blob: b70f813431d6cd0e88d696e8a885d6a8ac9468d5 [file] [log] [blame]
/*
* Copyright (c) 2008-2013 Apple Inc. All rights reserved.
*
* @APPLE_APACHE_LICENSE_HEADER_START@
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @APPLE_APACHE_LICENSE_HEADER_END@
*/
#include "internal.h"
#if DISPATCH_USE_HOST_TIME
typedef struct _dispatch_host_time_data_s {
long double frac;
bool ratio_1_to_1;
} _dispatch_host_time_data_s;
static _dispatch_host_time_data_s _dispatch_host_time_data;
uint64_t (*_dispatch_host_time_mach2nano)(uint64_t machtime);
uint64_t (*_dispatch_host_time_nano2mach)(uint64_t nsec);
static uint64_t
_dispatch_mach_host_time_mach2nano(uint64_t machtime)
{
_dispatch_host_time_data_s *const data = &_dispatch_host_time_data;
if (unlikely(!machtime || data->ratio_1_to_1)) {
return machtime;
}
if (machtime >= INT64_MAX) {
return INT64_MAX;
}
long double big_tmp = ((long double)machtime * data->frac) + .5L;
if (unlikely(big_tmp >= INT64_MAX)) {
return INT64_MAX;
}
return (uint64_t)big_tmp;
}
static uint64_t
_dispatch_mach_host_time_nano2mach(uint64_t nsec)
{
_dispatch_host_time_data_s *const data = &_dispatch_host_time_data;
if (unlikely(!nsec || data->ratio_1_to_1)) {
return nsec;
}
if (nsec >= INT64_MAX) {
return INT64_MAX;
}
long double big_tmp = ((long double)nsec / data->frac) + .5L;
if (unlikely(big_tmp >= INT64_MAX)) {
return INT64_MAX;
}
return (uint64_t)big_tmp;
}
static void
_dispatch_host_time_init(mach_timebase_info_data_t *tbi)
{
_dispatch_host_time_data.frac = tbi->numer;
_dispatch_host_time_data.frac /= tbi->denom;
_dispatch_host_time_data.ratio_1_to_1 = (tbi->numer == tbi->denom);
_dispatch_host_time_mach2nano = _dispatch_mach_host_time_mach2nano;
_dispatch_host_time_nano2mach = _dispatch_mach_host_time_nano2mach;
}
#endif // DISPATCH_USE_HOST_TIME
void
_dispatch_time_init(void)
{
#if DISPATCH_USE_HOST_TIME
mach_timebase_info_data_t tbi;
(void)dispatch_assume_zero(mach_timebase_info(&tbi));
_dispatch_host_time_init(&tbi);
#endif // DISPATCH_USE_HOST_TIME
}
dispatch_time_t
dispatch_time(dispatch_time_t inval, int64_t delta)
{
uint64_t offset;
if (inval == DISPATCH_TIME_FOREVER) {
return DISPATCH_TIME_FOREVER;
}
dispatch_clock_t clock;
uint64_t value;
_dispatch_time_to_clock_and_value(inval, &clock, &value);
if (value == DISPATCH_TIME_FOREVER) {
// Out-of-range for this clock.
return value;
}
if (clock == DISPATCH_CLOCK_WALL) {
// wall clock
offset = (uint64_t)delta;
if (delta >= 0) {
if ((int64_t)(value += offset) <= 0) {
return DISPATCH_TIME_FOREVER; // overflow
}
} else {
if ((int64_t)(value += offset) < 1) {
// -1 is special == DISPATCH_TIME_FOREVER == forever, so
// return -2 (after conversion to dispatch_time_t) instead.
value = 2; // underflow.
}
}
return _dispatch_clock_and_value_to_time(DISPATCH_CLOCK_WALL, value);
}
// up time or monotonic time. "value" has the clock type removed,
// so the test against DISPATCH_TIME_NOW is correct for either clock.
if (value == DISPATCH_TIME_NOW) {
if (clock == DISPATCH_CLOCK_UPTIME) {
value = _dispatch_uptime();
} else {
dispatch_assert(clock == DISPATCH_CLOCK_MONOTONIC);
value = _dispatch_monotonic_time();
}
}
if (delta >= 0) {
offset = _dispatch_time_nano2mach((uint64_t)delta);
if ((int64_t)(value += offset) <= 0) {
return DISPATCH_TIME_FOREVER; // overflow
}
return _dispatch_clock_and_value_to_time(clock, value);
} else {
offset = _dispatch_time_nano2mach((uint64_t)-delta);
if ((int64_t)(value -= offset) < 1) {
return _dispatch_clock_and_value_to_time(clock, 1); // underflow
}
return _dispatch_clock_and_value_to_time(clock, value);
}
}
dispatch_time_t
dispatch_walltime(const struct timespec *inval, int64_t delta)
{
int64_t nsec;
if (inval) {
nsec = (int64_t)_dispatch_timespec_to_nano(*inval);
} else {
nsec = (int64_t)_dispatch_get_nanoseconds();
}
nsec += delta;
if (nsec <= 1) {
// -1 is special == DISPATCH_TIME_FOREVER == forever
return delta >= 0 ? DISPATCH_TIME_FOREVER : (dispatch_time_t)-2ll;
}
return (dispatch_time_t)-nsec;
}
uint64_t
_dispatch_timeout(dispatch_time_t when)
{
dispatch_time_t now;
if (when == DISPATCH_TIME_FOREVER) {
return DISPATCH_TIME_FOREVER;
}
if (when == DISPATCH_TIME_NOW) {
return 0;
}
dispatch_clock_t clock;
uint64_t value;
_dispatch_time_to_clock_and_value(when, &clock, &value);
if (clock == DISPATCH_CLOCK_WALL) {
now = _dispatch_get_nanoseconds();
return now >= value ? 0 : value - now;
} else {
if (clock == DISPATCH_CLOCK_UPTIME) {
now = _dispatch_uptime();
} else {
dispatch_assert(clock == DISPATCH_CLOCK_MONOTONIC);
now = _dispatch_monotonic_time();
}
return now >= value ? 0 : _dispatch_time_mach2nano(value - now);
}
}
uint64_t
_dispatch_time_nanoseconds_since_epoch(dispatch_time_t when)
{
if (when == DISPATCH_TIME_FOREVER) {
return DISPATCH_TIME_FOREVER;
}
if ((int64_t)when < 0) {
// time in nanoseconds since the POSIX epoch already
return (uint64_t)-(int64_t)when;
}
// Up time or monotonic time.
return _dispatch_get_nanoseconds() + _dispatch_timeout(when);
}