blob: 1ccb746633a765fe21642da77228b7331484394b [file] [log] [blame]
//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTImporter class which imports AST nodes from one
// context into another context.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTImporter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MemoryBuffer.h"
#include <deque>
namespace clang {
class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
public DeclVisitor<ASTNodeImporter, Decl *>,
public StmtVisitor<ASTNodeImporter, Stmt *> {
ASTImporter &Importer;
public:
explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
using TypeVisitor<ASTNodeImporter, QualType>::Visit;
using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
// Importing types
QualType VisitType(const Type *T);
QualType VisitAtomicType(const AtomicType *T);
QualType VisitBuiltinType(const BuiltinType *T);
QualType VisitDecayedType(const DecayedType *T);
QualType VisitComplexType(const ComplexType *T);
QualType VisitPointerType(const PointerType *T);
QualType VisitBlockPointerType(const BlockPointerType *T);
QualType VisitLValueReferenceType(const LValueReferenceType *T);
QualType VisitRValueReferenceType(const RValueReferenceType *T);
QualType VisitMemberPointerType(const MemberPointerType *T);
QualType VisitConstantArrayType(const ConstantArrayType *T);
QualType VisitIncompleteArrayType(const IncompleteArrayType *T);
QualType VisitVariableArrayType(const VariableArrayType *T);
// FIXME: DependentSizedArrayType
// FIXME: DependentSizedExtVectorType
QualType VisitVectorType(const VectorType *T);
QualType VisitExtVectorType(const ExtVectorType *T);
QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T);
QualType VisitFunctionProtoType(const FunctionProtoType *T);
// FIXME: UnresolvedUsingType
QualType VisitParenType(const ParenType *T);
QualType VisitTypedefType(const TypedefType *T);
QualType VisitTypeOfExprType(const TypeOfExprType *T);
// FIXME: DependentTypeOfExprType
QualType VisitTypeOfType(const TypeOfType *T);
QualType VisitDecltypeType(const DecltypeType *T);
QualType VisitUnaryTransformType(const UnaryTransformType *T);
QualType VisitAutoType(const AutoType *T);
QualType VisitInjectedClassNameType(const InjectedClassNameType *T);
// FIXME: DependentDecltypeType
QualType VisitRecordType(const RecordType *T);
QualType VisitEnumType(const EnumType *T);
QualType VisitAttributedType(const AttributedType *T);
QualType VisitTemplateTypeParmType(const TemplateTypeParmType *T);
// FIXME: SubstTemplateTypeParmType
QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T);
QualType VisitElaboratedType(const ElaboratedType *T);
// FIXME: DependentNameType
// FIXME: DependentTemplateSpecializationType
QualType VisitObjCInterfaceType(const ObjCInterfaceType *T);
QualType VisitObjCObjectType(const ObjCObjectType *T);
QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T);
// Importing declarations
bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC, DeclarationName &Name,
NamedDecl *&ToD, SourceLocation &Loc);
void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = nullptr);
void ImportDeclarationNameLoc(const DeclarationNameInfo &From,
DeclarationNameInfo& To);
void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false);
bool ImportCastPath(CastExpr *E, CXXCastPath &Path);
typedef DesignatedInitExpr::Designator Designator;
Designator ImportDesignator(const Designator &D);
/// \brief What we should import from the definition.
enum ImportDefinitionKind {
/// \brief Import the default subset of the definition, which might be
/// nothing (if minimal import is set) or might be everything (if minimal
/// import is not set).
IDK_Default,
/// \brief Import everything.
IDK_Everything,
/// \brief Import only the bare bones needed to establish a valid
/// DeclContext.
IDK_Basic
};
bool shouldForceImportDeclContext(ImportDefinitionKind IDK) {
return IDK == IDK_Everything ||
(IDK == IDK_Default && !Importer.isMinimalImport());
}
bool ImportDefinition(RecordDecl *From, RecordDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(VarDecl *From, VarDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(EnumDecl *From, EnumDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To,
ImportDefinitionKind Kind = IDK_Default);
TemplateParameterList *ImportTemplateParameterList(
TemplateParameterList *Params);
TemplateArgument ImportTemplateArgument(const TemplateArgument &From);
TemplateArgumentLoc ImportTemplateArgumentLoc(
const TemplateArgumentLoc &TALoc, bool &Error);
bool ImportTemplateArguments(const TemplateArgument *FromArgs,
unsigned NumFromArgs,
SmallVectorImpl<TemplateArgument> &ToArgs);
bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord,
bool Complain = true);
bool IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar,
bool Complain = true);
bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
bool IsStructuralMatch(EnumConstantDecl *FromEC, EnumConstantDecl *ToEC);
bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To);
bool IsStructuralMatch(VarTemplateDecl *From, VarTemplateDecl *To);
Decl *VisitDecl(Decl *D);
Decl *VisitAccessSpecDecl(AccessSpecDecl *D);
Decl *VisitStaticAssertDecl(StaticAssertDecl *D);
Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D);
Decl *VisitNamespaceDecl(NamespaceDecl *D);
Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias);
Decl *VisitTypedefDecl(TypedefDecl *D);
Decl *VisitTypeAliasDecl(TypeAliasDecl *D);
Decl *VisitLabelDecl(LabelDecl *D);
Decl *VisitEnumDecl(EnumDecl *D);
Decl *VisitRecordDecl(RecordDecl *D);
Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
Decl *VisitFunctionDecl(FunctionDecl *D);
Decl *VisitCXXMethodDecl(CXXMethodDecl *D);
Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
Decl *VisitFieldDecl(FieldDecl *D);
Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D);
Decl *VisitFriendDecl(FriendDecl *D);
Decl *VisitObjCIvarDecl(ObjCIvarDecl *D);
Decl *VisitVarDecl(VarDecl *D);
Decl *VisitImplicitParamDecl(ImplicitParamDecl *D);
Decl *VisitParmVarDecl(ParmVarDecl *D);
Decl *VisitObjCMethodDecl(ObjCMethodDecl *D);
Decl *VisitObjCTypeParamDecl(ObjCTypeParamDecl *D);
Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D);
Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D);
Decl *VisitLinkageSpecDecl(LinkageSpecDecl *D);
ObjCTypeParamList *ImportObjCTypeParamList(ObjCTypeParamList *list);
Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D);
Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D);
Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
Decl *VisitClassTemplateDecl(ClassTemplateDecl *D);
Decl *VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D);
Decl *VisitVarTemplateDecl(VarTemplateDecl *D);
Decl *VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D);
// Importing statements
DeclGroupRef ImportDeclGroup(DeclGroupRef DG);
Stmt *VisitStmt(Stmt *S);
Stmt *VisitGCCAsmStmt(GCCAsmStmt *S);
Stmt *VisitDeclStmt(DeclStmt *S);
Stmt *VisitNullStmt(NullStmt *S);
Stmt *VisitCompoundStmt(CompoundStmt *S);
Stmt *VisitCaseStmt(CaseStmt *S);
Stmt *VisitDefaultStmt(DefaultStmt *S);
Stmt *VisitLabelStmt(LabelStmt *S);
Stmt *VisitAttributedStmt(AttributedStmt *S);
Stmt *VisitIfStmt(IfStmt *S);
Stmt *VisitSwitchStmt(SwitchStmt *S);
Stmt *VisitWhileStmt(WhileStmt *S);
Stmt *VisitDoStmt(DoStmt *S);
Stmt *VisitForStmt(ForStmt *S);
Stmt *VisitGotoStmt(GotoStmt *S);
Stmt *VisitIndirectGotoStmt(IndirectGotoStmt *S);
Stmt *VisitContinueStmt(ContinueStmt *S);
Stmt *VisitBreakStmt(BreakStmt *S);
Stmt *VisitReturnStmt(ReturnStmt *S);
// FIXME: MSAsmStmt
// FIXME: SEHExceptStmt
// FIXME: SEHFinallyStmt
// FIXME: SEHTryStmt
// FIXME: SEHLeaveStmt
// FIXME: CapturedStmt
Stmt *VisitCXXCatchStmt(CXXCatchStmt *S);
Stmt *VisitCXXTryStmt(CXXTryStmt *S);
Stmt *VisitCXXForRangeStmt(CXXForRangeStmt *S);
// FIXME: MSDependentExistsStmt
Stmt *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
Stmt *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
Stmt *VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S);
Stmt *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
Stmt *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
Stmt *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
Stmt *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
// Importing expressions
Expr *VisitExpr(Expr *E);
Expr *VisitVAArgExpr(VAArgExpr *E);
Expr *VisitGNUNullExpr(GNUNullExpr *E);
Expr *VisitPredefinedExpr(PredefinedExpr *E);
Expr *VisitDeclRefExpr(DeclRefExpr *E);
Expr *VisitImplicitValueInitExpr(ImplicitValueInitExpr *ILE);
Expr *VisitDesignatedInitExpr(DesignatedInitExpr *E);
Expr *VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E);
Expr *VisitIntegerLiteral(IntegerLiteral *E);
Expr *VisitFloatingLiteral(FloatingLiteral *E);
Expr *VisitCharacterLiteral(CharacterLiteral *E);
Expr *VisitStringLiteral(StringLiteral *E);
Expr *VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
Expr *VisitAtomicExpr(AtomicExpr *E);
Expr *VisitAddrLabelExpr(AddrLabelExpr *E);
Expr *VisitParenExpr(ParenExpr *E);
Expr *VisitParenListExpr(ParenListExpr *E);
Expr *VisitStmtExpr(StmtExpr *E);
Expr *VisitUnaryOperator(UnaryOperator *E);
Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
Expr *VisitBinaryOperator(BinaryOperator *E);
Expr *VisitConditionalOperator(ConditionalOperator *E);
Expr *VisitBinaryConditionalOperator(BinaryConditionalOperator *E);
Expr *VisitOpaqueValueExpr(OpaqueValueExpr *E);
Expr *VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E);
Expr *VisitExpressionTraitExpr(ExpressionTraitExpr *E);
Expr *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E);
Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
Expr *VisitExplicitCastExpr(ExplicitCastExpr *E);
Expr *VisitOffsetOfExpr(OffsetOfExpr *OE);
Expr *VisitCXXThrowExpr(CXXThrowExpr *E);
Expr *VisitCXXNoexceptExpr(CXXNoexceptExpr *E);
Expr *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E);
Expr *VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
Expr *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
Expr *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *CE);
Expr *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
Expr *VisitCXXNewExpr(CXXNewExpr *CE);
Expr *VisitCXXDeleteExpr(CXXDeleteExpr *E);
Expr *VisitCXXConstructExpr(CXXConstructExpr *E);
Expr *VisitCXXMemberCallExpr(CXXMemberCallExpr *E);
Expr *VisitExprWithCleanups(ExprWithCleanups *EWC);
Expr *VisitCXXThisExpr(CXXThisExpr *E);
Expr *VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E);
Expr *VisitMemberExpr(MemberExpr *E);
Expr *VisitCallExpr(CallExpr *E);
Expr *VisitInitListExpr(InitListExpr *E);
Expr *VisitArrayInitLoopExpr(ArrayInitLoopExpr *E);
Expr *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E);
Expr *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E);
Expr *VisitCXXNamedCastExpr(CXXNamedCastExpr *E);
template<typename IIter, typename OIter>
void ImportArray(IIter Ibegin, IIter Iend, OIter Obegin) {
typedef typename std::remove_reference<decltype(*Obegin)>::type ItemT;
ASTImporter &ImporterRef = Importer;
std::transform(Ibegin, Iend, Obegin,
[&ImporterRef](ItemT From) -> ItemT {
return ImporterRef.Import(From);
});
}
template<typename IIter, typename OIter>
bool ImportArrayChecked(IIter Ibegin, IIter Iend, OIter Obegin) {
typedef typename std::remove_reference<decltype(**Obegin)>::type ItemT;
ASTImporter &ImporterRef = Importer;
bool Failed = false;
std::transform(Ibegin, Iend, Obegin,
[&ImporterRef, &Failed](ItemT *From) -> ItemT * {
ItemT *To = cast_or_null<ItemT>(
ImporterRef.Import(From));
if (!To && From)
Failed = true;
return To;
});
return Failed;
}
template<typename InContainerTy, typename OutContainerTy>
bool ImportContainerChecked(const InContainerTy &InContainer,
OutContainerTy &OutContainer) {
return ImportArrayChecked(InContainer.begin(), InContainer.end(),
OutContainer.begin());
}
template<typename InContainerTy, typename OIter>
bool ImportArrayChecked(const InContainerTy &InContainer, OIter Obegin) {
return ImportArrayChecked(InContainer.begin(), InContainer.end(), Obegin);
}
};
}
using namespace clang;
//----------------------------------------------------------------------------
// Structural Equivalence
//----------------------------------------------------------------------------
namespace {
struct StructuralEquivalenceContext {
/// \brief AST contexts for which we are checking structural equivalence.
ASTContext &C1, &C2;
/// \brief The set of "tentative" equivalences between two canonical
/// declarations, mapping from a declaration in the first context to the
/// declaration in the second context that we believe to be equivalent.
llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
/// \brief Queue of declarations in the first context whose equivalence
/// with a declaration in the second context still needs to be verified.
std::deque<Decl *> DeclsToCheck;
/// \brief Declaration (from, to) pairs that are known not to be equivalent
/// (which we have already complained about).
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
/// \brief Whether we're being strict about the spelling of types when
/// unifying two types.
bool StrictTypeSpelling;
/// \brief Whether to complain about failures.
bool Complain;
/// \brief \c true if the last diagnostic came from C2.
bool LastDiagFromC2;
StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
bool StrictTypeSpelling = false,
bool Complain = true)
: C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls),
StrictTypeSpelling(StrictTypeSpelling), Complain(Complain),
LastDiagFromC2(false) {}
/// \brief Determine whether the two declarations are structurally
/// equivalent.
bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
/// \brief Determine whether the two types are structurally equivalent.
bool IsStructurallyEquivalent(QualType T1, QualType T2);
private:
/// \brief Finish checking all of the structural equivalences.
///
/// \returns true if an error occurred, false otherwise.
bool Finish();
public:
DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (LastDiagFromC2)
C1.getDiagnostics().notePriorDiagnosticFrom(C2.getDiagnostics());
LastDiagFromC2 = false;
return C1.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (!LastDiagFromC2)
C2.getDiagnostics().notePriorDiagnosticFrom(C1.getDiagnostics());
LastDiagFromC2 = true;
return C2.getDiagnostics().Report(Loc, DiagID);
}
};
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2);
/// \brief Determine structural equivalence of two expressions.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Expr *E1, Expr *E2) {
if (!E1 || !E2)
return E1 == E2;
// FIXME: Actually perform a structural comparison!
return true;
}
/// \brief Determine whether two identifiers are equivalent.
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2) {
if (!Name1 || !Name2)
return Name1 == Name2;
return Name1->getName() == Name2->getName();
}
/// \brief Determine whether two nested-name-specifiers are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2) {
// FIXME: Implement!
return true;
}
/// \brief Determine whether two template arguments are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2) {
if (Arg1.getKind() != Arg2.getKind())
return false;
switch (Arg1.getKind()) {
case TemplateArgument::Null:
return true;
case TemplateArgument::Type:
return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
case TemplateArgument::Integral:
if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
Arg2.getIntegralType()))
return false;
return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), Arg2.getAsIntegral());
case TemplateArgument::Declaration:
return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
case TemplateArgument::NullPtr:
return true; // FIXME: Is this correct?
case TemplateArgument::Template:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplate(),
Arg2.getAsTemplate());
case TemplateArgument::TemplateExpansion:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplateOrTemplatePattern(),
Arg2.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return IsStructurallyEquivalent(Context,
Arg1.getAsExpr(), Arg2.getAsExpr());
case TemplateArgument::Pack:
if (Arg1.pack_size() != Arg2.pack_size())
return false;
for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context,
Arg1.pack_begin()[I],
Arg2.pack_begin()[I]))
return false;
return true;
}
llvm_unreachable("Invalid template argument kind");
}
/// \brief Determine structural equivalence for the common part of array
/// types.
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
const ArrayType *Array1,
const ArrayType *Array2) {
if (!IsStructurallyEquivalent(Context,
Array1->getElementType(),
Array2->getElementType()))
return false;
if (Array1->getSizeModifier() != Array2->getSizeModifier())
return false;
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
return false;
return true;
}
/// \brief Determine structural equivalence of two types.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return T1.isNull() && T2.isNull();
if (!Context.StrictTypeSpelling) {
// We aren't being strict about token-to-token equivalence of types,
// so map down to the canonical type.
T1 = Context.C1.getCanonicalType(T1);
T2 = Context.C2.getCanonicalType(T2);
}
if (T1.getQualifiers() != T2.getQualifiers())
return false;
Type::TypeClass TC = T1->getTypeClass();
if (T1->getTypeClass() != T2->getTypeClass()) {
// Compare function types with prototypes vs. without prototypes as if
// both did not have prototypes.
if (T1->getTypeClass() == Type::FunctionProto &&
T2->getTypeClass() == Type::FunctionNoProto)
TC = Type::FunctionNoProto;
else if (T1->getTypeClass() == Type::FunctionNoProto &&
T2->getTypeClass() == Type::FunctionProto)
TC = Type::FunctionNoProto;
else
return false;
}
switch (TC) {
case Type::Builtin:
// FIXME: Deal with Char_S/Char_U.
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
return false;
break;
case Type::Complex:
if (!IsStructurallyEquivalent(Context,
cast<ComplexType>(T1)->getElementType(),
cast<ComplexType>(T2)->getElementType()))
return false;
break;
case Type::Adjusted:
case Type::Decayed:
if (!IsStructurallyEquivalent(Context,
cast<AdjustedType>(T1)->getOriginalType(),
cast<AdjustedType>(T2)->getOriginalType()))
return false;
break;
case Type::Pointer:
if (!IsStructurallyEquivalent(Context,
cast<PointerType>(T1)->getPointeeType(),
cast<PointerType>(T2)->getPointeeType()))
return false;
break;
case Type::BlockPointer:
if (!IsStructurallyEquivalent(Context,
cast<BlockPointerType>(T1)->getPointeeType(),
cast<BlockPointerType>(T2)->getPointeeType()))
return false;
break;
case Type::LValueReference:
case Type::RValueReference: {
const ReferenceType *Ref1 = cast<ReferenceType>(T1);
const ReferenceType *Ref2 = cast<ReferenceType>(T2);
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
return false;
if (Ref1->isInnerRef() != Ref2->isInnerRef())
return false;
if (!IsStructurallyEquivalent(Context,
Ref1->getPointeeTypeAsWritten(),
Ref2->getPointeeTypeAsWritten()))
return false;
break;
}
case Type::MemberPointer: {
const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
MemPtr1->getPointeeType(),
MemPtr2->getPointeeType()))
return false;
if (!IsStructurallyEquivalent(Context,
QualType(MemPtr1->getClass(), 0),
QualType(MemPtr2->getClass(), 0)))
return false;
break;
}
case Type::ConstantArray: {
const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::IncompleteArray:
if (!IsArrayStructurallyEquivalent(Context,
cast<ArrayType>(T1),
cast<ArrayType>(T2)))
return false;
break;
case Type::VariableArray: {
const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedArray: {
const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *Vec1
= cast<DependentSizedExtVectorType>(T1);
const DependentSizedExtVectorType *Vec2
= cast<DependentSizedExtVectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getSizeExpr(), Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::Vector:
case Type::ExtVector: {
const VectorType *Vec1 = cast<VectorType>(T1);
const VectorType *Vec2 = cast<VectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
if (Vec1->getNumElements() != Vec2->getNumElements())
return false;
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
if (Proto1->getNumParams() != Proto2->getNumParams())
return false;
for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
Proto2->getParamType(I)))
return false;
}
if (Proto1->isVariadic() != Proto2->isVariadic())
return false;
if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
return false;
if (Proto1->getExceptionSpecType() == EST_Dynamic) {
if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
return false;
for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Proto1->getExceptionType(I),
Proto2->getExceptionType(I)))
return false;
}
} else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
if (!IsStructurallyEquivalent(Context,
Proto1->getNoexceptExpr(),
Proto2->getNoexceptExpr()))
return false;
}
if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
return false;
// Fall through to check the bits common with FunctionNoProtoType.
}
case Type::FunctionNoProto: {
const FunctionType *Function1 = cast<FunctionType>(T1);
const FunctionType *Function2 = cast<FunctionType>(T2);
if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
Function2->getReturnType()))
return false;
if (Function1->getExtInfo() != Function2->getExtInfo())
return false;
break;
}
case Type::UnresolvedUsing:
if (!IsStructurallyEquivalent(Context,
cast<UnresolvedUsingType>(T1)->getDecl(),
cast<UnresolvedUsingType>(T2)->getDecl()))
return false;
break;
case Type::Attributed:
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getModifiedType(),
cast<AttributedType>(T2)->getModifiedType()))
return false;
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getEquivalentType(),
cast<AttributedType>(T2)->getEquivalentType()))
return false;
break;
case Type::Paren:
if (!IsStructurallyEquivalent(Context,
cast<ParenType>(T1)->getInnerType(),
cast<ParenType>(T2)->getInnerType()))
return false;
break;
case Type::Typedef:
if (!IsStructurallyEquivalent(Context,
cast<TypedefType>(T1)->getDecl(),
cast<TypedefType>(T2)->getDecl()))
return false;
break;
case Type::TypeOfExpr:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::TypeOf:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfType>(T1)->getUnderlyingType(),
cast<TypeOfType>(T2)->getUnderlyingType()))
return false;
break;
case Type::UnaryTransform:
if (!IsStructurallyEquivalent(Context,
cast<UnaryTransformType>(T1)->getUnderlyingType(),
cast<UnaryTransformType>(T1)->getUnderlyingType()))
return false;
break;
case Type::Decltype:
if (!IsStructurallyEquivalent(Context,
cast<DecltypeType>(T1)->getUnderlyingExpr(),
cast<DecltypeType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::Auto:
if (!IsStructurallyEquivalent(Context,
cast<AutoType>(T1)->getDeducedType(),
cast<AutoType>(T2)->getDeducedType()))
return false;
break;
case Type::Record:
case Type::Enum:
if (!IsStructurallyEquivalent(Context,
cast<TagType>(T1)->getDecl(),
cast<TagType>(T2)->getDecl()))
return false;
break;
case Type::TemplateTypeParm: {
const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
if (Parm1->getDepth() != Parm2->getDepth())
return false;
if (Parm1->getIndex() != Parm2->getIndex())
return false;
if (Parm1->isParameterPack() != Parm2->isParameterPack())
return false;
// Names of template type parameters are never significant.
break;
}
case Type::SubstTemplateTypeParm: {
const SubstTemplateTypeParmType *Subst1
= cast<SubstTemplateTypeParmType>(T1);
const SubstTemplateTypeParmType *Subst2
= cast<SubstTemplateTypeParmType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context,
Subst1->getReplacementType(),
Subst2->getReplacementType()))
return false;
break;
}
case Type::SubstTemplateTypeParmPack: {
const SubstTemplateTypeParmPackType *Subst1
= cast<SubstTemplateTypeParmPackType>(T1);
const SubstTemplateTypeParmPackType *Subst2
= cast<SubstTemplateTypeParmPackType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context,
Subst1->getArgumentPack(),
Subst2->getArgumentPack()))
return false;
break;
}
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec1
= cast<TemplateSpecializationType>(T1);
const TemplateSpecializationType *Spec2
= cast<TemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context,
Spec1->getTemplateName(),
Spec2->getTemplateName()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Spec1->getArg(I), Spec2->getArg(I)))
return false;
}
break;
}
case Type::Elaborated: {
const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
// CHECKME: what if a keyword is ETK_None or ETK_typename ?
if (Elab1->getKeyword() != Elab2->getKeyword())
return false;
if (!IsStructurallyEquivalent(Context,
Elab1->getQualifier(),
Elab2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Context,
Elab1->getNamedType(),
Elab2->getNamedType()))
return false;
break;
}
case Type::InjectedClassName: {
const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Inj1->getInjectedSpecializationType(),
Inj2->getInjectedSpecializationType()))
return false;
break;
}
case Type::DependentName: {
const DependentNameType *Typename1 = cast<DependentNameType>(T1);
const DependentNameType *Typename2 = cast<DependentNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Typename1->getQualifier(),
Typename2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
Typename2->getIdentifier()))
return false;
break;
}
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *Spec1 =
cast<DependentTemplateSpecializationType>(T1);
const DependentTemplateSpecializationType *Spec2 =
cast<DependentTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context,
Spec1->getQualifier(),
Spec2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
Spec2->getIdentifier()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Spec1->getArg(I), Spec2->getArg(I)))
return false;
}
break;
}
case Type::PackExpansion:
if (!IsStructurallyEquivalent(Context,
cast<PackExpansionType>(T1)->getPattern(),
cast<PackExpansionType>(T2)->getPattern()))
return false;
break;
case Type::ObjCInterface: {
const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
if (!IsStructurallyEquivalent(Context,
Iface1->getDecl(), Iface2->getDecl()))
return false;
break;
}
case Type::ObjCTypeParam: {
const ObjCTypeParamType *Obj1 = cast<ObjCTypeParamType>(T1);
const ObjCTypeParamType *Obj2 = cast<ObjCTypeParamType>(T2);
if (!IsStructurallyEquivalent(Context, Obj1->getDecl(),
Obj2->getDecl()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObject: {
const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
if (!IsStructurallyEquivalent(Context,
Obj1->getBaseType(),
Obj2->getBaseType()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObjectPointer: {
const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
Ptr1->getPointeeType(),
Ptr2->getPointeeType()))
return false;
break;
}
case Type::Atomic: {
if (!IsStructurallyEquivalent(Context,
cast<AtomicType>(T1)->getValueType(),
cast<AtomicType>(T2)->getValueType()))
return false;
break;
}
case Type::Pipe: {
if (!IsStructurallyEquivalent(Context,
cast<PipeType>(T1)->getElementType(),
cast<PipeType>(T2)->getElementType()))
return false;
break;
}
} // end switch
return true;
}
/// \brief Determine structural equivalence of two fields.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FieldDecl *Field1, FieldDecl *Field2) {
RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
// For anonymous structs/unions, match up the anonymous struct/union type
// declarations directly, so that we don't go off searching for anonymous
// types
if (Field1->isAnonymousStructOrUnion() &&
Field2->isAnonymousStructOrUnion()) {
RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
return IsStructurallyEquivalent(Context, D1, D2);
}
// Check for equivalent field names.
IdentifierInfo *Name1 = Field1->getIdentifier();
IdentifierInfo *Name2 = Field2->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2))
return false;
if (!IsStructurallyEquivalent(Context,
Field1->getType(), Field2->getType())) {
if (Context.Complain) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
}
return false;
}
if (Field1->isBitField() != Field2->isBitField()) {
if (Context.Complain) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
if (Field1->isBitField()) {
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType()
<< Field1->getBitWidthValue(Context.C1);
Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
<< Field2->getDeclName();
} else {
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType()
<< Field2->getBitWidthValue(Context.C2);
Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
<< Field1->getDeclName();
}
}
return false;
}
if (Field1->isBitField()) {
// Make sure that the bit-fields are the same length.
unsigned Bits1 = Field1->getBitWidthValue(Context.C1);
unsigned Bits2 = Field2->getBitWidthValue(Context.C2);
if (Bits1 != Bits2) {
if (Context.Complain) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType() << Bits2;
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType() << Bits1;
}
return false;
}
}
return true;
}
/// \brief Find the index of the given anonymous struct/union within its
/// context.
///
/// \returns Returns the index of this anonymous struct/union in its context,
/// including the next assigned index (if none of them match). Returns an
/// empty option if the context is not a record, i.e.. if the anonymous
/// struct/union is at namespace or block scope.
static Optional<unsigned> findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
ASTContext &Context = Anon->getASTContext();
QualType AnonTy = Context.getRecordType(Anon);
RecordDecl *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
if (!Owner)
return None;
unsigned Index = 0;
for (const auto *D : Owner->noload_decls()) {
const auto *F = dyn_cast<FieldDecl>(D);
if (!F)
continue;
if (F->isAnonymousStructOrUnion()) {
if (Context.hasSameType(F->getType(), AnonTy))
break;
++Index;
continue;
}
// If the field looks like this:
// struct { ... } A;
QualType FieldType = F->getType();
if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
const RecordDecl *RecDecl = RecType->getDecl();
if (RecDecl->getDeclContext() == Owner &&
!RecDecl->getIdentifier()) {
if (Context.hasSameType(FieldType, AnonTy))
break;
++Index;
continue;
}
}
}
return Index;
}
/// \brief Determine structural equivalence of two records.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
RecordDecl *D1, RecordDecl *D2) {
if (D1->isUnion() != D2->isUnion()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
<< D1->getDeclName() << (unsigned)D1->getTagKind();
}
return false;
}
if (D1->isAnonymousStructOrUnion() && D2->isAnonymousStructOrUnion()) {
// If both anonymous structs/unions are in a record context, make sure
// they occur in the same location in the context records.
if (Optional<unsigned> Index1 = findUntaggedStructOrUnionIndex(D1)) {
if (Optional<unsigned> Index2 = findUntaggedStructOrUnionIndex(D2)) {
if (*Index1 != *Index2)
return false;
}
}
}
// If both declarations are class template specializations, we know
// the ODR applies, so check the template and template arguments.
ClassTemplateSpecializationDecl *Spec1
= dyn_cast<ClassTemplateSpecializationDecl>(D1);
ClassTemplateSpecializationDecl *Spec2
= dyn_cast<ClassTemplateSpecializationDecl>(D2);
if (Spec1 && Spec2) {
// Check that the specialized templates are the same.
if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
Spec2->getSpecializedTemplate()))
return false;
// Check that the template arguments are the same.
if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
return false;
for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context,
Spec1->getTemplateArgs().get(I),
Spec2->getTemplateArgs().get(I)))
return false;
}
// If one is a class template specialization and the other is not, these
// structures are different.
else if (Spec1 || Spec2)
return false;
// Compare the definitions of these two records. If either or both are
// incomplete, we assume that they are equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
<< D2CXX->getNumBases();
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
<< D1CXX->getNumBases();
}
return false;
}
// Check the base classes.
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
BaseEnd1 = D1CXX->bases_end(),
Base2 = D2CXX->bases_begin();
Base1 != BaseEnd1;
++Base1, ++Base2) {
if (!IsStructurallyEquivalent(Context,
Base1->getType(), Base2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getLocStart(), diag::note_odr_base)
<< Base2->getType()
<< Base2->getSourceRange();
Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
}
return false;
}
// Check virtual vs. non-virtual inheritance mismatch.
if (Base1->isVirtual() != Base2->isVirtual()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getLocStart(),
diag::note_odr_virtual_base)
<< Base2->isVirtual() << Base2->getSourceRange();
Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
<< Base1->isVirtual()
<< Base1->getSourceRange();
}
return false;
}
}
} else if (D1CXX->getNumBases() > 0) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
}
return false;
}
}
// Check the fields for consistency.
RecordDecl::field_iterator Field2 = D2->field_begin(),
Field2End = D2->field_end();
for (RecordDecl::field_iterator Field1 = D1->field_begin(),
Field1End = D1->field_end();
Field1 != Field1End;
++Field1, ++Field2) {
if (Field2 == Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
}
return false;
}
if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
return false;
}
if (Field2 != Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
}
return false;
}
return true;
}
/// \brief Determine structural equivalence of two enums.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
EnumDecl *D1, EnumDecl *D2) {
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
EC2End = D2->enumerator_end();
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
EC1End = D1->enumerator_end();
EC1 != EC1End; ++EC1, ++EC2) {
if (EC2 == EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
llvm::APSInt Val1 = EC1->getInitVal();
llvm::APSInt Val2 = EC2->getInitVal();
if (!llvm::APSInt::isSameValue(Val1, Val2) ||
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
}
return false;
}
}
if (EC2 != EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateParameterList *Params1,
TemplateParameterList *Params2) {
if (Params1->size() != Params2->size()) {
if (Context.Complain) {
Context.Diag2(Params2->getTemplateLoc(),
diag::err_odr_different_num_template_parameters)
<< Params1->size() << Params2->size();
Context.Diag1(Params1->getTemplateLoc(),
diag::note_odr_template_parameter_list);
}
return false;
}
for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
if (Context.Complain) {
Context.Diag2(Params2->getParam(I)->getLocation(),
diag::err_odr_different_template_parameter_kind);
Context.Diag1(Params1->getParam(I)->getLocation(),
diag::note_odr_template_parameter_here);
}
return false;
}
if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
Params2->getParam(I))) {
return false;
}
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTypeParmDecl *D1,
TemplateTypeParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NonTypeTemplateParmDecl *D1,
NonTypeTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check types.
if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
diag::err_odr_non_type_parameter_type_inconsistent)
<< D2->getType() << D1->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
<< D1->getType();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTemplateParmDecl *D1,
TemplateTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check template parameter lists.
return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
ClassTemplateDecl *D1,
ClassTemplateDecl *D2) {
// Check template parameters.
if (!IsStructurallyEquivalent(Context,
D1->getTemplateParameters(),
D2->getTemplateParameters()))
return false;
// Check the templated declaration.
return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
D2->getTemplatedDecl());
}
/// \brief Determine structural equivalence of two declarations.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2) {
// FIXME: Check for known structural equivalences via a callback of some sort.
// Check whether we already know that these two declarations are not
// structurally equivalent.
if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl())))
return false;
// Determine whether we've already produced a tentative equivalence for D1.
Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
if (EquivToD1)
return EquivToD1 == D2->getCanonicalDecl();
// Produce a tentative equivalence D1 <-> D2, which will be checked later.
EquivToD1 = D2->getCanonicalDecl();
Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
return true;
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
Decl *D2) {
if (!::IsStructurallyEquivalent(*this, D1, D2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
QualType T2) {
if (!::IsStructurallyEquivalent(*this, T1, T2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::Finish() {
while (!DeclsToCheck.empty()) {
// Check the next declaration.
Decl *D1 = DeclsToCheck.front();
DeclsToCheck.pop_front();
Decl *D2 = TentativeEquivalences[D1];
assert(D2 && "Unrecorded tentative equivalence?");
bool Equivalent = true;
// FIXME: Switch on all declaration kinds. For now, we're just going to
// check the obvious ones.
if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
// Check for equivalent structure names.
IdentifierInfo *Name1 = Record1->getIdentifier();
if (!Name1 && Record1->getTypedefNameForAnonDecl())
Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Record2->getIdentifier();
if (!Name2 && Record2->getTypedefNameForAnonDecl())
Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Record1, Record2))
Equivalent = false;
} else {
// Record/non-record mismatch.
Equivalent = false;
}
} else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
// Check for equivalent enum names.
IdentifierInfo *Name1 = Enum1->getIdentifier();
if (!Name1 && Enum1->getTypedefNameForAnonDecl())
Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Enum2->getIdentifier();
if (!Name2 && Enum2->getTypedefNameForAnonDecl())
Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Enum1, Enum2))
Equivalent = false;
} else {
// Enum/non-enum mismatch
Equivalent = false;
}
} else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
Typedef2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this,
Typedef1->getUnderlyingType(),
Typedef2->getUnderlyingType()))
Equivalent = false;
} else {
// Typedef/non-typedef mismatch.
Equivalent = false;
}
} else if (ClassTemplateDecl *ClassTemplate1
= dyn_cast<ClassTemplateDecl>(D1)) {
if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
ClassTemplate2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
Equivalent = false;
} else {
// Class template/non-class-template mismatch.
Equivalent = false;
}
} else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) {
if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
} else if (NonTypeTemplateParmDecl *NTTP1
= dyn_cast<NonTypeTemplateParmDecl>(D1)) {
if (NonTypeTemplateParmDecl *NTTP2
= dyn_cast<NonTypeTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
} else if (TemplateTemplateParmDecl *TTP1
= dyn_cast<TemplateTemplateParmDecl>(D1)) {
if (TemplateTemplateParmDecl *TTP2
= dyn_cast<TemplateTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
}
if (!Equivalent) {
// Note that these two declarations are not equivalent (and we already
// know about it).
NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl()));
return true;
}
// FIXME: Check other declaration kinds!
}
return false;
}
//----------------------------------------------------------------------------
// Import Types
//----------------------------------------------------------------------------
QualType ASTNodeImporter::VisitType(const Type *T) {
Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
<< T->getTypeClassName();
return QualType();
}
QualType ASTNodeImporter::VisitAtomicType(const AtomicType *T){
QualType UnderlyingType = Importer.Import(T->getValueType());
if(UnderlyingType.isNull())
return QualType();
return Importer.getToContext().getAtomicType(UnderlyingType);
}
QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) {
switch (T->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return Importer.getToContext().SingletonId;
#include "clang/Basic/OpenCLImageTypes.def"
#define SHARED_SINGLETON_TYPE(Expansion)
#define BUILTIN_TYPE(Id, SingletonId) \
case BuiltinType::Id: return Importer.getToContext().SingletonId;
#include "clang/AST/BuiltinTypes.def"
// FIXME: for Char16, Char32, and NullPtr, make sure that the "to"
// context supports C++.
// FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to"
// context supports ObjC.
case BuiltinType::Char_U:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (Importer.getToContext().getLangOpts().CharIsSigned)
return Importer.getToContext().UnsignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::Char_S:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (!Importer.getToContext().getLangOpts().CharIsSigned)
return Importer.getToContext().SignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
// FIXME: If not in C++, shall we translate to the C equivalent of
// wchar_t?
return Importer.getToContext().WCharTy;
}
llvm_unreachable("Invalid BuiltinType Kind!");
}
QualType ASTNodeImporter::VisitDecayedType(const DecayedType *T) {
QualType OrigT = Importer.Import(T->getOriginalType());
if (OrigT.isNull())
return QualType();
return Importer.getToContext().getDecayedType(OrigT);
}
QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getComplexType(ToElementType);
}
QualType ASTNodeImporter::VisitPointerType(const PointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getPointerType(ToPointeeType);
}
QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) {
// FIXME: Check for blocks support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getBlockPointerType(ToPointeeType);
}
QualType
ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getLValueReferenceType(ToPointeeType);
}
QualType
ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) {
// FIXME: Check for C++0x support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getRValueReferenceType(ToPointeeType);
}
QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
return Importer.getToContext().getMemberPointerType(ToPointeeType,
ClassType.getTypePtr());
}
QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getConstantArrayType(ToElementType,
T->getSize(),
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType
ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getIncompleteArrayType(ToElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
Expr *Size = Importer.Import(T->getSizeExpr());
if (!Size)
return QualType();
SourceRange Brackets = Importer.Import(T->getBracketsRange());
return Importer.getToContext().getVariableArrayType(ToElementType, Size,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
Brackets);
}
QualType ASTNodeImporter::VisitVectorType(const VectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getVectorType(ToElementType,
T->getNumElements(),
T->getVectorKind());
}
QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getExtVectorType(ToElementType,
T->getNumElements());
}
QualType
ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
// FIXME: What happens if we're importing a function without a prototype
// into C++? Should we make it variadic?
QualType ToResultType = Importer.Import(T->getReturnType());
if (ToResultType.isNull())
return QualType();
return Importer.getToContext().getFunctionNoProtoType(ToResultType,
T->getExtInfo());
}
QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) {
QualType ToResultType = Importer.Import(T->getReturnType());
if (ToResultType.isNull())
return QualType();
// Import argument types
SmallVector<QualType, 4> ArgTypes;
for (const auto &A : T->param_types()) {
QualType ArgType = Importer.Import(A);
if (ArgType.isNull())
return QualType();
ArgTypes.push_back(ArgType);
}
// Import exception types
SmallVector<QualType, 4> ExceptionTypes;
for (const auto &E : T->exceptions()) {
QualType ExceptionType = Importer.Import(E);
if (ExceptionType.isNull())
return QualType();
ExceptionTypes.push_back(ExceptionType);
}
FunctionProtoType::ExtProtoInfo FromEPI = T->getExtProtoInfo();
FunctionProtoType::ExtProtoInfo ToEPI;
ToEPI.ExtInfo = FromEPI.ExtInfo;
ToEPI.Variadic = FromEPI.Variadic;
ToEPI.HasTrailingReturn = FromEPI.HasTrailingReturn;
ToEPI.TypeQuals = FromEPI.TypeQuals;
ToEPI.RefQualifier = FromEPI.RefQualifier;
ToEPI.ExceptionSpec.Type = FromEPI.ExceptionSpec.Type;
ToEPI.ExceptionSpec.Exceptions = ExceptionTypes;
ToEPI.ExceptionSpec.NoexceptExpr =
Importer.Import(FromEPI.ExceptionSpec.NoexceptExpr);
ToEPI.ExceptionSpec.SourceDecl = cast_or_null<FunctionDecl>(
Importer.Import(FromEPI.ExceptionSpec.SourceDecl));
ToEPI.ExceptionSpec.SourceTemplate = cast_or_null<FunctionDecl>(
Importer.Import(FromEPI.ExceptionSpec.SourceTemplate));
return Importer.getToContext().getFunctionType(ToResultType, ArgTypes, ToEPI);
}
QualType ASTNodeImporter::VisitParenType(const ParenType *T) {
QualType ToInnerType = Importer.Import(T->getInnerType());
if (ToInnerType.isNull())
return QualType();
return Importer.getToContext().getParenType(ToInnerType);
}
QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) {
TypedefNameDecl *ToDecl
= dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTypeDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) {
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
return Importer.getToContext().getTypeOfExprType(ToExpr);
}
QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) {
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getTypeOfType(ToUnderlyingType);
}
QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) {
// FIXME: Make sure that the "to" context supports C++0x!
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
QualType UnderlyingType = Importer.Import(T->getUnderlyingType());
if (UnderlyingType.isNull())
return QualType();
return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType);
}
QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) {
QualType ToBaseType = Importer.Import(T->getBaseType());
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToBaseType.isNull() || ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getUnaryTransformType(ToBaseType,
ToUnderlyingType,
T->getUTTKind());
}
QualType ASTNodeImporter::VisitAutoType(const AutoType *T) {
// FIXME: Make sure that the "to" context supports C++11!
QualType FromDeduced = T->getDeducedType();
QualType ToDeduced;
if (!FromDeduced.isNull()) {
ToDeduced = Importer.Import(FromDeduced);
if (ToDeduced.isNull())
return QualType();
}
return Importer.getToContext().getAutoType(ToDeduced, T->getKeyword(),
/*IsDependent*/false);
}
QualType ASTNodeImporter::VisitInjectedClassNameType(
const InjectedClassNameType *T) {
CXXRecordDecl *D = cast_or_null<CXXRecordDecl>(Importer.Import(T->getDecl()));
if (!D)
return QualType();
QualType InjType = Importer.Import(T->getInjectedSpecializationType());
if (InjType.isNull())
return QualType();
// FIXME: ASTContext::getInjectedClassNameType is not suitable for AST reading
// See comments in InjectedClassNameType definition for details
// return Importer.getToContext().getInjectedClassNameType(D, InjType);
enum {
TypeAlignmentInBits = 4,
TypeAlignment = 1 << TypeAlignmentInBits
};
return QualType(new (Importer.getToContext(), TypeAlignment)
InjectedClassNameType(D, InjType), 0);
}
QualType ASTNodeImporter::VisitRecordType(const RecordType *T) {
RecordDecl *ToDecl
= dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitEnumType(const EnumType *T) {
EnumDecl *ToDecl
= dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitAttributedType(const AttributedType *T) {
QualType FromModifiedType = T->getModifiedType();
QualType FromEquivalentType = T->getEquivalentType();
QualType ToModifiedType;
QualType ToEquivalentType;
if (!FromModifiedType.isNull()) {
ToModifiedType = Importer.Import(FromModifiedType);
if (ToModifiedType.isNull())
return QualType();
}
if (!FromEquivalentType.isNull()) {
ToEquivalentType = Importer.Import(FromEquivalentType);
if (ToEquivalentType.isNull())
return QualType();
}
return Importer.getToContext().getAttributedType(T->getAttrKind(),
ToModifiedType, ToEquivalentType);
}
QualType ASTNodeImporter::VisitTemplateTypeParmType(
const TemplateTypeParmType *T) {
TemplateTypeParmDecl *ParmDecl =
cast_or_null<TemplateTypeParmDecl>(Importer.Import(T->getDecl()));
if (!ParmDecl && T->getDecl())
return QualType();
return Importer.getToContext().getTemplateTypeParmType(
T->getDepth(), T->getIndex(), T->isParameterPack(), ParmDecl);
}
QualType ASTNodeImporter::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
TemplateName ToTemplate = Importer.Import(T->getTemplateName());
if (ToTemplate.isNull())
return QualType();
SmallVector<TemplateArgument, 2> ToTemplateArgs;
if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs))
return QualType();
QualType ToCanonType;
if (!QualType(T, 0).isCanonical()) {
QualType FromCanonType
= Importer.getFromContext().getCanonicalType(QualType(T, 0));
ToCanonType =Importer.Import(FromCanonType);
if (ToCanonType.isNull())
return QualType();
}
return Importer.getToContext().getTemplateSpecializationType(ToTemplate,
ToTemplateArgs,
ToCanonType);
}
QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) {
NestedNameSpecifier *ToQualifier = nullptr;
// Note: the qualifier in an ElaboratedType is optional.
if (T->getQualifier()) {
ToQualifier = Importer.Import(T->getQualifier());
if (!ToQualifier)
return QualType();
}
QualType ToNamedType = Importer.Import(T->getNamedType());
if (ToNamedType.isNull())
return QualType();
return Importer.getToContext().getElaboratedType(T->getKeyword(),
ToQualifier, ToNamedType);
}
QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
ObjCInterfaceDecl *Class
= dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
if (!Class)
return QualType();
return Importer.getToContext().getObjCInterfaceType(Class);
}
QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) {
QualType ToBaseType = Importer.Import(T->getBaseType());
if (ToBaseType.isNull())
return QualType();
SmallVector<QualType, 4> TypeArgs;
for (auto TypeArg : T->getTypeArgsAsWritten()) {
QualType ImportedTypeArg = Importer.Import(TypeArg);
if (ImportedTypeArg.isNull())
return QualType();
TypeArgs.push_back(ImportedTypeArg);
}
SmallVector<ObjCProtocolDecl *, 4> Protocols;
for (auto *P : T->quals()) {
ObjCProtocolDecl *Protocol
= dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(P));
if (!Protocol)
return QualType();
Protocols.push_back(Protocol);
}
return Importer.getToContext().getObjCObjectType(ToBaseType, TypeArgs,
Protocols,
T->isKindOfTypeAsWritten());
}
QualType
ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getObjCObjectPointerType(ToPointeeType);
}
//----------------------------------------------------------------------------
// Import Declarations
//----------------------------------------------------------------------------
bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC,
DeclarationName &Name,
NamedDecl *&ToD,
SourceLocation &Loc) {
// Import the context of this declaration.
DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return true;
LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return true;
}
// Import the name of this declaration.
Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return true;
// Import the location of this declaration.
Loc = Importer.Import(D->getLocation());
ToD = cast_or_null<NamedDecl>(Importer.GetAlreadyImportedOrNull(D));
return false;
}
void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) {
if (!FromD)
return;
if (!ToD) {
ToD = Importer.Import(FromD);
if (!ToD)
return;
}
if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) {
if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) {
if (FromRecord->getDefinition() && FromRecord->isCompleteDefinition() && !ToRecord->getDefinition()) {
ImportDefinition(FromRecord, ToRecord);
}
}
return;
}
if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) {
if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) {
if (FromEnum->getDefinition() && !ToEnum->getDefinition()) {
ImportDefinition(FromEnum, ToEnum);
}
}
return;
}
}
void
ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From,
DeclarationNameInfo& To) {
// NOTE: To.Name and To.Loc are already imported.
// We only have to import To.LocInfo.
switch (To.getName().getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
return;
case DeclarationName::CXXOperatorName: {
SourceRange Range = From.getCXXOperatorNameRange();
To.setCXXOperatorNameRange(Importer.Import(Range));
return;
}
case DeclarationName::CXXLiteralOperatorName: {
SourceLocation Loc = From.getCXXLiteralOperatorNameLoc();
To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc));
return;
}
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName: {
TypeSourceInfo *FromTInfo = From.getNamedTypeInfo();
To.setNamedTypeInfo(Importer.Import(FromTInfo));
return;
}
}
llvm_unreachable("Unknown name kind.");
}
void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) {
if (Importer.isMinimalImport() && !ForceImport) {
Importer.ImportContext(FromDC);
return;
}
for (auto *From : FromDC->decls())
Importer.Import(From);
}
bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition() || To->isBeingDefined()) {
if (Kind == IDK_Everything)
ImportDeclContext(From, /*ForceImport=*/true);
return false;
}
To->startDefinition();
// Add base classes.
if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) {
CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From);
struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data();
struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data();
ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor;
ToData.UserDeclaredSpecialMembers = FromData.UserDeclaredSpecialMembers;
ToData.Aggregate = FromData.Aggregate;
ToData.PlainOldData = FromData.PlainOldData;
ToData.Empty = FromData.Empty;
ToData.Polymorphic = FromData.Polymorphic;
ToData.Abstract = FromData.Abstract;
ToData.IsStandardLayout = FromData.IsStandardLayout;
ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases;
ToData.HasPrivateFields = FromData.HasPrivateFields;
ToData.HasProtectedFields = FromData.HasProtectedFields;
ToData.HasPublicFields = FromData.HasPublicFields;
ToData.HasMutableFields = FromData.HasMutableFields;
ToData.HasVariantMembers = FromData.HasVariantMembers;
ToData.HasOnlyCMembers = FromData.HasOnlyCMembers;
ToData.HasInClassInitializer = FromData.HasInClassInitializer;
ToData.HasUninitializedReferenceMember
= FromData.HasUninitializedReferenceMember;
ToData.HasUninitializedFields = FromData.HasUninitializedFields;
ToData.HasInheritedConstructor = FromData.HasInheritedConstructor;
ToData.HasInheritedAssignment = FromData.HasInheritedAssignment;
ToData.NeedOverloadResolutionForMoveConstructor
= FromData.NeedOverloadResolutionForMoveConstructor;
ToData.NeedOverloadResolutionForMoveAssignment
= FromData.NeedOverloadResolutionForMoveAssignment;
ToData.NeedOverloadResolutionForDestructor
= FromData.NeedOverloadResolutionForDestructor;
ToData.DefaultedMoveConstructorIsDeleted
= FromData.DefaultedMoveConstructorIsDeleted;
ToData.DefaultedMoveAssignmentIsDeleted
= FromData.DefaultedMoveAssignmentIsDeleted;
ToData.DefaultedDestructorIsDeleted = FromData.DefaultedDestructorIsDeleted;
ToData.HasTrivialSpecialMembers = FromData.HasTrivialSpecialMembers;
ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor;
ToData.HasConstexprNonCopyMoveConstructor
= FromData.HasConstexprNonCopyMoveConstructor;
ToData.HasDefaultedDefaultConstructor
= FromData.HasDefaultedDefaultConstructor;
ToData.DefaultedDefaultConstructorIsConstexpr
= FromData.DefaultedDefaultConstructorIsConstexpr;
ToData.HasConstexprDefaultConstructor
= FromData.HasConstexprDefaultConstructor;
ToData.HasNonLiteralTypeFieldsOrBases
= FromData.HasNonLiteralTypeFieldsOrBases;
// ComputedVisibleConversions not imported.
ToData.UserProvidedDefaultConstructor
= FromData.UserProvidedDefaultConstructor;
ToData.DeclaredSpecialMembers = FromData.DeclaredSpecialMembers;
ToData.ImplicitCopyConstructorHasConstParam
= FromData.ImplicitCopyConstructorHasConstParam;
ToData.ImplicitCopyAssignmentHasConstParam
= FromData.ImplicitCopyAssignmentHasConstParam;
ToData.HasDeclaredCopyConstructorWithConstParam
= FromData.HasDeclaredCopyConstructorWithConstParam;
ToData.HasDeclaredCopyAssignmentWithConstParam
= FromData.HasDeclaredCopyAssignmentWithConstParam;
ToData.IsLambda = FromData.IsLambda;
SmallVector<CXXBaseSpecifier *, 4> Bases;
for (const auto &Base1 : FromCXX->bases()) {
QualType T = Importer.Import(Base1.getType());
if (T.isNull())
return true;
SourceLocation EllipsisLoc;
if (Base1.isPackExpansion())
EllipsisLoc = Importer.Import(Base1.getEllipsisLoc());
// Ensure that we have a definition for the base.
ImportDefinitionIfNeeded(Base1.getType()->getAsCXXRecordDecl());
Bases.push_back(
new (Importer.getToContext())
CXXBaseSpecifier(Importer.Import(Base1.getSourceRange()),
Base1.isVirtual(),
Base1.isBaseOfClass(),
Base1.getAccessSpecifierAsWritten(),
Importer.Import(Base1.getTypeSourceInfo()),
EllipsisLoc));
}
if (!Bases.empty())
ToCXX->setBases(Bases.data(), Bases.size());
}
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From, /*ForceImport=*/true);
To->completeDefinition();
return false;
}
bool ASTNodeImporter::ImportDefinition(VarDecl *From, VarDecl *To,
ImportDefinitionKind Kind) {
if (To->getAnyInitializer())
return false;
// FIXME: Can we really import any initializer? Alternatively, we could force
// ourselves to import every declaration of a variable and then only use
// getInit() here.
To->setInit(Importer.Import(const_cast<Expr *>(From->getAnyInitializer())));
// FIXME: Other bits to merge?
return false;
}
bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition() || To->isBeingDefined()) {
if (Kind == IDK_Everything)
ImportDeclContext(From, /*ForceImport=*/true);
return false;
}
To->startDefinition();
QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From));
if (T.isNull())
return true;
QualType ToPromotionType = Importer.Import(From->getPromotionType());
if (ToPromotionType.isNull())
return true;
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From, /*ForceImport=*/true);
// FIXME: we might need to merge the number of positive or negative bits
// if the enumerator lists don't match.
To->completeDefinition(T, ToPromotionType,
From->getNumPositiveBits(),
From->getNumNegativeBits());
return false;
}
TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList(
TemplateParameterList *Params) {
SmallVector<NamedDecl *, 4> ToParams(Params->size());
if (ImportContainerChecked(*Params, ToParams))
return nullptr;
Expr *ToRequiresClause;
if (Expr *const R = Params->getRequiresClause()) {
ToRequiresClause = Importer.Import(R);
if (!ToRequiresClause)
return nullptr;
} else {
ToRequiresClause = nullptr;
}
return TemplateParameterList::Create(Importer.getToContext(),
Importer.Import(Params->getTemplateLoc()),
Importer.Import(Params->getLAngleLoc()),
ToParams,
Importer.Import(Params->getRAngleLoc()),
ToRequiresClause);
}
TemplateArgument
ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) {
switch (From.getKind()) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type: {
QualType ToType = Importer.Import(From.getAsType());
if (ToType.isNull())
return TemplateArgument();
return TemplateArgument(ToType);
}
case TemplateArgument::Integral: {
QualType ToType = Importer.Import(From.getIntegralType());
if (ToType.isNull())
return TemplateArgument();
return TemplateArgument(From, ToType);
}
case TemplateArgument::Declaration: {
ValueDecl *To = cast_or_null<ValueDecl>(Importer.Import(From.getAsDecl()));
QualType ToType = Importer.Import(From.getParamTypeForDecl());
if (!To || ToType.isNull())
return TemplateArgument();
return TemplateArgument(To, ToType);
}
case TemplateArgument::NullPtr: {
QualType ToType = Importer.Import(From.getNullPtrType());
if (ToType.isNull())
return TemplateArgument();
return TemplateArgument(ToType, /*isNullPtr*/true);
}
case TemplateArgument::Template: {
TemplateName ToTemplate = Importer.Import(From.getAsTemplate());
if (ToTemplate.isNull())
return TemplateArgument();
return TemplateArgument(ToTemplate);
}
case TemplateArgument::TemplateExpansion: {
TemplateName ToTemplate
= Importer.Import(From.getAsTemplateOrTemplatePattern());
if (ToTemplate.isNull())
return TemplateArgument();
return TemplateArgument(ToTemplate, From.getNumTemplateExpansions());
}
case TemplateArgument::Expression:
if (Expr *ToExpr = Importer.Import(From.getAsExpr()))
return TemplateArgument(ToExpr);
return TemplateArgument();
case TemplateArgument::Pack: {
SmallVector<TemplateArgument, 2> ToPack;
ToPack.reserve(From.pack_size());
if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack))
return TemplateArgument();
return TemplateArgument(
llvm::makeArrayRef(ToPack).copy(Importer.getToContext()));
}
}
llvm_unreachable("Invalid template argument kind");
}
TemplateArgumentLoc ASTNodeImporter::ImportTemplateArgumentLoc(
const TemplateArgumentLoc &TALoc, bool &Error) {
Error = false;
TemplateArgument Arg = ImportTemplateArgument(TALoc.getArgument());
TemplateArgumentLocInfo FromInfo = TALoc.getLocInfo();
TemplateArgumentLocInfo ToInfo;
if (Arg.getKind() == TemplateArgument::Expression) {
Expr *E = Importer.Import(FromInfo.getAsExpr());
ToInfo = TemplateArgumentLocInfo(E);
if (!E)
Error = true;
} else if (Arg.getKind() == TemplateArgument::Type) {
if (TypeSourceInfo *TSI = Importer.Import(FromInfo.getAsTypeSourceInfo()))
ToInfo = TemplateArgumentLocInfo(TSI);
else
Error = true;
} else {
ToInfo = TemplateArgumentLocInfo(
Importer.Import(FromInfo.getTemplateQualifierLoc()),
Importer.Import(FromInfo.getTemplateNameLoc()),
Importer.Import(FromInfo.getTemplateEllipsisLoc()));
}
return TemplateArgumentLoc(Arg, ToInfo);
}
bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs,
unsigned NumFromArgs,
SmallVectorImpl<TemplateArgument> &ToArgs) {
for (unsigned I = 0; I != NumFromArgs; ++I) {
TemplateArgument To = ImportTemplateArgument(FromArgs[I]);
if (To.isNull() && !FromArgs[I].isNull())
return true;
ToArgs.push_back(To);
}
return false;
}
bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
RecordDecl *ToRecord, bool Complain) {
// Eliminate a potential failure point where we attempt to re-import
// something we're trying to import while completing ToRecord.
Decl *ToOrigin = Importer.GetOriginalDecl(ToRecord);
if (ToOrigin) {
RecordDecl *ToOriginRecord = dyn_cast<RecordDecl>(ToOrigin);
if (ToOriginRecord)
ToRecord = ToOriginRecord;
}
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
ToRecord->getASTContext(),
Importer.getNonEquivalentDecls(),
false, Complain);
return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord);
}
bool ASTNodeImporter::IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar,
bool Complain) {
StructuralEquivalenceContext Ctx(
Importer.getFromContext(), Importer.getToContext(),
Importer.getNonEquivalentDecls(), false, Complain);
return Ctx.IsStructurallyEquivalent(FromVar, ToVar);
}
bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum);
}
bool ASTNodeImporter::IsStructuralMatch(EnumConstantDecl *FromEC,
EnumConstantDecl *ToEC)
{
const llvm::APSInt &FromVal = FromEC->getInitVal();
const llvm::APSInt &ToVal = ToEC->getInitVal();
return FromVal.isSigned() == ToVal.isSigned() &&
FromVal.getBitWidth() == ToVal.getBitWidth() &&
FromVal == ToVal;
}
bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From,
ClassTemplateDecl *To) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(From, To);
}
bool ASTNodeImporter::IsStructuralMatch(VarTemplateDecl *From,
VarTemplateDecl *To) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(From, To);
}
Decl *ASTNodeImporter::VisitDecl(Decl *D) {
Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
<< D->getDeclKindName();
return nullptr;
}
Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
TranslationUnitDecl *ToD =
Importer.getToContext().getTranslationUnitDecl();
Importer.Imported(D, ToD);
return ToD;
}
Decl *ASTNodeImporter::VisitAccessSpecDecl(AccessSpecDecl *D) {
SourceLocation Loc = Importer.Import(D->getLocation());
SourceLocation ColonLoc = Importer.Import(D->getColonLoc());
// Import the context of this declaration.
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return nullptr;
AccessSpecDecl *accessSpecDecl
= AccessSpecDecl::Create(Importer.getToContext(), D->getAccess(),
DC, Loc, ColonLoc);
if (!accessSpecDecl)
return nullptr;
// Lexical DeclContext and Semantic DeclContext
// is always the same for the accessSpec.
accessSpecDecl->setLexicalDeclContext(DC);
DC->addDeclInternal(accessSpecDecl);
return accessSpecDecl;
}
Decl *ASTNodeImporter::VisitStaticAssertDecl(StaticAssertDecl *D) {
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return nullptr;
DeclContext *LexicalDC = DC;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
Expr *AssertExpr = Importer.Import(D->getAssertExpr());
if (!AssertExpr)
return nullptr;
StringLiteral *FromMsg = D->getMessage();
StringLiteral *ToMsg = cast_or_null<StringLiteral>(Importer.Import(FromMsg));
if (!ToMsg && FromMsg)
return nullptr;
StaticAssertDecl *ToD = StaticAssertDecl::Create(
Importer.getToContext(), DC, Loc, AssertExpr, ToMsg,
Importer.Import(D->getRParenLoc()), D->isFailed());
ToD->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToD);
Importer.Imported(D, ToD);
return ToD;
}
Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) {
// Import the major distinguishing characteristics of this namespace.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
NamespaceDecl *MergeWithNamespace = nullptr;
if (!Name) {
// This is an anonymous namespace. Adopt an existing anonymous
// namespace if we can.
// FIXME: Not testable.
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
MergeWithNamespace = TU->getAnonymousNamespace();
else
MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace();
} else {
SmallVector<NamedDecl *, 4> ConflictingDecls;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace))
continue;
if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) {
MergeWithNamespace = FoundNS;
ConflictingDecls.clear();
break;
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the "to" namespace, if needed.
NamespaceDecl *ToNamespace = MergeWithNamespace;
if (!ToNamespace) {
ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC,
D->isInline(),
Importer.Import(D->getLocStart()),
Loc, Name.getAsIdentifierInfo(),
/*PrevDecl=*/nullptr);
ToNamespace->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToNamespace);
// If this is an anonymous namespace, register it as the anonymous
// namespace within its context.
if (!Name) {
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
TU->setAnonymousNamespace(ToNamespace);
else
cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace);
}
}
Importer.Imported(D, ToNamespace);
ImportDeclContext(D);
return ToNamespace;
}
Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) {
// Import the major distinguishing characteristics of this typedef.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// If this typedef is not in block scope, determine whether we've
// seen a typedef with the same name (that we can merge with) or any
// other entity by that name (which name lookup could conflict with).
if (!DC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (TypedefNameDecl *FoundTypedef =
dyn_cast<TypedefNameDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
FoundTypedef->getUnderlyingType()))
return Importer.Imported(D, FoundTypedef);
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return nullptr;
}
}
// Import the underlying type of this typedef;
QualType T = Importer.Import(D->getUnderlyingType());
if (T.isNull())
return nullptr;
// Create the new typedef node.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
SourceLocation StartL = Importer.Import(D->getLocStart());
TypedefNameDecl *ToTypedef;
if (IsAlias)
ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC,
StartL, Loc,
Name.getAsIdentifierInfo(),
TInfo);
else
ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
StartL, Loc,
Name.getAsIdentifierInfo(),
TInfo);
ToTypedef->setAccess(D->getAccess());
ToTypedef->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToTypedef);
LexicalDC->addDeclInternal(ToTypedef);
return ToTypedef;
}
Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
return VisitTypedefNameDecl(D, /*IsAlias=*/false);
}
Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) {
return VisitTypedefNameDecl(D, /*IsAlias=*/true);
}
Decl *ASTNodeImporter::VisitLabelDecl(LabelDecl *D) {
// Import the major distinguishing characteristics of this label.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
assert(LexicalDC->isFunctionOrMethod());
LabelDecl *ToLabel = D->isGnuLocal()
? LabelDecl::Create(Importer.getToContext(),
DC, Importer.Import(D->getLocation()),
Name.getAsIdentifierInfo(),
Importer.Import(D->getLocStart()))
: LabelDecl::Create(Importer.getToContext(),
DC, Importer.Import(D->getLocation()),
Name.getAsIdentifierInfo());
Importer.Imported(D, ToLabel);
LabelStmt *Label = cast_or_null<LabelStmt>(Importer.Import(D->getStmt()));
if (!Label)
return nullptr;
ToLabel->setStmt(Label);
ToLabel->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToLabel);
return ToLabel;
}
Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
// Import the major distinguishing characteristics of this enum.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Figure out what enum name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefNameForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOpts().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have an enum of the same name; try to find and match it.
if (!DC->isFunctionOrMethod() && SearchName) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = FoundDecls[I];
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
if (IsStructuralMatch(D, FoundEnum))
return Importer.Imported(D, FoundEnum);
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the enum declaration.
EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getLocStart()),
Loc, Name.getAsIdentifierInfo(), nullptr,
D->isScoped(), D->isScopedUsingClassTag(),
D->isFixed());
// Import the qualifier, if any.
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, D2);
LexicalDC->addDeclInternal(D2);
// Import the integer type.
QualType ToIntegerType = Importer.Import(D->getIntegerType());
if (ToIntegerType.isNull())
return nullptr;
D2->setIntegerType(ToIntegerType);
// Import the definition
if (D->isCompleteDefinition() && ImportDefinition(D, D2))
return nullptr;
return D2;
}
Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
TagDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this record.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Figure out what structure name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefNameForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOpts().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have a record of the same name; try to find and match it.
RecordDecl *AdoptDecl = nullptr;
if (!DC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = FoundDecls[I];
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
if (D->isAnonymousStructOrUnion() &&
FoundRecord->isAnonymousStructOrUnion()) {
// If both anonymous structs/unions are in a record context, make sure
// they occur in the same location in the context records.
if (Optional<unsigned> Index1
= findUntaggedStructOrUnionIndex(D)) {
if (Optional<unsigned> Index2 =
findUntaggedStructOrUnionIndex(FoundRecord)) {
if (*Index1 != *Index2)
continue;
}
}
}
if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
if ((SearchName && !D->isCompleteDefinition())
|| (D->isCompleteDefinition() &&
D->isAnonymousStructOrUnion()
== FoundDef->isAnonymousStructOrUnion() &&
IsStructuralMatch(D, FoundDef))) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// function.
// FIXME: For C++, we should also merge methods here.
return Importer.Imported(D, FoundDef);
}
} else if (!D->isCompleteDefinition()) {
// We have a forward declaration of this type, so adopt that forward
// declaration rather than building a new one.
// If one or both can be completed from external storage then try one
// last time to complete and compare them before doing this.
if (FoundRecord->hasExternalLexicalStorage() &&
!FoundRecord->isCompleteDefinition())
FoundRecord->getASTContext().getExternalSource()->CompleteType(FoundRecord);
if (D->hasExternalLexicalStorage())
D->getASTContext().getExternalSource()->CompleteType(D);
if (FoundRecord->isCompleteDefinition() &&
D->isCompleteDefinition() &&
!IsStructuralMatch(D, FoundRecord))
continue;
AdoptDecl = FoundRecord;
continue;
} else if (!SearchName) {
continue;
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty() && SearchName) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the record declaration.
RecordDecl *D2 = AdoptDecl;
SourceLocation StartLoc = Importer.Import(D->getLocStart());
if (!D2) {
CXXRecordDecl *D2CXX = nullptr;
if (CXXRecordDecl *DCXX = llvm::dyn_cast<CXXRecordDecl>(D)) {
if (DCXX->isLambda()) {
TypeSourceInfo *TInfo = Importer.Import(DCXX->getLambdaTypeInfo());
D2CXX = CXXRecordDecl::CreateLambda(Importer.getToContext(),
DC, TInfo, Loc,
DCXX->isDependentLambda(),
DCXX->isGenericLambda(),
DCXX->getLambdaCaptureDefault());
Decl *CDecl = Importer.Import(DCXX->getLambdaContextDecl());
if (DCXX->getLambdaContextDecl() && !CDecl)
return nullptr;
D2CXX->setLambdaMangling(DCXX->getLambdaManglingNumber(), CDecl);
} else if (DCXX->isInjectedClassName()) {
// We have to be careful to do a similar dance to the one in
// Sema::ActOnStartCXXMemberDeclarations
CXXRecordDecl *const PrevDecl = nullptr;
const bool DelayTypeCreation = true;
D2CXX = CXXRecordDecl::Create(
Importer.getToContext(), D->getTagKind(), DC, StartLoc, Loc,
Name.getAsIdentifierInfo(), PrevDecl, DelayTypeCreation);
Importer.getToContext().getTypeDeclType(
D2CXX, llvm::dyn_cast<CXXRecordDecl>(DC));
} else {
D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
D->getTagKind(),
DC, StartLoc, Loc,
Name.getAsIdentifierInfo());
}
D2 = D2CXX;
D2->setAccess(D->getAccess());
} else {
D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
DC, StartLoc, Loc, Name.getAsIdentifierInfo());
}
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
if (D->isAnonymousStructOrUnion())
D2->setAnonymousStructOrUnion(true);
}
Importer.Imported(D, D2);
if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default))
return nullptr;
return D2;
}
Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
// Import the major distinguishing characteristics of this enumerator.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
// Determine whether there are any other declarations with the same name and
// in the same context.
if (!LexicalDC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (EnumConstantDecl *FoundEnumConstant
= dyn_cast<EnumConstantDecl>(FoundDecls[I])) {
if (IsStructuralMatch(D, FoundEnumConstant))
return Importer.Imported(D, FoundEnumConstant);
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return nullptr;
}
}
Expr *Init = Importer.Import(D->getInitExpr());
if (D->getInitExpr() && !Init)
return nullptr;
EnumConstantDecl *ToEnumerator
= EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
Name.getAsIdentifierInfo(), T,
Init, D->getInitVal());
ToEnumerator->setAccess(D->getAccess());
ToEnumerator->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToEnumerator);
LexicalDC->addDeclInternal(ToEnumerator);
return ToEnumerator;
}
Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
// Import the major distinguishing characteristics of this function.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Try to find a function in our own ("to") context with the same name, same
// type, and in the same context as the function we're importing.
if (!LexicalDC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) {
if (FoundFunction->hasExternalFormalLinkage() &&
D->hasExternalFormalLinkage()) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundFunction->getType())) {
// FIXME: Actually try to merge the body and other attributes.
return Importer.Imported(D, FoundFunction);
}
// FIXME: Check for overloading more carefully, e.g., by boosting
// Sema::IsOverload out to the AST library.
// Function overloading is okay in C++.
if (Importer.getToContext().getLangOpts().CPlusPlus)
continue;
// Complain about inconsistent function types.
Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
<< Name << D->getType() << FoundFunction->getType();
Importer.ToDiag(FoundFunction->getLocation(),
diag::note_odr_value_here)
<< FoundFunction->getType();
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return nullptr;
}
}
DeclarationNameInfo NameInfo(Name, Loc);
// Import additional name location/type info.
ImportDeclarationNameLoc(D->getNameInfo(), NameInfo);
QualType FromTy = D->getType();
bool usedDifferentExceptionSpec = false;
if (const FunctionProtoType *
FromFPT = D->getType()->getAs<FunctionProtoType>()) {
FunctionProtoType::ExtProtoInfo FromEPI = FromFPT->getExtProtoInfo();
// FunctionProtoType::ExtProtoInfo's ExceptionSpecDecl can point to the
// FunctionDecl that we are importing the FunctionProtoType for.
// To avoid an infinite recursion when importing, create the FunctionDecl
// with a simplified function type and update it afterwards.
if (FromEPI.ExceptionSpec.SourceDecl ||
FromEPI.ExceptionSpec.SourceTemplate ||
FromEPI.ExceptionSpec.NoexceptExpr) {
FunctionProtoType::ExtProtoInfo DefaultEPI;
FromTy = Importer.getFromContext().getFunctionType(
FromFPT->getReturnType(), FromFPT->getParamTypes(), DefaultEPI);
usedDifferentExceptionSpec = true;
}
}
// Import the type.
QualType T = Importer.Import(FromTy);
if (T.isNull())
return nullptr;
// Import the function parameters.
SmallVector<ParmVarDecl *, 8> Parameters;
for (auto P : D->parameters()) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(P));
if (!ToP)
return nullptr;
Parameters.push_back(ToP);
}
// Create the imported function.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
FunctionDecl *ToFunction = nullptr;
SourceLocation InnerLocStart = Importer.Import(D->getInnerLocStart());
if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) {
ToFunction = CXXConstructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
InnerLocStart,
NameInfo, T, TInfo,
FromConstructor->isExplicit(),
D->isInlineSpecified(),
D->isImplicit(),
D->isConstexpr());
if (unsigned NumInitializers = FromConstructor->getNumCtorInitializers()) {
SmallVector<CXXCtorInitializer *, 4> CtorInitializers;
for (CXXCtorInitializer *I : FromConstructor->inits()) {
CXXCtorInitializer *ToI =
cast_or_null<CXXCtorInitializer>(Importer.Import(I));
if (!ToI && I)
return nullptr;
CtorInitializers.push_back(ToI);
}
CXXCtorInitializer **Memory =
new (Importer.getToContext()) CXXCtorInitializer *[NumInitializers];
std::copy(CtorInitializers.begin(), CtorInitializers.end(), Memory);
CXXConstructorDecl *ToCtor = llvm::cast<CXXConstructorDecl>(ToFunction);
ToCtor->setCtorInitializers(Memory);
ToCtor->setNumCtorInitializers(NumInitializers);
}
} else if (isa<CXXDestructorDecl>(D)) {
ToFunction = CXXDestructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
InnerLocStart,
NameInfo, T, TInfo,
D->isInlineSpecified(),
D->isImplicit());
} else if (CXXConversionDecl *FromConversion
= dyn_cast<CXXConversionDecl>(D)) {
ToFunction = CXXConversionDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
InnerLocStart,
NameInfo, T, TInfo,
D->isInlineSpecified(),
FromConversion->isExplicit(),
D->isConstexpr(),
Importer.Import(D->getLocEnd()));
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
ToFunction = CXXMethodDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
InnerLocStart,
NameInfo, T, TInfo,
Method->getStorageClass(),
Method->isInlineSpecified(),
D->isConstexpr(),
Importer.Import(D->getLocEnd()));
} else {
ToFunction = FunctionDecl::Create(Importer.getToContext(), DC,
InnerLocStart,
NameInfo, T, TInfo, D->getStorageClass(),
D->isInlineSpecified(),
D->hasWrittenPrototype(),
D->isConstexpr());
}
// Import the qualifier, if any.
ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
ToFunction->setAccess(D->getAccess());
ToFunction->setLexicalDeclContext(LexicalDC);
ToFunction->setVirtualAsWritten(D->isVirtualAsWritten());
ToFunction->setTrivial(D->isTrivial());
ToFunction->setPure(D->isPure());
Importer.Imported(D, ToFunction);
// Set the parameters.
for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
Parameters[I]->setOwningFunction(ToFunction);
ToFunction->addDeclInternal(Parameters[I]);
}
ToFunction->setParams(Parameters);
if (usedDifferentExceptionSpec) {
// Update FunctionProtoType::ExtProtoInfo.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
ToFunction->setType(T);
}
// Import the body, if any.
if (Stmt *FromBody = D->getBody()) {
if (Stmt *ToBody = Importer.Import(FromBody)) {
ToFunction->setBody(ToBody);
}
}
// FIXME: Other bits to merge?
// Add this function to the lexical context.
LexicalDC->addDeclInternal(ToFunction);
return ToFunction;
}
Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) {
return VisitFunctionDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) {
return VisitCXXMethodDecl(D);
}
static unsigned getFieldIndex(Decl *F) {
RecordDecl *Owner = dyn_cast<RecordDecl>(F->getDeclContext());
if (!Owner)
return 0;
unsigned Index = 1;
for (const auto *D : Owner->noload_decls()) {
if (D == F)
return Index;
if (isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D))
++Index;
}
return Index;
}
Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Determine whether we've already imported this field.
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) {
// For anonymous fields, match up by index.
if (!Name && getFieldIndex(D) != getFieldIndex(FoundField))
continue;
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundField->getType())) {
Importer.Imported(D, FoundField);
return FoundField;
}
Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
<< Name << D->getType() << FoundField->getType();
Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
<< FoundField->getType();
return nullptr;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return nullptr;
FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, BitWidth, D->isMutable(),
D->getInClassInitStyle());
ToField->setAccess(D->getAccess());
ToField->setLexicalDeclContext(LexicalDC);
if (Expr *FromInitializer = D->getInClassInitializer()) {
Expr *ToInitializer = Importer.Import(FromInitializer);
if (ToInitializer)
ToField->setInClassInitializer(ToInitializer);
else
return nullptr;
}
ToField->setImplicit(D->isImplicit());
Importer.Imported(D, ToField);
LexicalDC->addDeclInternal(ToField);
return ToField;
}
Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Determine whether we've already imported this field.
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (IndirectFieldDecl *FoundField
= dyn_cast<IndirectFieldDecl>(FoundDecls[I])) {
// For anonymous indirect fields, match up by index.
if (!Name && getFieldIndex(D) != getFieldIndex(FoundField))
continue;
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundField->getType(),
!Name.isEmpty())) {
Importer.Imported(D, FoundField);
return FoundField;
}
// If there are more anonymous fields to check, continue.
if (!Name && I < N-1)
continue;
Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
<< Name << D->getType() << FoundField->getType();
Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
<< FoundField->getType();
return nullptr;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
NamedDecl **NamedChain =
new (Importer.getToContext())NamedDecl*[D->getChainingSize()];
unsigned i = 0;
for (auto *PI : D->chain()) {
Decl *D = Importer.Import(PI);
if (!D)
return nullptr;
NamedChain[i++] = cast<NamedDecl>(D);
}
IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create(
Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T,
{NamedChain, D->getChainingSize()});
for (const auto *Attr : D->attrs())
ToIndirectField->addAttr(Attr->clone(Importer.getToContext()));
ToIndirectField->setAccess(D->getAccess());
ToIndirectField->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToIndirectField);
LexicalDC->addDeclInternal(ToIndirectField);
return ToIndirectField;
}
Decl *ASTNodeImporter::VisitFriendDecl(FriendDecl *D) {
// Import the major distinguishing characteristics of a declaration.
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
DeclContext *LexicalDC = D->getDeclContext() == D->getLexicalDeclContext()
? DC : Importer.ImportContext(D->getLexicalDeclContext());
if (!DC || !LexicalDC)
return nullptr;
// Determine whether we've already imported this decl.
// FriendDecl is not a NamedDecl so we cannot use localUncachedLookup.
auto *RD = cast<CXXRecordDecl>(DC);
FriendDecl *ImportedFriend = RD->getFirstFriend();
StructuralEquivalenceContext Context(
Importer.getFromContext(), Importer.getToContext(),
Importer.getNonEquivalentDecls(), false, false);
while (ImportedFriend) {
if (D->getFriendDecl() && ImportedFriend->getFriendDecl()) {
if (Context.IsStructurallyEquivalent(D->getFriendDecl(),
ImportedFriend->getFriendDecl()))
return Importer.Imported(D, ImportedFriend);
} else if (D->getFriendType() && ImportedFriend->getFriendType()) {
if (Importer.IsStructurallyEquivalent(
D->getFriendType()->getType(),
ImportedFriend->getFriendType()->getType(), true))
return Importer.Imported(D, ImportedFriend);
}
ImportedFriend = ImportedFriend->getNextFriend();
}
// Not found. Create it.
FriendDecl::FriendUnion ToFU;
if (NamedDecl *FriendD = D->getFriendDecl())
ToFU = cast_or_null<NamedDecl>(Importer.Import(FriendD));
else
ToFU = Importer.Import(D->getFriendType());
if (!ToFU)
return nullptr;
SmallVector<TemplateParameterList *, 1> ToTPLists(D->NumTPLists);
TemplateParameterList **FromTPLists =
D->getTrailingObjects<TemplateParameterList *>();
for (unsigned I = 0; I < D->NumTPLists; I++) {
TemplateParameterList *List = ImportTemplateParameterList(FromTPLists[I]);
if (!List)
return nullptr;
ToTPLists[I] = List;
}
FriendDecl *FrD = FriendDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getLocation()),
ToFU, Importer.Import(D->getFriendLoc()),
ToTPLists);
Importer.Imported(D, FrD);
RD->pushFriendDecl(FrD);
FrD->setAccess(D->getAccess());
FrD->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(FrD);
return FrD;
}
Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
// Import the major distinguishing characteristics of an ivar.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Determine whether we've already imported this ivar
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundIvar->getType())) {
Importer.Imported(D, FoundIvar);
return FoundIvar;
}
Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent)
<< Name << D->getType() << FoundIvar->getType();
Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here)
<< FoundIvar->getType();
return nullptr;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return nullptr;
ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(),
cast<ObjCContainerDecl>(DC),
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getAccessControl(),
BitWidth, D->getSynthesize());
ToIvar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToIvar);
LexicalDC->addDeclInternal(ToIvar);
return ToIvar;
}
Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Try to find a variable in our own ("to") context with the same name and
// in the same context as the variable we're importing.
if (D->isFileVarDecl()) {
VarDecl *MergeWithVar = nullptr;
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) {
// We have found a variable that we may need to merge with. Check it.
if (FoundVar->hasExternalFormalLinkage() &&
D->hasExternalFormalLinkage()) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundVar->getType())) {
MergeWithVar = FoundVar;
break;
}
const ArrayType *FoundArray
= Importer.getToContext().getAsArrayType(FoundVar->getType());
const ArrayType *TArray
= Importer.getToContext().getAsArrayType(D->getType());
if (FoundArray && TArray) {
if (isa<IncompleteArrayType>(FoundArray) &&
isa<ConstantArrayType>(TArray)) {
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
FoundVar->setType(T);
MergeWithVar = FoundVar;
break;
} else if (isa<IncompleteArrayType>(TArray) &&
isa<ConstantArrayType>(FoundArray)) {
MergeWithVar = FoundVar;
break;
}
}
Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
<< Name << D->getType() << FoundVar->getType();
Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
<< FoundVar->getType();
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (MergeWithVar) {
// An equivalent variable with external linkage has been found. Link
// the two declarations, then merge them.
Importer.Imported(D, MergeWithVar);
if (VarDecl *DDef = D->getDefinition()) {
if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
Importer.ToDiag(ExistingDef->getLocation(),
diag::err_odr_variable_multiple_def)
<< Name;
Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
} else {
Expr *Init = Importer.Import(DDef->getInit());
MergeWithVar->setInit(Init);
if (DDef->isInitKnownICE()) {
EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt();
Eval->CheckedICE = true;
Eval->IsICE = DDef->isInitICE();
}
}
}
return MergeWithVar;
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return nullptr;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
// Create the imported variable.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo,
D->getStorageClass());
ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
ToVar->setAccess(D->getAccess());
ToVar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToVar);
LexicalDC->addDeclInternal(ToVar);
if (!D->isFileVarDecl() &&
D->isUsed())
ToVar->setIsUsed();
// Merge the initializer.
if (ImportDefinition(D, ToVar))
return nullptr;
return ToVar;
}
Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return nullptr;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
// Create the imported parameter.
ImplicitParamDecl *ToParm
= ImplicitParamDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T);
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return nullptr;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
// Create the imported parameter.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getStorageClass(),
/*FIXME: Default argument*/nullptr);
ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg());
if (D->isUsed())
ToParm->setIsUsed();
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
// Import the major distinguishing characteristics of a method.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) {
if (FoundMethod->isInstanceMethod() != D->isInstanceMethod())
continue;
// Check return types.
if (!Importer.IsStructurallyEquivalent(D->getReturnType(),
FoundMethod->getReturnType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent)
<< D->isInstanceMethod() << Name << D->getReturnType()
<< FoundMethod->getReturnType();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return nullptr;
}
// Check the number of parameters.
if (D->param_size() != FoundMethod->param_size()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent)
<< D->isInstanceMethod() << Name
<< D->param_size() << FoundMethod->param_size();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return nullptr;
}
// Check parameter types.
for (ObjCMethodDecl::param_iterator P = D->param_begin(),
PEnd = D->param_end(), FoundP = FoundMethod->param_begin();
P != PEnd; ++P, ++FoundP) {
if (!Importer.IsStructurallyEquivalent((*P)->getType(),
(*FoundP)->getType())) {
Importer.FromDiag((*P)->getLocation(),
diag::err_odr_objc_method_param_type_inconsistent)
<< D->isInstanceMethod() << Name
<< (*P)->getType() << (*FoundP)->getType();
Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here)
<< (*FoundP)->getType();
return nullptr;
}
}
// Check variadic/non-variadic.
// Check the number of parameters.
if (D->isVariadic() != FoundMethod->isVariadic()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent)
<< D->isInstanceMethod() << Name;
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return nullptr;
}
// FIXME: Any other bits we need to merge?
return Importer.Imported(D, FoundMethod);
}
}
// Import the result type.
QualType ResultTy = Importer.Import(D->getReturnType());
if (ResultTy.isNull())
return nullptr;
TypeSourceInfo *ReturnTInfo = Importer.Import(D->getReturnTypeSourceInfo());
ObjCMethodDecl *ToMethod = ObjCMethodDecl::Create(
Importer.getToContext(), Loc, Importer.Import(D->getLocEnd()),
Name.getObjCSelector(), ResultTy, ReturnTInfo, DC, D->isInstanceMethod(),
D->isVariadic(), D->isPropertyAccessor(), D->isImplicit(), D->isDefined(),
D->getImplementationControl(), D->hasRelatedResultType());
// FIXME: When we decide to merge method definitions, we'll need to
// deal with implicit parameters.
// Import the parameters
SmallVector<ParmVarDecl *, 5> ToParams;
for (auto *FromP : D->parameters()) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(FromP));
if (!ToP)
return nullptr;
ToParams.push_back(ToP);
}
// Set the parameters.
for (unsigned I = 0, N = ToParams.size(); I != N; ++I) {
ToParams[I]->setOwningFunction(ToMethod);
ToMethod->addDeclInternal(ToParams[I]);
}
SmallVector<SourceLocation, 12> SelLocs;
D->getSelectorLocs(SelLocs);
ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs);
ToMethod->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToMethod);
LexicalDC->addDeclInternal(ToMethod);
return ToMethod;
}
Decl *ASTNodeImporter::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) {
// Import the major distinguishing characteristics of a category.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
TypeSourceInfo *BoundInfo = Importer.Import(D->getTypeSourceInfo());
if (!BoundInfo)
return nullptr;
ObjCTypeParamDecl *Result = ObjCTypeParamDecl::Create(
Importer.getToContext(), DC,
D->getVariance(),
Importer.Import(D->getVarianceLoc()),
D->getIndex(),
Importer.Import(D->getLocation()),
Name.getAsIdentifierInfo(),
Importer.Import(D->getColonLoc()),
BoundInfo);
Importer.Imported(D, Result);
Result->setLexicalDeclContext(LexicalDC);
return Result;
}
Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
// Import the major distinguishing characteristics of a category.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
ObjCInterfaceDecl *ToInterface
= cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface()));
if (!ToInterface)
return nullptr;
// Determine if we've already encountered this category.
ObjCCategoryDecl *MergeWithCategory
= ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo());
ObjCCategoryDecl *ToCategory = MergeWithCategory;
if (!ToCategory) {
ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getAtStartLoc()),
Loc,
Importer.Import(D->getCategoryNameLoc()),
Name.getAsIdentifierInfo(),
ToInterface,
/*TypeParamList=*/nullptr,
Importer.Import(D->getIvarLBraceLoc()),
Importer.Import(D->getIvarRBraceLoc()));
ToCategory->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToCategory);
Importer.Imported(D, ToCategory);
// Import the type parameter list after calling Imported, to avoid
// loops when bringing in their DeclContext.
ToCategory->setTypeParamList(ImportObjCTypeParamList(
D->getTypeParamList()));
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc
= D->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(),
FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return nullptr;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
ToCategory->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
} else {
Importer.Imported(D, ToCategory);
}
// Import all of the members of this category.
ImportDeclContext(D);
// If we have an implementation, import it as well.
if (D->getImplementation()) {
ObjCCategoryImplDecl *Impl
= cast_or_null<ObjCCategoryImplDecl>(
Importer.Import(D->getImplementation()));
if (!Impl)
return nullptr;
ToCategory->setImplementation(Impl);
}
return ToCategory;
}
bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From,
ObjCProtocolDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition()) {
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From);
return false;
}
// Start the protocol definition
To->startDefinition();
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCProtocolDecl::protocol_loc_iterator
FromProtoLoc = From->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(),
FromProtoEnd = From->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return true;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
To->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
if (shouldForceImportDeclContext(Kind)) {
// Import all of the members of this protocol.
ImportDeclContext(From, /*ForceImport=*/true);
}
return false;
}
Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
// If this protocol has a definition in the translation unit we're coming
// from, but this particular declaration is not that definition, import the
// definition and map to that.
ObjCProtocolDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of a protocol.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
ObjCProtocolDecl *MergeWithProtocol = nullptr;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol))
continue;
if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I])))
break;
}
ObjCProtocolDecl *ToProto = MergeWithProtocol;
if (!ToProto) {
ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC,
Name.getAsIdentifierInfo(), Loc,
Importer.Import(D->getAtStartLoc()),
/*PrevDecl=*/nullptr);
ToProto->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToProto);
}
Importer.Imported(D, ToProto);
if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto))
return nullptr;
return ToProto;
}
Decl *ASTNodeImporter::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
DeclContext *LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
SourceLocation ExternLoc = Importer.Import(D->getExternLoc());
SourceLocation LangLoc = Importer.Import(D->getLocation());
bool HasBraces = D->hasBraces();
LinkageSpecDecl *ToLinkageSpec =
LinkageSpecDecl::Create(Importer.getToContext(),
DC,
ExternLoc,
LangLoc,
D->getLanguage(),
HasBraces);
if (HasBraces) {
SourceLocation RBraceLoc = Importer.Import(D->getRBraceLoc());
ToLinkageSpec->setRBraceLoc(RBraceLoc);
}
ToLinkageSpec->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToLinkageSpec);
Importer.Imported(D, ToLinkageSpec);
return ToLinkageSpec;
}
bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From,
ObjCInterfaceDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition()) {
// Check consistency of superclass.
ObjCInterfaceDecl *FromSuper = From->getSuperClass();
if (FromSuper) {
FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper));
if (!FromSuper)
return true;
}
ObjCInterfaceDecl *ToSuper = To->getSuperClass();
if ((bool)FromSuper != (bool)ToSuper ||
(FromSuper && !declaresSameEntity(FromSuper, ToSuper))) {
Importer.ToDiag(To->getLocation(),
diag::err_odr_objc_superclass_inconsistent)
<< To->getDeclName();
if (ToSuper)
Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass)
<< To->getSuperClass()->getDeclName();
else
Importer.ToDiag(To->getLocation(),
diag::note_odr_objc_missing_superclass);
if (From->getSuperClass())
Importer.FromDiag(From->getSuperClassLoc(),
diag::note_odr_objc_superclass)
<< From->getSuperClass()->getDeclName();
else
Importer.FromDiag(From->getLocation(),
diag::note_odr_objc_missing_superclass);
}
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From);
return false;
}
// Start the definition.
To->startDefinition();
// If this class has a superclass, import it.
if (From->getSuperClass()) {
TypeSourceInfo *SuperTInfo = Importer.Import(From->getSuperClassTInfo());
if (!SuperTInfo)
return true;
To->setSuperClass(SuperTInfo);
}
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCInterfaceDecl::protocol_loc_iterator
FromProtoLoc = From->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(),
FromProtoEnd = From->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return true;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
To->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
// Import categories. When the categories themselves are imported, they'll
// hook themselves into this interface.
for (auto *Cat : From->known_categories())
Importer.Import(Cat);
// If we have an @implementation, import it as well.
if (From->getImplementation()) {
ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>(
Importer.Import(From->getImplementation()));
if (!Impl)
return true;
To->setImplementation(Impl);
}
if (shouldForceImportDeclContext(Kind)) {
// Import all of the members of this class.
ImportDeclContext(From, /*ForceImport=*/true);
}
return false;
}
ObjCTypeParamList *
ASTNodeImporter::ImportObjCTypeParamList(ObjCTypeParamList *list) {
if (!list)
return nullptr;
SmallVector<ObjCTypeParamDecl *, 4> toTypeParams;
for (auto fromTypeParam : *list) {
auto toTypeParam = cast_or_null<ObjCTypeParamDecl>(
Importer.Import(fromTypeParam));
if (!toTypeParam)
return nullptr;
toTypeParams.push_back(toTypeParam);
}
return ObjCTypeParamList::create(Importer.getToContext(),
Importer.Import(list->getLAngleLoc()),
toTypeParams,
Importer.Import(list->getRAngleLoc()));
}
Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
// If this class has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
ObjCInterfaceDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of an @interface.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Look for an existing interface with the same name.
ObjCInterfaceDecl *MergeWithIface = nullptr;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I])))
break;
}
// Create an interface declaration, if one does not already exist.
ObjCInterfaceDecl *ToIface = MergeWithIface;
if (!ToIface) {
ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getAtStartLoc()),
Name.getAsIdentifierInfo(),
/*TypeParamList=*/nullptr,
/*PrevDecl=*/nullptr, Loc,
D->isImplicitInterfaceDecl());
ToIface->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToIface);
}
Importer.Imported(D, ToIface);
// Import the type parameter list after calling Imported, to avoid
// loops when bringing in their DeclContext.
ToIface->setTypeParamList(ImportObjCTypeParamList(
D->getTypeParamListAsWritten()));
if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface))
return nullptr;
return ToIface;
}
Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>(
Importer.Import(D->getCategoryDecl()));
if (!Category)
return nullptr;
ObjCCategoryImplDecl *ToImpl = Category->getImplementation();
if (!ToImpl) {
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return nullptr;
SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc());
ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getIdentifier()),
Category->getClassInterface(),
Importer.Import(D->getLocation()),
Importer.Import(D->getAtStartLoc()),
CategoryNameLoc);
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return nullptr;
ToImpl->setLexicalDeclContext(LexicalDC);
}
LexicalDC->addDeclInternal(ToImpl);
Category->setImplementation(ToImpl);
}
Importer.Imported(D, ToImpl);
ImportDeclContext(D);
return ToImpl;
}
Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
// Find the corresponding interface.
ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>(
Importer.Import(D->getClassInterface()));
if (!Iface)
return nullptr;
// Import the superclass, if any.
ObjCInterfaceDecl *Super = nullptr;
if (D->getSuperClass()) {
Super = cast_or_null<ObjCInterfaceDecl>(
Importer.Import(D->getSuperClass()));
if (!Super)
return nullptr;
}
ObjCImplementationDecl *Impl = Iface->getImplementation();
if (!Impl) {
// We haven't imported an implementation yet. Create a new @implementation
// now.
Impl = ObjCImplementationDecl::Create(Importer.getToContext(),
Importer.ImportContext(D->getDeclContext()),
Iface, Super,
Importer.Import(D->getLocation()),
Importer.Import(D->getAtStartLoc()),
Importer.Import(D->getSuperClassLoc()),
Importer.Import(D->getIvarLBraceLoc()),
Importer.Import(D->getIvarRBraceLoc()));
if (D->getDeclContext() != D->getLexicalDeclContext()) {
DeclContext *LexicalDC
= Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return nullptr;
Impl->setLexicalDeclContext(LexicalDC);
}
// Associate the implementation with the class it implements.
Iface->setImplementation(Impl);
Importer.Imported(D, Iface->getImplementation());
} else {
Importer.Imported(D, Iface->getImplementation());
// Verify that the existing @implementation has the same superclass.
if ((Super && !Impl->getSuperClass()) ||
(!Super && Impl->getSuperClass()) ||
(Super && Impl->getSuperClass() &&
!declaresSameEntity(Super->getCanonicalDecl(),
Impl->getSuperClass()))) {
Importer.ToDiag(Impl->getLocation(),
diag::err_odr_objc_superclass_inconsistent)
<< Iface->getDeclName();
// FIXME: It would be nice to have the location of the superclass
// below.
if (Impl->getSuperClass())
Importer.ToDiag(Impl->getLocation(),
diag::note_odr_objc_superclass)
<< Impl->getSuperClass()->getDeclName();
else
Importer.ToDiag(Impl->getLocation(),
diag::note_odr_objc_missing_superclass);
if (D->getSuperClass())
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_superclass)
<< D->getSuperClass()->getDeclName();
else
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_missing_superclass);
return nullptr;
}
}
// Import all of the members of this @implementation.
ImportDeclContext(D);
return Impl;
}
Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
// Import the major distinguishing characteristics of an @property.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// Check whether we have already imported this property.
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCPropertyDecl *FoundProp
= dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) {
// Check property types.
if (!Importer.IsStructurallyEquivalent(D->getType(),
FoundProp->getType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent)
<< Name << D->getType() << FoundProp->getType();
Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here)
<< FoundProp->getType();
return nullptr;
}
// FIXME: Check property attributes, getters, setters, etc.?
// Consider these properties to be equivalent.
Importer.Imported(D, FoundProp);
return FoundProp;
}
}
// Import the type.
TypeSourceInfo *TSI = Importer.Import(D->getTypeSourceInfo());
if (!TSI)
return nullptr;
// Create the new property.
ObjCPropertyDecl *ToProperty
= ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getAtLoc()),
Importer.Import(D->getLParenLoc()),
Importer.Import(D->getType()),
TSI,
D->getPropertyImplementation());
Importer.Imported(D, ToProperty);
ToProperty->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToProperty);
ToProperty->setPropertyAttributes(D->getPropertyAttributes());
ToProperty->setPropertyAttributesAsWritten(
D->getPropertyAttributesAsWritten());
ToProperty->setGetterName(Importer.Import(D->getGetterName()));
ToProperty->setSetterName(Importer.Import(D->getSetterName()));
ToProperty->setGetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl())));
ToProperty->setSetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl())));
ToProperty->setPropertyIvarDecl(
cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl())));
return ToProperty;
}
Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>(
Importer.Import(D->getPropertyDecl()));
if (!Property)
return nullptr;
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return nullptr;
// Import the lexical declaration context.
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return nullptr;
}
ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC);
if (!InImpl)
return nullptr;
// Import the ivar (for an @synthesize).
ObjCIvarDecl *Ivar = nullptr;
if (D->getPropertyIvarDecl()) {
Ivar = cast_or_null<ObjCIvarDecl>(
Importer.Import(D->getPropertyIvarDecl()));
if (!Ivar)
return nullptr;
}
ObjCPropertyImplDecl *ToImpl
= InImpl->FindPropertyImplDecl(Property->getIdentifier(),
Property->getQueryKind());
if (!ToImpl) {
ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getLocStart()),
Importer.Import(D->getLocation()),
Property,
D->getPropertyImplementation(),
Ivar,
Importer.Import(D->getPropertyIvarDeclLoc()));
ToImpl->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToImpl);
LexicalDC->addDeclInternal(ToImpl);
} else {
// Check that we have the same kind of property implementation (@synthesize
// vs. @dynamic).
if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) {
Importer.ToDiag(ToImpl->getLocation(),
diag::err_odr_objc_property_impl_kind_inconsistent)
<< Property->getDeclName()
<< (ToImpl->getPropertyImplementation()
== ObjCPropertyImplDecl::Dynamic);
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_property_impl_kind)
<< D->getPropertyDecl()->getDeclName()
<< (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
return nullptr;
}
// For @synthesize, check that we have the same
if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize &&
Ivar != ToImpl->getPropertyIvarDecl()) {
Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(),
diag::err_odr_objc_synthesize_ivar_inconsistent)
<< Property->getDeclName()
<< ToImpl->getPropertyIvarDecl()->getDeclName()
<< Ivar->getDeclName();
Importer.FromDiag(D->getPropertyIvarDeclLoc(),
diag::note_odr_objc_synthesize_ivar_here)
<< D->getPropertyIvarDecl()->getDeclName();
return nullptr;
}
// Merge the existing implementation with the new implementation.
Importer.Imported(D, ToImpl);
}
return ToImpl;
}
Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
// For template arguments, we adopt the translation unit as our declaration
// context. This context will be fixed when the actual template declaration
// is created.
// FIXME: Import default argument.
return TemplateTypeParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Importer.Import(D->getLocStart()),
Importer.Import(D->getLocation()),
D->getDepth(),
D->getIndex(),
Importer.Import(D->getIdentifier()),
D->wasDeclaredWithTypename(),
D->isParameterPack());
}
Decl *
ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return nullptr;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the type of this declaration.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
// Import type-source information.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
if (D->getTypeSourceInfo() && !TInfo)
return nullptr;
// FIXME: Import default argument.
return NonTypeTemplateParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Importer.Import(D->getInnerLocStart()),
Loc, D->getDepth(), D->getPosition(),
Name.getAsIdentifierInfo(),
T, D->isParameterPack(), TInfo);
}
Decl *
ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return nullptr;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import template parameters.
TemplateParameterList *TemplateParams
= ImportTemplateParameterList(D->getTemplateParameters());
if (!TemplateParams)
return nullptr;
// FIXME: Import default argument.
return TemplateTemplateParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Loc, D->getDepth(), D->getPosition(),
D->isParameterPack(),
Name.getAsIdentifierInfo(),
TemplateParams);
}
Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
CXXRecordDecl *Definition
= cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition());
if (Definition && Definition != D->getTemplatedDecl()) {
Decl *ImportedDef
= Importer.Import(Definition->getDescribedClassTemplate());
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this class template.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// We may already have a template of the same name; try to find and match it.
if (!DC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
Decl *Found = FoundDecls[I];
if (ClassTemplateDecl *FoundTemplate
= dyn_cast<ClassTemplateDecl>(Found)) {
if (IsStructuralMatch(D, FoundTemplate)) {
// The class templates structurally match; call it the same template.
// FIXME: We may be filling in a forward declaration here. Handle
// this case!
Importer.Imported(D->getTemplatedDecl(),
FoundTemplate->getTemplatedDecl());
return Importer.Imported(D, FoundTemplate);
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
ConflictingDecls.data(),
ConflictingDecls.size());
}
if (!Name)
return nullptr;
}
CXXRecordDecl *DTemplated = D->getTemplatedDecl();
// Create the declaration that is being templated.
// Create the declaration that is being templated.
CXXRecordDecl *D2Templated = cast_or_null<CXXRecordDecl>(
Importer.Import(DTemplated));
if (!D2Templated)
return nullptr;
// Resolve possible cyclic import.
if (Decl *AlreadyImported = Importer.GetAlreadyImportedOrNull(D))
return AlreadyImported;
// Create the class template declaration itself.
TemplateParameterList *TemplateParams
= ImportTemplateParameterList(D->getTemplateParameters());
if (!TemplateParams)
return nullptr;
ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC,
Loc, Name, TemplateParams,
D2Templated);
D2Templated->setDescribedClassTemplate(D2);
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
// Note the relationship between the class templates.
Importer.Imported(D, D2);
Importer.Imported(DTemplated, D2Templated);
if (DTemplated->isCompleteDefinition() &&
!D2Templated->isCompleteDefinition()) {
// FIXME: Import definition!
}
return D2;
}
Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
TagDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
ClassTemplateDecl *ClassTemplate
= cast_or_null<ClassTemplateDecl>(Importer.Import(
D->getSpecializedTemplate()));
if (!ClassTemplate)
return nullptr;
// Import the context of this declaration.
DeclContext *DC = ClassTemplate->getDeclContext();
if (!DC)
return nullptr;
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return nullptr;
}
// Import the location of this declaration.
SourceLocation StartLoc = Importer.Import(D->getLocStart());
SourceLocation IdLoc = Importer.Import(D->getLocation());
// Import template arguments.
SmallVector<TemplateArgument, 2> TemplateArgs;
if (ImportTemplateArguments(D->getTemplateArgs().data(),
D->getTemplateArgs().size(),
TemplateArgs))
return nullptr;
// Try to find an existing specialization with these template arguments.
void *InsertPos = nullptr;
ClassTemplateSpecializationDecl *D2
= ClassTemplate->findSpecialization(TemplateArgs, InsertPos);
if (D2) {
// We already have a class template specialization with these template
// arguments.
// FIXME: Check for specialization vs. instantiation errors.
if (RecordDecl *FoundDef = D2->getDefinition()) {
if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// function.
return Importer.Imported(D, FoundDef);
}
}
} else {
// Create a new specialization.
D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(),
D->getTagKind(), DC,
StartLoc, IdLoc,
ClassTemplate,
TemplateArgs,
/*PrevDecl=*/nullptr);
D2->setSpecializationKind(D->getSpecializationKind());
// Add this specialization to the class template.
ClassTemplate->AddSpecialization(D2, InsertPos);
// Import the qualifier, if any.
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
// Add the specialization to this context.
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
}
Importer.Imported(D, D2);
if (D->isCompleteDefinition() && ImportDefinition(D, D2))
return nullptr;
return D2;
}
Decl *ASTNodeImporter::VisitVarTemplateDecl(VarTemplateDecl *D) {
// If this variable has a definition in the translation unit we're coming
// from,
// but this particular declaration is not that definition, import the
// definition and map to that.
VarDecl *Definition =
cast_or_null<VarDecl>(D->getTemplatedDecl()->getDefinition());
if (Definition && Definition != D->getTemplatedDecl()) {
Decl *ImportedDef = Importer.Import(Definition->getDescribedVarTemplate());
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this variable template.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
NamedDecl *ToD;
if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
return nullptr;
if (ToD)
return ToD;
// We may already have a template of the same name; try to find and match it.
assert(!DC->isFunctionOrMethod() &&
"Variable templates cannot be declared at function scope");
SmallVector<NamedDecl *, 4> ConflictingDecls;
SmallVector<NamedDecl *, 2> FoundDecls;
DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
Decl *Found = FoundDecls[I];
if (VarTemplateDecl *FoundTemplate = dyn_cast<VarTemplateDecl>(Found)) {
if (IsStructuralMatch(D, FoundTemplate)) {
// The variable templates structurally match; call it the same template.
Importer.Imported(D->getTemplatedDecl(),
FoundTemplate->getTemplatedDecl());
return Importer.Imported(D, FoundTemplate);
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
ConflictingDecls.data(),
ConflictingDecls.size());
}
if (!Name)
return nullptr;
VarDecl *DTemplated = D->getTemplatedDecl();
// Import the type.
QualType T = Importer.Import(DTemplated->getType());
if (T.isNull())
return nullptr;
// Create the declaration that is being templated.
SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart());
SourceLocation IdLoc = Importer.Import(DTemplated->getLocation());
TypeSourceInfo *TInfo = Importer.Import(DTemplated->getTypeSourceInfo());
VarDecl *D2Templated = VarDecl::Create(Importer.getToContext(), DC, StartLoc,
IdLoc, Name.getAsIdentifierInfo(), T,
TInfo, DTemplated->getStorageClass());
D2Templated->setAccess(DTemplated->getAccess());
D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc()));
D2Templated->setLexicalDeclContext(LexicalDC);
// Importer.Imported(DTemplated, D2Templated);
// LexicalDC->addDeclInternal(D2Templated);
// Merge the initializer.
if (ImportDefinition(DTemplated, D2Templated))
return nullptr;
// Create the variable template declaration itself.
TemplateParameterList *TemplateParams =
ImportTemplateParameterList(D->getTemplateParameters());
if (!TemplateParams)
return nullptr;
VarTemplateDecl *D2 = VarTemplateDecl::Create(
Importer.getToContext(), DC, Loc, Name, TemplateParams, D2Templated);
D2Templated->setDescribedVarTemplate(D2);
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
// Note the relationship between the variable templates.
Importer.Imported(D, D2);
Importer.Imported(DTemplated, D2Templated);
if (DTemplated->isThisDeclarationADefinition() &&
!D2Templated->isThisDeclarationADefinition()) {
// FIXME: Import definition!
}
return D2;
}
Decl *ASTNodeImporter::VisitVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
VarDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return nullptr;
return Importer.Imported(D, ImportedDef);
}
VarTemplateDecl *VarTemplate = cast_or_null<VarTemplateDecl>(
Importer.Import(D->getSpecializedTemplate()));
if (!VarTemplate)
return nullptr;
// Import the context of this declaration.
DeclContext *DC = VarTemplate->getDeclContext();
if (!DC)
return nullptr;
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return nullptr;
}
// Import the location of this declaration.
SourceLocation StartLoc = Importer.Import(D->getLocStart());
SourceLocation IdLoc = Importer.Import(D->getLocation());
// Import template arguments.
SmallVector<TemplateArgument, 2> TemplateArgs;
if (ImportTemplateArguments(D->getTemplateArgs().data(),
D->getTemplateArgs().size(), TemplateArgs))
return nullptr;
// Try to find an existing specialization with these template arguments.
void *InsertPos = nullptr;
VarTemplateSpecializationDecl *D2 = VarTemplate->findSpecialization(
TemplateArgs, InsertPos);
if (D2) {
// We already have a variable template specialization with these template
// arguments.
// FIXME: Check for specialization vs. instantiation errors.
if (VarDecl *FoundDef = D2->getDefinition()) {
if (!D->isThisDeclarationADefinition() ||
IsStructuralMatch(D, FoundDef)) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// variable.
return Importer.Imported(D, FoundDef);
}
}
} else {
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
// Create a new specialization.
D2 = VarTemplateSpecializationDecl::Create(
Importer.getToContext(), DC, StartLoc, IdLoc, VarTemplate, T, TInfo,
D->getStorageClass(), TemplateArgs);
D2->setSpecializationKind(D->getSpecializationKind());
D2->setTemplateArgsInfo(D->getTemplateArgsInfo());
// Add this specialization to the class template.
VarTemplate->AddSpecialization(D2, InsertPos);
// Import the qualifier, if any.
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
// Add the specialization to this context.
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
}
Importer.Imported(D, D2);
if (D->isThisDeclarationADefinition() && ImportDefinition(D, D2))
return nullptr;
return D2;
}
//----------------------------------------------------------------------------
// Import Statements
//----------------------------------------------------------------------------
DeclGroupRef ASTNodeImporter::ImportDeclGroup(DeclGroupRef DG) {
if (DG.isNull())
return DeclGroupRef::Create(Importer.getToContext(), nullptr, 0);
size_t NumDecls = DG.end() - DG.begin();
SmallVector<Decl *, 1> ToDecls(NumDecls);
auto &_Importer = this->Importer;
std::transform(DG.begin(), DG.end(), ToDecls.begin(),
[&_Importer](Decl *D) -> Decl * {
return _Importer.Import(D);
});
return DeclGroupRef::Create(Importer.getToContext(),
ToDecls.begin(),
NumDecls);
}
Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
<< S->getStmtClassName();
return nullptr;
}
Stmt *ASTNodeImporter::VisitGCCAsmStmt(GCCAsmStmt *S) {
SmallVector<IdentifierInfo *, 4> Names;
for (unsigned I = 0, E = S->getNumOutputs(); I != E; I++) {
IdentifierInfo *ToII = Importer.Import(S->getOutputIdentifier(I));
if (!ToII)
return nullptr;
Names.push_back(ToII);
}
for (unsigned I = 0, E = S->getNumInputs(); I != E; I++) {
IdentifierInfo *ToII = Importer.Import(S->getInputIdentifier(I));
if (!ToII)
return nullptr;
Names.push_back(ToII);
}
SmallVector<StringLiteral *, 4> Clobbers;
for (unsigned I = 0, E = S->getNumClobbers(); I != E; I++) {
StringLiteral *Clobber = cast_or_null<StringLiteral>(
Importer.Import(S->getClobberStringLiteral(I)));
if (!Clobber)
return nullptr;
Clobbers.push_back(Clobber);
}
SmallVector<StringLiteral *, 4> Constraints;
for (unsigned I = 0, E = S->getNumOutputs(); I != E; I++) {
StringLiteral *Output = cast_or_null<StringLiteral>(
Importer.Import(S->getOutputConstraintLiteral(I)));
if (!Output)
return nullptr;
Constraints.push_back(Output);
}
for (unsigned I = 0, E = S->getNumInputs(); I != E; I++) {
StringLiteral *Input = cast_or_null<StringLiteral>(
Importer.Import(S->getInputConstraintLiteral(I)));
if (!Input)
return nullptr;
Constraints.push_back(Input);
}
SmallVector<Expr *, 4> Exprs(S->getNumOutputs() + S->getNumInputs());
if (ImportContainerChecked(S->outputs(), Exprs))
return nullptr;
if (ImportArrayChecked(S->inputs(), Exprs.begin() + S->getNumOutputs()))
return nullptr;
StringLiteral *AsmStr = cast_or_null<StringLiteral>(
Importer.Import(S->getAsmString()));
if (!AsmStr)
return nullptr;
return new (Importer.getToContext()) GCCAsmStmt(
Importer.getToContext(),
Importer.Import(S->getAsmLoc()),
S->isSimple(),
S->isVolatile(),
S->getNumOutputs(),
S->getNumInputs(),
Names.data(),
Constraints.data(),
Exprs.data(),
AsmStr,
S->getNumClobbers(),
Clobbers.data(),
Importer.Import(S->getRParenLoc()));
}
Stmt *ASTNodeImporter::VisitDeclStmt(DeclStmt *S) {
DeclGroupRef ToDG = ImportDeclGroup(S->getDeclGroup());
for (Decl *ToD : ToDG) {
if (!ToD)
return nullptr;
}
SourceLocation ToStartLoc = Importer.Import(S->getStartLoc());
SourceLocation ToEndLoc = Importer.Import(S->getEndLoc());
return new (Importer.getToContext()) DeclStmt(ToDG, ToStartLoc, ToEndLoc);
}
Stmt *ASTNodeImporter::VisitNullStmt(NullStmt *S) {
SourceLocation ToSemiLoc = Importer.Import(S->getSemiLoc());
return new (Importer.getToContext()) NullStmt(ToSemiLoc,
S->hasLeadingEmptyMacro());
}
Stmt *ASTNodeImporter::VisitCompoundStmt(CompoundStmt *S) {
llvm::SmallVector<Stmt *, 8> ToStmts(S->size());
if (ImportContainerChecked(S->body(), ToStmts))
return nullptr;
SourceLocation ToLBraceLoc = Importer.Import(S->getLBracLoc());
SourceLocation ToRBraceLoc = Importer.Import(S->getRBracLoc());
return new (Importer.getToContext()) CompoundStmt(Importer.getToContext(),
ToStmts,
ToLBraceLoc, ToRBraceLoc);
}
Stmt *ASTNodeImporter::VisitCaseStmt(CaseStmt *S) {
Expr *ToLHS = Importer.Import(S->getLHS());
if (!ToLHS)
return nullptr;
Expr *ToRHS = Importer.Import(S->getRHS());
if (!ToRHS && S->getRHS())
return nullptr;
SourceLocation ToCaseLoc = Importer.Import(S->getCaseLoc());
SourceLocation ToEllipsisLoc = Importer.Import(S->getEllipsisLoc());
SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
return new (Importer.getToContext()) CaseStmt(ToLHS, ToRHS,
ToCaseLoc, ToEllipsisLoc,
ToColonLoc);
}
Stmt *ASTNodeImporter::VisitDefaultStmt(DefaultStmt *S) {
SourceLocation ToDefaultLoc = Importer.Import(S->getDefaultLoc());
SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
if (!ToSubStmt && S->getSubStmt())
return nullptr;
return new (Importer.getToContext()) DefaultStmt(ToDefaultLoc, ToColonLoc,
ToSubStmt);
}
Stmt *ASTNodeImporter::VisitLabelStmt(LabelStmt *S) {
SourceLocation ToIdentLoc = Importer.Import(S->getIdentLoc());
LabelDecl *ToLabelDecl =
cast_or_null<LabelDecl>(Importer.Import(S->getDecl()));
if (!ToLabelDecl && S->getDecl())
return nullptr;
Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
if (!ToSubStmt && S->getSubStmt())
return nullptr;
return new (Importer.getToContext()) LabelStmt(ToIdentLoc, ToLabelDecl,
ToSubStmt);
}
Stmt *ASTNodeImporter::VisitAttributedStmt(AttributedStmt *S) {
SourceLocation ToAttrLoc = Importer.Import(S->getAttrLoc());
ArrayRef<const Attr*> FromAttrs(S->getAttrs());
SmallVector<const Attr *, 1> ToAttrs(FromAttrs.size());
ASTContext &_ToContext = Importer.getToContext();
std::transform(FromAttrs.begin(), FromAttrs.end(), ToAttrs.begin(),
[&_ToContext](const Attr *A) -> const Attr * {
return A->clone(_ToContext);
});
for (const Attr *ToA : ToAttrs) {
if (!ToA)
return nullptr;
}
Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
if (!ToSubStmt && S->getSubStmt())
return nullptr;
return AttributedStmt::Create(Importer.getToContext(), ToAttrLoc,
ToAttrs, ToSubStmt);
}
Stmt *ASTNodeImporter::VisitIfStmt(IfStmt *S) {
SourceLocation ToIfLoc = Importer.Import(S->getIfLoc());
Stmt *ToInit = Importer.Import(S->getInit());
if (!ToInit && S->getInit())
return nullptr;
VarDecl *ToConditionVariable = nullptr;
if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
ToConditionVariable =
dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
if (!ToConditionVariable)
return nullptr;
}
Expr *ToCondition = Importer.Import(S->getCond());
if (!ToCondition && S->getCond())
return nullptr;
Stmt *ToThenStmt = Importer.Import(S->getThen());
if (!ToThenStmt && S->getThen())
return nullptr;
SourceLocation ToElseLoc = Importer.Import(S->getElseLoc());
Stmt *ToElseStmt = Importer.Import(S->getElse());
if (!ToElseStmt && S->getElse())
return nullptr;
return new (Importer.getToContext()) IfStmt(Importer.getToContext(),
ToIfLoc, S->isConstexpr(),
ToInit,
ToConditionVariable,
ToCondition, ToThenStmt,
ToElseLoc, ToElseStmt);
}
Stmt *ASTNodeImporter::VisitSwitchStmt(SwitchStmt *S) {
Stmt *ToInit = Importer.Import(S->getInit());
if (!ToInit && S->getInit())
return nullptr;
VarDecl *ToConditionVariable = nullptr;
if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
ToConditionVariable =
dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
if (!ToConditionVariable)
return nullptr;
}
Expr *ToCondition = Importer.Import(S->getCond());
if (!ToCondition && S->getCond())
return nullptr;
SwitchStmt *ToStmt = new (Importer.getToContext()) SwitchStmt(
Importer.getToContext(), ToInit,
ToConditionVariable, ToCondition);
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
ToStmt->setBody(ToBody);
ToStmt->setSwitchLoc(Importer.Import(S->getSwitchLoc()));
// Now we have to re-chain the cases.
SwitchCase *LastChainedSwitchCase = nullptr;
for (SwitchCase *SC = S->getSwitchCaseList(); SC != nullptr;
SC = SC->getNextSwitchCase()) {
SwitchCase *ToSC = dyn_cast_or_null<SwitchCase>(Importer.Import(SC));
if (!ToSC)
return nullptr;
if (LastChainedSwitchCase)
LastChainedSwitchCase->setNextSwitchCase(ToSC);
else
ToStmt->setSwitchCaseList(ToSC);
LastChainedSwitchCase = ToSC;
}
return ToStmt;
}
Stmt *ASTNodeImporter::VisitWhileStmt(WhileStmt *S) {
VarDecl *ToConditionVariable = nullptr;
if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
ToConditionVariable =
dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
if (!ToConditionVariable)
return nullptr;
}
Expr *ToCondition = Importer.Import(S->getCond());
if (!ToCondition && S->getCond())
return nullptr;
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc());
return new (Importer.getToContext()) WhileStmt(Importer.getToContext(),
ToConditionVariable,
ToCondition, ToBody,
ToWhileLoc);
}
Stmt *ASTNodeImporter::VisitDoStmt(DoStmt *S) {
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
Expr *ToCondition = Importer.Import(S->getCond());
if (!ToCondition && S->getCond())
return nullptr;
SourceLocation ToDoLoc = Importer.Import(S->getDoLoc());
SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc());
SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
return new (Importer.getToContext()) DoStmt(ToBody, ToCondition,
ToDoLoc, ToWhileLoc,
ToRParenLoc);
}
Stmt *ASTNodeImporter::VisitForStmt(ForStmt *S) {
Stmt *ToInit = Importer.Import(S->getInit());
if (!ToInit && S->getInit())
return nullptr;
Expr *ToCondition = Importer.Import(S->getCond());
if (!ToCondition && S->getCond())
return nullptr;
VarDecl *ToConditionVariable = nullptr;
if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
ToConditionVariable =
dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
if (!ToConditionVariable)
return nullptr;
}
Expr *ToInc = Importer.Import(S->getInc());
if (!ToInc && S->getInc())
return nullptr;
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
SourceLocation ToForLoc = Importer.Import(S->getForLoc());
SourceLocation ToLParenLoc = Importer.Import(S->getLParenLoc());
SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
return new (Importer.getToContext()) ForStmt(Importer.getToContext(),
ToInit, ToCondition,
ToConditionVariable,
ToInc, ToBody,
ToForLoc, ToLParenLoc,
ToRParenLoc);
}
Stmt *ASTNodeImporter::VisitGotoStmt(GotoStmt *S) {
LabelDecl *ToLabel = nullptr;
if (LabelDecl *FromLabel = S->getLabel()) {
ToLabel = dyn_cast_or_null<LabelDecl>(Importer.Import(FromLabel));
if (!ToLabel)
return nullptr;
}
SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc());
SourceLocation ToLabelLoc = Importer.Import(S->getLabelLoc());
return new (Importer.getToContext()) GotoStmt(ToLabel,
ToGotoLoc, ToLabelLoc);
}
Stmt *ASTNodeImporter::VisitIndirectGotoStmt(IndirectGotoStmt *S) {
SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc());
SourceLocation ToStarLoc = Importer.Import(S->getStarLoc());
Expr *ToTarget = Importer.Import(S->getTarget());
if (!ToTarget && S->getTarget())
return nullptr;
return new (Importer.getToContext()) IndirectGotoStmt(ToGotoLoc, ToStarLoc,
ToTarget);
}
Stmt *ASTNodeImporter::VisitContinueStmt(ContinueStmt *S) {
SourceLocation ToContinueLoc = Importer.Import(S->getContinueLoc());
return new (Importer.getToContext()) ContinueStmt(ToContinueLoc);
}
Stmt *ASTNodeImporter::VisitBreakStmt(BreakStmt *S) {
SourceLocation ToBreakLoc = Importer.Import(S->getBreakLoc());
return new (Importer.getToContext()) BreakStmt(ToBreakLoc);
}
Stmt *ASTNodeImporter::VisitReturnStmt(ReturnStmt *S) {
SourceLocation ToRetLoc = Importer.Import(S->getReturnLoc());
Expr *ToRetExpr = Importer.Import(S->getRetValue());
if (!ToRetExpr && S->getRetValue())
return nullptr;
VarDecl *NRVOCandidate = const_cast<VarDecl*>(S->getNRVOCandidate());
VarDecl *ToNRVOCandidate = cast_or_null<VarDecl>(Importer.Import(NRVOCandidate));
if (!ToNRVOCandidate && NRVOCandidate)
return nullptr;
return new (Importer.getToContext()) ReturnStmt(ToRetLoc, ToRetExpr,
ToNRVOCandidate);
}
Stmt *ASTNodeImporter::VisitCXXCatchStmt(CXXCatchStmt *S) {
SourceLocation ToCatchLoc = Importer.Import(S->getCatchLoc());
VarDecl *ToExceptionDecl = nullptr;
if (VarDecl *FromExceptionDecl = S->getExceptionDecl()) {
ToExceptionDecl =
dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl));
if (!ToExceptionDecl)
return nullptr;
}
Stmt *ToHandlerBlock = Importer.Import(S->getHandlerBlock());
if (!ToHandlerBlock && S->getHandlerBlock())
return nullptr;
return new (Importer.getToContext()) CXXCatchStmt(ToCatchLoc,
ToExceptionDecl,
ToHandlerBlock);
}
Stmt *ASTNodeImporter::VisitCXXTryStmt(CXXTryStmt *S) {
SourceLocation ToTryLoc = Importer.Import(S->getTryLoc());
Stmt *ToTryBlock = Importer.Import(S->getTryBlock());
if (!ToTryBlock && S->getTryBlock())
return nullptr;
SmallVector<Stmt *, 1> ToHandlers(S->getNumHandlers());
for (unsigned HI = 0, HE = S->getNumHandlers(); HI != HE; ++HI) {
CXXCatchStmt *FromHandler = S->getHandler(HI);
if (Stmt *ToHandler = Importer.Import(FromHandler))
ToHandlers[HI] = ToHandler;
else
return nullptr;
}
return CXXTryStmt::Create(Importer.getToContext(), ToTryLoc, ToTryBlock,
ToHandlers);
}
Stmt *ASTNodeImporter::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
DeclStmt *ToRange =
dyn_cast_or_null<DeclStmt>(Importer.Import(S->getRangeStmt()));
if (!ToRange && S->getRangeStmt())
return nullptr;
DeclStmt *ToBegin =
dyn_cast_or_null<DeclStmt>(Importer.Import(S->getBeginStmt()));
if (!ToBegin && S->getBeginStmt())
return nullptr;
DeclStmt *ToEnd =
dyn_cast_or_null<DeclStmt>(Importer.Import(S->getEndStmt()));
if (!ToEnd && S->getEndStmt())
return nullptr;
Expr *ToCond = Importer.Import(S->getCond());
if (!ToCond && S->getCond())
return nullptr;
Expr *ToInc = Importer.Import(S->getInc());
if (!ToInc && S->getInc())
return nullptr;
DeclStmt *ToLoopVar =
dyn_cast_or_null<DeclStmt>(Importer.Import(S->getLoopVarStmt()));
if (!ToLoopVar && S->getLoopVarStmt())
return nullptr;
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
SourceLocation ToForLoc = Importer.Import(S->getForLoc());
SourceLocation ToCoawaitLoc = Importer.Import(S->getCoawaitLoc());
SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
return new (Importer.getToContext()) CXXForRangeStmt(ToRange, ToBegin, ToEnd,
ToCond, ToInc,
ToLoopVar, ToBody,
ToForLoc, ToCoawaitLoc,
ToColonLoc, ToRParenLoc);
}
Stmt *ASTNodeImporter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
Stmt *ToElem = Importer.Import(S->getElement());
if (!ToElem && S->getElement())
return nullptr;
Expr *ToCollect = Importer.Import(S->getCollection());
if (!ToCollect && S->getCollection())
return nullptr;
Stmt *ToBody = Importer.Import(S->getBody());
if (!ToBody && S->getBody())
return nullptr;
SourceLocation ToForLoc = Importer.Import(S->getForLoc());
SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
return new (Importer.getToContext()) ObjCForCollectionStmt(ToElem,
ToCollect,
ToBody, ToForLoc,
ToRParenLoc);
}
Stmt *ASTNodeImporter::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
SourceLocation ToAtCatchLoc = Importer.Import(S->getAtCatchLoc());
SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
VarDecl *ToExceptionDecl = nullptr;
if (VarDecl *FromExceptionDecl = S->getCatchParamDecl()) {
ToExceptionDecl =
dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl));
if (!ToExceptionDecl)
return nullptr;
}
Stmt *ToBody = Importer.Import(S->getCatchBody());
if (!ToBody && S->getCatchBody())
return nullptr;
return new (Importer.getToContext()) ObjCAtCatchStmt(ToAtCatchLoc,
ToRParenLoc,
ToExceptionDecl,
ToBody);
}
Stmt *ASTNodeImporter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
SourceLocation ToAtFinallyLoc = Importer.Import(S->getAtFinallyLoc());
Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyBody());
if (!ToAtFinallyStmt && S->getFinallyBody())
return nullptr;
return new (Importer.getToContext()) ObjCAtFinallyStmt(ToAtFinallyLoc,
ToAtFinallyStmt);
}
Stmt *ASTNodeImporter::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
SourceLocation ToAtTryLoc = Importer.Import(S->getAtTryLoc());
Stmt *ToAtTryStmt = Importer.Import(S->getTryBody());
if (!ToAtTryStmt && S->getTryBody())
return nullptr;
SmallVector<Stmt *, 1> ToCatchStmts(S->getNumCatchStmts());
for (unsigned CI = 0, CE = S->getNumCatchStmts(); CI != CE; ++CI) {
ObjCAtCatchStmt *FromCatchStmt = S->getCatchStmt(CI);
if (Stmt *ToCatchStmt = Importer.Import(FromCatchStmt))
ToCatchStmts[CI] = ToCatchStmt;
else
return nullptr;
}
Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyStmt());
if (!ToAtFinallyStmt && S->getFinallyStmt())
return nullptr;
return ObjCAtTryStmt::Create(Importer.getToContext(),
ToAtTryLoc, ToAtTryStmt,
ToCatchStmts.begin(), ToCatchStmts.size(),
ToAtFinallyStmt);
}
Stmt *ASTNodeImporter::VisitObjCAtSynchronizedStmt
(ObjCAtSynchronizedStmt *S) {
SourceLocation ToAtSynchronizedLoc =
Importer.Import(S->getAtSynchronizedLoc());
Expr *ToSynchExpr = Importer.Import(S->getSynchExpr());
if (!ToSynchExpr && S->getSynchExpr())
return nullptr;
Stmt *ToSynchBody = Importer.Import(S->getSynchBody());
if (!ToSynchBody && S->getSynchBody())
return nullptr;
return new (Importer.getToContext()) ObjCAtSynchronizedStmt(
ToAtSynchronizedLoc, ToSynchExpr, ToSynchBody);
}
Stmt *ASTNodeImporter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
SourceLocation ToAtThrowLoc = Importer.Import(S->getThrowLoc());
Expr *ToThrow = Importer.Import(S->getThrowExpr());
if (!ToThrow && S->getThrowExpr())
return nullptr;
return new (Importer.getToContext()) ObjCAtThrowStmt(ToAtThrowLoc, ToThrow);
}
Stmt *ASTNodeImporter::VisitObjCAutoreleasePoolStmt
(ObjCAutoreleasePoolStmt *S) {
SourceLocation ToAtLoc = Importer.Import(S->getAtLoc());
Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
if (!ToSubStmt && S->getSubStmt())
return nullptr;
return new (Importer.getToContext()) ObjCAutoreleasePoolStmt(ToAtLoc,
ToSubStmt);
}
//----------------------------------------------------------------------------
// Import Expressions
//----------------------------------------------------------------------------
Expr *ASTNodeImporter::VisitExpr(Expr *E) {
Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
<< E->getStmtClassName();
return nullptr;
}
Expr *ASTNodeImporter::VisitVAArgExpr(VAArgExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr && E->getSubExpr())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(E->getWrittenTypeInfo());
if (!TInfo)
return nullptr;
return new (Importer.getToContext()) VAArgExpr(
Importer.Import(E->getBuiltinLoc()), SubExpr, TInfo,
Importer.Import(E->getRParenLoc()), T, E->isMicrosoftABI());
}
Expr *ASTNodeImporter::VisitGNUNullExpr(GNUNullExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext()) GNUNullExpr(
T, Importer.Import(E->getLocStart()));
}
Expr *ASTNodeImporter::VisitPredefinedExpr(PredefinedExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
StringLiteral *SL = cast_or_null<StringLiteral>(
Importer.Import(E->getFunctionName()));
if (!SL && E->getFunctionName())
return nullptr;
return new (Importer.getToContext()) PredefinedExpr(
Importer.Import(E->getLocStart()), T, E->getIdentType(), SL);
}
Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) {
ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl()));
if (!ToD)
return nullptr;
NamedDecl *FoundD = nullptr;
if (E->getDecl() != E->getFoundDecl()) {
FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl()));
if (!FoundD)
return nullptr;
}
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
TemplateArgumentListInfo ToTAInfo;
TemplateArgumentListInfo *ResInfo = nullptr;
if (E->hasExplicitTemplateArgs()) {
for (const auto &FromLoc : E->template_arguments()) {
bool Error = false;
TemplateArgumentLoc ToTALoc = ImportTemplateArgumentLoc(FromLoc, Error);
if (Error)
return nullptr;
ToTAInfo.addArgument(ToTALoc);
}
ResInfo = &ToTAInfo;
}
DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(),
Importer.Import(E->getQualifierLoc()),
Importer.Import(E->getTemplateKeywordLoc()),
ToD,
E->refersToEnclosingVariableOrCapture(),
Importer.Import(E->getLocation()),
T, E->getValueKind(),
FoundD, ResInfo);
if (E->hadMultipleCandidates())
DRE->setHadMultipleCandidates(true);
return DRE;
}
Expr *ASTNodeImporter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext()) ImplicitValueInitExpr(T);
}
ASTNodeImporter::Designator
ASTNodeImporter::ImportDesignator(const Designator &D) {
if (D.isFieldDesignator()) {
IdentifierInfo *ToFieldName = Importer.Import(D.getFieldName());
// Caller checks for import error
return Designator(ToFieldName, Importer.Import(D.getDotLoc()),
Importer.Import(D.getFieldLoc()));
}
if (D.isArrayDesignator())
return Designator(D.getFirstExprIndex(),
Importer.Import(D.getLBracketLoc()),
Importer.Import(D.getRBracketLoc()));
assert(D.isArrayRangeDesignator());
return Designator(D.getFirstExprIndex(),
Importer.Import(D.getLBracketLoc()),
Importer.Import(D.getEllipsisLoc()),
Importer.Import(D.getRBracketLoc()));
}
Expr *ASTNodeImporter::VisitDesignatedInitExpr(DesignatedInitExpr *DIE) {
Expr *Init = cast_or_null<Expr>(Importer.Import(DIE->getInit()));
if (!Init)
return nullptr;
SmallVector<Expr *, 4> IndexExprs(DIE->getNumSubExprs() - 1);
// List elements from the second, the first is Init itself
for (unsigned I = 1, E = DIE->getNumSubExprs(); I < E; I++) {
if (Expr *Arg = cast_or_null<Expr>(Importer.Import(DIE->getSubExpr(I))))
IndexExprs[I - 1] = Arg;
else
return nullptr;
}
SmallVector<Designator, 4> Designators(DIE->size());
llvm::transform(DIE->designators(), Designators.begin(),
[this](const Designator &D) -> Designator {
return ImportDesignator(D);
});
for (const Designator &D : DIE->designators())
if (D.isFieldDesignator() && !D.getFieldName())
return nullptr;
return DesignatedInitExpr::Create(
Importer.getToContext(), Designators,
IndexExprs, Importer.Import(DIE->getEqualOrColonLoc()),
DIE->usesGNUSyntax(), Init);
}
Expr *ASTNodeImporter::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext())
CXXNullPtrLiteralExpr(T, Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return IntegerLiteral::Create(Importer.getToContext(),
E->getValue(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitFloatingLiteral(FloatingLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return FloatingLiteral::Create(Importer.getToContext(),
E->getValue(), E->isExact(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext()) CharacterLiteral(E->getValue(),
E->getKind(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitStringLiteral(StringLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
SmallVector<SourceLocation, 4> Locations(E->getNumConcatenated());
ImportArray(E->tokloc_begin(), E->tokloc_end(), Locations.begin());
return StringLiteral::Create(Importer.getToContext(), E->getBytes(),
E->getKind(), E->isPascal(), T,
Locations.data(), Locations.size());
}
Expr *ASTNodeImporter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(E->getTypeSourceInfo());
if (!TInfo)
return nullptr;
Expr *Init = Importer.Import(E->getInitializer());
if (!Init)
return nullptr;
return new (Importer.getToContext()) CompoundLiteralExpr(
Importer.Import(E->getLParenLoc()), TInfo, T, E->getValueKind(),
Init, E->isFileScope());
}
Expr *ASTNodeImporter::VisitAtomicExpr(AtomicExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
SmallVector<Expr *, 6> Exprs(E->getNumSubExprs());
if (ImportArrayChecked(
E->getSubExprs(), E->getSubExprs() + E->getNumSubExprs(),
Exprs.begin()))
return nullptr;
return new (Importer.getToContext()) AtomicExpr(
Importer.Import(E->getBuiltinLoc()), Exprs, T, E->getOp(),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitAddrLabelExpr(AddrLabelExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
LabelDecl *ToLabel = cast_or_null<LabelDecl>(Importer.Import(E->getLabel()));
if (!ToLabel)
return nullptr;
return new (Importer.getToContext()) AddrLabelExpr(
Importer.Import(E->getAmpAmpLoc()), Importer.Import(E->getLabelLoc()),
ToLabel, T);
}
Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return nullptr;
return new (Importer.getToContext())
ParenExpr(Importer.Import(E->getLParen()),
Importer.Import(E->getRParen()),
SubExpr);
}
Expr *ASTNodeImporter::VisitParenListExpr(ParenListExpr *E) {
SmallVector<Expr *, 4> Exprs(E->getNumExprs());
if (ImportContainerChecked(E->exprs(), Exprs))
return nullptr;
return new (Importer.getToContext()) ParenListExpr(
Importer.getToContext(), Importer.Import(E->getLParenLoc()),
Exprs, Importer.Import(E->getLParenLoc()));
}
Expr *ASTNodeImporter::VisitStmtExpr(StmtExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
CompoundStmt *ToSubStmt = cast_or_null<CompoundStmt>(
Importer.Import(E->getSubStmt()));
if (!ToSubStmt && E->getSubStmt())
return nullptr;
return new (Importer.getToContext()) StmtExpr(ToSubStmt, T,
Importer.Import(E->getLParenLoc()), Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return nullptr;
return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTraitExpr *E) {
QualType ResultType = Importer.Import(E->getType());
if (E->isArgumentType()) {
TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo());
if (!TInfo)
return nullptr;
return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
TInfo, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *SubExpr = Importer.Import(E->getArgumentExpr());
if (!SubExpr)
return nullptr;
return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
SubExpr, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return nullptr;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return nullptr;
return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
Importer.Import(E->getOperatorLoc()),
E->isFPContractable());
}
Expr *ASTNodeImporter::VisitConditionalOperator(ConditionalOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToLHS = Importer.Import(E->getLHS());
if (!ToLHS)
return nullptr;
Expr *ToRHS = Importer.Import(E->getRHS());
if (!ToRHS)
return nullptr;
Expr *ToCond = Importer.Import(E->getCond());
if (!ToCond)
return nullptr;
return new (Importer.getToContext()) ConditionalOperator(
ToCond, Importer.Import(E->getQuestionLoc()),
ToLHS, Importer.Import(E->getColonLoc()),
ToRHS, T, E->getValueKind(), E->getObjectKind());
}
Expr *ASTNodeImporter::VisitBinaryConditionalOperator(
BinaryConditionalOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *Common = Importer.Import(E->getCommon());
if (!Common)
return nullptr;
Expr *Cond = Importer.Import(E->getCond());
if (!Cond)
return nullptr;
OpaqueValueExpr *OpaqueValue = cast_or_null<OpaqueValueExpr>(
Importer.Import(E->getOpaqueValue()));
if (!OpaqueValue)
return nullptr;
Expr *TrueExpr = Importer.Import(E->getTrueExpr());
if (!TrueExpr)
return nullptr;
Expr *FalseExpr = Importer.Import(E->getFalseExpr());
if (!FalseExpr)
return nullptr;
return new (Importer.getToContext()) BinaryConditionalOperator(
Common, OpaqueValue, Cond, TrueExpr, FalseExpr,
Importer.Import(E->getQuestionLoc()), Importer.Import(E->getColonLoc()),
T, E->getValueKind(), E->getObjectKind());
}
Expr *ASTNodeImporter::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *ToQueried = Importer.Import(E->getQueriedTypeSourceInfo());
if (!ToQueried)
return nullptr;
Expr *Dim = Importer.Import(E->getDimensionExpression());
if (!Dim && E->getDimensionExpression())
return nullptr;
return new (Importer.getToContext()) ArrayTypeTraitExpr(
Importer.Import(E->getLocStart()), E->getTrait(), ToQueried,
E->getValue(), Dim, Importer.Import(E->getLocEnd()), T);
}
Expr *ASTNodeImporter::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToQueried = Importer.Import(E->getQueriedExpression());
if (!ToQueried)
return nullptr;
return new (Importer.getToContext()) ExpressionTraitExpr(
Importer.Import(E->getLocStart()), E->getTrait(), ToQueried,
E->getValue(), Importer.Import(E->getLocEnd()), T);
}
Expr *ASTNodeImporter::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SourceExpr = Importer.Import(E->getSourceExpr());
if (!SourceExpr && E->getSourceExpr())
return nullptr;
return new (Importer.getToContext()) OpaqueValueExpr(
Importer.Import(E->getLocation()), T, E->getValueKind(),
E->getObjectKind(), SourceExpr);
}
Expr *ASTNodeImporter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToLHS = Importer.Import(E->getLHS());
if (!ToLHS)
return nullptr;
Expr *ToRHS = Importer.Import(E->getRHS());
if (!ToRHS)
return nullptr;
return new (Importer.getToContext()) ArraySubscriptExpr(
ToLHS, ToRHS, T, E->getValueKind(), E->getObjectKind(),
Importer.Import(E->getRBracketLoc()));
}
Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
QualType CompLHSType = Importer.Import(E->getComputationLHSType());
if (CompLHSType.isNull())
return nullptr;
QualType CompResultType = Importer.Import(E->getComputationResultType());
if (CompResultType.isNull())
return nullptr;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return nullptr;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return nullptr;
return new (Importer.getToContext())
CompoundAssignOperator(LHS, RHS, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
CompLHSType, CompResultType,
Importer.Import(E->getOperatorLoc()),
E->isFPContractable());
}
bool ASTNodeImporter::ImportCastPath(CastExpr *CE, CXXCastPath &Path) {
for (auto I = CE->path_begin(), E = CE->path_end(); I != E; ++I) {
if (CXXBaseSpecifier *Spec = Importer.Import(*I))
Path.push_back(Spec);
else
return true;
}
return false;
}
Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return nullptr;
CXXCastPath BasePath;
if (ImportCastPath(E, BasePath))
return nullptr;
return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(),
SubExpr, &BasePath, E->getValueKind());
}
Expr *ASTNodeImporter::VisitExplicitCastExpr(ExplicitCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten());
if (!TInfo && E->getTypeInfoAsWritten())
return nullptr;
CXXCastPath BasePath;
if (ImportCastPath(E, BasePath))
return nullptr;
switch (E->getStmtClass()) {
case Stmt::CStyleCastExprClass: {
CStyleCastExpr *CCE = cast<CStyleCastExpr>(E);
return CStyleCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), E->getCastKind(),
SubExpr, &BasePath, TInfo,
Importer.Import(CCE->getLParenLoc()),
Importer.Import(CCE->getRParenLoc()));
}
case Stmt::CXXFunctionalCastExprClass: {
CXXFunctionalCastExpr *FCE = cast<CXXFunctionalCastExpr>(E);
return CXXFunctionalCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), TInfo,
E->getCastKind(), SubExpr, &BasePath,
Importer.Import(FCE->getLParenLoc()),
Importer.Import(FCE->getRParenLoc()));
}
case Stmt::ObjCBridgedCastExprClass: {
ObjCBridgedCastExpr *OCE = cast<ObjCBridgedCastExpr>(E);
return new (Importer.getToContext()) ObjCBridgedCastExpr(
Importer.Import(OCE->getLParenLoc()), OCE->getBridgeKind(),
E->getCastKind(), Importer.Import(OCE->getBridgeKeywordLoc()),
TInfo, SubExpr);
}
default:
break; // just fall through
}
CXXNamedCastExpr *Named = cast<CXXNamedCastExpr>(E);
SourceLocation ExprLoc = Importer.Import(Named->getOperatorLoc()),
RParenLoc = Importer.Import(Named->getRParenLoc());
SourceRange Brackets = Importer.Import(Named->getAngleBrackets());
switch (E->getStmtClass()) {
case Stmt::CXXStaticCastExprClass:
return CXXStaticCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), E->getCastKind(),
SubExpr, &BasePath, TInfo,
ExprLoc, RParenLoc, Brackets);
case Stmt::CXXDynamicCastExprClass:
return CXXDynamicCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), E->getCastKind(),
SubExpr, &BasePath, TInfo,
ExprLoc, RParenLoc, Brackets);
case Stmt::CXXReinterpretCastExprClass:
return CXXReinterpretCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), E->getCastKind(),
SubExpr, &BasePath, TInfo,
ExprLoc, RParenLoc, Brackets);
case Stmt::CXXConstCastExprClass:
return CXXConstCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), SubExpr, TInfo, ExprLoc,
RParenLoc, Brackets);
default:
llvm_unreachable("Cast expression of unsupported type!");
return nullptr;
}
}
Expr *ASTNodeImporter::VisitOffsetOfExpr(OffsetOfExpr *OE) {
QualType T = Importer.Import(OE->getType());
if (T.isNull())
return nullptr;
SmallVector<OffsetOfNode, 4> Nodes;
for (int I = 0, E = OE->getNumComponents(); I < E; ++I) {
const OffsetOfNode &Node = OE->getComponent(I);
switch (Node.getKind()) {
case OffsetOfNode::Array:
Nodes.push_back(OffsetOfNode(Importer.Import(Node.getLocStart()),
Node.getArrayExprIndex(),
Importer.Import(Node.getLocEnd())));
break;
case OffsetOfNode::Base: {
CXXBaseSpecifier *BS = Importer.Import(Node.getBase());
if (!BS && Node.getBase())
return nullptr;
Nodes.push_back(OffsetOfNode(BS));
break;
}
case OffsetOfNode::Field: {
FieldDecl *FD = cast_or_null<FieldDecl>(Importer.Import(Node.getField()));
if (!FD)
return nullptr;
Nodes.push_back(OffsetOfNode(Importer.Import(Node.getLocStart()), FD,
Importer.Import(Node.getLocEnd())));
break;
}
case OffsetOfNode::Identifier: {
IdentifierInfo *ToII = Importer.Import(Node.getFieldName());
if (!ToII)
return nullptr;
Nodes.push_back(OffsetOfNode(Importer.Import(Node.getLocStart()), ToII,
Importer.Import(Node.getLocEnd())));
break;
}
}
}
SmallVector<Expr *, 4> Exprs(OE->getNumExpressions());
for (int I = 0, E = OE->getNumExpressions(); I < E; ++I) {
Expr *ToIndexExpr = Importer.Import(OE->getIndexExpr(I));
if (!ToIndexExpr)
return nullptr;
Exprs[I] = ToIndexExpr;
}
TypeSourceInfo *TInfo = Importer.Import(OE->getTypeSourceInfo());
if (!TInfo && OE->getTypeSourceInfo())
return nullptr;
return OffsetOfExpr::Create(Importer.getToContext(), T,
Importer.Import(OE->getOperatorLoc()),
TInfo, Nodes, Exprs,
Importer.Import(OE->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitCXXNoexceptExpr(CXXNoexceptExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *Operand = Importer.Import(E->getOperand());
if (!Operand)
return nullptr;
CanThrowResult CanThrow;
if (E->isValueDependent())
CanThrow = CT_Dependent;
else
CanThrow = E->getValue() ? CT_Can : CT_Cannot;
return new (Importer.getToContext()) CXXNoexceptExpr(
T, Operand, CanThrow,
Importer.Import(E->getLocStart()), Importer.Import(E->getLocEnd()));
}
Expr *ASTNodeImporter::VisitCXXThrowExpr(CXXThrowExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr && E->getSubExpr())
return nullptr;
return new (Importer.getToContext()) CXXThrowExpr(
SubExpr, T, Importer.Import(E->getThrowLoc()),
E->isThrownVariableInScope());
}
Expr *ASTNodeImporter::VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
ParmVarDecl *Param = cast_or_null<ParmVarDecl>(
Importer.Import(E->getParam()));
if (!Param)
return nullptr;
return CXXDefaultArgExpr::Create(
Importer.getToContext(), Importer.Import(E->getUsedLocation()), Param);
}
Expr *ASTNodeImporter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
TypeSourceInfo *TypeInfo = Importer.Import(E->getTypeSourceInfo());
if (!TypeInfo)
return nullptr;
return new (Importer.getToContext()) CXXScalarValueInitExpr(
T, TypeInfo, Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return nullptr;
auto *Dtor = cast_or_null<CXXDestructorDecl>(
Importer.Import(const_cast<CXXDestructorDecl *>(
E->getTemporary()->getDestructor())));
if (!Dtor)
return nullptr;
ASTContext &ToCtx = Importer.getToContext();
CXXTemporary *Temp = CXXTemporary::Create(ToCtx, Dtor);
return CXXBindTemporaryExpr::Create(ToCtx, Temp, SubExpr);
}
Expr *ASTNodeImporter::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *CE) {
QualType T = Importer.Import(CE->getType());
if (T.isNull())
return nullptr;
SmallVector<Expr *, 8> Args(CE->getNumArgs());
if (ImportContainerChecked(CE->arguments(), Args))
return nullptr;
auto *Ctor = cast_or_null<CXXConstructorDecl>(
Importer.Import(CE->getConstructor()));
if (!Ctor)
return nullptr;
return CXXTemporaryObjectExpr::Create(
Importer.getToContext(), T,
Importer.Import(CE->getLocStart()),
Ctor,
CE->isElidable(),
Args,
CE->hadMultipleCandidates(),
CE->isListInitialization(),
CE->isStdInitListInitialization(),
CE->requiresZeroInitialization(),
CE->getConstructionKind(),
Importer.Import(CE->getParenOrBraceRange()));
}
Expr *
ASTNodeImporter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *TempE = Importer.Import(E->GetTemporaryExpr());
if (!TempE)
return nullptr;
ValueDecl *ExtendedBy = cast_or_null<ValueDecl>(
Importer.Import(const_cast<ValueDecl *>(E->getExtendingDecl())));
if (!ExtendedBy && E->getExtendingDecl())
return nullptr;
auto *ToMTE = new (Importer.getToContext()) MaterializeTemporaryExpr(
T, TempE, E->isBoundToLvalueReference());
// FIXME: Should ManglingNumber get numbers associated with 'to' context?
ToMTE->setExtendingDecl(ExtendedBy, E->getManglingNumber());
return ToMTE;
}
Expr *ASTNodeImporter::VisitCXXNewExpr(CXXNewExpr *CE) {
QualType T = Importer.Import(CE->getType());
if (T.isNull())
return nullptr;
SmallVector<Expr *, 4> PlacementArgs(CE->getNumPlacementArgs());
if (ImportContainerChecked(CE->placement_arguments(), PlacementArgs))
return nullptr;
FunctionDecl *OperatorNewDecl = cast_or_null<FunctionDecl>(
Importer.Import(CE->getOperatorNew()));
if (!OperatorNewDecl && CE->getOperatorNew())
return nullptr;
FunctionDecl *OperatorDeleteDecl = cast_or_null<FunctionDecl>(
Importer.Import(CE->getOperatorDelete()));
if (!OperatorDeleteDecl && CE->getOperatorDelete())
return nullptr;
Expr *ToInit = Importer.Import(CE->getInitializer());
if (!ToInit && CE->getInitializer())
return nullptr;
TypeSourceInfo *TInfo = Importer.Import(CE->getAllocatedTypeSourceInfo());
if (!TInfo)
return nullptr;
Expr *ToArrSize = Importer.Import(CE->getArraySize());
if (!ToArrSize && CE->getArraySize())
return nullptr;
return new (Importer.getToContext()) CXXNewExpr(
Importer.getToContext(),
CE->isGlobalNew(),
OperatorNewDecl, OperatorDeleteDecl,
CE->passAlignment(),
CE->doesUsualArrayDeleteWantSize(),
PlacementArgs,
Importer.Import(CE->getTypeIdParens()),
ToArrSize, CE->getInitializationStyle(), ToInit, T, TInfo,
Importer.Import(CE->getSourceRange()),
Importer.Import(CE->getDirectInitRange()));
}
Expr *ASTNodeImporter::VisitCXXDeleteExpr(CXXDeleteExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
FunctionDecl *OperatorDeleteDecl = cast_or_null<FunctionDecl>(
Importer.Import(E->getOperatorDelete()));
if (!OperatorDeleteDecl && E->getOperatorDelete())
return nullptr;
Expr *ToArg = Importer.Import(E->getArgument());
if (!ToArg && E->getArgument())
return nullptr;
return new (Importer.getToContext()) CXXDeleteExpr(
T, E->isGlobalDelete(),
E->isArrayForm(),
E->isArrayFormAsWritten(),
E->doesUsualArrayDeleteWantSize(),
OperatorDeleteDecl,
ToArg,
Importer.Import(E->getLocStart()));
}
Expr *ASTNodeImporter::VisitCXXConstructExpr(CXXConstructExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
CXXConstructorDecl *ToCCD =
dyn_cast_or_null<CXXConstructorDecl>(Importer.Import(E->getConstructor()));
if (!ToCCD)
return nullptr;
SmallVector<Expr *, 6> ToArgs(E->getNumArgs());
if (ImportContainerChecked(E->arguments(), ToArgs))
return nullptr;
return CXXConstructExpr::Create(Importer.getToContext(), T,
Importer.Import(E->getLocation()),
ToCCD, E->isElidable(),
ToArgs, E->hadMultipleCandidates(),
E->isListInitialization(),
E->isStdInitListInitialization(),
E->requiresZeroInitialization(),
E->getConstructionKind(),
Importer.Import(E->getParenOrBraceRange()));
}
Expr *ASTNodeImporter::VisitExprWithCleanups(ExprWithCleanups *EWC) {
Expr *SubExpr = Importer.Import(EWC->getSubExpr());
if (!SubExpr && EWC->getSubExpr())
return nullptr;
SmallVector<ExprWithCleanups::CleanupObject, 8> Objs(EWC->getNumObjects());
for (unsigned I = 0, E = EWC->getNumObjects(); I < E; I++)
if (ExprWithCleanups::CleanupObject Obj =
cast_or_null<BlockDecl>(Importer.Import(EWC->getObject(I))))
Objs[I] = Obj;
else
return nullptr;
return ExprWithCleanups::Create(Importer.getToContext(),
SubExpr, EWC->cleanupsHaveSideEffects(),
Objs);
}
Expr *ASTNodeImporter::VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToFn = Importer.Import(E->getCallee());
if (!ToFn)
return nullptr;
SmallVector<Expr *, 4> ToArgs(E->getNumArgs());
if (ImportContainerChecked(E->arguments(), ToArgs))
return nullptr;
return new (Importer.getToContext()) CXXMemberCallExpr(
Importer.getToContext(), ToFn, ToArgs, T, E->getValueKind(),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitCXXThisExpr(CXXThisExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext())
CXXThisExpr(Importer.Import(E->getLocation()), T, E->isImplicit());
}
Expr *ASTNodeImporter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
return new (Importer.getToContext())
CXXBoolLiteralExpr(E->getValue(), T, Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitMemberExpr(MemberExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToBase = Importer.Import(E->getBase());
if (!ToBase && E->getBase())
return nullptr;
ValueDecl *ToMember = dyn_cast<ValueDecl>(Importer.Import(E->getMemberDecl()));
if (!ToMember && E->getMemberDecl())
return nullptr;
DeclAccessPair ToFoundDecl = DeclAccessPair::make(
dyn_cast<NamedDecl>(Importer.Import(E->getFoundDecl().getDecl())),
E->getFoundDecl().getAccess());
DeclarationNameInfo ToMemberNameInfo(
Importer.Import(E->getMemberNameInfo().getName()),
Importer.Import(E->getMemberNameInfo().getLoc()));
if (E->hasExplicitTemplateArgs()) {
return nullptr; // FIXME: handle template arguments
}
return MemberExpr::Create(Importer.getToContext(), ToBase,
E->isArrow(),
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getQualifierLoc()),
Importer.Import(E->getTemplateKeywordLoc()),
ToMember, ToFoundDecl, ToMemberNameInfo,
nullptr, T, E->getValueKind(),
E->getObjectKind());
}
Expr *ASTNodeImporter::VisitCallExpr(CallExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return nullptr;
Expr *ToCallee = Importer.Import(E->getCallee());
if (!ToCallee && E->getCallee())
return nullptr;
unsigned NumArgs = E->getNumArgs();
llvm::SmallVector<Expr *, 2> ToArgs(NumArgs);
for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai) {
Expr *FromArg = E->getArg(ai);
Expr *ToArg = Importer.Import(FromArg);
if (!ToArg)
return nullptr;
ToArgs[ai] = ToArg;
}
Expr **ToArgs_Copied = new (Importer.getToContext())
Expr*[NumArgs];
for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai)
ToArgs_Copied[ai] = ToArgs[ai];
return new (Importer.getToContext())
CallExpr(Importer.getToContext(), ToCallee,
llvm::makeArrayRef(ToArgs_Copied, NumArgs), T, E->getValueKind(),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitInitListExpr(InitListExpr *ILE) {
QualType T = Importer.Import(ILE->getType());
if (T.isNull())
return nullptr;
llvm::SmallVector<Expr *, 4> Exprs(ILE->getNumInits());
if (ImportContainerChecked(ILE->inits(), Exprs))
return nullptr;
ASTContext &ToCtx = Importer.getToContext();
InitListExpr *To = new (ToCtx) InitListExpr(
ToCtx, Importer.Import(ILE->getLBraceLoc()),
Exprs, Importer.Import(ILE->getLBraceLoc()));
To->setType(T);
if (ILE->hasArrayFiller()) {
Expr *Filler = Importer.Import(ILE->getArrayFiller());
if (!Filler)
return nullptr;
To->setArrayFiller(Filler);
}
if (FieldDecl *FromFD = ILE->getInitializedFieldInUnion()) {
FieldDecl *ToFD = cast_or_null<FieldDecl>(Importer.Import(FromFD));
if (!ToFD)
return nullptr;
To->setInitializedFieldInUnion(ToFD);
}
if (InitListExpr *SyntForm = ILE->getSyntacticForm()) {
InitListExpr *ToSyntForm = cast_or_null<InitListExpr>(
Importer.Import(SyntForm));
if (!ToSyntForm)
return nullptr;
To->setSyntacticForm(ToSyntForm);
}
To->sawArrayRangeDesignator(ILE->hadArrayRangeDesignator());
To->setValueDependent(ILE->isValueDependent());
To->setInstantiationDependent(ILE->isInstantiationDependent());
return To;
}
Expr *ASTNodeImporter::VisitArrayInitLoopExpr(ArrayInitLoopExpr *E) {
QualType ToType = Importer.Import(E->getType());
if (ToType.isNull())
return nullptr;
Expr *ToCommon = Importer.Import(E->getCommonExpr());
if (!ToCommon && E->getCommonExpr())
return nullptr;
Expr *ToSubExpr = Importer.Import(E->getSubExpr());
if (!ToSubExpr && E->getSubExpr())
return nullptr;
return new (Importer.getToContext())
ArrayInitLoopExpr(ToType, ToCommon, ToSubExpr);
}
Expr *ASTNodeImporter::VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
QualType ToType = Importer.Import(E->getType());
if (ToType.isNull())
return nullptr;
return new (Importer.getToContext()) ArrayInitIndexExpr(ToType);
}
Expr *ASTNodeImporter::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
FieldDecl *ToField = llvm::dyn_cast_or_null<FieldDecl>(
Importer.Import(DIE->getField()));
if (!ToField && DIE->getField())
return nullptr;
return CXXDefaultInitExpr::Create(
Importer.getToContext(), Importer.Import(DIE->getLocStart()), ToField);
}
Expr *ASTNodeImporter::VisitCXXNamedCastExpr(CXXNamedCastExpr *E) {
QualType ToType = Importer.Import(E->getType());
if (ToType.isNull() && !E->getType().isNull())
return nullptr;
ExprValueKind VK = E->getValueKind();
CastKind CK = E->getCastKind();
Expr *ToOp = Importer.Import(E->getSubExpr());
if (!ToOp && E->getSubExpr())
return nullptr;
CXXCastPath BasePath;
if (ImportCastPath(E, BasePath))
return nullptr;
TypeSourceInfo *ToWritten = Importer.Import(E->getTypeInfoAsWritten());
SourceLocation ToOperatorLoc = Importer.Import(E->getOperatorLoc());
SourceLocation ToRParenLoc = Importer.Import(E->getRParenLoc());
SourceRange ToAngleBrackets = Importer.Import(E->getAngleBrackets());
if (isa<CXXStaticCastExpr>(E)) {
return CXXStaticCastExpr::Create(
Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath,
ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets);
} else if (isa<CXXDynamicCastExpr>(E)) {
return CXXDynamicCastExpr::Create(
Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath,
ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets);
} else if (isa<CXXReinterpretCastExpr>(E)) {
return CXXReinterpretCastExpr::Create(
Importer.getToContext(), ToType, VK, CK, ToOp, &BasePath,
ToWritten, ToOperatorLoc, ToRParenLoc, ToAngleBrackets);
} else {
return nullptr;
}
}
ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager,
ASTContext &FromContext, FileManager &FromFileManager,
bool MinimalImport)
: ToContext(ToContext), FromContext(FromContext),
ToFileManager(ToFileManager), FromFileManager(FromFileManager),
Minimal(MinimalImport), LastDiagFromFrom(false)
{
ImportedDecls[FromContext.getTranslationUnitDecl()]
= ToContext.getTranslationUnitDecl();
}
ASTImporter::~ASTImporter() { }
QualType ASTImporter::Import(QualType FromT) {
if (FromT.isNull())
return QualType();
const Type *fromTy = FromT.getTypePtr();
// Check whether we've already imported this type.
llvm::DenseMap<const Type *, const Type *>::iterator Pos
= ImportedTypes.find(fromTy);
if (Pos != ImportedTypes.end())
return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers());
// Import the type
ASTNodeImporter Importer(*this);
QualType ToT = Importer.Visit(fromTy);
if (ToT.isNull())
return ToT;
// Record the imported type.
ImportedTypes[fromTy] = ToT.getTypePtr();
return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers());
}
TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
if (!FromTSI)
return FromTSI;
// FIXME: For now we just create a "trivial" type source info based
// on the type and a single location. Implement a real version of this.
QualType T = Import(FromTSI->getType());
if (T.isNull())
return nullptr;
return ToContext.getTrivialTypeSourceInfo(T,
Import(FromTSI->getTypeLoc().getLocStart()));
}
Decl *ASTImporter::GetAlreadyImportedOrNull(Decl *FromD) {
llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
if (Pos != ImportedDecls.end()) {
Decl *ToD = Pos->second;
ASTNodeImporter(*this).ImportDefinitionIfNeeded(FromD, ToD);
return ToD;
} else {
return nullptr;
}
}
Decl *ASTImporter::Import(Decl *FromD) {
if (!FromD)
return nullptr;
ASTNodeImporter Importer(*this);
// Check whether we've already imported this declaration.
llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
if (Pos != ImportedDecls.end()) {
Decl *ToD = Pos->second;
Importer.ImportDefinitionIfNeeded(FromD, ToD);
return ToD;
}
// Import the type
Decl *ToD = Importer.Visit(FromD);
if (!ToD)
return nullptr;
// Record the imported declaration.
ImportedDecls[FromD] = ToD;
if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
// Keep track of anonymous tags that have an associated typedef.
if (FromTag->getTypedefNameForAnonDecl())
AnonTagsWithPendingTypedefs.push_back(FromTag);
} else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) {
// When we've finished transforming a typedef, see whether it was the
// typedef for an anonymous tag.
for (SmallVectorImpl<TagDecl *>::iterator
FromTag = AnonTagsWithPendingTypedefs.begin(),
FromTagEnd = AnonTagsWithPendingTypedefs.end();
FromTag != FromTagEnd; ++FromTag) {
if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) {
if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
// We found the typedef for an anonymous tag; link them.
ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD));
AnonTagsWithPendingTypedefs.erase(FromTag);
break;
}
}
}
}
return ToD;
}
DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
if (!FromDC)
return FromDC;
DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
if (!ToDC)
return nullptr;
// When we're using a record/enum/Objective-C class/protocol as a context, we
// need it to have a definition.
if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) {
RecordDecl *FromRecord = cast<RecordDecl>(FromDC);
if (ToRecord->isCompleteDefinition()) {
// Do nothing.
} else if (FromRecord->isCompleteDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToRecord);
}
} else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) {
EnumDecl *FromEnum = cast<EnumDecl>(FromDC);
if (ToEnum->isCompleteDefinition()) {
// Do nothing.
} else if (FromEnum->isCompleteDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToEnum);
}
} else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) {
ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC);
if (ToClass->getDefinition()) {
// Do nothing.
} else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToClass);
}
} else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) {
ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC);
if (ToProto->getDefinition()) {
// Do nothing.
} else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToProto);
}
}
return ToDC;
}
Expr *ASTImporter::Import(Expr *FromE) {
if (!FromE)
return nullptr;
return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
}
Stmt *ASTImporter::Import(Stmt *FromS) {
if (!FromS)
return nullptr;
// Check whether we've already imported this declaration.
llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
if (Pos != ImportedStmts.end())
return Pos->second;
// Import the type
ASTNodeImporter Importer(*this);
Stmt *ToS = Importer.Visit(FromS);
if (!ToS)
return nullptr;
// Record the imported declaration.
ImportedStmts[FromS] = ToS;
return ToS;
}
NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
if (!FromNNS)
return nullptr;
NestedNameSpecifier *prefix = Import(FromNNS->getPrefix());
switch (FromNNS->getKind()) {
case NestedNameSpecifier::Identifier:
if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) {
return NestedNameSpecifier::Create(ToContext, prefix, II);
}
return nullptr;
case NestedNameSpecifier::Namespace:
if (NamespaceDecl *NS =
cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) {
return NestedNameSpecifier::Create(ToContext, prefix, NS);
}
return nullptr;
case NestedNameSpecifier::NamespaceAlias:
if (NamespaceAliasDecl *NSAD =
cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) {
return NestedNameSpecifier::Create(ToContext, prefix, NSAD);
}
return nullptr;
case NestedNameSpecifier::Global:
return NestedNameSpecifier::GlobalSpecifier(ToContext);
case NestedNameSpecifier::Super:
if (CXXRecordDecl *RD =
cast<CXXRecordDecl>(Import(FromNNS->getAsRecordDecl()))) {
return NestedNameSpecifier::SuperSpecifier(ToContext, RD);
}
return nullptr;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
QualType T = Import(QualType(FromNNS->getAsType(), 0u));
if (!T.isNull()) {
bool bTemplate = FromNNS->getKind() ==
NestedNameSpecifier::TypeSpecWithTemplate;
return NestedNameSpecifier::Create(ToContext, prefix,
bTemplate, T.getTypePtr());
}
}
return nullptr;
}
llvm_unreachable("Invalid nested name specifier kind");
}
NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) {
// FIXME: Implement!
return NestedNameSpecifierLoc();
}
TemplateName ASTImporter::Import(TemplateName From) {
switch (From.getKind()) {
case TemplateName::Template:
if (TemplateDecl *ToTemplate
= cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
return TemplateName(ToTemplate);
return TemplateName();
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate();
UnresolvedSet<2> ToTemplates;
for (OverloadedTemplateStorage::iterator I = FromStorage->begin(),
E = FromStorage->end();
I != E; ++I) {
if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I)))
ToTemplates.addDecl(To);
else
return TemplateName();
}
return ToContext.getOverloadedTemplateName(ToTemplates.begin(),
ToTemplates.end());
}
case TemplateName::QualifiedTemplate: {
QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName();
NestedNameSpecifier *Qualifier = Import(QTN->getQualifier());
if (!Qualifier)
return TemplateName();
if (TemplateDecl *ToTemplate
= cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
return ToContext.getQualifiedTemplateName(Qualifier,
QTN->hasTemplateKeyword(),
ToTemplate);
return TemplateName();
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DTN = From.getAsDependentTemplateName();
NestedNameSpecifier *Qualifier = Import(DTN->getQualifier());
if (!Qualifier)
return TemplateName();
if (DTN->isIdentifier()) {
return ToContext.getDependentTemplateName(Qualifier,
Import(DTN->getIdentifier()));
}
return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator());
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= From.getAsSubstTemplateTemplateParm();
TemplateTemplateParmDecl *param
= cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter()));
if (!param)
return TemplateName();
TemplateName replacement = Import(subst->getReplacement());
if (replacement.isNull()) return TemplateName();
return ToContext.getSubstTemplateTemplateParm(param, replacement);
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage *SubstPack
= From.getAsSubstTemplateTemplateParmPack();
TemplateTemplateParmDecl *Param
= cast_or_null<TemplateTemplateParmDecl>(
Import(SubstPack->getParameterPack()));
if (!Param)
return TemplateName();
ASTNodeImporter Importer(*this);
TemplateArgument ArgPack
= Importer.ImportTemplateArgument(SubstPack->getArgumentPack());
if (ArgPack.isNull())
return TemplateName();
return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack);
}
}
llvm_unreachable("Invalid template name kind");
}
SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
if (FromLoc.isInvalid())
return SourceLocation();
SourceManager &FromSM = FromContext.getSourceManager();
// For now, map everything down to its file location, so that we
// don't have to import macro expansions.
// FIXME: Import macro expansions!
FromLoc = FromSM.getFileLoc(FromLoc);
std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
SourceManager &ToSM = ToContext.getSourceManager();
FileID ToFileID = Import(Decomposed.first);
if (ToFileID.isInvalid())
return SourceLocation();
SourceLocation ret = ToSM.getLocForStartOfFile(ToFileID)
.getLocWithOffset(Decomposed.second);
return ret;
}
SourceRange ASTImporter::Import(SourceRange FromRange) {
return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
}
FileID ASTImporter::Import(FileID FromID) {
llvm::DenseMap<FileID, FileID>::iterator Pos
= ImportedFileIDs.find(FromID);
if (Pos != ImportedFileIDs.end())
return Pos->second;
SourceManager &FromSM = FromContext.getSourceManager();
SourceManager &ToSM = ToContext.getSourceManager();
const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
assert(FromSLoc.isFile() && "Cannot handle macro expansions yet");
// Include location of this file.
SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
// Map the FileID for to the "to" source manager.
FileID ToID;
const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
if (Cache->OrigEntry && Cache->OrigEntry->getDir()) {
// FIXME: We probably want to use getVirtualFile(), so we don't hit the
// disk again
// FIXME: We definitely want to re-use the existing MemoryBuffer, rather
// than mmap the files several times.
const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName());
if (!Entry)
return FileID();
ToID = ToSM.createFileID(Entry, ToIncludeLoc,
FromSLoc.getFile().getFileCharacteristic());
} else {
// FIXME: We want to re-use the existing MemoryBuffer!
const llvm::MemoryBuffer *
FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM);
std::unique_ptr<llvm::MemoryBuffer> ToBuf
= llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(),
FromBuf->getBufferIdentifier());
ToID = ToSM.createFileID(std::move(ToBuf),
FromSLoc.getFile().getFileCharacteristic());
}
ImportedFileIDs[FromID] = ToID;
return ToID;
}
CXXCtorInitializer *ASTImporter::Import(CXXCtorInitializer *From) {
Expr *ToExpr = Import(From->getInit());
if (!ToExpr && From->getInit())
return nullptr;
if (From->isBaseInitializer()) {
TypeSourceInfo *ToTInfo = Import(From->getTypeSourceInfo());
if (!ToTInfo && From->getTypeSourceInfo())
return nullptr;
return new (ToContext) CXXCtorInitializer(
ToContext, ToTInfo, From->isBaseVirtual(), Import(From->getLParenLoc()),
ToExpr, Import(From->getRParenLoc()),
From->isPackExpansion() ? Import(From->getEllipsisLoc())
: SourceLocation());
} else if (From->isMemberInitializer()) {
FieldDecl *ToField =
llvm::cast_or_null<FieldDecl>(Import(From->getMember()));
if (!ToField && From->getMember())
return nullptr;
return new (ToContext) CXXCtorInitializer(
ToContext, ToField, Import(From->getMemberLocation()),
Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc()));
} else if (From->isIndirectMemberInitializer()) {
IndirectFieldDecl *ToIField = llvm::cast_or_null<IndirectFieldDecl>(
Import(From->getIndirectMember()));
if (!ToIField && From->getIndirectMember())
return nullptr;
return new (ToContext) CXXCtorInitializer(
ToContext, ToIField, Import(From->getMemberLocation()),
Import(From->getLParenLoc()), ToExpr, Import(From->getRParenLoc()));
} else if (From->isDelegatingInitializer()) {
TypeSourceInfo *ToTInfo = Import(From->getTypeSourceInfo());
if (!ToTInfo && From->getTypeSourceInfo())
return nullptr;
return new (ToContext)
CXXCtorInitializer(ToContext, ToTInfo, Import(From->getLParenLoc()),
ToExpr, Import(From->getRParenLoc()));
} else {
return nullptr;
}
}
CXXBaseSpecifier *ASTImporter::Import(const CXXBaseSpecifier *BaseSpec) {
auto Pos = ImportedCXXBaseSpecifiers.find(BaseSpec);
if (Pos != ImportedCXXBaseSpecifiers.end())
return Pos->second;
CXXBaseSpecifier *Imported = new (ToContext) CXXBaseSpecifier(
Import(BaseSpec->getSourceRange()),
BaseSpec->isVirtual(), BaseSpec->isBaseOfClass(),
BaseSpec->getAccessSpecifierAsWritten(),
Import(BaseSpec->getTypeSourceInfo()),
Import(BaseSpec->getEllipsisLoc()));
ImportedCXXBaseSpecifiers[BaseSpec] = Imported;
return Imported;
}
void ASTImporter::ImportDefinition(Decl *From) {
Decl *To = Import(From);
if (!To)
return;
if (DeclContext *FromDC = cast<DeclContext>(From)) {
ASTNodeImporter Importer(*this);
if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) {
if (!ToRecord->getDefinition()) {
Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) {
if (!ToEnum->getDefinition()) {
Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) {
if (!ToIFace->getDefinition()) {
Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) {
if (!ToProto->getDefinition()) {
Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto,
ASTNodeImporter::IDK_Everything);
return;
}
}
Importer.ImportDeclContext(FromDC, true);
}
}
DeclarationName ASTImporter::Import(DeclarationName FromName) {
if (!FromName)
return DeclarationName();
switch (FromName.getNameKind()) {
case DeclarationName::Identifier:
return Import(FromName.getAsIdentifierInfo());
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return Import(FromName.getObjCSelector());
case DeclarationName::CXXConstructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConstructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXDestructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXDestructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXConversionFunctionName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConversionFunctionName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXOperatorName:
return ToContext.DeclarationNames.getCXXOperatorName(
FromName.getCXXOverloadedOperator());
case DeclarationName::CXXLiteralOperatorName:
return ToContext.DeclarationNames.getCXXLiteralOperatorName(
Import(FromName.getCXXLiteralIdentifier()));
case DeclarationName::CXXUsingDirective:
// FIXME: STATICS!
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid DeclarationName Kind!");
}
IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) {
if (!FromId)
return nullptr;
IdentifierInfo *ToId = &ToContext.Idents.get(FromId->getName());
if (!ToId->getBuiltinID() && FromId->getBuiltinID())
ToId->setBuiltinID(FromId->getBuiltinID());
return ToId;
}
Selector ASTImporter::Import(Selector FromSel) {
if (FromSel.isNull())
return Selector();
SmallVector<IdentifierInfo *, 4> Idents;
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0)));
for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I)
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I)));
return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data());
}
DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
DeclContext *DC,
unsigned IDNS,
NamedDecl **Decls,
unsigned NumDecls) {
return Name;
}
DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
if (LastDiagFromFrom)
ToContext.getDiagnostics().notePriorDiagnosticFrom(
FromContext.getDiagnostics());
LastDiagFromFrom = false;
return ToContext.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
if (!LastDiagFromFrom)
FromContext.getDiagnostics().notePriorDiagnosticFrom(
ToContext.getDiagnostics());
LastDiagFromFrom = true;
return FromContext.getDiagnostics().Report(Loc, DiagID);
}
void ASTImporter::CompleteDecl (Decl *D) {
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
if (!ID->getDefinition())
ID->startDefinition();
}
else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
if (!PD->getDefinition())
PD->startDefinition();
}
else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
if (!TD->getDefinition() && !TD->isBeingDefined()) {
TD->startDefinition();
TD->setCompleteDefinition(true);
}
}
else {
assert (0 && "CompleteDecl called on a Decl that can't be completed");
}
}
Decl *ASTImporter::Imported(Decl *From, Decl *To) {
if (From->hasAttrs()) {
for (Attr *FromAttr : From->getAttrs())
To->addAttr(FromAttr->clone(To->getASTContext()));
}
if (From->isUsed()) {
To->setIsUsed();
}
if (From->isImplicit()) {
To->setImplicit();
}
ImportedDecls[From] = To;
return To;
}
bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To,
bool Complain) {
llvm::DenseMap<const Type *, const Type *>::iterator Pos
= ImportedTypes.find(From.getTypePtr());
if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
return true;
StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls,
false, Complain);
return Ctx.IsStructurallyEquivalent(From, To);
}