don't touch it.
if (!isLet()) return;
// If this is the 'self' argument of a non-mutating method in a value type,
// suggest adding 'mutating' to the method.
if (isSelfParameter() && UseDC) {
// If the problematic decl is 'self', then we might be trying to mutate
// a property in a non-mutating method.
auto FD = dyn_cast_or_null<FuncDecl>(UseDC->getInnermostMethodContext());
if (FD && !FD->isMutating() && !FD->isImplicit() && FD->isInstanceMember()&&
!FD->getDeclContext()->getDeclaredInterfaceType()
->hasReferenceSemantics()) {
// Do not suggest the fix it in implicit getters
if (auto AD = dyn_cast<AccessorDecl>(FD)) {
if (AD->isGetter() && !AD->getAccessorKeywordLoc().isValid())
return;
}
auto &d = getASTContext().Diags;
d.diagnose(FD->getFuncLoc(), diag::change_to_mutating,
isa<AccessorDecl>(FD))
.fixItInsert(FD->getFuncLoc(), "mutating ");
return;
}
}
// Besides self, don't suggest mutability for explicit function parameters.
if (isa<ParamDecl>(this)) return;
// Don't suggest any fixes for capture list elements.
if (isCaptureList()) return;
// If this is a normal variable definition, then we can change 'let' to 'var'.
// We even are willing to suggest this for multi-variable binding, like
// "let (a,b) = "
// since the user has to choose to apply this anyway.
if (auto *PBD = getParentPatternBinding()) {
// Don't touch generated or invalid code.
if (PBD->getLoc().isInvalid() || PBD->isImplicit())
return;
auto &d = getASTContext().Diags;
d.diagnose(PBD->getLoc(), diag::convert_let_to_var)
.fixItReplace(PBD->getLoc(), "var");
return;
}
}
ParamDecl::ParamDecl(Specifier specifier,
SourceLoc specifierLoc, SourceLoc argumentNameLoc,
Identifier argumentName, SourceLoc parameterNameLoc,
Identifier parameterName, DeclContext *dc)
: VarDecl(DeclKind::Param, /*IsStatic*/false, specifier,
/*IsCaptureList*/false, parameterNameLoc, parameterName, dc),
ArgumentName(argumentName), ArgumentNameLoc(argumentNameLoc),
SpecifierLoc(specifierLoc) {
assert(specifier != Specifier::Var &&
"'var' cannot appear on parameters; you meant 'inout'");
Bits.ParamDecl.IsTypeLocImplicit = false;
Bits.ParamDecl.defaultArgumentKind =
static_cast<unsigned>(DefaultArgumentKind::None);
}
/// Clone constructor, allocates a new ParamDecl identical to the first.
/// Intentionally not defined as a copy constructor to avoid accidental copies.
ParamDecl::ParamDecl(ParamDecl *PD, bool withTypes)
: VarDecl(DeclKind::Param, /*IsStatic*/false, PD->getSpecifier(),
/*IsCaptureList*/false, PD->getNameLoc(), PD->getName(),
PD->getDeclContext()),
ArgumentName(PD->getArgumentName()),
ArgumentNameLoc(PD->getArgumentNameLoc()),
SpecifierLoc(PD->getSpecifierLoc()),
DefaultValueAndFlags(nullptr, PD->DefaultValueAndFlags.getInt()) {
Bits.ParamDecl.IsTypeLocImplicit = PD->Bits.ParamDecl.IsTypeLocImplicit;
Bits.ParamDecl.defaultArgumentKind = PD->Bits.ParamDecl.defaultArgumentKind;
typeLoc = PD->getTypeLoc().clone(PD->getASTContext());
if (!withTypes && typeLoc.getTypeRepr())
typeLoc.setType(Type());
if (withTypes && PD->hasInterfaceType())
setInterfaceType(PD->getInterfaceType());
// FIXME: We should clone the entire attribute list.
if (PD->getAttrs().hasAttribute<ImplicitlyUnwrappedOptionalAttr>())
getAttrs().add(new (PD->getASTContext())
ImplicitlyUnwrappedOptionalAttr(/* implicit= */ true));
}
/// Retrieve the type of 'self' for the given context.
Type DeclContext::getSelfTypeInContext() const {
assert(isTypeContext());
// For a protocol or extension thereof, the type is 'Self'.
if (getSelfProtocolDecl()) {
auto selfType = getProtocolSelfType();
if (!selfType)
return ErrorType::get(getASTContext());
return mapTypeIntoContext(selfType);
}
return getDeclaredTypeInContext();
}
/// Retrieve the interface type of 'self' for the given context.
Type DeclContext::getSelfInterfaceType() const {
assert(isTypeContext());
// For a protocol or extension thereof, the type is 'Self'.
if (getSelfProtocolDecl()) {
auto selfType = getProtocolSelfType();
if (!selfType)
return ErrorType::get(getASTContext());
return selfType;
}
return getDeclaredInterfaceType();
}
/// Return the full source range of this parameter.
SourceRange ParamDecl::getSourceRange() const {
SourceLoc APINameLoc = getArgumentNameLoc();
SourceLoc nameLoc = getNameLoc();
SourceLoc startLoc;
if (APINameLoc.isValid())
startLoc = APINameLoc;
else if (nameLoc.isValid())
startLoc = nameLoc;
else {
startLoc = getTypeLoc().getSourceRange().Start;
}
if (startLoc.isInvalid())
return SourceRange();
// It would be nice to extend the front of the range to show where inout is,
// but we don't have that location info. Extend the back of the range to the
// location of the default argument, or the typeloc if they are valid.
if (auto expr = getDefaultValue()) {
auto endLoc = expr->getEndLoc();
if (endLoc.isValid())
return SourceRange(startLoc, endLoc);
}
// If the typeloc has a valid location, use it to end the range.
if (auto typeRepr = getTypeLoc().getTypeRepr()) {
auto endLoc = typeRepr->getEndLoc();
if (endLoc.isValid() && !isTypeLocImplicit())
return SourceRange(startLoc, endLoc);
}
// The name has a location we can use.
if (nameLoc.isValid())
return SourceRange(startLoc, nameLoc);
return startLoc;
}
Type ParamDecl::getVarargBaseTy(Type VarArgT) {
TypeBase *T = VarArgT.getPointer();
if (auto *AT = dyn_cast<ArraySliceType>(T))
return AT->getBaseType();
if (auto *BGT = dyn_cast<BoundGenericType>(T)) {
// It's the stdlib Array<T>.
return BGT->getGenericArgs()[0];
}
return T;
}
void ParamDecl::setDefaultValue(Expr *E) {
if (!DefaultValueAndFlags.getPointer()) {
if (!E) return;
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
DefaultValueAndFlags.getPointer()->DefaultArg = E;
}
void ParamDecl::setStoredProperty(VarDecl *var) {
if (!DefaultValueAndFlags.getPointer()) {
if (!var) return;
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
DefaultValueAndFlags.getPointer()->DefaultArg = var;
}
void ParamDecl::setDefaultArgumentInitContext(Initializer *initContext) {
assert(DefaultValueAndFlags.getPointer());
DefaultValueAndFlags.getPointer()->InitContext = initContext;
}
StringRef
ParamDecl::getDefaultValueStringRepresentation(
SmallVectorImpl<char> &scratch) const {
switch (getDefaultArgumentKind()) {
case DefaultArgumentKind::None:
llvm_unreachable("called on a ParamDecl with no default value");
case DefaultArgumentKind::Normal: {
assert(DefaultValueAndFlags.getPointer() &&
"default value not provided yet");
auto existing = DefaultValueAndFlags.getPointer()->StringRepresentation;
if (!existing.empty())
return existing;
if (!getDefaultValue()) {
// TypeChecker::checkDefaultArguments() nulls out the default value
// if it fails to type check it. This only seems to happen with an
// invalid/incomplete parameter list that contains a parameter with an
// unresolved default value.
return "<<empty>>";
}
return extractInlinableText(getASTContext().SourceMgr, getDefaultValue(),
scratch);
}
case DefaultArgumentKind::StoredProperty: {
assert(DefaultValueAndFlags.getPointer() &&
"default value not provided yet");
auto existing = DefaultValueAndFlags.getPointer()->StringRepresentation;
if (!existing.empty())
return existing;
auto var = getStoredProperty();
return extractInlinableText(getASTContext().SourceMgr,
var->getParentInitializer(),
scratch);
}
case DefaultArgumentKind::Inherited:
// FIXME: This needs /some/ kind of textual representation, but this isn't
// a great one.
return "super";
case DefaultArgumentKind::File: return "#file";
case DefaultArgumentKind::Line: return "#line";
case DefaultArgumentKind::Column: return "#column";
case DefaultArgumentKind::Function: return "#function";
case DefaultArgumentKind::DSOHandle: return "#dsohandle";
case DefaultArgumentKind::NilLiteral: return "nil";
case DefaultArgumentKind::EmptyArray: return "[]";
case DefaultArgumentKind::EmptyDictionary: return "[:]";
}
llvm_unreachable("unhandled kind");
}
void
ParamDecl::setDefaultValueStringRepresentation(StringRef stringRepresentation) {
assert(getDefaultArgumentKind() == DefaultArgumentKind::Normal ||
getDefaultArgumentKind() == DefaultArgumentKind::StoredProperty);
assert(!stringRepresentation.empty());
if (!DefaultValueAndFlags.getPointer()) {
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
DefaultValueAndFlags.getPointer()->StringRepresentation =
stringRepresentation;
}
void DefaultArgumentInitializer::changeFunction(
DeclContext *parent, ParameterList *paramList) {
if (parent->isLocalContext()) {
setParent(parent);
}
auto param = paramList->get(getIndex());
if (param->getDefaultValue() || param->getStoredProperty())
param->setDefaultArgumentInitContext(this);
}
/// Determine whether the given Swift type is an integral type, i.e.,
/// a type that wraps a builtin integer.
static bool isIntegralType(Type type) {
// Consider structs in the standard library module that wrap a builtin
// integer type to be integral types.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
return false;
// Find the single ivar.
VarDecl *singleVar = nullptr;
for (auto member : structDecl->getStoredProperties()) {
if (singleVar)
return false;
singleVar = member;
}
if (!singleVar)
return false;
// Check whether it has integer type.
return singleVar->getInterfaceType()->is<BuiltinIntegerType>();
}
return false;
}
void SubscriptDecl::setIndices(ParameterList *p) {
Indices = p;
if (Indices)
Indices->setDeclContextOfParamDecls(this);
}
Type SubscriptDecl::getElementInterfaceType() const {
auto elementTy = getInterfaceType();
if (elementTy->is<ErrorType>())
return elementTy;
return elementTy->castTo<AnyFunctionType>()->getResult();
}
void SubscriptDecl::computeType() {
auto elementTy = getElementTypeLoc().getType();
SmallVector<AnyFunctionType::Param, 2> argTy;
getIndices()->getParams(argTy);
Type funcTy;
if (auto *sig = getGenericSignature())
funcTy = GenericFunctionType::get(sig, argTy, elementTy);
else
funcTy = FunctionType::get(argTy, elementTy);
// Record the interface type.
setInterfaceType(funcTy);
}
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind() const {
// If the index type is an integral type, we have an indexed
// subscript.
if (auto funcTy = getInterfaceType()->getAs<AnyFunctionType>()) {
auto params = funcTy->getParams();
if (params.size() == 1)
if (isIntegralType(params[0].getPlainType()))
return ObjCSubscriptKind::Indexed;
}
// If the index type is an object type in Objective-C, we have a
// keyed subscript.
return ObjCSubscriptKind::Keyed;
}
SourceRange SubscriptDecl::getSourceRange() const {
if (getBracesRange().isValid()) {
return { getSubscriptLoc(), getBracesRange().End };
} else if (ElementTy.getSourceRange().End.isValid()) {
return { getSubscriptLoc(), ElementTy.getSourceRange().End };
} else if (ArrowLoc.isValid()) {
return { getSubscriptLoc(), ArrowLoc };
} else {
return getSubscriptLoc();
}
}
SourceRange SubscriptDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
if (auto Indices = getIndices()) {
auto End = Indices->getEndLoc();
if (End.isValid()) {
return SourceRange(getSubscriptLoc(), End);
}
}
return getSubscriptLoc();
}
DeclName AbstractFunctionDecl::getEffectiveFullName() const {
if (getFullName())
return getFullName();
if (auto accessor = dyn_cast<AccessorDecl>(this)) {
auto &ctx = getASTContext();
auto storage = accessor->getStorage();
auto subscript = dyn_cast<SubscriptDecl>(storage);
switch (auto accessorKind = accessor->getAccessorKind()) {
// These don't have any extra implicit parameters.
case AccessorKind::Address:
case AccessorKind::MutableAddress:
case AccessorKind::Get:
case AccessorKind::Read:
case AccessorKind::Modify:
return subscript ? subscript->getFullName()
: DeclName(ctx, storage->getBaseName(),
ArrayRef<Identifier>());
case AccessorKind::Set:
case AccessorKind::DidSet:
case AccessorKind::WillSet: {
SmallVector<Identifier, 4> argNames;
// The implicit value/buffer parameter.
argNames.push_back(Identifier());
// The subscript index parameters.
if (subscript) {
argNames.append(subscript->getFullName().getArgumentNames().begin(),
subscript->getFullName().getArgumentNames().end());
}
return DeclName(ctx, storage->getBaseName(), argNames);
}
}
llvm_unreachable("bad accessor kind");
}
return DeclName();
}
const ParamDecl *swift::getParameterAt(ValueDecl *source, unsigned index) {
const ParameterList *paramList;
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(source)) {
paramList = AFD->getParameters();
} else if (auto *EED = dyn_cast<EnumElementDecl>(source)) {
paramList = EED->getParameterList();
} else {
paramList = cast<SubscriptDecl>(source)->getIndices();
}
return paramList->get(index);
}
Type AbstractFunctionDecl::getMethodInterfaceType() const {
assert(getDeclContext()->isTypeContext());
auto Ty = getInterfaceType();
if (Ty->hasError())
return ErrorType::get(getASTContext());
return Ty->castTo<AnyFunctionType>()->getResult();
}
bool AbstractFunctionDecl::argumentNameIsAPIByDefault() const {
// Initializers have argument labels.
if (isa<ConstructorDecl>(this))
return true;
if (auto func = dyn_cast<FuncDecl>(this)) {
// Operators do not have argument labels.
if (func->isOperator())
return false;
// Other functions have argument labels for all arguments
return true;
}
assert(isa<DestructorDecl>(this));
return false;
}
SourceRange AbstractFunctionDecl::getBodySourceRange() const {
switch (getBodyKind()) {
case BodyKind::None:
case BodyKind::MemberwiseInitializer:
case BodyKind::Deserialized:
return SourceRange();
case BodyKind::Parsed:
case BodyKind::Synthesize:
case BodyKind::TypeChecked:
if (auto body = getBody())
return body->getSourceRange();
return SourceRange();
case BodyKind::Skipped:
case BodyKind::Unparsed:
return BodyRange;
}
llvm_unreachable("bad BodyKind");
}
SourceRange AbstractFunctionDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
auto paramList = getParameters();
auto endLoc = paramList->getSourceRange().End;
if (endLoc.isValid())
return SourceRange(getNameLoc(), endLoc);
return getNameLoc();
}
ObjCSelector
AbstractFunctionDecl::getObjCSelector(DeclName preferredName,
bool skipIsObjCResolution) const {
// FIXME: Forces computation of the Objective-C selector.
if (getASTContext().getLazyResolver() && !skipIsObjCResolution)
(void)isObjC();
// If there is an @objc attribute with a name, use that name.
auto *objc = getAttrs().getAttribute<ObjCAttr>();
if (auto name = getNameFromObjcAttribute(objc, preferredName)) {
return *name;
}
auto &ctx = getASTContext();
StringRef baseNameStr;
if (auto destructor = dyn_cast<DestructorDecl>(this)) {
return destructor->getObjCSelector();
} else if (auto func = dyn_cast<FuncDecl>(this)) {
// Otherwise cast this to be able to access getName()
baseNameStr = func->getName().str();
} else if (isa<ConstructorDecl>(this)) {
baseNameStr = "init";
} else {
llvm_unreachable("Unknown subclass of AbstractFunctionDecl");
}
auto argNames = getFullName().getArgumentNames();
// Use the preferred name if specified
if (preferredName) {
// Return invalid selector if argument count doesn't match.
if (argNames.size() != preferredName.getArgumentNames().size()) {
return ObjCSelector();
}
baseNameStr = preferredName.getBaseName().userFacingName();
argNames = preferredName.getArgumentNames();
}
auto baseName = ctx.getIdentifier(baseNameStr);
if (auto accessor = dyn_cast<AccessorDecl>(this)) {
// For a getter or setter, go through the variable or subscript decl.
auto asd = accessor->getStorage();
if (accessor->isGetter())
return asd->getObjCGetterSelector(baseName);
if (accessor->isSetter())
return asd->getObjCSetterSelector(baseName);
}
// If this is a zero-parameter initializer with a long selector
// name, form that selector.
auto ctor = dyn_cast<ConstructorDecl>(this);
if (ctor && ctor->isObjCZeroParameterWithLongSelector()) {
Identifier firstName = argNames[0];
llvm::SmallString<16> scratch;
scratch += "init";
// If the first argument name doesn't start with a preposition, add "with".
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
return ObjCSelector(ctx, 0, ctx.getIdentifier(scratch));
}
// The number of selector pieces we'll have.
Optional<ForeignErrorConvention> errorConvention
= getForeignErrorConvention();
unsigned numSelectorPieces
= argNames.size() + (errorConvention.hasValue() ? 1 : 0);
// If we have no arguments, it's a nullary selector.
if (numSelectorPieces == 0) {
return ObjCSelector(ctx, 0, baseName);
}
// If it's a unary selector with no name for the first argument, we're done.
if (numSelectorPieces == 1 && argNames.size() == 1 && argNames[0].empty()) {
return ObjCSelector(ctx, 1, baseName);
}
/// Collect the selector pieces.
SmallVector<Identifier, 4> selectorPieces;
selectorPieces.reserve(numSelectorPieces);
bool didStringManipulation = false;
unsigned argIndex = 0;
for (unsigned piece = 0; piece != numSelectorPieces; ++piece) {
if (piece > 0) {
// If we have an error convention that inserts an error parameter
// here, add "error".
if (errorConvention &&
piece == errorConvention->getErrorParameterIndex()) {
selectorPieces.push_back(ctx.Id_error);
continue;
}
// Selector pieces beyond the first are simple.
selectorPieces.push_back(argNames[argIndex++]);
continue;
}
// For the first selector piece, attach either the first parameter
// or "AndReturnError" to the base name, if appropriate.
auto firstPiece = baseName;
llvm::SmallString<32> scratch;
scratch += firstPiece.str();
if (errorConvention && piece == errorConvention->getErrorParameterIndex()) {
// The error is first; append "AndReturnError".
camel_case::appendSentenceCase(scratch, "AndReturnError");
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else if (!argNames[argIndex].empty()) {
// If the first argument name doesn't start with a preposition, and the
// method name doesn't end with a preposition, add "with".
auto firstName = argNames[argIndex++];
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None &&
getPrepositionKind(camel_case::getLastWord(firstPiece.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else {
++argIndex;
}
selectorPieces.push_back(firstPiece);
}
assert(argIndex == argNames.size());
// Form the result.
auto result = ObjCSelector(ctx, selectorPieces.size(), selectorPieces);
// If we did any string manipulation, cache the result. We don't want to
// do that again.
if (didStringManipulation && objc && !preferredName)
const_cast<ObjCAttr *>(objc)->setName(result, /*implicit=*/true);
return result;
}
bool AbstractFunctionDecl::isObjCInstanceMethod() const {
return isInstanceMember() || isa<ConstructorDecl>(this);
}
static bool requiresNewVTableEntry(const AbstractFunctionDecl *decl) {
if (!isa<ClassDecl>(decl->getDeclContext()))
return true;
assert(isa<FuncDecl>(decl) || isa<ConstructorDecl>(decl));
// Final members are always be called directly.
// Dynamic methods are always accessed by objc_msgSend().
if (decl->isFinal() || decl->isObjCDynamic() || decl->hasClangNode())
return false;
// Initializers are not normally inherited, but required initializers can
// be overridden for invocation from dynamic types, and convenience initializers
// are conditionally inherited when all designated initializers are available,
// working by dynamically invoking the designated initializer implementation
// from the subclass. Convenience initializers can also override designated
// initializer implementations from their superclass.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (!ctor->isRequired() && !ctor->isDesignatedInit()) {
return false;
}
}
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
// Check to see if it's one of the opaque accessors for the declaration.
auto storage = accessor->getStorage();
if (!storage->requiresOpaqueAccessor(accessor->getAccessorKind()))
return false;
}
auto base = decl->getOverriddenDecl();
if (!base || base->hasClangNode() || base->isObjCDynamic())
return true;
// As above, convenience initializers are not formally overridable in Swift
// vtables, although same-named initializers are modeled as overriding for
// various QoI and objc interop reasons. Even if we "override" a non-required
// convenience init, we still need a distinct vtable entry.
if (auto baseCtor = dyn_cast<ConstructorDecl>(base)) {
if (!baseCtor->isRequired() && !baseCtor->isDesignatedInit()) {
return true;
}
}
// If the method overrides something, we only need a new entry if the
// override has a more general AST type. However an abstraction
// change is OK; we don't want to add a whole new vtable entry just
// because an @in parameter because @owned, or whatever.
auto baseInterfaceTy = base->getInterfaceType();
auto derivedInterfaceTy = decl->getInterfaceType();
auto selfInterfaceTy = decl->getDeclContext()->getDeclaredInterfaceType();
auto overrideInterfaceTy = selfInterfaceTy->adjustSuperclassMemberDeclType(
base, decl, baseInterfaceTy);
return !derivedInterfaceTy->matches(overrideInterfaceTy,
TypeMatchFlags::AllowABICompatible);
}
void AbstractFunctionDecl::computeNeedsNewVTableEntry() {
setNeedsNewVTableEntry(requiresNewVTableEntry(this));
}
ParamDecl *AbstractFunctionDecl::getImplicitSelfDecl(bool createIfNeeded) {
auto **selfDecl = getImplicitSelfDeclStorage();
// If this is not a method, return nullptr.
if (selfDecl == nullptr)
return nullptr;
// If we've already created a 'self' parameter, just return it.
if (*selfDecl != nullptr)
return *selfDecl;
// If we're not allowed to create one, return nullptr.
if (!createIfNeeded)
return nullptr;
// Create and save our 'self' parameter.
auto &ctx = getASTContext();
*selfDecl = new (ctx) ParamDecl(VarDecl::Specifier::Default,
SourceLoc(), SourceLoc(), Identifier(),
getLoc(), ctx.Id_self, this);
(*selfDecl)->setImplicit();
// If we already have an interface type, compute the 'self' parameter type.
// Otherwise, we'll do it later.
if (hasInterfaceType())
computeSelfDeclType();
return *selfDecl;
}
void AbstractFunctionDecl::computeSelfDeclType() {
assert(hasImplicitSelfDecl());
assert(hasInterfaceType());
auto *selfDecl = getImplicitSelfDecl(/*createIfNeeded=*/false);
// If we haven't created a 'self' parameter yet, do nothing, we'll compute
// the type later.
if (selfDecl == nullptr)
return;
auto selfParam = computeSelfParam(this,
/*isInitializingCtor*/true,
/*wantDynamicSelf*/true);
selfDecl->setInterfaceType(selfParam.getPlainType());
auto specifier = selfParam.getParameterFlags().isInOut()
? VarDecl::Specifier::InOut
: VarDecl::Specifier::Default;
selfDecl->setSpecifier(specifier);
selfDecl->setValidationToChecked();
}
void AbstractFunctionDecl::setParameters(ParameterList *BodyParams) {
#ifndef NDEBUG
auto Name = getFullName();
if (!isa<DestructorDecl>(this))
assert((!Name || !Name.isSimpleName()) && "Must have a compound name");
assert(!Name || (Name.getArgumentNames().size() == BodyParams->size()));
#endif
Params = BodyParams;
BodyParams->setDeclContextOfParamDecls(this);
}
void AbstractFunctionDecl::computeType(AnyFunctionType::ExtInfo info) {
auto &ctx = getASTContext();
auto *sig = getGenericSignature();
bool hasSelf = hasImplicitSelfDecl();
// Result
Type resultTy;
if (auto fn = dyn_cast<FuncDecl>(this)) {
resultTy = fn->getBodyResultTypeLoc().getType();
if (!resultTy)
resultTy = TupleType::getEmpty(ctx);
} else if (auto ctor = dyn_cast<ConstructorDecl>(this)) {
auto *dc = ctor->getDeclContext();
if (hasSelf) {
if (!dc->isTypeContext())
resultTy = ErrorType::get(ctx);
else
resultTy = dc->getSelfInterfaceType();
}
// Adjust result type for failability.
if (ctor->getFailability() != OTK_None)
resultTy = OptionalType::get(resultTy);
} else {
assert(isa<DestructorDecl>(this));
resultTy = TupleType::getEmpty(ctx);
}
// (Args...) -> Result
Type funcTy;
{
SmallVector<AnyFunctionType::Param, 4> argTy;
getParameters()->getParams(argTy);
// 'throws' only applies to the innermost function.
info = info.withThrows(hasThrows());
// Defer bodies must not escape.
if (auto fd = dyn_cast<FuncDecl>(this))
info = info.withNoEscape(fd->isDeferBody());
if (sig && !hasSelf) {
funcTy = GenericFunctionType::get(sig, argTy, resultTy, info);
} else {
funcTy = FunctionType::get(argTy, resultTy, info);
}
}
// (Self) -> (Args...) -> Result
if (hasSelf) {
// Substitute in our own 'self' parameter.
auto selfParam = computeSelfParam(this);
if (sig)
funcTy = GenericFunctionType::get(sig, {selfParam}, funcTy);
else
funcTy = FunctionType::get({selfParam}, funcTy);
}
// Record the interface type.
setInterfaceType(funcTy);
// Compute the type of the 'self' parameter if we're created one already.
if (hasSelf)
computeSelfDeclType();
}
bool AbstractFunctionDecl::hasInlinableBodyText() const {
switch (getBodyKind()) {
case BodyKind::Deserialized:
return true;
case BodyKind::Parsed:
case BodyKind::TypeChecked:
return getBody() && !getBody()->isImplicit();
case BodyKind::None:
case BodyKind::Unparsed:
case BodyKind::Synthesize:
case BodyKind::Skipped:
case BodyKind::MemberwiseInitializer:
return false;
}
}
StringRef AbstractFunctionDecl::getInlinableBodyText(
SmallVectorImpl<char> &scratch) const {
assert(hasInlinableBodyText() &&
"can't get string representation of function with no text");
if (getBodyKind() == BodyKind::Deserialized)
return BodyStringRepresentation;
auto body = getBody();
return extractInlinableText(getASTContext().SourceMgr, body, scratch);
}
FuncDecl *FuncDecl::createImpl(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
bool Throws, SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
DeclContext *Parent,
ClangNode ClangN) {
bool HasImplicitSelfDecl = Parent->isTypeContext();
size_t Size = sizeof(FuncDecl) + (HasImplicitSelfDecl
? sizeof(ParamDecl *)
: 0);
void *DeclPtr = allocateMemoryForDecl<FuncDecl>(Context, Size,
!ClangN.isNull());
auto D = ::new (DeclPtr)
FuncDecl(DeclKind::Func, StaticLoc, StaticSpelling, FuncLoc,
Name, NameLoc, Throws, ThrowsLoc,
HasImplicitSelfDecl, GenericParams, Parent);
if (ClangN)
D->setClangNode(ClangN);
if (HasImplicitSelfDecl)
*D->getImplicitSelfDeclStorage() = nullptr;
return D;
}
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
bool Throws, SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
DeclContext *Parent) {
return createImpl(Context, StaticLoc, StaticSpelling, FuncLoc,
Name, NameLoc, Throws, ThrowsLoc,
GenericParams, Parent,
ClangNode());
}
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
bool Throws, SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
ParameterList *BodyParams,
TypeLoc FnRetType, DeclContext *Parent,
ClangNode ClangN) {
auto *FD = FuncDecl::createImpl(
Context, StaticLoc, StaticSpelling, FuncLoc,
Name, NameLoc, Throws, ThrowsLoc,
GenericParams, Parent, ClangN);
FD->setParameters(BodyParams);
FD->getBodyResultTypeLoc() = FnRetType;
return FD;
}
AccessorDecl *AccessorDecl::createImpl(ASTContext &ctx,
SourceLoc declLoc,
SourceLoc accessorKeywordLoc,
AccessorKind accessorKind,
AbstractStorageDecl *storage,
SourceLoc staticLoc,
StaticSpellingKind staticSpelling,
bool throws, SourceLoc throwsLoc,
GenericParamList *genericParams,
DeclContext *parent,
ClangNode clangNode) {
bool hasImplicitSelfDecl = parent->isTypeContext();
size_t size = sizeof(AccessorDecl) + (hasImplicitSelfDecl
? sizeof(ParamDecl *)
: 0);
void *buffer = allocateMemoryForDecl<AccessorDecl>(ctx, size,
!clangNode.isNull());
auto D = ::new (buffer)
AccessorDecl(declLoc, accessorKeywordLoc, accessorKind,
storage, staticLoc, staticSpelling, throws, throwsLoc,
hasImplicitSelfDecl, genericParams, parent);
if (clangNode)
D->setClangNode(clangNode);
if (hasImplicitSelfDecl)
*D->getImplicitSelfDeclStorage() = nullptr;
return D;
}
AccessorDecl *AccessorDecl::createDeserialized(ASTContext &ctx,
SourceLoc declLoc,
SourceLoc accessorKeywordLoc,
AccessorKind accessorKind,
AbstractStorageDecl *storage,
SourceLoc staticLoc,
StaticSpellingKind staticSpelling,
bool throws, SourceLoc throwsLoc,
GenericParamList *genericParams,
DeclContext *parent) {
return createImpl(ctx, declLoc, accessorKeywordLoc, accessorKind,
storage, staticLoc, staticSpelling,
throws, throwsLoc, genericParams, parent,
ClangNode());
}
AccessorDecl *AccessorDecl::create(ASTContext &ctx,
SourceLoc declLoc,
SourceLoc accessorKeywordLoc,
AccessorKind accessorKind,
AbstractStorageDecl *storage,
SourceLoc staticLoc,
StaticSpellingKind staticSpelling,
bool throws, SourceLoc throwsLoc,
GenericParamList *genericParams,
ParameterList * bodyParams,
TypeLoc fnRetType,
DeclContext *parent,
ClangNode clangNode) {
auto *D = AccessorDecl::createImpl(
ctx, declLoc, accessorKeywordLoc, accessorKind, storage,
staticLoc, staticSpelling, throws, throwsLoc,
genericParams, parent, clangNode);
D->setParameters(bodyParams);
D->getBodyResultTypeLoc() = fnRetType;
return D;
}
bool AccessorDecl::isAssumedNonMutating() const {
switch (getAccessorKind()) {
case AccessorKind::Get:
case AccessorKind::Address:
case AccessorKind::Read:
return true;
case AccessorKind::Set:
case AccessorKind::WillSet:
case AccessorKind::DidSet:
case AccessorKind::MutableAddress:
case AccessorKind::Modify:
return false;
}
llvm_unreachable("bad accessor kind");
}
bool AccessorDecl::isExplicitNonMutating() const {
return !isMutating() &&
!isAssumedNonMutating() &&
isInstanceMember() &&
!getDeclContext()->getDeclaredInterfaceType()->hasReferenceSemantics();
}
StaticSpellingKind FuncDecl::getCorrectStaticSpelling() const {
assert(getDeclContext()->isTypeContext());
if (!isStatic())
return StaticSpellingKind::None;
if (getStaticSpelling() != StaticSpellingKind::None)
return getStaticSpelling();
return getCorrectStaticSpellingForDecl(this);
}
Type FuncDecl::getResultInterfaceType() const {
if (!hasInterfaceType())
return nullptr;
Type resultTy = getInterfaceType();
if (resultTy->is<ErrorType>())
return resultTy;
if (hasImplicitSelfDecl())
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
return resultTy->castTo<AnyFunctionType>()->getResult();
}
bool FuncDecl::isUnaryOperator() const {
if (!isOperator())
return false;
auto *params = getParameters();
return params->size() == 1 && !params->get(0)->isVariadic();
}
bool FuncDecl::isBinaryOperator() const {
if (!isOperator())
return false;
auto *params = getParameters();
return params->size() == 2 &&
!params->get(0)->isVariadic() &&
!params->get(1)->isVariadic();
}
ConstructorDecl::ConstructorDecl(DeclName Name, SourceLoc ConstructorLoc,
OptionalTypeKind Failability,
SourceLoc FailabilityLoc,
bool Throws,
SourceLoc ThrowsLoc,
ParameterList *BodyParams,
GenericParamList *GenericParams,
DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Constructor, Parent, Name, ConstructorLoc,
Throws, ThrowsLoc, /*HasImplicitSelfDecl=*/true,
GenericParams),
FailabilityLoc(FailabilityLoc),
SelfDecl(nullptr)
{
if (BodyParams)
setParameters(BodyParams);
Bits.ConstructorDecl.ComputedBodyInitKind = 0;
Bits.ConstructorDecl.HasStubImplementation = 0;
Bits.ConstructorDecl.InitKind = static_cast<unsigned>(CtorInitializerKind::Designated);
Bits.ConstructorDecl.Failability = static_cast<unsigned>(Failability);
assert(Name.getBaseName() == DeclBaseName::createConstructor());
}
bool ConstructorDecl::isObjCZeroParameterWithLongSelector() const {
// The initializer must have a single, non-empty argument name.
if (getFullName().getArgumentNames().size() != 1 ||
getFullName().getArgumentNames()[0].empty())
return false;
auto *params = getParameters();
if (params->size() != 1)
return false;
return params->get(0)->getInterfaceType()->isVoid();
}
DestructorDecl::DestructorDecl(SourceLoc DestructorLoc, DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Destructor, Parent,
DeclBaseName::createDestructor(), DestructorLoc,
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(),
/*HasImplicitSelfDecl=*/true,
/*GenericParams=*/nullptr),
SelfDecl(nullptr) {
setParameters(ParameterList::createEmpty(Parent->getASTContext()));
}
ObjCSelector DestructorDecl::getObjCSelector() const {
// Deinitializers are always called "dealloc".
auto &ctx = getASTContext();
return ObjCSelector(ctx, 0, ctx.Id_dealloc);
}
SourceRange FuncDecl::getSourceRange() const {
SourceLoc StartLoc = getStartLoc();
if (StartLoc.isInvalid())
return SourceRange();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { StartLoc, BodyRange.End };
if (auto *B = getBody(/*canSynthesize=*/false)) {
if (!B->isImplicit())
return { StartLoc, B->getEndLoc() };
}
if (isa<AccessorDecl>(this))
return StartLoc;
if (getBodyKind() == BodyKind::Synthesize)
return SourceRange();
auto TrailingWhereClauseSourceRange = getGenericTrailingWhereClauseSourceRange();
if (TrailingWhereClauseSourceRange.isValid())
return { StartLoc, TrailingWhereClauseSourceRange.End };
if (getBodyResultTypeLoc().hasLocation() &&
getBodyResultTypeLoc().getSourceRange().End.isValid())
return { StartLoc, getBodyResultTypeLoc().getSourceRange().End };
if (hasThrows())
return { StartLoc, getThrowsLoc() };
auto LastParamListEndLoc = getParameters()->getSourceRange().End;
if (LastParamListEndLoc.isValid())
return { StartLoc, LastParamListEndLoc };
return StartLoc;
}
SourceRange EnumElementDecl::getSourceRange() const {
if (RawValueExpr && !RawValueExpr->isImplicit())
return {getStartLoc(), RawValueExpr->getEndLoc()};
if (auto *PL = getParameterList())
return {getStartLoc(), PL->getSourceRange().End};
return {getStartLoc(), getNameLoc()};
}
void EnumElementDecl::computeType() {
assert(!hasInterfaceType());
auto &ctx = getASTContext();
auto *ED = getParentEnum();
// The type of the enum element is either (Self.Type) -> Self
// or (Self.Type) -> (Args...) -> Self.
auto resultTy = ED->getDeclaredInterfaceType();
AnyFunctionType::Param selfTy(MetatypeType::get(resultTy, ctx));
if (auto *PL = getParameterList()) {
SmallVector<AnyFunctionType::Param, 4> argTy;
PL->getParams(argTy);
resultTy = FunctionType::get(argTy, resultTy);
}
if (auto *genericSig = ED->getGenericSignature())
resultTy = GenericFunctionType::get(genericSig, {selfTy}, resultTy);
else
resultTy = FunctionType::get({selfTy}, resultTy);
// Record the interface type.
setInterfaceType(resultTy);
}
Type EnumElementDecl::getArgumentInterfaceType() const {
if (!hasAssociatedValues())
return nullptr;
auto interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>()) {
return interfaceType;
}
auto funcTy = interfaceType->castTo<AnyFunctionType>();
funcTy = funcTy->getResult()->castTo<FunctionType>();
auto &ctx = getASTContext();
SmallVector<TupleTypeElt, 4> elements;
for (const auto &param : funcTy->getParams()) {
Type eltType = param.getParameterType(/*canonicalVararg=*/false, &ctx);
elements.emplace_back(eltType, param.getLabel());
}
return TupleType::get(elements, ctx);
}
EnumCaseDecl *EnumElementDecl::getParentCase() const {
for (EnumCaseDecl *EC : getParentEnum()->getAllCases()) {
ArrayRef<EnumElementDecl *> CaseElements = EC->getElements();
if (std::find(CaseElements.begin(), CaseElements.end(), this) !=
CaseElements.end()) {
return EC;
}
}
llvm_unreachable("enum element not in case of parent enum");
}
SourceRange ConstructorDecl::getSourceRange() const {
if (isImplicit())
return getConstructorLoc();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getConstructorLoc(), BodyRange.End };
SourceLoc End;
if (auto body = getBody())
End = body->getEndLoc();
if (End.isInvalid())
End = getGenericTrailingWhereClauseSourceRange().End;
if (End.isInvalid())
End = getThrowsLoc();
if (End.isInvalid())
End = getSignatureSourceRange().End;
return { getConstructorLoc(), End };
}
Type ConstructorDecl::getResultInterfaceType() const {
Type ArgTy = getInterfaceType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
return ArgTy;
}
Type ConstructorDecl::getInitializerInterfaceType() {
if (InitializerInterfaceType)
return InitializerInterfaceType;
// Lazily calculate initializer type.
auto funcTy = getInterfaceType()->castTo<AnyFunctionType>()->getResult();
assert(funcTy->is<FunctionType>());
// Constructors have an initializer type that takes an instance
// instead of a metatype.
auto initSelfParam = computeSelfParam(this, /*isInitializingCtor=*/true);
Type initFuncTy;
if (auto *sig = getGenericSignature())
initFuncTy = GenericFunctionType::get(sig, {initSelfParam}, funcTy);
else
initFuncTy = FunctionType::get({initSelfParam}, funcTy);
InitializerInterfaceType = initFuncTy;
return InitializerInterfaceType;
}
ConstructorDecl::BodyInitKind
ConstructorDecl::getDelegatingOrChainedInitKind(DiagnosticEngine *diags,
ApplyExpr **init) const {
assert(hasBody() && "Constructor does not have a definition");
if (init)
*init = nullptr;
// If we already computed the result, return it.
if (Bits.ConstructorDecl.ComputedBodyInitKind) {
return static_cast<BodyInitKind>(
Bits.ConstructorDecl.ComputedBodyInitKind - 1);
}
struct FindReferenceToInitializer : ASTWalker {
const ConstructorDecl *Decl;
BodyInitKind Kind = BodyInitKind::None;
ApplyExpr *InitExpr = nullptr;
DiagnosticEngine *Diags;
FindReferenceToInitializer(const ConstructorDecl *decl,
DiagnosticEngine *diags)
: Decl(decl), Diags(diags) { }
bool walkToDeclPre(class Decl *D) override {
// Don't walk into further nominal decls.
return !isa<NominalTypeDecl>(D);
}
std::pair<bool, Expr*> walkToExprPre(Expr *E) override {
// Don't walk into closures.
if (isa<ClosureExpr>(E))
return { false, E };
// Look for calls of a constructor on self or super.
auto apply = dyn_cast<ApplyExpr>(E);
if (!apply)
return { true, E };
auto Callee = apply->getSemanticFn();
Expr *arg;
if (isa<OtherConstructorDeclRefExpr>(Callee)) {
arg = apply->getArg();
} else if (auto *CRE = dyn_cast<ConstructorRefCallExpr>(Callee)) {
arg = CRE->getArg();
} else if (auto *dotExpr = dyn_cast<UnresolvedDotExpr>(Callee)) {
if (dotExpr->getName().getBaseName() != DeclBaseName::createConstructor())
return { true, E };
arg = dotExpr->getBase();
} else {
// Not a constructor call.
return { true, E };
}
// Look for a base of 'self' or 'super'.
BodyInitKind myKind;
if (arg->isSuperExpr())
myKind = BodyInitKind::Chained;
else if (arg->isSelfExprOf(Decl, /*sameBase*/true))
myKind = BodyInitKind::Delegating;
else {
// We're constructing something else.
return { true, E };
}
if (Kind == BodyInitKind::None) {
Kind = myKind;
// If we're not emitting diagnostics, we're done.
if (!Diags)
return { false, nullptr };
InitExpr = apply;
return { true, E };
}
assert(Diags && "Failed to abort traversal early");
// If the kind changed, complain.
if (Kind != myKind) {
// The kind changed. Complain.
Diags->diagnose(E->getLoc(), diag::init_delegates_and_chains);
Diags->diagnose(InitExpr->getLoc(), diag::init_delegation_or_chain,
Kind == BodyInitKind::Chained);
}
return { true, E };
}
};
FindReferenceToInitializer finder(this, diags);
getBody()->walk(finder);
// get the kind out of the finder.
auto Kind = finder.Kind;
auto *NTD = getDeclContext()->getSelfNominalTypeDecl();
// Protocol extension and enum initializers are always delegating.
if (Kind == BodyInitKind::None) {
if (isa<ProtocolDecl>(NTD) || isa<EnumDecl>(NTD)) {
Kind = BodyInitKind::Delegating;
}
}
// Struct initializers that cannot see the layout of the struct type are
// always delegating. This occurs if the struct type is not fixed layout,
// and the constructor is either inlinable or defined in another module.
if (Kind == BodyInitKind::None && isa<StructDecl>(NTD)) {
// Note: This is specifically not using isFormallyResilient. We relax this
// rule for structs in non-resilient modules so that they can have inlinable
// constructors, as long as those constructors don't reference private
// declarations.
if (NTD->isResilient() &&
getResilienceExpansion() == ResilienceExpansion::Minimal) {
Kind = BodyInitKind::Delegating;
} else if (isa<ExtensionDecl>(getDeclContext())) {
const ModuleDecl *containingModule = getParentModule();
// Prior to Swift 5, cross-module initializers were permitted to be
// non-delegating. However, if the struct isn't fixed-layout, we have to
// be delegating because, well, we don't know the layout.
// A dynamic replacement is permitted to be non-delegating.
if (NTD->isResilient() ||
(containingModule->getASTContext().isSwiftVersionAtLeast(5) &&
!getAttrs().getAttribute<DynamicReplacementAttr>())) {
if (containingModule != NTD->getParentModule())
Kind = BodyInitKind::Delegating;
}
}
}
// If we didn't find any delegating or chained initializers, check whether
// the initializer was explicitly marked 'convenience'.
if (Kind == BodyInitKind::None && getAttrs().hasAttribute<ConvenienceAttr>())
Kind = BodyInitKind::Delegating;
// If we still don't know, check whether we have a class with a superclass: it
// gets an implicit chained initializer.
if (Kind == BodyInitKind::None) {
if (auto classDecl = getDeclContext()->getSelfClassDecl()) {
if (classDecl->hasSuperclass())
Kind = BodyInitKind::ImplicitChained;
}
}
// Cache the result if it is trustworthy.
if (diags) {
auto *mutableThis = const_cast<ConstructorDecl *>(this);
mutableThis->Bits.ConstructorDecl.ComputedBodyInitKind =
static_cast<unsigned>(Kind) + 1;
if (init)
*init = finder.InitExpr;
}
return Kind;
}
SourceRange DestructorDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getDestructorLoc(), BodyRange.End };
if (getBodyKind() == BodyKind::None)
return getDestructorLoc();
return { getDestructorLoc(), getBody()->getEndLoc() };
}
StringRef swift::getAssociativitySpelling(Associativity value) {
switch (value) {
case Associativity::None: return "none";
case Associativity::Left: return "left";
case Associativity::Right: return "right";
}
llvm_unreachable("Unhandled Associativity in switch.");
}
PrecedenceGroupDecl *
PrecedenceGroupDecl::create(DeclContext *dc,
SourceLoc precedenceGroupLoc,
SourceLoc nameLoc,
Identifier name,
SourceLoc lbraceLoc,
SourceLoc associativityKeywordLoc,
SourceLoc associativityValueLoc,
Associativity associativity,
SourceLoc assignmentKeywordLoc,
SourceLoc assignmentValueLoc,
bool isAssignment,
SourceLoc higherThanLoc,
ArrayRef<Relation> higherThan,
SourceLoc lowerThanLoc,
ArrayRef<Relation> lowerThan,
SourceLoc rbraceLoc) {
void *memory = dc->getASTContext().Allocate(sizeof(PrecedenceGroupDecl) +
(higherThan.size() + lowerThan.size()) * sizeof(Relation),
alignof(PrecedenceGroupDecl));
return new (memory) PrecedenceGroupDecl(dc, precedenceGroupLoc, nameLoc, name,
lbraceLoc, associativityKeywordLoc,
associativityValueLoc, associativity,
assignmentKeywordLoc,
assignmentValueLoc, isAssignment,
higherThanLoc, higherThan,
lowerThanLoc, lowerThan, rbraceLoc);
}
PrecedenceGroupDecl::PrecedenceGroupDecl(DeclContext *dc,
SourceLoc precedenceGroupLoc,
SourceLoc nameLoc,
Identifier name,
SourceLoc lbraceLoc,
SourceLoc associativityKeywordLoc,
SourceLoc associativityValueLoc,
Associativity associativity,
SourceLoc assignmentKeywordLoc,
SourceLoc assignmentValueLoc,
bool isAssignment,
SourceLoc higherThanLoc,
ArrayRef<Relation> higherThan,
SourceLoc lowerThanLoc,
ArrayRef<Relation> lowerThan,
SourceLoc rbraceLoc)
: Decl(DeclKind::PrecedenceGroup, dc),
PrecedenceGroupLoc(precedenceGroupLoc), NameLoc(nameLoc),
LBraceLoc(lbraceLoc), RBraceLoc(rbraceLoc),
AssociativityKeywordLoc(associativityKeywordLoc),
AssociativityValueLoc(associativityValueLoc),
AssignmentKeywordLoc(assignmentKeywordLoc),
AssignmentValueLoc(assignmentValueLoc),
HigherThanLoc(higherThanLoc), LowerThanLoc(lowerThanLoc), Name(name),
NumHigherThan(higherThan.size()), NumLowerThan(lowerThan.size()) {
Bits.PrecedenceGroupDecl.Associativity = unsigned(associativity);
Bits.PrecedenceGroupDecl.IsAssignment = isAssignment;
memcpy(getHigherThanBuffer(), higherThan.data(),
higherThan.size() * sizeof(Relation));
memcpy(getLowerThanBuffer(), lowerThan.data(),
lowerThan.size() * sizeof(Relation));
}
bool FuncDecl::isDeferBody() const {
return getName() == getASTContext().getIdentifier("$defer");
}
bool FuncDecl::isPotentialIBActionTarget() const {
return isInstanceMember() &&
getDeclContext()->getSelfClassDecl() &&
!isa<AccessorDecl>(this);
}
Type TypeBase::getSwiftNewtypeUnderlyingType() {
auto structDecl = getStructOrBoundGenericStruct();
if (!structDecl)
return {};
// Make sure the clang node has swift_newtype attribute
auto clangNode = structDecl->getClangDecl();
if (!clangNode || !clangNode->hasAttr<clang::SwiftNewtypeAttr>())
return {};
// Underlying type is the type of rawValue
for (auto member : structDecl->getMembers())
if (auto varDecl = dyn_cast<VarDecl>(member))
if (varDecl->getName() == getASTContext().Id_rawValue)
return varDecl->getType();
return {};
}
Type ClassDecl::getSuperclass() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassTypeRequest{const_cast<ClassDecl *>(this),
TypeResolutionStage::Interface},
Type());
}
ClassDecl *ClassDecl::getSuperclassDecl() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassDeclRequest{const_cast<ClassDecl *>(this)}, nullptr);
}
void ClassDecl::setSuperclass(Type superclass) {
assert((!superclass || !superclass->hasArchetype())
&& "superclass must be interface type");
LazySemanticInfo.SuperclassType.setPointerAndInt(superclass, true);
LazySemanticInfo.SuperclassDecl.setPointerAndInt(
superclass ? superclass->getClassOrBoundGenericClass() : nullptr,
true);
}
ClangNode Decl::getClangNodeImpl() const {
assert(Bits.Decl.FromClang);
void * const *ptr = nullptr;
switch (getKind()) {
#define DECL(Id, Parent) \
case DeclKind::Id: \
ptr = reinterpret_cast<void * const*>(static_cast<const Id##Decl*>(this)); \
break;
#include "swift/AST/DeclNodes.def"
}
return ClangNode::getFromOpaqueValue(*(ptr - 1));
}
void Decl::setClangNode(ClangNode Node) {
Bits.Decl.FromClang = true;
// The extra/preface memory is allocated by the importer.
void **ptr = nullptr;
switch (getKind()) {
#define DECL(Id, Parent) \
case DeclKind::Id: \
ptr = reinterpret_cast<void **>(static_cast<Id##Decl*>(this)); \
break;
#include "swift/AST/DeclNodes.def"
}
*(ptr - 1) = Node.getOpaqueValue();
}
// See swift/Basic/Statistic.h for declaration: this enables tracing Decls, is
// defined here to avoid too much layering violation / circular linkage
// dependency.
struct DeclTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const {
if (!Entity)
return;
const Decl *D = static_cast<const Decl *>(Entity);
if (auto const *VD = dyn_cast<const ValueDecl>(D)) {
VD->getFullName().print(OS, false);
} else {
OS << "<"
<< Decl::getDescriptiveKindName(D->getDescriptiveKind())
<< ">";
}
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const {
if (!Entity)
return;
const Decl *D = static_cast<const Decl *>(Entity);
D->getSourceRange().print(OS, *SM, false);
}
};
static DeclTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const Decl *>() {
return &TF;
}
TypeOrExtensionDecl::TypeOrExtensionDecl(NominalTypeDecl *D) : Decl(D) {}
TypeOrExtensionDecl::TypeOrExtensionDecl(ExtensionDecl *D) : Decl(D) {}
Decl *TypeOrExtensionDecl::getAsDecl() const {
if (auto NTD = Decl.dyn_cast<NominalTypeDecl *>())
return NTD;
return Decl.get<ExtensionDecl *>();
}
DeclContext *TypeOrExtensionDecl::getAsDeclContext() const {
return getAsDecl()->getInnermostDeclContext();
}
NominalTypeDecl *TypeOrExtensionDecl::getBaseNominal() const {
return getAsDeclContext()->getSelfNominalTypeDecl();
}
bool TypeOrExtensionDecl::isNull() const { return Decl.isNull(); }
void swift::simple_display(llvm::raw_ostream &out, const Decl *decl) {
if (!decl) {
out << "(null)";
return;
}
if (auto value = dyn_cast<ValueDecl>(decl)) {
simple_display(out, value);
} else if (auto ext = dyn_cast<ExtensionDecl>(decl)) {
out << "extension of ";
if (auto typeRepr = ext->getExtendedTypeLoc().getTypeRepr())
typeRepr->print(out);
else
ext->getSelfNominalTypeDecl()->dumpRef(out);
} else {
out << "(unknown decl)";
}
}
void swift::simple_display(llvm::raw_ostream &out, const ValueDecl *decl) {
if (decl) decl->dumpRef(out);
else out << "(null)";
}