blob: 6f194e2a57a6705a1fe40b30c37a6a72cc6a4196 [file] [log] [blame]
//===--- ASTMatchers.h - Structural query framework -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements matchers to be used together with the MatchFinder to
// match AST nodes.
//
// Matchers are created by generator functions, which can be combined in
// a functional in-language DSL to express queries over the C++ AST.
//
// For example, to match a class with a certain name, one would call:
// cxxRecordDecl(hasName("MyClass"))
// which returns a matcher that can be used to find all AST nodes that declare
// a class named 'MyClass'.
//
// For more complicated match expressions we're often interested in accessing
// multiple parts of the matched AST nodes once a match is found. In that case,
// use the id(...) matcher around the match expressions that match the nodes
// you want to access.
//
// For example, when we're interested in child classes of a certain class, we
// would write:
// cxxRecordDecl(hasName("MyClass"), hasChild(id("child", recordDecl())))
// When the match is found via the MatchFinder, a user provided callback will
// be called with a BoundNodes instance that contains a mapping from the
// strings that we provided for the id(...) calls to the nodes that were
// matched.
// In the given example, each time our matcher finds a match we get a callback
// where "child" is bound to the RecordDecl node of the matching child
// class declaration.
//
// See ASTMatchersInternal.h for a more in-depth explanation of the
// implementation details of the matcher framework.
//
// See ASTMatchFinder.h for how to use the generated matchers to run over
// an AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "clang/ASTMatchers/ASTMatchersMacros.h"
#include "llvm/Support/Regex.h"
#include <iterator>
namespace clang {
namespace ast_matchers {
/// \brief Maps string IDs to AST nodes matched by parts of a matcher.
///
/// The bound nodes are generated by calling \c bind("id") on the node matchers
/// of the nodes we want to access later.
///
/// The instances of BoundNodes are created by \c MatchFinder when the user's
/// callbacks are executed every time a match is found.
class BoundNodes {
public:
/// \brief Returns the AST node bound to \c ID.
///
/// Returns NULL if there was no node bound to \c ID or if there is a node but
/// it cannot be converted to the specified type.
template <typename T>
const T *getNodeAs(StringRef ID) const {
return MyBoundNodes.getNodeAs<T>(ID);
}
/// \brief Deprecated. Please use \c getNodeAs instead.
/// @{
template <typename T>
const T *getDeclAs(StringRef ID) const {
return getNodeAs<T>(ID);
}
template <typename T>
const T *getStmtAs(StringRef ID) const {
return getNodeAs<T>(ID);
}
/// @}
/// \brief Type of mapping from binding identifiers to bound nodes. This type
/// is an associative container with a key type of \c std::string and a value
/// type of \c clang::ast_type_traits::DynTypedNode
typedef internal::BoundNodesMap::IDToNodeMap IDToNodeMap;
/// \brief Retrieve mapping from binding identifiers to bound nodes.
const IDToNodeMap &getMap() const {
return MyBoundNodes.getMap();
}
private:
/// \brief Create BoundNodes from a pre-filled map of bindings.
BoundNodes(internal::BoundNodesMap &MyBoundNodes)
: MyBoundNodes(MyBoundNodes) {}
internal::BoundNodesMap MyBoundNodes;
friend class internal::BoundNodesTreeBuilder;
};
/// \brief If the provided matcher matches a node, binds the node to \c ID.
///
/// FIXME: Do we want to support this now that we have bind()?
template <typename T>
internal::Matcher<T> id(StringRef ID,
const internal::BindableMatcher<T> &InnerMatcher) {
return InnerMatcher.bind(ID);
}
/// \brief Types of matchers for the top-level classes in the AST class
/// hierarchy.
/// @{
typedef internal::Matcher<Decl> DeclarationMatcher;
typedef internal::Matcher<Stmt> StatementMatcher;
typedef internal::Matcher<QualType> TypeMatcher;
typedef internal::Matcher<TypeLoc> TypeLocMatcher;
typedef internal::Matcher<NestedNameSpecifier> NestedNameSpecifierMatcher;
typedef internal::Matcher<NestedNameSpecifierLoc> NestedNameSpecifierLocMatcher;
/// @}
/// \brief Matches any node.
///
/// Useful when another matcher requires a child matcher, but there's no
/// additional constraint. This will often be used with an explicit conversion
/// to an \c internal::Matcher<> type such as \c TypeMatcher.
///
/// Example: \c DeclarationMatcher(anything()) matches all declarations, e.g.,
/// \code
/// "int* p" and "void f()" in
/// int* p;
/// void f();
/// \endcode
///
/// Usable as: Any Matcher
inline internal::TrueMatcher anything() { return internal::TrueMatcher(); }
/// \brief Matches the top declaration context.
///
/// Given
/// \code
/// int X;
/// namespace NS {
/// int Y;
/// } // namespace NS
/// \endcode
/// decl(hasDeclContext(translationUnitDecl()))
/// matches "int X", but not "int Y".
const internal::VariadicDynCastAllOfMatcher<Decl, TranslationUnitDecl>
translationUnitDecl;
/// \brief Matches typedef declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typedefDecl()
/// matches "typedef int X", but not "using Y = int"
const internal::VariadicDynCastAllOfMatcher<Decl, TypedefDecl> typedefDecl;
/// \brief Matches typedef name declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typedefNameDecl()
/// matches "typedef int X" and "using Y = int"
const internal::VariadicDynCastAllOfMatcher<Decl, TypedefNameDecl>
typedefNameDecl;
/// \brief Matches type alias declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// typeAliasDecl()
/// matches "using Y = int", but not "typedef int X"
const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasDecl> typeAliasDecl;
/// \brief Matches AST nodes that were expanded within the main-file.
///
/// Example matches X but not Y
/// (matcher = cxxRecordDecl(isExpansionInMainFile())
/// \code
/// #include <Y.h>
/// class X {};
/// \endcode
/// Y.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInMainFile,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
return SourceManager.isInMainFile(
SourceManager.getExpansionLoc(Node.getLocStart()));
}
/// \brief Matches AST nodes that were expanded within system-header-files.
///
/// Example matches Y but not X
/// (matcher = cxxRecordDecl(isExpansionInSystemHeader())
/// \code
/// #include <SystemHeader.h>
/// class X {};
/// \endcode
/// SystemHeader.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInSystemHeader,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getLocStart());
if (ExpansionLoc.isInvalid()) {
return false;
}
return SourceManager.isInSystemHeader(ExpansionLoc);
}
/// \brief Matches AST nodes that were expanded within files whose name is
/// partially matching a given regex.
///
/// Example matches Y but not X
/// (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*"))
/// \code
/// #include "ASTMatcher.h"
/// class X {};
/// \endcode
/// ASTMatcher.h:
/// \code
/// class Y {};
/// \endcode
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER_P(isExpansionInFileMatching,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc),
std::string, RegExp) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getLocStart());
if (ExpansionLoc.isInvalid()) {
return false;
}
auto FileEntry =
SourceManager.getFileEntryForID(SourceManager.getFileID(ExpansionLoc));
if (!FileEntry) {
return false;
}
auto Filename = FileEntry->getName();
llvm::Regex RE(RegExp);
return RE.match(Filename);
}
/// \brief Matches declarations.
///
/// Examples matches \c X, \c C, and the friend declaration inside \c C;
/// \code
/// void X();
/// class C {
/// friend X;
/// };
/// \endcode
const internal::VariadicAllOfMatcher<Decl> decl;
/// \brief Matches a declaration of a linkage specification.
///
/// Given
/// \code
/// extern "C" {}
/// \endcode
/// linkageSpecDecl()
/// matches "extern "C" {}"
const internal::VariadicDynCastAllOfMatcher<Decl, LinkageSpecDecl>
linkageSpecDecl;
/// \brief Matches a declaration of anything that could have a name.
///
/// Example matches \c X, \c S, the anonymous union type, \c i, and \c U;
/// \code
/// typedef int X;
/// struct S {
/// union {
/// int i;
/// } U;
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, NamedDecl> namedDecl;
/// \brief Matches a declaration of label.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// labelDecl()
/// matches 'FOO:'
const internal::VariadicDynCastAllOfMatcher<Decl, LabelDecl> labelDecl;
/// \brief Matches a declaration of a namespace.
///
/// Given
/// \code
/// namespace {}
/// namespace test {}
/// \endcode
/// namespaceDecl()
/// matches "namespace {}" and "namespace test {}"
const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceDecl> namespaceDecl;
/// \brief Matches a declaration of a namespace alias.
///
/// Given
/// \code
/// namespace test {}
/// namespace alias = ::test;
/// \endcode
/// namespaceAliasDecl()
/// matches "namespace alias" but not "namespace test"
const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceAliasDecl>
namespaceAliasDecl;
/// \brief Matches class, struct, and union declarations.
///
/// Example matches \c X, \c Z, \c U, and \c S
/// \code
/// class X;
/// template<class T> class Z {};
/// struct S {};
/// union U {};
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
RecordDecl> recordDecl;
/// \brief Matches C++ class declarations.
///
/// Example matches \c X, \c Z
/// \code
/// class X;
/// template<class T> class Z {};
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
CXXRecordDecl> cxxRecordDecl;
/// \brief Matches C++ class template declarations.
///
/// Example matches \c Z
/// \code
/// template<class T> class Z {};
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
ClassTemplateDecl> classTemplateDecl;
/// \brief Matches C++ class template specializations.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
/// \endcode
/// classTemplateSpecializationDecl()
/// matches the specializations \c A<int> and \c A<double>
const internal::VariadicDynCastAllOfMatcher<
Decl,
ClassTemplateSpecializationDecl> classTemplateSpecializationDecl;
/// \brief Matches declarator declarations (field, variable, function
/// and non-type template parameter declarations).
///
/// Given
/// \code
/// class X { int y; };
/// \endcode
/// declaratorDecl()
/// matches \c int y.
const internal::VariadicDynCastAllOfMatcher<Decl, DeclaratorDecl>
declaratorDecl;
/// \brief Matches parameter variable declarations.
///
/// Given
/// \code
/// void f(int x);
/// \endcode
/// parmVarDecl()
/// matches \c int x.
const internal::VariadicDynCastAllOfMatcher<Decl, ParmVarDecl> parmVarDecl;
/// \brief Matches C++ access specifier declarations.
///
/// Given
/// \code
/// class C {
/// public:
/// int a;
/// };
/// \endcode
/// accessSpecDecl()
/// matches 'public:'
const internal::VariadicDynCastAllOfMatcher<
Decl,
AccessSpecDecl> accessSpecDecl;
/// \brief Matches constructor initializers.
///
/// Examples matches \c i(42).
/// \code
/// class C {
/// C() : i(42) {}
/// int i;
/// };
/// \endcode
const internal::VariadicAllOfMatcher<CXXCtorInitializer> cxxCtorInitializer;
/// \brief Matches template arguments.
///
/// Given
/// \code
/// template <typename T> struct C {};
/// C<int> c;
/// \endcode
/// templateArgument()
/// matches 'int' in C<int>.
const internal::VariadicAllOfMatcher<TemplateArgument> templateArgument;
/// \brief Matches template name.
///
/// Given
/// \code
/// template <typename T> class X { };
/// X<int> xi;
/// \endcode
/// templateName()
/// matches 'X' in X<int>.
const internal::VariadicAllOfMatcher<TemplateName> templateName;
/// \brief Matches non-type template parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// nonTypeTemplateParmDecl()
/// matches 'N', but not 'T'.
const internal::VariadicDynCastAllOfMatcher<
Decl,
NonTypeTemplateParmDecl> nonTypeTemplateParmDecl;
/// \brief Matches template type parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// templateTypeParmDecl()
/// matches 'T', but not 'N'.
const internal::VariadicDynCastAllOfMatcher<
Decl,
TemplateTypeParmDecl> templateTypeParmDecl;
/// \brief Matches public C++ declarations.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// fieldDecl(isPublic())
/// matches 'int a;'
AST_MATCHER(Decl, isPublic) {
return Node.getAccess() == AS_public;
}
/// \brief Matches protected C++ declarations.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// fieldDecl(isProtected())
/// matches 'int b;'
AST_MATCHER(Decl, isProtected) {
return Node.getAccess() == AS_protected;
}
/// \brief Matches private C++ declarations.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// fieldDecl(isPrivate())
/// matches 'int c;'
AST_MATCHER(Decl, isPrivate) {
return Node.getAccess() == AS_private;
}
/// \brief Matches non-static data members that are bit-fields.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b;
/// };
/// \endcode
/// fieldDecl(isBitField())
/// matches 'int a;' but not 'int b;'.
AST_MATCHER(FieldDecl, isBitField) {
return Node.isBitField();
}
/// \brief Matches non-static data members that are bit-fields.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b : 4;
/// int c : 2;
/// };
/// \endcode
/// fieldDecl(isBitField())
/// matches 'int a;' and 'int c;' but not 'int b;'.
AST_MATCHER_P(FieldDecl, hasBitWidth, unsigned, Width) {
return Node.isBitField() &&
Node.getBitWidthValue(Finder->getASTContext()) == Width;
}
/// \brief Matches a declaration that has been implicitly added
/// by the compiler (eg. implicit default/copy constructors).
AST_MATCHER(Decl, isImplicit) {
return Node.isImplicit();
}
/// \brief Matches classTemplateSpecializations, templateSpecializationType and
/// functionDecl that have at least one TemplateArgument matching the given
/// InnerMatcher.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
///
/// template<typename T> f() {};
/// void func() { f<int>(); };
/// \endcode
///
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToType(asString("int"))))
/// matches the specialization \c A<int>
///
/// functionDecl(hasAnyTemplateArgument(refersToType(asString("int"))))
/// matches the specialization \c f<int>
AST_POLYMORPHIC_MATCHER_P(
hasAnyTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType,
FunctionDecl),
internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
return matchesFirstInRange(InnerMatcher, List.begin(), List.end(), Finder,
Builder);
}
/// \brief Matches expressions that match InnerMatcher after any implicit AST
/// nodes are stripped off.
///
/// Parentheses and explicit casts are not discarded.
/// Given
/// \code
/// class C {};
/// C a = C();
/// C b;
/// C c = b;
/// \endcode
/// The matchers
/// \code
/// varDecl(hasInitializer(ignoringImplicit(cxxConstructExpr())))
/// \endcode
/// would match the declarations for a, b, and c.
/// While
/// \code
/// varDecl(hasInitializer(cxxConstructExpr()))
/// \endcode
/// only match the declarations for b and c.
AST_MATCHER_P(Expr, ignoringImplicit, ast_matchers::internal::Matcher<Expr>,
InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImplicit(), Finder, Builder);
}
/// \brief Matches expressions that match InnerMatcher after any implicit casts
/// are stripped off.
///
/// Parentheses and explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// int a = 0;
/// char b = 0;
/// const int c = a;
/// int *d = arr;
/// long e = (long) 0l;
/// \endcode
/// The matchers
/// \code
/// varDecl(hasInitializer(ignoringImpCasts(integerLiteral())))
/// varDecl(hasInitializer(ignoringImpCasts(declRefExpr())))
/// \endcode
/// would match the declarations for a, b, c, and d, but not e.
/// While
/// \code
/// varDecl(hasInitializer(integerLiteral()))
/// varDecl(hasInitializer(declRefExpr()))
/// \endcode
/// only match the declarations for b, c, and d.
AST_MATCHER_P(Expr, ignoringImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImpCasts(), Finder, Builder);
}
/// \brief Matches expressions that match InnerMatcher after parentheses and
/// casts are stripped off.
///
/// Implicit and non-C Style casts are also discarded.
/// Given
/// \code
/// int a = 0;
/// char b = (0);
/// void* c = reinterpret_cast<char*>(0);
/// char d = char(0);
/// \endcode
/// The matcher
/// varDecl(hasInitializer(ignoringParenCasts(integerLiteral())))
/// would match the declarations for a, b, c, and d.
/// while
/// varDecl(hasInitializer(integerLiteral()))
/// only match the declaration for a.
AST_MATCHER_P(Expr, ignoringParenCasts, internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenCasts(), Finder, Builder);
}
/// \brief Matches expressions that match InnerMatcher after implicit casts and
/// parentheses are stripped off.
///
/// Explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// int a = 0;
/// char b = (0);
/// const int c = a;
/// int *d = (arr);
/// long e = ((long) 0l);
/// \endcode
/// The matchers
/// varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral())))
/// varDecl(hasInitializer(ignoringParenImpCasts(declRefExpr())))
/// would match the declarations for a, b, c, and d, but not e.
/// while
/// varDecl(hasInitializer(integerLiteral()))
/// varDecl(hasInitializer(declRefExpr()))
/// would only match the declaration for a.
AST_MATCHER_P(Expr, ignoringParenImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenImpCasts(), Finder, Builder);
}
/// \brief Matches types that match InnerMatcher after any parens are stripped.
///
/// Given
/// \code
/// void (*fp)(void);
/// \endcode
/// The matcher
/// \code
/// varDecl(hasType(pointerType(pointee(ignoringParens(functionType())))))
/// \endcode
/// would match the declaration for fp.
AST_MATCHER_P(QualType, ignoringParens,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.IgnoreParens(), Finder, Builder);
}
/// \brief Matches classTemplateSpecializations, templateSpecializationType and
/// functionDecl where the n'th TemplateArgument matches the given InnerMatcher.
///
/// Given
/// \code
/// template<typename T, typename U> class A {};
/// A<bool, int> b;
/// A<int, bool> c;
///
/// template<typename T> f() {};
/// void func() { f<int>(); };
/// \endcode
/// classTemplateSpecializationDecl(hasTemplateArgument(
/// 1, refersToType(asString("int"))))
/// matches the specialization \c A<bool, int>
///
/// functionDecl(hasTemplateArgument(0, refersToType(asString("int"))))
/// matches the specialization \c f<int>
AST_POLYMORPHIC_MATCHER_P2(
hasTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType,
FunctionDecl),
unsigned, N, internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
if (List.size() <= N)
return false;
return InnerMatcher.matches(List[N], Finder, Builder);
}
/// \brief Matches if the number of template arguments equals \p N.
///
/// Given
/// \code
/// template<typename T> struct C {};
/// C<int> c;
/// \endcode
/// classTemplateSpecializationDecl(templateArgumentCountIs(1))
/// matches C<int>.
AST_POLYMORPHIC_MATCHER_P(
templateArgumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType),
unsigned, N) {
return internal::getTemplateSpecializationArgs(Node).size() == N;
}
/// \brief Matches a TemplateArgument that refers to a certain type.
///
/// Given
/// \code
/// struct X {};
/// template<typename T> struct A {};
/// A<X> a;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToType(class(hasName("X")))))
/// matches the specialization \c A<X>
AST_MATCHER_P(TemplateArgument, refersToType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Type)
return false;
return InnerMatcher.matches(Node.getAsType(), Finder, Builder);
}
/// \brief Matches a TemplateArgument that refers to a certain template.
///
/// Given
/// \code
/// template<template <typename> class S> class X {};
/// template<typename T> class Y {};"
/// X<Y> xi;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToTemplate(templateName())))
/// matches the specialization \c X<Y>
AST_MATCHER_P(TemplateArgument, refersToTemplate,
internal::Matcher<TemplateName>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Template)
return false;
return InnerMatcher.matches(Node.getAsTemplate(), Finder, Builder);
}
/// \brief Matches a canonical TemplateArgument that refers to a certain
/// declaration.
///
/// Given
/// \code
/// template<typename T> struct A {};
/// struct B { B* next; };
/// A<&B::next> a;
/// \endcode
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToDeclaration(fieldDecl(hasName("next"))))
/// matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
/// \c B::next
AST_MATCHER_P(TemplateArgument, refersToDeclaration,
internal::Matcher<Decl>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Declaration)
return InnerMatcher.matches(*Node.getAsDecl(), Finder, Builder);
return false;
}
/// \brief Matches a sugar TemplateArgument that refers to a certain expression.
///
/// Given
/// \code
/// template<typename T> struct A {};
/// struct B { B* next; };
/// A<&B::next> a;
/// \endcode
/// templateSpecializationType(hasAnyTemplateArgument(
/// isExpr(hasDescendant(declRefExpr(to(fieldDecl(hasName("next"))))))))
/// matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
/// \c B::next
AST_MATCHER_P(TemplateArgument, isExpr, internal::Matcher<Expr>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Expression)
return InnerMatcher.matches(*Node.getAsExpr(), Finder, Builder);
return false;
}
/// \brief Matches a TemplateArgument that is an integral value.
///
/// Given
/// \code
/// template<int T> struct A {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(isIntegral()))
/// matches the implicit instantiation of C in C<42>
/// with isIntegral() matching 42.
AST_MATCHER(TemplateArgument, isIntegral) {
return Node.getKind() == TemplateArgument::Integral;
}
/// \brief Matches a TemplateArgument that referes to an integral type.
///
/// Given
/// \code
/// template<int T> struct A {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(refersToIntegralType(asString("int"))))
/// matches the implicit instantiation of C in C<42>.
AST_MATCHER_P(TemplateArgument, refersToIntegralType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return InnerMatcher.matches(Node.getIntegralType(), Finder, Builder);
}
/// \brief Matches a TemplateArgument of integral type with a given value.
///
/// Note that 'Value' is a string as the template argument's value is
/// an arbitrary precision integer. 'Value' must be euqal to the canonical
/// representation of that integral value in base 10.
///
/// Given
/// \code
/// template<int T> struct A {};
/// C<42> c;
/// \endcode
/// classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(equalsIntegralValue("42")))
/// matches the implicit instantiation of C in C<42>.
AST_MATCHER_P(TemplateArgument, equalsIntegralValue,
std::string, Value) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return Node.getAsIntegral().toString(10) == Value;
}
/// \brief Matches any value declaration.
///
/// Example matches A, B, C and F
/// \code
/// enum X { A, B, C };
/// void F();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, ValueDecl> valueDecl;
/// \brief Matches C++ constructor declarations.
///
/// Example matches Foo::Foo() and Foo::Foo(int)
/// \code
/// class Foo {
/// public:
/// Foo();
/// Foo(int);
/// int DoSomething();
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
CXXConstructorDecl> cxxConstructorDecl;
/// \brief Matches explicit C++ destructor declarations.
///
/// Example matches Foo::~Foo()
/// \code
/// class Foo {
/// public:
/// virtual ~Foo();
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
CXXDestructorDecl> cxxDestructorDecl;
/// \brief Matches enum declarations.
///
/// Example matches X
/// \code
/// enum X {
/// A, B, C
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, EnumDecl> enumDecl;
/// \brief Matches enum constants.
///
/// Example matches A, B, C
/// \code
/// enum X {
/// A, B, C
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
EnumConstantDecl> enumConstantDecl;
/// \brief Matches method declarations.
///
/// Example matches y
/// \code
/// class X { void y(); };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, CXXMethodDecl> cxxMethodDecl;
/// \brief Matches conversion operator declarations.
///
/// Example matches the operator.
/// \code
/// class X { operator int() const; };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, CXXConversionDecl>
cxxConversionDecl;
/// \brief Matches variable declarations.
///
/// Note: this does not match declarations of member variables, which are
/// "field" declarations in Clang parlance.
///
/// Example matches a
/// \code
/// int a;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, VarDecl> varDecl;
/// \brief Matches field declarations.
///
/// Given
/// \code
/// class X { int m; };
/// \endcode
/// fieldDecl()
/// matches 'm'.
const internal::VariadicDynCastAllOfMatcher<Decl, FieldDecl> fieldDecl;
/// \brief Matches function declarations.
///
/// Example matches f
/// \code
/// void f();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, FunctionDecl> functionDecl;
/// \brief Matches C++ function template declarations.
///
/// Example matches f
/// \code
/// template<class T> void f(T t) {}
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
FunctionTemplateDecl> functionTemplateDecl;
/// \brief Matches friend declarations.
///
/// Given
/// \code
/// class X { friend void foo(); };
/// \endcode
/// friendDecl()
/// matches 'friend void foo()'.
const internal::VariadicDynCastAllOfMatcher<Decl, FriendDecl> friendDecl;
/// \brief Matches statements.
///
/// Given
/// \code
/// { ++a; }
/// \endcode
/// stmt()
/// matches both the compound statement '{ ++a; }' and '++a'.
const internal::VariadicAllOfMatcher<Stmt> stmt;
/// \brief Matches declaration statements.
///
/// Given
/// \code
/// int a;
/// \endcode
/// declStmt()
/// matches 'int a'.
const internal::VariadicDynCastAllOfMatcher<
Stmt,
DeclStmt> declStmt;
/// \brief Matches member expressions.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// int a; static int b;
/// };
/// \endcode
/// memberExpr()
/// matches this->x, x, y.x, a, this->b
const internal::VariadicDynCastAllOfMatcher<Stmt, MemberExpr> memberExpr;
/// \brief Matches call expressions.
///
/// Example matches x.y() and y()
/// \code
/// X x;
/// x.y();
/// y();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, CallExpr> callExpr;
/// \brief Matches lambda expressions.
///
/// Example matches [&](){return 5;}
/// \code
/// [&](){return 5;}
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, LambdaExpr> lambdaExpr;
/// \brief Matches member call expressions.
///
/// Example matches x.y()
/// \code
/// X x;
/// x.y();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXMemberCallExpr> cxxMemberCallExpr;
/// \brief Matches ObjectiveC Message invocation expressions.
///
/// The innermost message send invokes the "alloc" class method on the
/// NSString class, while the outermost message send invokes the
/// "initWithString" instance method on the object returned from
/// NSString's "alloc". This matcher should match both message sends.
/// \code
/// [[NSString alloc] initWithString:@"Hello"]
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ObjCMessageExpr> objcMessageExpr;
/// \brief Matches Objective-C interface declarations.
///
/// Example matches Foo
/// \code
/// @interface Foo
/// @end
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
ObjCInterfaceDecl> objcInterfaceDecl;
/// \brief Matches expressions that introduce cleanups to be run at the end
/// of the sub-expression's evaluation.
///
/// Example matches std::string()
/// \code
/// const std::string str = std::string();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ExprWithCleanups> exprWithCleanups;
/// \brief Matches init list expressions.
///
/// Given
/// \code
/// int a[] = { 1, 2 };
/// struct B { int x, y; };
/// B b = { 5, 6 };
/// \endcode
/// initListExpr()
/// matches "{ 1, 2 }" and "{ 5, 6 }"
const internal::VariadicDynCastAllOfMatcher<Stmt, InitListExpr> initListExpr;
/// \brief Matches the syntactic form of init list expressions
/// (if expression have it).
AST_MATCHER_P(InitListExpr, hasSyntacticForm,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *SyntForm = Node.getSyntacticForm();
return (SyntForm != nullptr &&
InnerMatcher.matches(*SyntForm, Finder, Builder));
}
/// \brief Matches implicit initializers of init list expressions.
///
/// Given
/// \code
/// point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// \endcode
/// implicitValueInitExpr()
/// matches "[0].y" (implicitly)
const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitValueInitExpr>
implicitValueInitExpr;
/// \brief Matches paren list expressions.
/// ParenListExprs don't have a predefined type and are used for late parsing.
/// In the final AST, they can be met in template declarations.
///
/// Given
/// \code
/// template<typename T> class X {
/// void f() {
/// X x(*this);
/// int a = 0, b = 1; int i = (a, b);
/// }
/// };
/// \endcode
/// parenListExpr() matches "*this" but NOT matches (a, b) because (a, b)
/// has a predefined type and is a ParenExpr, not a ParenListExpr.
const internal::VariadicDynCastAllOfMatcher<Stmt, ParenListExpr> parenListExpr;
/// \brief Matches substitutions of non-type template parameters.
///
/// Given
/// \code
/// template <int N>
/// struct A { static const int n = N; };
/// struct B : public A<42> {};
/// \endcode
/// substNonTypeTemplateParmExpr()
/// matches "N" in the right-hand side of "static const int n = N;"
const internal::VariadicDynCastAllOfMatcher<
Stmt,
SubstNonTypeTemplateParmExpr> substNonTypeTemplateParmExpr;
/// \brief Matches using declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using X::x;
/// \endcode
/// usingDecl()
/// matches \code using X::x \endcode
const internal::VariadicDynCastAllOfMatcher<Decl, UsingDecl> usingDecl;
/// \brief Matches using namespace declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using namespace X;
/// \endcode
/// usingDirectiveDecl()
/// matches \code using namespace X \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
UsingDirectiveDecl> usingDirectiveDecl;
/// \brief Matches reference to a name that can be looked up during parsing
/// but could not be resolved to a specific declaration.
///
/// Given
/// \code
/// template<typename T>
/// T foo() { T a; return a; }
/// template<typename T>
/// void bar() {
/// foo<T>();
/// }
/// \endcode
/// unresolvedLookupExpr()
/// matches \code foo<T>() \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
UnresolvedLookupExpr> unresolvedLookupExpr;
/// \brief Matches unresolved using value declarations.
///
/// Given
/// \code
/// template<typename X>
/// class C : private X {
/// using X::x;
/// };
/// \endcode
/// unresolvedUsingValueDecl()
/// matches \code using X::x \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
UnresolvedUsingValueDecl> unresolvedUsingValueDecl;
/// \brief Matches unresolved using value declarations that involve the
/// typename.
///
/// Given
/// \code
/// template <typename T>
/// struct Base { typedef T Foo; };
///
/// template<typename T>
/// struct S : private Base<T> {
/// using typename Base<T>::Foo;
/// };
/// \endcode
/// unresolvedUsingTypenameDecl()
/// matches \code using Base<T>::Foo \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
UnresolvedUsingTypenameDecl> unresolvedUsingTypenameDecl;
/// \brief Matches parentheses used in expressions.
///
/// Example matches (foo() + 1)
/// \code
/// int foo() { return 1; }
/// int a = (foo() + 1);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ParenExpr> parenExpr;
/// \brief Matches constructor call expressions (including implicit ones).
///
/// Example matches string(ptr, n) and ptr within arguments of f
/// (matcher = cxxConstructExpr())
/// \code
/// void f(const string &a, const string &b);
/// char *ptr;
/// int n;
/// f(string(ptr, n), ptr);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXConstructExpr> cxxConstructExpr;
/// \brief Matches unresolved constructor call expressions.
///
/// Example matches T(t) in return statement of f
/// (matcher = cxxUnresolvedConstructExpr())
/// \code
/// template <typename T>
/// void f(const T& t) { return T(t); }
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXUnresolvedConstructExpr> cxxUnresolvedConstructExpr;
/// \brief Matches implicit and explicit this expressions.
///
/// Example matches the implicit this expression in "return i".
/// (matcher = cxxThisExpr())
/// \code
/// struct foo {
/// int i;
/// int f() { return i; }
/// };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThisExpr> cxxThisExpr;
/// \brief Matches nodes where temporaries are created.
///
/// Example matches FunctionTakesString(GetStringByValue())
/// (matcher = cxxBindTemporaryExpr())
/// \code
/// FunctionTakesString(GetStringByValue());
/// FunctionTakesStringByPointer(GetStringPointer());
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXBindTemporaryExpr> cxxBindTemporaryExpr;
/// \brief Matches nodes where temporaries are materialized.
///
/// Example: Given
/// \code
/// struct T {void func()};
/// T f();
/// void g(T);
/// \endcode
/// materializeTemporaryExpr() matches 'f()' in these statements
/// \code
/// T u(f());
/// g(f());
/// \endcode
/// but does not match
/// \code
/// f();
/// f().func();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
MaterializeTemporaryExpr> materializeTemporaryExpr;
/// \brief Matches new expressions.
///
/// Given
/// \code
/// new X;
/// \endcode
/// cxxNewExpr()
/// matches 'new X'.
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNewExpr> cxxNewExpr;
/// \brief Matches delete expressions.
///
/// Given
/// \code
/// delete X;
/// \endcode
/// cxxDeleteExpr()
/// matches 'delete X'.
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDeleteExpr> cxxDeleteExpr;
/// \brief Matches array subscript expressions.
///
/// Given
/// \code
/// int i = a[1];
/// \endcode
/// arraySubscriptExpr()
/// matches "a[1]"
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ArraySubscriptExpr> arraySubscriptExpr;
/// \brief Matches the value of a default argument at the call site.
///
/// Example matches the CXXDefaultArgExpr placeholder inserted for the
/// default value of the second parameter in the call expression f(42)
/// (matcher = cxxDefaultArgExpr())
/// \code
/// void f(int x, int y = 0);
/// f(42);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXDefaultArgExpr> cxxDefaultArgExpr;
/// \brief Matches overloaded operator calls.
///
/// Note that if an operator isn't overloaded, it won't match. Instead, use
/// binaryOperator matcher.
/// Currently it does not match operators such as new delete.
/// FIXME: figure out why these do not match?
///
/// Example matches both operator<<((o << b), c) and operator<<(o, b)
/// (matcher = cxxOperatorCallExpr())
/// \code
/// ostream &operator<< (ostream &out, int i) { };
/// ostream &o; int b = 1, c = 1;
/// o << b << c;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXOperatorCallExpr> cxxOperatorCallExpr;
/// \brief Matches expressions.
///
/// Example matches x()
/// \code
/// void f() { x(); }
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, Expr> expr;
/// \brief Matches expressions that refer to declarations.
///
/// Example matches x in if (x)
/// \code
/// bool x;
/// if (x) {}
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, DeclRefExpr> declRefExpr;
/// \brief Matches if statements.
///
/// Example matches 'if (x) {}'
/// \code
/// if (x) {}
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, IfStmt> ifStmt;
/// \brief Matches for statements.
///
/// Example matches 'for (;;) {}'
/// \code
/// for (;;) {}
/// int i[] = {1, 2, 3}; for (auto a : i);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, ForStmt> forStmt;
/// \brief Matches the increment statement of a for loop.
///
/// Example:
/// forStmt(hasIncrement(unaryOperator(hasOperatorName("++"))))
/// matches '++x' in
/// \code
/// for (x; x < N; ++x) { }
/// \endcode
AST_MATCHER_P(ForStmt, hasIncrement, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Increment = Node.getInc();
return (Increment != nullptr &&
InnerMatcher.matches(*Increment, Finder, Builder));
}
/// \brief Matches the initialization statement of a for loop.
///
/// Example:
/// forStmt(hasLoopInit(declStmt()))
/// matches 'int x = 0' in
/// \code
/// for (int x = 0; x < N; ++x) { }
/// \endcode
AST_MATCHER_P(ForStmt, hasLoopInit, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Init = Node.getInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// \brief Matches range-based for statements.
///
/// cxxForRangeStmt() matches 'for (auto a : i)'
/// \code
/// int i[] = {1, 2, 3}; for (auto a : i);
/// for(int j = 0; j < 5; ++j);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXForRangeStmt> cxxForRangeStmt;
/// \brief Matches the initialization statement of a for loop.
///
/// Example:
/// forStmt(hasLoopVariable(anything()))
/// matches 'int x' in
/// \code
/// for (int x : a) { }
/// \endcode
AST_MATCHER_P(CXXForRangeStmt, hasLoopVariable, internal::Matcher<VarDecl>,
InnerMatcher) {
const VarDecl *const Var = Node.getLoopVariable();
return (Var != nullptr && InnerMatcher.matches(*Var, Finder, Builder));
}
/// \brief Matches the range initialization statement of a for loop.
///
/// Example:
/// forStmt(hasRangeInit(anything()))
/// matches 'a' in
/// \code
/// for (int x : a) { }
/// \endcode
AST_MATCHER_P(CXXForRangeStmt, hasRangeInit, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *const Init = Node.getRangeInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// \brief Matches while statements.
///
/// Given
/// \code
/// while (true) {}
/// \endcode
/// whileStmt()
/// matches 'while (true) {}'.
const internal::VariadicDynCastAllOfMatcher<Stmt, WhileStmt> whileStmt;
/// \brief Matches do statements.
///
/// Given
/// \code
/// do {} while (true);
/// \endcode
/// doStmt()
/// matches 'do {} while(true)'
const internal::VariadicDynCastAllOfMatcher<Stmt, DoStmt> doStmt;
/// \brief Matches break statements.
///
/// Given
/// \code
/// while (true) { break; }
/// \endcode
/// breakStmt()
/// matches 'break'
const internal::VariadicDynCastAllOfMatcher<Stmt, BreakStmt> breakStmt;
/// \brief Matches continue statements.
///
/// Given
/// \code
/// while (true) { continue; }
/// \endcode
/// continueStmt()
/// matches 'continue'
const internal::VariadicDynCastAllOfMatcher<Stmt, ContinueStmt> continueStmt;
/// \brief Matches return statements.
///
/// Given
/// \code
/// return 1;
/// \endcode
/// returnStmt()
/// matches 'return 1'
const internal::VariadicDynCastAllOfMatcher<Stmt, ReturnStmt> returnStmt;
/// \brief Matches goto statements.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// gotoStmt()
/// matches 'goto FOO'
const internal::VariadicDynCastAllOfMatcher<Stmt, GotoStmt> gotoStmt;
/// \brief Matches label statements.
///
/// Given
/// \code
/// goto FOO;
/// FOO: bar();
/// \endcode
/// labelStmt()
/// matches 'FOO:'
const internal::VariadicDynCastAllOfMatcher<Stmt, LabelStmt> labelStmt;
/// \brief Matches address of label statements (GNU extension).
///
/// Given
/// \code
/// FOO: bar();
/// void *ptr = &&FOO;
/// goto *bar;
/// \endcode
/// addrLabelExpr()
/// matches '&&FOO'
const internal::VariadicDynCastAllOfMatcher<Stmt, AddrLabelExpr> addrLabelExpr;
/// \brief Matches switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// switchStmt()
/// matches 'switch(a)'.
const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchStmt> switchStmt;
/// \brief Matches case and default statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// switchCase()
/// matches 'case 42: break;' and 'default: break;'.
const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchCase> switchCase;
/// \brief Matches case statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// caseStmt()
/// matches 'case 42: break;'.
const internal::VariadicDynCastAllOfMatcher<Stmt, CaseStmt> caseStmt;
/// \brief Matches default statements inside switch statements.
///
/// Given
/// \code
/// switch(a) { case 42: break; default: break; }
/// \endcode
/// defaultStmt()
/// matches 'default: break;'.
const internal::VariadicDynCastAllOfMatcher<Stmt, DefaultStmt> defaultStmt;
/// \brief Matches compound statements.
///
/// Example matches '{}' and '{{}}'in 'for (;;) {{}}'
/// \code
/// for (;;) {{}}
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundStmt> compoundStmt;
/// \brief Matches catch statements.
///
/// \code
/// try {} catch(int i) {}
/// \endcode
/// cxxCatchStmt()
/// matches 'catch(int i)'
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXCatchStmt> cxxCatchStmt;
/// \brief Matches try statements.
///
/// \code
/// try {} catch(int i) {}
/// \endcode
/// cxxTryStmt()
/// matches 'try {}'
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTryStmt> cxxTryStmt;
/// \brief Matches throw expressions.
///
/// \code
/// try { throw 5; } catch(int i) {}
/// \endcode
/// cxxThrowExpr()
/// matches 'throw 5'
const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThrowExpr> cxxThrowExpr;
/// \brief Matches null statements.
///
/// \code
/// foo();;
/// \endcode
/// nullStmt()
/// matches the second ';'
const internal::VariadicDynCastAllOfMatcher<Stmt, NullStmt> nullStmt;
/// \brief Matches asm statements.
///
/// \code
/// int i = 100;
/// __asm("mov al, 2");
/// \endcode
/// asmStmt()
/// matches '__asm("mov al, 2")'
const internal::VariadicDynCastAllOfMatcher<Stmt, AsmStmt> asmStmt;
/// \brief Matches bool literals.
///
/// Example matches true
/// \code
/// true
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXBoolLiteralExpr> cxxBoolLiteral;
/// \brief Matches string literals (also matches wide string literals).
///
/// Example matches "abcd", L"abcd"
/// \code
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
StringLiteral> stringLiteral;
/// \brief Matches character literals (also matches wchar_t).
///
/// Not matching Hex-encoded chars (e.g. 0x1234, which is a IntegerLiteral),
/// though.
///
/// Example matches 'a', L'a'
/// \code
/// char ch = 'a';
/// wchar_t chw = L'a';
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CharacterLiteral> characterLiteral;
/// \brief Matches integer literals of all sizes / encodings, e.g.
/// 1, 1L, 0x1 and 1U.
///
/// Does not match character-encoded integers such as L'a'.
const internal::VariadicDynCastAllOfMatcher<
Stmt,
IntegerLiteral> integerLiteral;
/// \brief Matches float literals of all sizes / encodings, e.g.
/// 1.0, 1.0f, 1.0L and 1e10.
///
/// Does not match implicit conversions such as
/// \code
/// float a = 10;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
FloatingLiteral> floatLiteral;
/// \brief Matches user defined literal operator call.
///
/// Example match: "foo"_suffix
const internal::VariadicDynCastAllOfMatcher<
Stmt,
UserDefinedLiteral> userDefinedLiteral;
/// \brief Matches compound (i.e. non-scalar) literals
///
/// Example match: {1}, (1, 2)
/// \code
/// int array[4] = {1};
/// vector int myvec = (vector int)(1, 2);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CompoundLiteralExpr> compoundLiteralExpr;
/// \brief Matches nullptr literal.
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXNullPtrLiteralExpr> cxxNullPtrLiteralExpr;
/// \brief Matches GNU __null expression.
const internal::VariadicDynCastAllOfMatcher<Stmt, GNUNullExpr> gnuNullExpr;
/// \brief Matches atomic builtins.
/// Example matches __atomic_load_n(ptr, 1)
/// \code
/// void foo() { int *ptr; __atomic_load_n(ptr, 1); }
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, AtomicExpr> atomicExpr;
/// \brief Matches statement expression (GNU extension).
///
/// Example match: ({ int X = 4; X; })
/// \code
/// int C = ({ int X = 4; X; });
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, StmtExpr> stmtExpr;
/// \brief Matches binary operator expressions.
///
/// Example matches a || b
/// \code
/// !(a || b)
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
BinaryOperator> binaryOperator;
/// \brief Matches unary operator expressions.
///
/// Example matches !a
/// \code
/// !a || b
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
UnaryOperator> unaryOperator;
/// \brief Matches conditional operator expressions.
///
/// Example matches a ? b : c
/// \code
/// (a ? b : c) + 42
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ConditionalOperator> conditionalOperator;
/// \brief Matches binary conditional operator expressions (GNU extension).
///
/// Example matches a ?: b
/// \code
/// (a ?: b) + 42;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
BinaryConditionalOperator> binaryConditionalOperator;
/// \brief Matches opaque value expressions. They are used as helpers
/// to reference another expressions and can be met
/// in BinaryConditionalOperators, for example.
///
/// Example matches 'a'
/// \code
/// (a ?: c) + 42;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
OpaqueValueExpr> opaqueValueExpr;
/// \brief Matches a C++ static_assert declaration.
///
/// Example:
/// staticAssertExpr()
/// matches
/// static_assert(sizeof(S) == sizeof(int))
/// in
/// \code
/// struct S {
/// int x;
/// };
/// static_assert(sizeof(S) == sizeof(int));
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Decl,
StaticAssertDecl> staticAssertDecl;
/// \brief Matches a reinterpret_cast expression.
///
/// Either the source expression or the destination type can be matched
/// using has(), but hasDestinationType() is more specific and can be
/// more readable.
///
/// Example matches reinterpret_cast<char*>(&p) in
/// \code
/// void* p = reinterpret_cast<char*>(&p);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXReinterpretCastExpr> cxxReinterpretCastExpr;
/// \brief Matches a C++ static_cast expression.
///
/// \see hasDestinationType
/// \see reinterpretCast
///
/// Example:
/// cxxStaticCastExpr()
/// matches
/// static_cast<long>(8)
/// in
/// \code
/// long eight(static_cast<long>(8));
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXStaticCastExpr> cxxStaticCastExpr;
/// \brief Matches a dynamic_cast expression.
///
/// Example:
/// cxxDynamicCastExpr()
/// matches
/// dynamic_cast<D*>(&b);
/// in
/// \code
/// struct B { virtual ~B() {} }; struct D : B {};
/// B b;
/// D* p = dynamic_cast<D*>(&b);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXDynamicCastExpr> cxxDynamicCastExpr;
/// \brief Matches a const_cast expression.
///
/// Example: Matches const_cast<int*>(&r) in
/// \code
/// int n = 42;
/// const int &r(n);
/// int* p = const_cast<int*>(&r);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXConstCastExpr> cxxConstCastExpr;
/// \brief Matches a C-style cast expression.
///
/// Example: Matches (int*) 2.2f in
/// \code
/// int i = (int) 2.2f;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CStyleCastExpr> cStyleCastExpr;
/// \brief Matches explicit cast expressions.
///
/// Matches any cast expression written in user code, whether it be a
/// C-style cast, a functional-style cast, or a keyword cast.
///
/// Does not match implicit conversions.
///
/// Note: the name "explicitCast" is chosen to match Clang's terminology, as
/// Clang uses the term "cast" to apply to implicit conversions as well as to
/// actual cast expressions.
///
/// \see hasDestinationType.
///
/// Example: matches all five of the casts in
/// \code
/// int((int)(reinterpret_cast<int>(static_cast<int>(const_cast<int>(42)))))
/// \endcode
/// but does not match the implicit conversion in
/// \code
/// long ell = 42;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ExplicitCastExpr> explicitCastExpr;
/// \brief Matches the implicit cast nodes of Clang's AST.
///
/// This matches many different places, including function call return value
/// eliding, as well as any type conversions.
const internal::VariadicDynCastAllOfMatcher<
Stmt,
ImplicitCastExpr> implicitCastExpr;
/// \brief Matches any cast nodes of Clang's AST.
///
/// Example: castExpr() matches each of the following:
/// \code
/// (int) 3;
/// const_cast<Expr *>(SubExpr);
/// char c = 0;
/// \endcode
/// but does not match
/// \code
/// int i = (0);
/// int k = 0;
/// \endcode
const internal::VariadicDynCastAllOfMatcher<Stmt, CastExpr> castExpr;
/// \brief Matches functional cast expressions
///
/// Example: Matches Foo(bar);
/// \code
/// Foo f = bar;
/// Foo g = (Foo) bar;
/// Foo h = Foo(bar);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXFunctionalCastExpr> cxxFunctionalCastExpr;
/// \brief Matches functional cast expressions having N != 1 arguments
///
/// Example: Matches Foo(bar, bar)
/// \code
/// Foo h = Foo(bar, bar);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CXXTemporaryObjectExpr> cxxTemporaryObjectExpr;
/// \brief Matches predefined identifier expressions [C99 6.4.2.2].
///
/// Example: Matches __func__
/// \code
/// printf("%s", __func__);
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
PredefinedExpr> predefinedExpr;
/// \brief Matches C99 designated initializer expressions [C99 6.7.8].
///
/// Example: Matches { [2].y = 1.0, [0].x = 1.0 }
/// \code
/// point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
DesignatedInitExpr> designatedInitExpr;
/// \brief Matches designated initializer expressions that contain
/// a specific number of designators.
///
/// Example: Given
/// \code
/// point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
/// point ptarray2[10] = { [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 };
/// \endcode
/// designatorCountIs(2)
/// matches '{ [2].y = 1.0, [0].x = 1.0 }',
/// but not '{ [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 }'.
AST_MATCHER_P(DesignatedInitExpr, designatorCountIs, unsigned, N) {
return Node.size() == N;
}
/// \brief Matches \c QualTypes in the clang AST.
const internal::VariadicAllOfMatcher<QualType> qualType;
/// \brief Matches \c Types in the clang AST.
const internal::VariadicAllOfMatcher<Type> type;
/// \brief Matches \c TypeLocs in the clang AST.
const internal::VariadicAllOfMatcher<TypeLoc> typeLoc;
/// \brief Matches if any of the given matchers matches.
///
/// Unlike \c anyOf, \c eachOf will generate a match result for each
/// matching submatcher.
///
/// For example, in:
/// \code
/// class A { int a; int b; };
/// \endcode
/// The matcher:
/// \code
/// cxxRecordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
/// has(fieldDecl(hasName("b")).bind("v"))))
/// \endcode
/// will generate two results binding "v", the first of which binds
/// the field declaration of \c a, the second the field declaration of
/// \c b.
///
/// Usable as: Any Matcher
const internal::VariadicOperatorMatcherFunc<2, UINT_MAX> eachOf = {
internal::DynTypedMatcher::VO_EachOf
};
/// \brief Matches if any of the given matchers matches.
///
/// Usable as: Any Matcher
const internal::VariadicOperatorMatcherFunc<2, UINT_MAX> anyOf = {
internal::DynTypedMatcher::VO_AnyOf
};
/// \brief Matches if all given matchers match.
///
/// Usable as: Any Matcher
const internal::VariadicOperatorMatcherFunc<2, UINT_MAX> allOf = {
internal::DynTypedMatcher::VO_AllOf
};
/// \brief Matches sizeof (C99), alignof (C++11) and vec_step (OpenCL)
///
/// Given
/// \code
/// Foo x = bar;
/// int y = sizeof(x) + alignof(x);
/// \endcode
/// unaryExprOrTypeTraitExpr()
/// matches \c sizeof(x) and \c alignof(x)
const internal::VariadicDynCastAllOfMatcher<
Stmt,
UnaryExprOrTypeTraitExpr> unaryExprOrTypeTraitExpr;
/// \brief Matches unary expressions that have a specific type of argument.
///
/// Given
/// \code
/// int a, c; float b; int s = sizeof(a) + sizeof(b) + alignof(c);
/// \endcode
/// unaryExprOrTypeTraitExpr(hasArgumentOfType(asString("int"))
/// matches \c sizeof(a) and \c alignof(c)
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, hasArgumentOfType,
internal::Matcher<QualType>, InnerMatcher) {
const QualType ArgumentType = Node.getTypeOfArgument();
return InnerMatcher.matches(ArgumentType, Finder, Builder);
}
/// \brief Matches unary expressions of a certain kind.
///
/// Given
/// \code
/// int x;
/// int s = sizeof(x) + alignof(x)
/// \endcode
/// unaryExprOrTypeTraitExpr(ofKind(UETT_SizeOf))
/// matches \c sizeof(x)
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, ofKind, UnaryExprOrTypeTrait, Kind) {
return Node.getKind() == Kind;
}
/// \brief Same as unaryExprOrTypeTraitExpr, but only matching
/// alignof.
inline internal::Matcher<Stmt> alignOfExpr(
const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(allOf(
ofKind(UETT_AlignOf), InnerMatcher)));
}
/// \brief Same as unaryExprOrTypeTraitExpr, but only matching
/// sizeof.
inline internal::Matcher<Stmt> sizeOfExpr(
const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(
allOf(ofKind(UETT_SizeOf), InnerMatcher)));
}
/// \brief Matches NamedDecl nodes that have the specified name.
///
/// Supports specifying enclosing namespaces or classes by prefixing the name
/// with '<enclosing>::'.
/// Does not match typedefs of an underlying type with the given name.
///
/// Example matches X (Name == "X")
/// \code
/// class X;
/// \endcode
///
/// Example matches X (Name is one of "::a::b::X", "a::b::X", "b::X", "X")
/// \code
/// namespace a { namespace b { class X; } }
/// \endcode
inline internal::Matcher<NamedDecl> hasName(const std::string &Name) {
std::vector<std::string> Names;
Names.push_back(Name);
return internal::Matcher<NamedDecl>(new internal::HasNameMatcher(Names));
}
/// \brief Matches NamedDecl nodes that have any of the specified names.
///
/// This matcher is only provided as a performance optimization of hasName.
/// \code
/// hasAnyName(a, b, c)
/// \endcode
/// is equivalent to, but faster than
/// \code
/// anyOf(hasName(a), hasName(b), hasName(c))
/// \endcode
const internal::VariadicFunction<internal::Matcher<NamedDecl>, StringRef,
internal::hasAnyNameFunc>
hasAnyName = {};
/// \brief Matches NamedDecl nodes whose fully qualified names contain
/// a substring matched by the given RegExp.
///
/// Supports specifying enclosing namespaces or classes by
/// prefixing the name with '<enclosing>::'. Does not match typedefs
/// of an underlying type with the given name.
///
/// Example matches X (regexp == "::X")
/// \code
/// class X;
/// \endcode
///
/// Example matches X (regexp is one of "::X", "^foo::.*X", among others)
/// \code
/// namespace foo { namespace bar { class X; } }
/// \endcode
AST_MATCHER_P(NamedDecl, matchesName, std::string, RegExp) {
assert(!RegExp.empty());
std::string FullNameString = "::" + Node.getQualifiedNameAsString();
llvm::Regex RE(RegExp);
return RE.match(FullNameString);
}
/// \brief Matches overloaded operator names.
///
/// Matches overloaded operator names specified in strings without the
/// "operator" prefix: e.g. "<<".
///
/// Given:
/// \code
/// class A { int operator*(); };
/// const A &operator<<(const A &a, const A &b);
/// A a;
/// a << a; // <-- This matches
/// \endcode
///
/// \c cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))) matches the
/// specified line and
/// \c cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*")))
/// matches the declaration of \c A.
///
/// Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl>
inline internal::PolymorphicMatcherWithParam1<
internal::HasOverloadedOperatorNameMatcher, StringRef,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl)>
hasOverloadedOperatorName(StringRef Name) {
return internal::PolymorphicMatcherWithParam1<
internal::HasOverloadedOperatorNameMatcher, StringRef,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl)>(Name);
}
/// \brief Matches C++ classes that are directly or indirectly derived from
/// a class matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Example matches Y, Z, C (Base == hasName("X"))
/// \code
/// class X;
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
///
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
/// \code
/// class Foo;
/// typedef Foo X;
/// class Bar : public Foo {}; // derived from a type that X is a typedef of
/// \endcode
AST_MATCHER_P(CXXRecordDecl, isDerivedFrom,
internal::Matcher<NamedDecl>, Base) {
return Finder->classIsDerivedFrom(&Node, Base, Builder);
}
/// \brief Overloaded method as shortcut for \c isDerivedFrom(hasName(...)).
AST_MATCHER_P_OVERLOAD(CXXRecordDecl, isDerivedFrom, std::string, BaseName, 1) {
assert(!BaseName.empty());
return isDerivedFrom(hasName(BaseName)).matches(Node, Finder, Builder);
}
/// \brief Similar to \c isDerivedFrom(), but also matches classes that directly
/// match \c Base.
AST_MATCHER_P_OVERLOAD(CXXRecordDecl, isSameOrDerivedFrom,
internal::Matcher<NamedDecl>, Base, 0) {
return Matcher<CXXRecordDecl>(anyOf(Base, isDerivedFrom(Base)))
.matches(Node, Finder, Builder);
}
/// \brief Overloaded method as shortcut for
/// \c isSameOrDerivedFrom(hasName(...)).
AST_MATCHER_P_OVERLOAD(CXXRecordDecl, isSameOrDerivedFrom, std::string,
BaseName, 1) {
assert(!BaseName.empty());
return isSameOrDerivedFrom(hasName(BaseName)).matches(Node, Finder, Builder);
}
/// \brief Matches the first method of a class or struct that satisfies \c
/// InnerMatcher.
///
/// Given:
/// \code
/// class A { void func(); };
/// class B { void member(); };
/// \endcode
///
/// \c cxxRecordDecl(hasMethod(hasName("func"))) matches the declaration of
/// \c A but not \c B.
AST_MATCHER_P(CXXRecordDecl, hasMethod, internal::Matcher<CXXMethodDecl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.method_begin(),
Node.method_end(), Finder, Builder);
}
/// \brief Matches the generated class of lambda expressions.
///
/// Given:
/// \code
/// auto x = []{};
/// \endcode
///
/// \c cxxRecordDecl(isLambda()) matches the implicit class declaration of
/// \c decltype(x)
AST_MATCHER(CXXRecordDecl, isLambda) {
return Node.isLambda();
}
/// \brief Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y
/// (matcher = cxxRecordDecl(has(cxxRecordDecl(hasName("X")))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
///
/// ChildT must be an AST base type.
///
/// Usable as: Any Matcher
/// Note that has is direct matcher, so it also matches things like implicit
/// casts and paren casts. If you are matching with expr then you should
/// probably consider using ignoringParenImpCasts like:
/// has(ignoringParenImpCasts(expr())).
const internal::ArgumentAdaptingMatcherFunc<internal::HasMatcher>
LLVM_ATTRIBUTE_UNUSED has = {};
/// \brief Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y, Z
/// (matcher = cxxRecordDecl(hasDescendant(cxxRecordDecl(hasName("X")))))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; };
/// \endcode
///
/// DescendantT must be an AST base type.
///
/// Usable as: Any Matcher
const internal::ArgumentAdaptingMatcherFunc<internal::HasDescendantMatcher>
LLVM_ATTRIBUTE_UNUSED hasDescendant = {};
/// \brief Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Example matches X, Y
/// (matcher = cxxRecordDecl(forEach(cxxRecordDecl(hasName("X")))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
///
/// ChildT must be an AST base type.
///
/// As opposed to 'has', 'forEach' will cause a match for each result that
/// matches instead of only on the first one.
///
/// Usable as: Any Matcher
const internal::ArgumentAdaptingMatcherFunc<internal::ForEachMatcher>
LLVM_ATTRIBUTE_UNUSED forEach = {};
/// \brief Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Example matches X, A, B, C
/// (matcher = cxxRecordDecl(forEachDescendant(cxxRecordDecl(hasName("X")))))
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class A { class X {}; };
/// class B { class C { class X {}; }; };
/// \endcode
///
/// DescendantT must be an AST base type.
///
/// As opposed to 'hasDescendant', 'forEachDescendant' will cause a match for
/// each result that matches instead of only on the first one.
///
/// Note: Recursively combined ForEachDescendant can cause many matches:
/// cxxRecordDecl(forEachDescendant(cxxRecordDecl(
/// forEachDescendant(cxxRecordDecl())
/// )))
/// will match 10 times (plus injected class name matches) on:
/// \code
/// class A { class B { class C { class D { class E {}; }; }; }; };
/// \endcode
///
/// Usable as: Any Matcher
const internal::ArgumentAdaptingMatcherFunc<internal::ForEachDescendantMatcher>
LLVM_ATTRIBUTE_UNUSED forEachDescendant = {};
/// \brief Matches if the node or any descendant matches.
///
/// Generates results for each match.
///
/// For example, in:
/// \code
/// class A { class B {}; class C {}; };
/// \endcode
/// The matcher:
/// \code
/// cxxRecordDecl(hasName("::A"),
/// findAll(cxxRecordDecl(isDefinition()).bind("m")))
/// \endcode
/// will generate results for \c A, \c B and \c C.
///
/// Usable as: Any Matcher
template <typename T>
internal::Matcher<T> findAll(const internal::Matcher<T> &Matcher) {
return eachOf(Matcher, forEachDescendant(Matcher));
}
/// \brief Matches AST nodes that have a parent that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { for (;;) { int x = 42; if (true) { int x = 43; } } }
/// \endcode
/// \c compoundStmt(hasParent(ifStmt())) matches "{ int x = 43; }".
///
/// Usable as: Any Matcher
const internal::ArgumentAdaptingMatcherFunc<
internal::HasParentMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc>>
LLVM_ATTRIBUTE_UNUSED hasParent = {};
/// \brief Matches AST nodes that have an ancestor that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { if (true) { int x = 42; } }
/// void g() { for (;;) { int x = 43; } }
/// \endcode
/// \c expr(integerLiteral(hasAncestor(ifStmt()))) matches \c 42, but not 43.
///
/// Usable as: Any Matcher
const internal::ArgumentAdaptingMatcherFunc<
internal::HasAncestorMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc>>
LLVM_ATTRIBUTE_UNUSED hasAncestor = {};
/// \brief Matches if the provided matcher does not match.
///
/// Example matches Y (matcher = cxxRecordDecl(unless(hasName("X"))))
/// \code
/// class X {};
/// class Y {};
/// \endcode
///
/// Usable as: Any Matcher
const internal::VariadicOperatorMatcherFunc<1, 1> unless = {
internal::DynTypedMatcher::VO_UnaryNot
};
/// \brief Matches a node if the declaration associated with that node
/// matches the given matcher.
///
/// The associated declaration is:
/// - for type nodes, the declaration of the underlying type
/// - for CallExpr, the declaration of the callee
/// - for MemberExpr, the declaration of the referenced member
/// - for CXXConstructExpr, the declaration of the constructor
///
/// Also usable as Matcher<T> for any T supporting the getDecl() member
/// function. e.g. various subtypes of clang::Type and various expressions.
///
/// Usable as: Matcher<CallExpr>, Matcher<CXXConstructExpr>,
/// Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>,
/// Matcher<LabelStmt>, Matcher<AddrLabelExpr>, Matcher<MemberExpr>,
/// Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>,
/// Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>,
/// Matcher<TypedefType>, Matcher<UnresolvedUsingType>
inline internal::PolymorphicMatcherWithParam1<
internal::HasDeclarationMatcher, internal::Matcher<Decl>,
void(internal::HasDeclarationSupportedTypes)>
hasDeclaration(const internal::Matcher<Decl> &InnerMatcher) {
return internal::PolymorphicMatcherWithParam1<
internal::HasDeclarationMatcher, internal::Matcher<Decl>,
void(internal::HasDeclarationSupportedTypes)>(InnerMatcher);
}
/// \brief Matches a \c NamedDecl whose underlying declaration matches the given
/// matcher.
///
/// Given
/// \code
/// namespace N { template<class T> void f(T t); }
/// template <class T> void g() { using N::f; f(T()); }
/// \endcode
/// \c unresolvedLookupExpr(hasAnyDeclaration(
/// namedDecl(hasUnderlyingDecl(hasName("::N::f")))))
/// matches the use of \c f in \c g() .
AST_MATCHER_P(NamedDecl, hasUnderlyingDecl, internal::Matcher<NamedDecl>,
InnerMatcher) {
const NamedDecl *UnderlyingDecl = Node.getUnderlyingDecl();
return UnderlyingDecl != nullptr &&
InnerMatcher.matches(*UnderlyingDecl, Finder, Builder);
}
/// \brief Matches on the implicit object argument of a member call expression.
///
/// Example matches y.x()
/// (matcher = cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("Y"))))))
/// \code
/// class Y { public: void x(); };
/// void z() { Y y; y.x(); }",
/// \endcode
///
/// FIXME: Overload to allow directly matching types?
AST_MATCHER_P(CXXMemberCallExpr, on, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument()
->IgnoreParenImpCasts();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// \brief Matches on the receiver of an ObjectiveC Message expression.
///
/// Example
/// matcher = objCMessageExpr(hasRecieverType(asString("UIWebView *")));
/// matches the [webView ...] message invocation.
/// \code
/// NSString *webViewJavaScript = ...
/// UIWebView *webView = ...
/// [webView stringByEvaluatingJavaScriptFromString:webViewJavascript];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, hasReceiverType, internal::Matcher<QualType>,
InnerMatcher) {
const QualType TypeDecl = Node.getReceiverType();
return InnerMatcher.matches(TypeDecl, Finder, Builder);
}
/// \brief Matches when BaseName == Selector.getAsString()
///
/// matcher = objCMessageExpr(hasSelector("loadHTMLString:baseURL:"));
/// matches the outer message expr in the code below, but NOT the message
/// invocation for self.bodyView.
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, hasSelector, std::string, BaseName) {
Selector Sel = Node.getSelector();
return BaseName.compare(Sel.getAsString()) == 0;
}
/// \brief Matches ObjC selectors whose name contains
/// a substring matched by the given RegExp.
/// matcher = objCMessageExpr(matchesSelector("loadHTMLString\:baseURL?"));
/// matches the outer message expr in the code below, but NOT the message
/// invocation for self.bodyView.
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, matchesSelector, std::string, RegExp) {
assert(!RegExp.empty());
std::string SelectorString = Node.getSelector().getAsString();
llvm::Regex RE(RegExp);
return RE.match(SelectorString);
}
/// \brief Matches when the selector is the empty selector
///
/// Matches only when the selector of the objCMessageExpr is NULL. This may
/// represent an error condition in the tree!
AST_MATCHER(ObjCMessageExpr, hasNullSelector) {
return Node.getSelector().isNull();
}
/// \brief Matches when the selector is a Unary Selector
///
/// matcher = objCMessageExpr(matchesSelector(hasUnarySelector());
/// matches self.bodyView in the code below, but NOT the outer message
/// invocation of "loadHTMLString:baseURL:".
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER(ObjCMessageExpr, hasUnarySelector) {
return Node.getSelector().isUnarySelector();
}
/// \brief Matches when the selector is a keyword selector
///
/// objCMessageExpr(hasKeywordSelector()) matches the generated setFrame
/// message expression in
///
/// \code
/// UIWebView *webView = ...;
/// CGRect bodyFrame = webView.frame;
/// bodyFrame.size.height = self.bodyContentHeight;
/// webView.frame = bodyFrame;
/// // ^---- matches here
/// \endcode
AST_MATCHER(ObjCMessageExpr, hasKeywordSelector) {
return Node.getSelector().isKeywordSelector();
}
/// \brief Matches when the selector has the specified number of arguments
///
/// matcher = objCMessageExpr(numSelectorArgs(0));
/// matches self.bodyView in the code below
///
/// matcher = objCMessageExpr(numSelectorArgs(2));
/// matches the invocation of "loadHTMLString:baseURL:" but not that
/// of self.bodyView
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
AST_MATCHER_P(ObjCMessageExpr, numSelectorArgs, unsigned, N) {
return Node.getSelector().getNumArgs() == N;
}
/// \brief Matches if the call expression's callee expression matches.
///
/// Given
/// \code
/// class Y { void x() { this->x(); x(); Y y; y.x(); } };
/// void f() { f(); }
/// \endcode
/// callExpr(callee(expr()))
/// matches this->x(), x(), y.x(), f()
/// with callee(...)
/// matching this->x, x, y.x, f respectively
///
/// Note: Callee cannot take the more general internal::Matcher<Expr>
/// because this introduces ambiguous overloads with calls to Callee taking a
/// internal::Matcher<Decl>, as the matcher hierarchy is purely
/// implemented in terms of implicit casts.
AST_MATCHER_P(CallExpr, callee, internal::Matcher<Stmt>,
InnerMatcher) {
const Expr *ExprNode = Node.getCallee();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// \brief Matches if the call expression's callee's declaration matches the
/// given matcher.
///
/// Example matches y.x() (matcher = callExpr(callee(
/// cxxMethodDecl(hasName("x")))))
/// \code
/// class Y { public: void x(); };
/// void z() { Y y; y.x(); }
/// \endcode
AST_MATCHER_P_OVERLOAD(CallExpr, callee, internal::Matcher<Decl>, InnerMatcher,
1) {
return callExpr(hasDeclaration(InnerMatcher)).matches(Node, Finder, Builder);
}
/// \brief Matches if the expression's or declaration's type matches a type
/// matcher.
///
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
/// and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
/// and U (matcher = typedefDecl(hasType(asString("int")))
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// typedef int U;
/// \endcode
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
hasType, AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, TypedefNameDecl, ValueDecl),
internal::Matcher<QualType>, InnerMatcher, 0) {
return InnerMatcher.matches(internal::getUnderlyingType(Node),
Finder, Builder);
}
/// \brief Overloaded to match the declaration of the expression's or value
/// declaration's type.
///
/// In case of a value declaration (for example a variable declaration),
/// this resolves one layer of indirection. For example, in the value
/// declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of
/// X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the
/// declaration of x.
///
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
/// and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// \endcode
///
/// Usable as: Matcher<Expr>, Matcher<ValueDecl>
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(hasType,
AST_POLYMORPHIC_SUPPORTED_TYPES(Expr,
ValueDecl),
internal::Matcher<Decl>, InnerMatcher, 1) {
return qualType(hasDeclaration(InnerMatcher))
.matches(Node.getType(), Finder, Builder);
}
/// \brief Matches if the type location of the declarator decl's type matches
/// the inner matcher.
///
/// Given
/// \code
/// int x;
/// \endcode
/// declaratorDecl(hasTypeLoc(loc(asString("int"))))
/// matches int x
AST_MATCHER_P(DeclaratorDecl, hasTypeLoc, internal::Matcher<TypeLoc>, Inner) {
if (!Node.getTypeSourceInfo())
// This happens for example for implicit destructors.
return false;
return Inner.matches(Node.getTypeSourceInfo()->getTypeLoc(), Finder, Builder);
}
/// \brief Matches if the matched type is represented by the given string.
///
/// Given
/// \code
/// class Y { public: void x(); };
/// void z() { Y* y; y->x(); }
/// \endcode
/// cxxMemberCallExpr(on(hasType(asString("class Y *"))))
/// matches y->x()
AST_MATCHER_P(QualType, asString, std::string, Name) {
return Name == Node.getAsString();
}
/// \brief Matches if the matched type is a pointer type and the pointee type
/// matches the specified matcher.
///
/// Example matches y->x()
/// (matcher = cxxMemberCallExpr(on(hasType(pointsTo
/// cxxRecordDecl(hasName("Y")))))))
/// \code
/// class Y { public: void x(); };
/// void z() { Y *y; y->x(); }
/// \endcode
AST_MATCHER_P(
QualType, pointsTo, internal::Matcher<QualType>,
InnerMatcher) {
return (!Node.isNull() && Node->isAnyPointerType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// \brief Overloaded to match the pointee type's declaration.
AST_MATCHER_P_OVERLOAD(QualType, pointsTo, internal::Matcher<Decl>,
InnerMatcher, 1) {
return pointsTo(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// \brief Matches if the matched type is a reference type and the referenced
/// type matches the specified matcher.
///
/// Example matches X &x and const X &y
/// (matcher = varDecl(hasType(references(cxxRecordDecl(hasName("X"))))))
/// \code
/// class X {
/// void a(X b) {
/// X &x = b;
/// const X &y = b;
/// }
/// };
/// \endcode
AST_MATCHER_P(QualType, references, internal::Matcher<QualType>,
InnerMatcher) {
return (!Node.isNull() && Node->isReferenceType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// \brief Matches QualTypes whose canonical type matches InnerMatcher.
///
/// Given:
/// \code
/// typedef int &int_ref;
/// int a;
/// int_ref b = a;
/// \endcode
///
/// \c varDecl(hasType(qualType(referenceType()))))) will not match the
/// declaration of b but \c
/// varDecl(hasType(qualType(hasCanonicalType(referenceType())))))) does.
AST_MATCHER_P(QualType, hasCanonicalType, internal::Matcher<QualType>,
InnerMatcher) {
if (Node.isNull())
return false;
return InnerMatcher.matches(Node.getCanonicalType(), Finder, Builder);
}
/// \brief Overloaded to match the referenced type's declaration.
AST_MATCHER_P_OVERLOAD(QualType, references, internal::Matcher<Decl>,
InnerMatcher, 1) {
return references(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
AST_MATCHER_P(CXXMemberCallExpr, onImplicitObjectArgument,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// \brief Matches if the expression's type either matches the specified
/// matcher, or is a pointer to a type that matches the InnerMatcher.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<QualType>, InnerMatcher, 0) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// \brief Overloaded to match the type's declaration.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<Decl>, InnerMatcher, 1) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// \brief Matches a DeclRefExpr that refers to a declaration that matches the
/// specified matcher.
///
/// Example matches x in if(x)
/// (matcher = declRefExpr(to(varDecl(hasName("x")))))
/// \code
/// bool x;
/// if (x) {}
/// \endcode
AST_MATCHER_P(DeclRefExpr, to, internal::Matcher<Decl>,
InnerMatcher) {
const Decl *DeclNode = Node.getDecl();
return (DeclNode != nullptr &&
InnerMatcher.matches(*DeclNode, Finder, Builder));
}
/// \brief Matches a \c DeclRefExpr that refers to a declaration through a
/// specific using shadow declaration.
///
/// Given
/// \code
/// namespace a { void f() {} }
/// using a::f;
/// void g() {
/// f(); // Matches this ..
/// a::f(); // .. but not this.
/// }
/// \endcode
/// declRefExpr(throughUsingDecl(anything()))
/// matches \c f()
AST_MATCHER_P(DeclRefExpr, throughUsingDecl,
internal::Matcher<UsingShadowDecl>, InnerMatcher) {
const NamedDecl *FoundDecl = Node.getFoundDecl();
if (const UsingShadowDecl *UsingDecl = dyn_cast<UsingShadowDecl>(FoundDecl))
return InnerMatcher.matches(*UsingDecl, Finder, Builder);
return false;
}
/// \brief Matches an \c OverloadExpr if any of the declarations in the set of
/// overloads matches the given matcher.
///
/// Given
/// \code
/// template <typename T> void foo(T);
/// template <typename T> void bar(T);
/// template <typename T> void baz(T t) {
/// foo(t);
/// bar(t);
/// }
/// \endcode
/// unresolvedLookupExpr(hasAnyDeclaration(
/// functionTemplateDecl(hasName("foo"))))
/// matches \c foo in \c foo(t); but not \c bar in \c bar(t);
AST_MATCHER_P(OverloadExpr, hasAnyDeclaration, internal::Matcher<Decl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.decls_begin(),
Node.decls_end(), Finder, Builder);
}
/// \brief Matches the Decl of a DeclStmt which has a single declaration.
///
/// Given
/// \code
/// int a, b;
/// int c;
/// \endcode
/// declStmt(hasSingleDecl(anything()))
/// matches 'int c;' but not 'int a, b;'.
AST_MATCHER_P(DeclStmt, hasSingleDecl, internal::Matcher<Decl>, InnerMatcher) {
if (Node.isSingleDecl()) {
const Decl *FoundDecl = Node.getSingleDecl();
return InnerMatcher.matches(*FoundDecl, Finder, Builder);
}
return false;
}
/// \brief Matches a variable declaration that has an initializer expression
/// that matches the given matcher.
///
/// Example matches x (matcher = varDecl(hasInitializer(callExpr())))
/// \code
/// bool y() { return true; }
/// bool x = y();
/// \endcode
AST_MATCHER_P(
VarDecl, hasInitializer, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *Initializer = Node.getAnyInitializer();
return (Initializer != nullptr &&
InnerMatcher.matches(*Initializer, Finder, Builder));
}
/// \brief Matches a variable declaration that has function scope and is a
/// non-static local variable.
///
/// Example matches x (matcher = varDecl(hasLocalStorage())
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
AST_MATCHER(VarDecl, hasLocalStorage) {
return Node.hasLocalStorage();
}
/// \brief Matches a variable declaration that does not have local storage.
///
/// Example matches y and z (matcher = varDecl(hasGlobalStorage())
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
AST_MATCHER(VarDecl, hasGlobalStorage) {
return Node.hasGlobalStorage();
}
/// \brief Matches a variable declaration that has automatic storage duration.
///
/// Example matches x, but not y, z, or a.
/// (matcher = varDecl(hasAutomaticStorageDuration())
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
AST_MATCHER(VarDecl, hasAutomaticStorageDuration) {
return Node.getStorageDuration() == SD_Automatic;
}
/// \brief Matches a variable declaration that has static storage duration.
///
/// Example matches y and a, but not x or z.
/// (matcher = varDecl(hasStaticStorageDuration())
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
AST_MATCHER(VarDecl, hasStaticStorageDuration) {
return Node.getStorageDuration() == SD_Static;
}
/// \brief Matches a variable declaration that has thread storage duration.
///
/// Example matches z, but not x, z, or a.
/// (matcher = varDecl(hasThreadStorageDuration())
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
AST_MATCHER(VarDecl, hasThreadStorageDuration) {
return Node.getStorageDuration() == SD_Thread;
}
/// \brief Matches a variable declaration that is an exception variable from
/// a C++ catch block, or an Objective-C \@catch statement.
///
/// Example matches x (matcher = varDecl(isExceptionVariable())
/// \code
/// void f(int y) {
/// try {
/// } catch (int x) {
/// }
/// }
/// \endcode
AST_MATCHER(VarDecl, isExceptionVariable) {
return Node.isExceptionVariable();
}
/// \brief Checks that a call expression or a constructor call expression has
/// a specific number of arguments (including absent default arguments).
///
/// Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2)))
/// \code
/// void f(int x, int y);
/// f(0, 0);
/// \endcode
AST_POLYMORPHIC_MATCHER_P(argumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr,
ObjCMessageExpr),
unsigned, N) {
return Node.getNumArgs() == N;
}
/// \brief Matches the n'th argument of a call expression or a constructor
/// call expression.
///
/// Example matches y in x(y)
/// (matcher = callExpr(hasArgument(0, declRefExpr())))
/// \code
/// void x(int) { int y; x(y); }
/// \endcode
AST_POLYMORPHIC_MATCHER_P2(hasArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr,
ObjCMessageExpr),
unsigned, N, internal::Matcher<Expr>, InnerMatcher) {
return (N < Node.getNumArgs() &&
InnerMatcher.matches(
*Node.getArg(N)->IgnoreParenImpCasts(), Finder, Builder));
}
/// \brief Matches declaration statements that contain a specific number of
/// declarations.
///
/// Example: Given
/// \code
/// int a, b;
/// int c;
/// int d = 2, e;
/// \endcode
/// declCountIs(2)
/// matches 'int a, b;' and 'int d = 2, e;', but not 'int c;'.
AST_MATCHER_P(DeclStmt, declCountIs, unsigned, N) {
return std::distance(Node.decl_begin(), Node.decl_end()) == (ptrdiff_t)N;
}
/// \brief Matches the n'th declaration of a declaration statement.
///
/// Note that this does not work for global declarations because the AST
/// breaks up multiple-declaration DeclStmt's into multiple single-declaration
/// DeclStmt's.
/// Example: Given non-global declarations
/// \code
/// int a, b = 0;
/// int c;
/// int d = 2, e;
/// \endcode
/// declStmt(containsDeclaration(
/// 0, varDecl(hasInitializer(anything()))))
/// matches only 'int d = 2, e;', and
/// declStmt(containsDeclaration(1, varDecl()))
/// \code
/// matches 'int a, b = 0' as well as 'int d = 2, e;'
/// but 'int c;' is not matched.
/// \endcode
AST_MATCHER_P2(DeclStmt, containsDeclaration, unsigned, N,
internal::Matcher<Decl>, InnerMatcher) {
const unsigned NumDecls = std::distance(Node.decl_begin(), Node.decl_end());
if (N >= NumDecls)
return false;
DeclStmt::const_decl_iterator Iterator = Node.decl_begin();
std::advance(Iterator, N);
return InnerMatcher.matches(**Iterator, Finder, Builder);
}
/// \brief Matches a C++ catch statement that has a catch-all handler.
///
/// Given
/// \code
/// try {
/// // ...
/// } catch (int) {
/// // ...
/// } catch (...) {
/// // ...
/// }
/// /endcode
/// cxxCatchStmt(isCatchAll()) matches catch(...) but not catch(int).
AST_MATCHER(CXXCatchStmt, isCatchAll) {
return Node.getExceptionDecl() == nullptr;
}
/// \brief Matches a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(
/// hasAnyConstructorInitializer(anything())
/// )))
/// record matches Foo, hasAnyConstructorInitializer matches foo_(1)
AST_MATCHER_P(CXXConstructorDecl, hasAnyConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.init_begin(),
Node.init_end(), Finder, Builder);
}
/// \brief Matches the field declaration of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
/// forField(hasName("foo_"))))))
/// matches Foo
/// with forField matching foo_
AST_MATCHER_P(CXXCtorInitializer, forField,
internal::Matcher<FieldDecl>, InnerMatcher) {
const FieldDecl *NodeAsDecl = Node.getMember();
return (NodeAsDecl != nullptr &&
InnerMatcher.matches(*NodeAsDecl, Finder, Builder));
}
/// \brief Matches the initializer expression of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
/// withInitializer(integerLiteral(equals(1)))))))
/// matches Foo
/// with withInitializer matching (1)
AST_MATCHER_P(CXXCtorInitializer, withInitializer,
internal::Matcher<Expr>, InnerMatcher) {
const Expr* NodeAsExpr = Node.getInit();
return (NodeAsExpr != nullptr &&
InnerMatcher.matches(*NodeAsExpr, Finder, Builder));
}
/// \brief Matches a constructor initializer if it is explicitly written in
/// code (as opposed to implicitly added by the compiler).
///
/// Given
/// \code
/// struct Foo {
/// Foo() { }
/// Foo(int) : foo_("A") { }
/// string foo_;
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isWritten()))
/// will match Foo(int), but not Foo()
AST_MATCHER(CXXCtorInitializer, isWritten) {
return Node.isWritten();
}
/// \brief Matches a constructor initializer if it is initializing a base, as
/// opposed to a member.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isBaseInitializer()))
/// will match E(), but not match D(int).
AST_MATCHER(CXXCtorInitializer, isBaseInitializer) {
return Node.isBaseInitializer();
}
/// \brief Matches a constructor initializer if it is initializing a member, as
/// opposed to a base.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// cxxConstructorDecl(hasAnyConstructorInitializer(isMemberInitializer()))
/// will match D(int), but not match E().
AST_MATCHER(CXXCtorInitializer, isMemberInitializer) {
return Node.isMemberInitializer();
}
/// \brief Matches any argument of a call expression or a constructor call
/// expression.
///
/// Given
/// \code
/// void x(int, int, int) { int y; x(1, y, 42); }
/// \endcode
/// callExpr(hasAnyArgument(declRefExpr()))
/// matches x(1, y, 42)
/// with hasAnyArgument(...)
/// matching y
AST_POLYMORPHIC_MATCHER_P(hasAnyArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, InnerMatcher) {
for (const Expr *Arg : Node.arguments()) {
BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// \brief Matches a constructor call expression which uses list initialization.
AST_MATCHER(CXXConstructExpr, isListInitialization) {
return Node.isListInitialization();
}
/// \brief Matches a constructor call expression which requires
/// zero initialization.
///
/// Given
/// \code
/// void foo() {
/// struct point { double x; double y; };
/// point pt[2] = { { 1.0, 2.0 } };
/// }
/// \endcode
/// initListExpr(has(cxxConstructExpr(requiresZeroInitialization()))
/// will match the implicit array filler for pt[1].
AST_MATCHER(CXXConstructExpr, requiresZeroInitialization) {
return Node.requiresZeroInitialization();
}
/// \brief Matches the n'th parameter of a function declaration.
///
/// Given
/// \code
/// class X { void f(int x) {} };
/// \endcode
/// cxxMethodDecl(hasParameter(0, hasType(varDecl())))
/// matches f(int x) {}
/// with hasParameter(...)
/// matching int x
AST_MATCHER_P2(FunctionDecl, hasParameter,
unsigned, N, internal::Matcher<ParmVarDecl>,
InnerMatcher) {
return (N < Node.getNumParams() &&
InnerMatcher.matches(
*Node.getParamDecl(N), Finder, Builder));
}
/// \brief Matches all arguments and their respective ParmVarDecl.
///
/// Given
/// \code
/// void f(int i);
/// int y;
/// f(y);
/// \endcode
/// callExpr(
/// forEachArgumentWithParam(
/// declRefExpr(to(varDecl(hasName("y")))),
/// parmVarDecl(hasType(isInteger()))
/// ))
/// matches f(y);
/// with declRefExpr(...)
/// matching int y
/// and parmVarDecl(...)
/// matching int i
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParam,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, ArgMatcher,
internal::Matcher<ParmVarDecl>, ParamMatcher) {
BoundNodesTreeBuilder Result;
// The first argument of an overloaded member operator is the implicit object
// argument of the method which should not be matched against a parameter, so
// we skip over it here.
BoundNodesTreeBuilder Matches;
unsigned ArgIndex = cxxOperatorCallExpr(callee(cxxMethodDecl()))
.matches(Node, Finder, &Matches)
? 1
: 0;
int ParamIndex = 0;
bool Matched = false;
for (; ArgIndex < Node.getNumArgs(); ++ArgIndex) {
BoundNodesTreeBuilder ArgMatches(*Builder);
if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()),
Finder, &ArgMatches)) {
BoundNodesTreeBuilder ParamMatches(ArgMatches);
if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
hasParameter(ParamIndex, ParamMatcher)))),
callExpr(callee(functionDecl(
hasParameter(ParamIndex, ParamMatcher))))))
.matches(Node, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
}
}
++ParamIndex;
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches any parameter of a function declaration.
///
/// Does not match the 'this' parameter of a method.
///
/// Given
/// \code
/// class X { void f(int x, int y, int z) {} };
/// \endcode
/// cxxMethodDecl(hasAnyParameter(hasName("y")))
/// matches f(int x, int y, int z) {}
/// with hasAnyParameter(...)
/// matching int y
AST_MATCHER_P(FunctionDecl, hasAnyParameter,
internal::Matcher<ParmVarDecl>, InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.param_begin(),
Node.param_end(), Finder, Builder);
}
/// \brief Matches \c FunctionDecls and \c FunctionProtoTypes that have a
/// specific parameter count.
///
/// Given
/// \code
/// void f(int i) {}
/// void g(int i, int j) {}
/// void h(int i, int j);
/// void j(int i);
/// void k(int x, int y, int z, ...);
/// \endcode
/// functionDecl(parameterCountIs(2))
/// matches void g(int i, int j) {}
/// functionProtoType(parameterCountIs(2))
/// matches void h(int i, int j)
/// functionProtoType(parameterCountIs(3))
/// matches void k(int x, int y, int z, ...);
AST_POLYMORPHIC_MATCHER_P(parameterCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType),
unsigned, N) {
return Node.getNumParams() == N;
}
/// \brief Matches the return type of a function declaration.
///
/// Given:
/// \code
/// class X { int f() { return 1; } };
/// \endcode
/// cxxMethodDecl(returns(asString("int")))
/// matches int f() { return 1; }
AST_MATCHER_P(FunctionDecl, returns,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getReturnType(), Finder, Builder);
}
/// \brief Matches extern "C" function declarations.
///
/// Given:
/// \code
/// extern "C" void f() {}
/// extern "C" { void g() {} }
/// void h() {}
/// \endcode
/// functionDecl(isExternC())
/// matches the declaration of f and g, but not the declaration h
AST_POLYMORPHIC_MATCHER(isExternC, AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
VarDecl)) {
return Node.isExternC();
}
/// \brief Matches deleted function declarations.
///
/// Given:
/// \code
/// void Func();
/// void DeletedFunc() = delete;
/// \endcode
/// functionDecl(isDeleted())
/// matches the declaration of DeletedFunc, but not Func.
AST_MATCHER(FunctionDecl, isDeleted) {
return Node.isDeleted();
}
/// \brief Matches defaulted function declarations.
///
/// Given:
/// \code
/// class A { ~A(); };
/// class B { ~B() = default; };
/// \endcode
/// functionDecl(isDefaulted())
/// matches the declaration of ~B, but not ~A.
AST_MATCHER(FunctionDecl, isDefaulted) {
return Node.isDefaulted();
}
/// \brief Matches functions that have a dynamic exception specification.
///
/// Given:
/// \code
/// void f();
/// void g() noexcept;
/// void h() noexcept(true);
/// void i() noexcept(false);
/// void j() throw();
/// void k() throw(int);
/// void l() throw(...);
/// \endcode
/// functionDecl(hasDynamicExceptionSpec()) and
/// functionProtoType(hasDynamicExceptionSpec())
/// match the declarations of j, k, and l, but not f, g, h, or i.
AST_POLYMORPHIC_MATCHER(hasDynamicExceptionSpec,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
if (const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node))
return FnTy->hasDynamicExceptionSpec();
return false;
}
/// \brief Matches functions that have a non-throwing exception specification.
///
/// Given:
/// \code
/// void f();
/// void g() noexcept;
/// void h() throw();
/// void i() throw(int);
/// void j() noexcept(false);
/// \endcode
/// functionDecl(isNoThrow()) and functionProtoType(isNoThrow())
/// match the declarations of g, and h, but not f, i or j.
AST_POLYMORPHIC_MATCHER(isNoThrow,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node);
// If the function does not have a prototype, then it is assumed to be a
// throwing function (as it would if the function did not have any exception
// specification).
if (!FnTy)
return false;
// Assume the best for any unresolved exception specification.
if (isUnresolvedExceptionSpec(FnTy->getExceptionSpecType()))
return true;
return FnTy->isNothrow(Finder->getASTContext());
}
/// \brief Matches constexpr variable and function declarations.
///
/// Given:
/// \code
/// constexpr int foo = 42;
/// constexpr int bar();
/// \endcode
/// varDecl(isConstexpr())
/// matches the declaration of foo.
/// functionDecl(isConstexpr())
/// matches the declaration of bar.
AST_POLYMORPHIC_MATCHER(isConstexpr,
AST_POLYMORPHIC_SUPPORTED_TYPES(VarDecl,
FunctionDecl)) {
return Node.isConstexpr();
}
/// \brief Matches the condition expression of an if statement, for loop,
/// switch statement or conditional operator.
///
/// Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true))))
/// \code
/// if (true) {}
/// \endcode
AST_POLYMORPHIC_MATCHER_P(
hasCondition,
AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, ForStmt, WhileStmt, DoStmt,
SwitchStmt, AbstractConditionalOperator),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const Condition = Node.getCond();
return (Condition != nullptr &&
InnerMatcher.matches(*Condition, Finder, Builder));
}
/// \brief Matches the then-statement of an if statement.
///
/// Examples matches the if statement
/// (matcher = ifStmt(hasThen(cxxBoolLiteral(equals(true)))))
/// \code
/// if (false) true; else false;
/// \endcode
AST_MATCHER_P(IfStmt, hasThen, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Then = Node.getThen();
return (Then != nullptr && InnerMatcher.matches(*Then, Finder, Builder));
}
/// \brief Matches the else-statement of an if statement.
///
/// Examples matches the if statement
/// (matcher = ifStmt(hasElse(cxxBoolLiteral(equals(true)))))
/// \code
/// if (false) false; else true;
/// \endcode
AST_MATCHER_P(IfStmt, hasElse, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Else = Node.getElse();
return (Else != nullptr && InnerMatcher.matches(*Else, Finder, Builder));
}
/// \brief Matches if a node equals a previously bound node.
///
/// Matches a node if it equals the node previously bound to \p ID.
///
/// Given
/// \code
/// class X { int a; int b; };
/// \endcode
/// cxxRecordDecl(
/// has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
/// has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))
/// matches the class \c X, as \c a and \c b have the same type.
///
/// Note that when multiple matches are involved via \c forEach* matchers,
/// \c equalsBoundNodes acts as a filter.
/// For example:
/// compoundStmt(
/// forEachDescendant(varDecl().bind("d")),
/// forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d"))))))
/// will trigger a match for each combination of variable declaration
/// and reference to that variable declaration within a compound statement.
AST_POLYMORPHIC_MATCHER_P(equalsBoundNode,
AST_POLYMORPHIC_SUPPORTED_TYPES(Stmt, Decl, Type,
QualType),
std::string, ID) {
// FIXME: Figure out whether it makes sense to allow this
// on any other node types.
// For *Loc it probably does not make sense, as those seem
// unique. For NestedNameSepcifier it might make sense, as
// those also have pointer identity, but I'm not sure whether
// they're ever reused.
internal::NotEqualsBoundNodePredicate Predicate;
Predicate.ID = ID;
Predicate.Node = ast_type_traits::DynTypedNode::create(Node);
return Builder->removeBindings(Predicate);
}
/// \brief Matches the condition variable statement in an if statement.
///
/// Given
/// \code
/// if (A* a = GetAPointer()) {}
/// \endcode
/// hasConditionVariableStatement(...)
/// matches 'A* a = GetAPointer()'.
AST_MATCHER_P(IfStmt, hasConditionVariableStatement,
internal::Matcher<DeclStmt>, InnerMatcher) {
const DeclStmt* const DeclarationStatement =
Node.getConditionVariableDeclStmt();
return DeclarationStatement != nullptr &&
InnerMatcher.matches(*DeclarationStatement, Finder, Builder);
}
/// \brief Matches the index expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// arraySubscriptExpression(hasIndex(integerLiteral()))
/// matches \c i[1] with the \c integerLiteral() matching \c 1
AST_MATCHER_P(ArraySubscriptExpr, hasIndex,
internal::Matcher<Expr>, InnerMatcher) {
if (const Expr* Expression = Node.getIdx())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// \brief Matches the base expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// arraySubscriptExpression(hasBase(implicitCastExpr(
/// hasSourceExpression(declRefExpr()))))
/// matches \c i[1] with the \c declRefExpr() matching \c i
AST_MATCHER_P(ArraySubscriptExpr, hasBase,
internal::Matcher<Expr>, InnerMatcher) {
if (const Expr* Expression = Node.getBase())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// \brief Matches a 'for', 'while', 'do while' statement or a function
/// definition that has a given body.
///
/// Given
/// \code
/// for (;;) {}
/// \endcode
/// hasBody(compoundStmt())
/// matches 'for (;;) {}'
/// with compoundStmt()
/// matching '{}'
AST_POLYMORPHIC_MATCHER_P(hasBody,
AST_POLYMORPHIC_SUPPORTED_TYPES(DoStmt, ForStmt,
WhileStmt,
CXXForRangeStmt,
FunctionDecl),
internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Statement = internal::GetBodyMatcher<NodeType>::get(Node);
return (Statement != nullptr &&
InnerMatcher.matches(*Statement, Finder, Builder));
}
/// \brief Matches compound statements where at least one substatement matches
/// a given matcher. Also matches StmtExprs that have CompoundStmt as children.
///
/// Given
/// \code
/// { {}; 1+2; }
/// \endcode
/// hasAnySubstatement(compoundStmt())
/// matches '{ {}; 1+2; }'
/// with compoundStmt()
/// matching '{}'
AST_POLYMORPHIC_MATCHER_P(hasAnySubstatement,
AST_POLYMORPHIC_SUPPORTED_TYPES(CompoundStmt,
StmtExpr),
internal::Matcher<Stmt>, InnerMatcher) {
const CompoundStmt *CS = CompoundStmtMatcher<NodeType>::get(Node);
return CS && matchesFirstInPointerRange(InnerMatcher, CS->body_begin(),
CS->body_end(), Finder, Builder);
}
/// \brief Checks that a compound statement contains a specific number of
/// child statements.
///
/// Example: Given
/// \code
/// { for (;;) {} }
/// \endcode
/// compoundStmt(statementCountIs(0)))
/// matches '{}'
/// but does not match the outer compound statement.
AST_MATCHER_P(CompoundStmt, statementCountIs, unsigned, N) {
return Node.size() == N;
}
/// \brief Matches literals that are equal to the given value.
///
/// Example matches true (matcher = cxxBoolLiteral(equals(true)))
/// \code
/// true
/// \endcode
///
/// Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteral>,
/// Matcher<FloatingLiteral>, Matcher<IntegerLiteral>
template <typename ValueT>
internal::PolymorphicMatcherWithParam1<internal::ValueEqualsMatcher, ValueT>
equals(const ValueT &Value) {
return internal::PolymorphicMatcherWithParam1<
internal::ValueEqualsMatcher,
ValueT>(Value);
}
/// \brief Matches the operator Name of operator expressions (binary or
/// unary).
///
/// Example matches a || b (matcher = binaryOperator(hasOperatorName("||")))
/// \code
/// !(a || b)
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasOperatorName,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator,
UnaryOperator),
std::string, Name) {
return Name == Node.getOpcodeStr(Node.getOpcode());
}
/// \brief Matches the left hand side of binary operator expressions.
///
/// Example matches a (matcher = binaryOperator(hasLHS()))
/// \code
/// a || b
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasLHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator,
ArraySubscriptExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *LeftHandSide = Node.getLHS();
return (LeftHandSide != nullptr &&
InnerMatcher.matches(*LeftHandSide, Finder, Builder));
}
/// \brief Matches the right hand side of binary operator expressions.
///
/// Example matches b (matcher = binaryOperator(hasRHS()))
/// \code
/// a || b
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasRHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator,
ArraySubscriptExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *RightHandSide = Node.getRHS();
return (RightHandSide != nullptr &&
InnerMatcher.matches(*RightHandSide, Finder, Builder));
}
/// \brief Matches if either the left hand side or the right hand side of a
/// binary operator matches.
inline internal::Matcher<BinaryOperator> hasEitherOperand(
const internal::Matcher<Expr> &InnerMatcher) {
return anyOf(hasLHS(InnerMatcher), hasRHS(InnerMatcher));
}
/// \brief Matches if the operand of a unary operator matches.
///
/// Example matches true (matcher = hasUnaryOperand(
/// cxxBoolLiteral(equals(true))))
/// \code
/// !true
/// \endcode
AST_MATCHER_P(UnaryOperator, hasUnaryOperand,
internal::Matcher<Expr>, InnerMatcher) {
const Expr * const Operand = Node.getSubExpr();
return (Operand != nullptr &&
InnerMatcher.matches(*Operand, Finder, Builder));
}
/// \brief Matches if the cast's source expression
/// or opaque value's source expression matches the given matcher.
///
/// Example 1: matches "a string"
/// (matcher = castExpr(hasSourceExpression(cxxConstructExpr())))
/// \code
/// class URL { URL(string); };
/// URL url = "a string";
/// \endcode
///
/// Example 2: matches 'b' (matcher =
/// opaqueValueExpr(hasSourceExpression(implicitCastExpr(declRefExpr())))
/// \code
/// int a = b ?: 1;
/// \endcode
AST_POLYMORPHIC_MATCHER_P(hasSourceExpression,
AST_POLYMORPHIC_SUPPORTED_TYPES(CastExpr,
OpaqueValueExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const SubExpression =
internal::GetSourceExpressionMatcher<NodeType>::get(Node);
return (SubExpression != nullptr &&
InnerMatcher.matches(*SubExpression, Finder, Builder));
}
/// \brief Matches casts that has a given cast kind.
///
/// Example: matches the implicit cast around \c 0
/// (matcher = castExpr(hasCastKind(CK_NullToPointer)))
/// \code
/// int *p = 0;
/// \endcode
AST_MATCHER_P(CastExpr, hasCastKind, CastKind, Kind) {
return Node.getCastKind() == Kind;
}
/// \brief Matches casts whose destination type matches a given matcher.
///
/// (Note: Clang's AST refers to other conversions as "casts" too, and calls
/// actual casts "explicit" casts.)
AST_MATCHER_P(ExplicitCastExpr, hasDestinationType,
internal::Matcher<QualType>, InnerMatcher) {
const QualType NodeType = Node.getTypeAsWritten();
return InnerMatcher.matches(NodeType, Finder, Builder);
}
/// \brief Matches implicit casts whose destination type matches a given
/// matcher.
///
/// FIXME: Unit test this matcher
AST_MATCHER_P(ImplicitCastExpr, hasImplicitDestinationType,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getType(), Finder, Builder);
}
/// \brief Matches RecordDecl object that are spelled with "struct."
///
/// Example matches S, but not C or U.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// \endcode
AST_MATCHER(RecordDecl, isStruct) {
return Node.isStruct();
}
/// \brief Matches RecordDecl object that are spelled with "union."
///
/// Example matches U, but not C or S.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// \endcode
AST_MATCHER(RecordDecl, isUnion) {
return Node.isUnion();
}
/// \brief Matches RecordDecl object that are spelled with "class."
///
/// Example matches C, but not S or U.
/// \code
/// struct S {};
/// class C {};
/// union U {};
/// \endcode
AST_MATCHER(RecordDecl, isClass) {
return Node.isClass();
}
/// \brief Matches the true branch expression of a conditional operator.
///
/// Example 1 (conditional ternary operator): matches a
/// \code
/// condition ? a : b
/// \endcode
///
/// Example 2 (conditional binary operator): matches opaqueValueExpr(condition)
/// \code
/// condition ?: b
/// \endcode
AST_MATCHER_P(AbstractConditionalOperator, hasTrueExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getTrueExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// \brief Matches the false branch expression of a conditional operator
/// (binary or ternary).
///
/// Example matches b
/// \code
/// condition ? a : b
/// condition ?: b
/// \endcode
AST_MATCHER_P(AbstractConditionalOperator, hasFalseExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getFalseExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// \brief Matches if a declaration has a body attached.
///
/// Example matches A, va, fa
/// \code
/// class A {};
/// class B; // Doesn't match, as it has no body.
/// int va;
/// extern int vb; // Doesn't match, as it doesn't define the variable.
/// void fa() {}
/// void fb(); // Doesn't match, as it has no body.
/// \endcode
///
/// Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>
AST_POLYMORPHIC_MATCHER(isDefinition,
AST_POLYMORPHIC_SUPPORTED_TYPES(TagDecl, VarDecl,
FunctionDecl)) {
return Node.isThisDeclarationADefinition();
}
/// \brief Matches if a function declaration is variadic.
///
/// Example matches f, but not g or h. The function i will not match, even when
/// compiled in C mode.
/// \code
/// void f(...);
/// void g(int);
/// template <typename... Ts> void h(Ts...);
/// void i();
/// \endcode
AST_MATCHER(FunctionDecl, isVariadic) {
return Node.isVariadic();
}
/// \brief Matches the class declaration that the given method declaration
/// belongs to.
///
/// FIXME: Generalize this for other kinds of declarations.
/// FIXME: What other kind of declarations would we need to generalize
/// this to?
///
/// Example matches A() in the last line
/// (matcher = cxxConstructExpr(hasDeclaration(cxxMethodDecl(
/// ofClass(hasName("A"))))))
/// \code
/// class A {
/// public:
/// A();
/// };
/// A a = A();
/// \endcode
AST_MATCHER_P(CXXMethodDecl, ofClass,
internal::Matcher<CXXRecordDecl>, InnerMatcher) {
const CXXRecordDecl *Parent = Node.getParent();
return (Parent != nullptr &&
InnerMatcher.matches(*Parent, Finder, Builder));
}
/// \brief Matches each method overriden by the given method. This matcher may
/// produce multiple matches.
///
/// Given
/// \code
/// class A { virtual void f(); };
/// class B : public A { void f(); };
/// class C : public B { void f(); };
/// \endcode
/// cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
/// matches once, with "b" binding "A::f" and "d" binding "C::f" (Note
/// that B::f is not overridden by C::f).
///
/// The check can produce multiple matches in case of multiple inheritance, e.g.
/// \code
/// class A1 { virtual void f(); };
/// class A2 { virtual void f(); };
/// class C : public A1, public A2 { void f(); };
/// \endcode
/// cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
/// matches twice, once with "b" binding "A1::f" and "d" binding "C::f", and
/// once with "b" binding "A2::f" and "d" binding "C::f".
AST_MATCHER_P(CXXMethodDecl, forEachOverridden,
internal::Matcher<CXXMethodDecl>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *Overridden : Node.overridden_methods()) {
BoundNodesTreeBuilder OverriddenBuilder(*Builder);
const bool OverriddenMatched =
InnerMatcher.matches(*Overridden, Finder, &OverriddenBuilder);
if (OverriddenMatched) {
Matched = true;
Result.addMatch(OverriddenBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches if the given method declaration is virtual.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// \endcode
/// matches A::x
AST_MATCHER(CXXMethodDecl, isVirtual) {
return Node.isVirtual();
}
/// \brief Matches if the given method declaration has an explicit "virtual".
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// void x();
/// };
/// \endcode
/// matches A::x but not B::x
AST_MATCHER(CXXMethodDecl, isVirtualAsWritten) {
return Node.isVirtualAsWritten();
}
/// \brief Matches if the given method or class declaration is final.
///
/// Given:
/// \code
/// class A final {};
///
/// struct B {
/// virtual void f();
/// };
///
/// struct C : B {
/// void f() final;
/// };
/// \endcode
/// matches A and C::f, but not B, C, or B::f
AST_POLYMORPHIC_MATCHER(isFinal,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl,
CXXMethodDecl)) {
return Node.template hasAttr<FinalAttr>();
}
/// \brief Matches if the given method declaration is pure.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x() = 0;
/// };
/// \endcode
/// matches A::x
AST_MATCHER(CXXMethodDecl, isPure) {
return Node.isPure();
}
/// \brief Matches if the given method declaration is const.
///
/// Given
/// \code
/// struct A {
/// void foo() const;
/// void bar();
/// };
/// \endcode
///
/// cxxMethodDecl(isConst()) matches A::foo() but not A::bar()
AST_MATCHER(CXXMethodDecl, isConst) {
return Node.isConst();
}
/// \brief Matches if the given method declaration declares a copy assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
///
/// cxxMethodDecl(isCopyAssignmentOperator()) matches the first method but not
/// the second one.
AST_MATCHER(CXXMethodDecl, isCopyAssignmentOperator) {
return Node.isCopyAssignmentOperator();
}
/// \brief Matches if the given method declaration declares a move assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
///
/// cxxMethodDecl(isMoveAssignmentOperator()) matches the second method but not
/// the first one.
AST_MATCHER(CXXMethodDecl, isMoveAssignmentOperator) {
return Node.isMoveAssignmentOperator();
}
/// \brief Matches if the given method declaration overrides another method.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// virtual void x();
/// };
/// \endcode
/// matches B::x
AST_MATCHER(CXXMethodDecl, isOverride) {
return Node.size_overridden_methods() > 0 || Node.hasAttr<OverrideAttr>();
}
/// \brief Matches method declarations that are user-provided.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &) = default; // #2
/// S(S &&) = delete; // #3
/// };
/// \endcode
/// cxxConstructorDecl(isUserProvided()) will match #1, but not #2 or #3.
AST_MATCHER(CXXMethodDecl, isUserProvided) {
return Node.isUserProvided();
}
/// \brief Matches member expressions that are called with '->' as opposed
/// to '.'.
///
/// Member calls on the implicit this pointer match as called with '->'.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// int a;
/// static int b;
/// };
/// \endcode
/// memberExpr(isArrow())
/// matches this->x, x, y.x, a, this->b
AST_MATCHER(MemberExpr, isArrow) {
return Node.isArrow();
}
/// \brief Matches QualType nodes that are of integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isInteger())))
/// matches "a(int)", "b(long)", but not "c(double)".
AST_MATCHER(QualType, isInteger) {
return Node->isIntegerType();
}
/// \brief Matches QualType nodes that are of unsigned integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isInteger())))
/// matches "b(unsigned long)", but not "a(int)" and "c(double)".
AST_MATCHER(QualType, isUnsignedInteger) {
return Node->isUnsignedIntegerType();
}
/// \brief Matches QualType nodes that are of signed integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isInteger())))
/// matches "a(int)", but not "b(unsigned long)" and "c(double)".
AST_MATCHER(QualType, isSignedInteger) {
return Node->isSignedIntegerType();
}
/// \brief Matches QualType nodes that are of character type.
///
/// Given
/// \code
/// void a(char);
/// void b(wchar_t);
/// void c(double);
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isAnyCharacter())))
/// matches "a(char)", "b(wchar_t)", but not "c(double)".
AST_MATCHER(QualType, isAnyCharacter) {
return Node->isAnyCharacterType();
}
/// \brief Matches QualType nodes that are of any pointer type; this includes
/// the Objective-C object pointer type, which is different despite being
/// syntactically similar.
///
/// Given
/// \code
/// int *i = nullptr;
///
/// @interface Foo
/// @end
/// Foo *f;
///
/// int j;
/// \endcode
/// varDecl(hasType(isAnyPointer()))
/// matches "int *i" and "Foo *f", but not "int j".
AST_MATCHER(QualType, isAnyPointer) {
return Node->isAnyPointerType();
}
/// \brief Matches QualType nodes that are const-qualified, i.e., that
/// include "top-level" const.
///
/// Given
/// \code
/// void a(int);
/// void b(int const);
/// void c(const int);
/// void d(const int*);
/// void e(int const) {};
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isConstQualified())))
/// matches "void b(int const)", "void c(const int)" and
/// "void e(int const) {}". It does not match d as there
/// is no top-level const on the parameter type "const int *".
AST_MATCHER(QualType, isConstQualified) {
return Node.isConstQualified();
}
/// \brief Matches QualType nodes that are volatile-qualified, i.e., that
/// include "top-level" volatile.
///
/// Given
/// \code
/// void a(int);
/// void b(int volatile);
/// void c(volatile int);
/// void d(volatile int*);
/// void e(int volatile) {};
/// \endcode
/// functionDecl(hasAnyParameter(hasType(isVolatileQualified())))
/// matches "void b(int volatile)", "void c(volatile int)" and
/// "void e(int volatile) {}". It does not match d as there
/// is no top-level volatile on the parameter type "volatile int *".
AST_MATCHER(QualType, isVolatileQualified) {
return Node.isVolatileQualified();
}
/// \brief Matches QualType nodes that have local CV-qualifiers attached to
/// the node, not hidden within a typedef.
///
/// Given
/// \code
/// typedef const int const_int;
/// const_int i;
/// int *const j;
/// int *volatile k;
/// int m;
/// \endcode
/// \c varDecl(hasType(hasLocalQualifiers())) matches only \c j and \c k.
/// \c i is const-qualified but the qualifier is not local.
AST_MATCHER(QualType, hasLocalQualifiers) {
return Node.hasLocalQualifiers();
}
/// \brief Matches a member expression where the member is matched by a
/// given matcher.
///
/// Given
/// \code
/// struct { int first, second; } first, second;
/// int i(second.first);
/// int j(first.second);
/// \endcode
/// memberExpr(member(hasName("first")))
/// matches second.first
/// but not first.second (because the member name there is "second").
AST_MATCHER_P(MemberExpr, member,
internal::Matcher<ValueDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getMemberDecl(), Finder, Builder);
}
/// \brief Matches a member expression where the object expression is
/// matched by a given matcher.
///
/// Given
/// \code
/// struct X { int m; };
/// void f(X x) { x.m; m; }
/// \endcode
/// memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X")))))))
/// matches "x.m" and "m"
/// with hasObjectExpression(...)
/// matching "x" and the implicit object expression of "m" which has type X*.
AST_MATCHER_P(MemberExpr, hasObjectExpression,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.getBase(), Finder, Builder);
}
/// \brief Matches any using shadow declaration.
///
/// Given
/// \code
/// namespace X { void b(); }
/// using X::b;
/// \endcode
/// usingDecl(hasAnyUsingShadowDecl(hasName("b"))))
/// matches \code using X::b \endcode
AST_MATCHER_P(UsingDecl, hasAnyUsingShadowDecl,
internal::Matcher<UsingShadowDecl>, InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.shadow_begin(),
Node.shadow_end(), Finder, Builder);
}
/// \brief Matches a using shadow declaration where the target declaration is
/// matched by the given matcher.
///
/// Given
/// \code
/// namespace X { int a; void b(); }
/// using X::a;
/// using X::b;
/// \endcode
/// usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(functionDecl())))
/// matches \code using X::b \endcode
/// but not \code using X::a \endcode
AST_MATCHER_P(UsingShadowDecl, hasTargetDecl,
internal::Matcher<NamedDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getTargetDecl(), Finder, Builder);
}
/// \brief Matches template instantiations of function, class, or static
/// member variable template instantiations.
///
/// Given
/// \code
/// template <typename T> class X {}; class A {}; X<A> x;
/// \endcode
/// or
/// \code
/// template <typename T> class X {}; class A {}; template class X<A>;
/// \endcode
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
/// matches the template instantiation of X<A>.
///
/// But given
/// \code
/// template <typename T> class X {}; class A {};
/// template <> class X<A> {}; X<A> x;
/// \endcode
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
/// does not match, as X<A> is an explicit template specialization.
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isTemplateInstantiation,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ImplicitInstantiation ||
Node.getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDefinition);
}
/// \brief Matches declarations that are template instantiations or are inside
/// template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { T i; }
/// A(0);
/// A(0U);
/// \endcode
/// functionDecl(isInstantiated())
/// matches 'A(int) {...};' and 'A(unsigned) {...}'.
AST_MATCHER_FUNCTION(internal::Matcher<Decl>, isInstantiated) {
auto IsInstantiation = decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation())));
return decl(anyOf(IsInstantiation, hasAncestor(IsInstantiation)));
}
/// \brief Matches statements inside of a template instantiation.
///
/// Given
/// \code
/// int j;
/// template<typename T> void A(T t) { T i; j += 42;}
/// A(0);
/// A(0U);
/// \endcode
/// declStmt(isInTemplateInstantiation())
/// matches 'int i;' and 'unsigned i'.
/// unless(stmt(isInTemplateInstantiation()))
/// will NOT match j += 42; as it's shared between the template definition and
/// instantiation.
AST_MATCHER_FUNCTION(internal::Matcher<Stmt>, isInTemplateInstantiation) {
return stmt(
hasAncestor(decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation())))));
}
/// \brief Matches explicit template specializations of function, class, or
/// static member variable template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { }
/// template<> void A(int N) { }
/// \endcode
/// functionDecl(isExplicitTemplateSpecialization())
/// matches the specialization A<int>().
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isExplicitTemplateSpecialization,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ExplicitSpecialization);
}
/// \brief Matches \c TypeLocs for which the given inner
/// QualType-matcher matches.
AST_MATCHER_FUNCTION_P_OVERLOAD(internal::BindableMatcher<TypeLoc>, loc,
internal::Matcher<QualType>, InnerMatcher, 0) {
return internal::BindableMatcher<TypeLoc>(
new internal::TypeLocTypeMatcher(InnerMatcher));
}
/// \brief Matches type \c bool.
///
/// Given
/// \code
/// struct S { bool func(); };
/// \endcode
/// functionDecl(returns(booleanType()))
/// matches "bool func();"
AST_MATCHER(Type, booleanType) {
return Node.isBooleanType();
}
/// \brief Matches type \c void.
///
/// Given
/// \code
/// struct S { void func(); };
/// \endcode
/// functionDecl(returns(voidType()))
/// matches "void func();"
AST_MATCHER(Type, voidType) {
return Node.isVoidType();
}
/// \brief Matches builtin Types.
///
/// Given
/// \code
/// struct A {};
/// A a;
/// int b;
/// float c;
/// bool d;
/// \endcode
/// builtinType()
/// matches "int b", "float c" and "bool d"
AST_TYPE_MATCHER(BuiltinType, builtinType);
/// \brief Matches all kinds of arrays.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[4];
/// void f() { int c[a[0]]; }
/// \endcode
/// arrayType()
/// matches "int a[]", "int b[4]" and "int c[a[0]]";
AST_TYPE_MATCHER(ArrayType, arrayType);
/// \brief Matches C99 complex types.
///
/// Given
/// \code
/// _Complex float f;
/// \endcode
/// complexType()
/// matches "_Complex float f"
AST_TYPE_MATCHER(ComplexType, complexType);
/// \brief Matches any real floating-point type (float, double, long double).
///
/// Given
/// \code
/// int i;
/// float f;
/// \endcode
/// realFloatingPointType()
/// matches "float f" but not "int i"
AST_MATCHER(Type, realFloatingPointType) {
return Node.isRealFloatingType();
}
/// \brief Matches arrays and C99 complex types that have a specific element
/// type.
///
/// Given
/// \code
/// struct A {};
/// A a[7];
/// int b[7];
/// \endcode
/// arrayType(hasElementType(builtinType()))
/// matches "int b[7]"
///
/// Usable as: Matcher<ArrayType>, Matcher<ComplexType>
AST_TYPELOC_TRAVERSE_MATCHER(hasElementType, getElement,
AST_POLYMORPHIC_SUPPORTED_TYPES(ArrayType,
ComplexType));
/// \brief Matches C arrays with a specified constant size.
///
/// Given
/// \code
/// void() {
/// int a[2];
/// int b[] = { 2, 3 };
/// int c[b[0]];
/// }
/// \endcode
/// constantArrayType()
/// matches "int a[2]"
AST_TYPE_MATCHER(ConstantArrayType, constantArrayType);
/// \brief Matches nodes that have the specified size.
///
/// Given
/// \code
/// int a[42];
/// int b[2 * 21];
/// int c[41], d[43];
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// char *w = "a";
/// \endcode
/// constantArrayType(hasSize(42))
/// matches "int a[42]" and "int b[2 * 21]"
/// stringLiteral(hasSize(4))
/// matches "abcd", L"abcd"
AST_POLYMORPHIC_MATCHER_P(hasSize,
AST_POLYMORPHIC_SUPPORTED_TYPES(ConstantArrayType,
StringLiteral),
unsigned, N) {
return internal::HasSizeMatcher<NodeType>::hasSize(Node, N);
}
/// \brief Matches C++ arrays whose size is a value-dependent expression.
///
/// Given
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
/// dependentSizedArrayType
/// matches "T data[Size]"
AST_TYPE_MATCHER(DependentSizedArrayType, dependentSizedArrayType);
/// \brief Matches C arrays with unspecified size.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[42];
/// void f(int c[]) { int d[a[0]]; };
/// \endcode
/// incompleteArrayType()
/// matches "int a[]" and "int c[]"
AST_TYPE_MATCHER(IncompleteArrayType, incompleteArrayType);
/// \brief Matches C arrays with a specified size that is not an
/// integer-constant-expression.
///
/// Given
/// \code
/// void f() {
/// int a[] = { 2, 3 }
/// int b[42];
/// int c[a[0]];
/// }
/// \endcode
/// variableArrayType()
/// matches "int c[a[0]]"
AST_TYPE_MATCHER(VariableArrayType, variableArrayType);
/// \brief Matches \c VariableArrayType nodes that have a specific size
/// expression.
///
/// Given
/// \code
/// void f(int b) {
/// int a[b];
/// }
/// \endcode
/// variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to(
/// varDecl(hasName("b")))))))
/// matches "int a[b]"
AST_MATCHER_P(VariableArrayType, hasSizeExpr,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.getSizeExpr(), Finder, Builder);
}
/// \brief Matches atomic types.
///
/// Given
/// \code
/// _Atomic(int) i;
/// \endcode
/// atomicType()
/// matches "_Atomic(int) i"
AST_TYPE_MATCHER(AtomicType, atomicType);
/// \brief Matches atomic types with a specific value type.
///
/// Given
/// \code
/// _Atomic(int) i;
/// _Atomic(float) f;
/// \endcode
/// atomicType(hasValueType(isInteger()))
/// matches "_Atomic(int) i"
///
/// Usable as: Matcher<AtomicType>
AST_TYPELOC_TRAVERSE_MATCHER(hasValueType, getValue,
AST_POLYMORPHIC_SUPPORTED_TYPES(AtomicType));
/// \brief Matches types nodes representing C++11 auto types.
///
/// Given:
/// \code
/// auto n = 4;
/// int v[] = { 2, 3 }
/// for (auto i : v) { }
/// \endcode
/// autoType()
/// matches "auto n" and "auto i"
AST_TYPE_MATCHER(AutoType, autoType);
/// \brief Matches \c AutoType nodes where the deduced type is a specific type.
///
/// Note: There is no \c TypeLoc for the deduced type and thus no
/// \c getDeducedLoc() matcher.
///
/// Given
/// \code
/// auto a = 1;
/// auto b = 2.0;
/// \endcode
/// autoType(hasDeducedType(isInteger()))
/// matches "auto a"
///
/// Usable as: Matcher<AutoType>
AST_TYPE_TRAVERSE_MATCHER(hasDeducedType, getDeducedType,
AST_POLYMORPHIC_SUPPORTED_TYPES(AutoType));
/// \brief Matches \c FunctionType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// functionType()
/// matches "int (*f)(int)" and the type of "g".
AST_TYPE_MATCHER(FunctionType, functionType);
/// \brief Matches \c FunctionProtoType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// functionProtoType()
/// matches "int (*f)(int)" and the type of "g" in C++ mode.
/// In C mode, "g" is not matched because it does not contain a prototype.
AST_TYPE_MATCHER(FunctionProtoType, functionProtoType);
/// \brief Matches \c ParenType nodes.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int *array_of_ptrs[4];
/// \endcode
///
/// \c varDecl(hasType(pointsTo(parenType()))) matches \c ptr_to_array but not
/// \c array_of_ptrs.
AST_TYPE_MATCHER(ParenType, parenType);
/// \brief Matches \c ParenType nodes where the inner type is a specific type.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int (*ptr_to_func)(int);
/// \endcode
///
/// \c varDecl(hasType(pointsTo(parenType(innerType(functionType()))))) matches
/// \c ptr_to_func but not \c ptr_to_array.
///
/// Usable as: Matcher<ParenType>
AST_TYPE_TRAVERSE_MATCHER(innerType, getInnerType,
AST_POLYMORPHIC_SUPPORTED_TYPES(ParenType));
/// \brief Matches block pointer types, i.e. types syntactically represented as
/// "void (^)(int)".
///
/// The \c pointee is always required to be a \c FunctionType.
AST_TYPE_MATCHER(BlockPointerType, blockPointerType);
/// \brief Matches member pointer types.
/// Given
/// \code
/// struct A { int i; }
/// A::* ptr = A::i;
/// \endcode
/// memberPointerType()
/// matches "A::* ptr"
AST_TYPE_MATCHER(MemberPointerType, memberPointerType);
/// \brief Matches pointer types, but does not match Objective-C object pointer
/// types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int c = 5;
///
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// pointerType()
/// matches "int *a", but does not match "Foo *f".
AST_TYPE_MATCHER(PointerType, pointerType);
/// \brief Matches an Objective-C object pointer type, which is different from
/// a pointer type, despite being syntactically similar.
///
/// Given
/// \code
/// int *a;
///
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// pointerType()
/// matches "Foo *f", but does not match "int *a".
AST_TYPE_MATCHER(ObjCObjectPointerType, objcObjectPointerType);
/// \brief Matches both lvalue and rvalue reference types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c referenceType() matches the types of \c b, \c c, \c d, \c e, and \c f.
AST_TYPE_MATCHER(ReferenceType, referenceType);
/// \brief Matches lvalue reference types.
///
/// Given:
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c lValueReferenceType() matches the types of \c b, \c d, and \c e. \c e is
/// matched since the type is deduced as int& by reference collapsing rules.
AST_TYPE_MATCHER(LValueReferenceType, lValueReferenceType);
/// \brief Matches rvalue reference types.
///
/// Given:
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
///
/// \c rValueReferenceType() matches the types of \c c and \c f. \c e is not
/// matched as it is deduced to int& by reference collapsing rules.
AST_TYPE_MATCHER(RValueReferenceType, rValueReferenceType);
/// \brief Narrows PointerType (and similar) matchers to those where the
/// \c pointee matches a given matcher.
///
/// Given
/// \code
/// int *a;
/// int const *b;
/// float const *f;
/// \endcode
/// pointerType(pointee(isConstQualified(), isInteger()))
/// matches "int const *b"
///
/// Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>,
/// Matcher<PointerType>, Matcher<ReferenceType>
AST_TYPELOC_TRAVERSE_MATCHER(pointee, getPointee,
AST_POLYMORPHIC_SUPPORTED_TYPES(BlockPointerType,
MemberPointerType,
PointerType,
ReferenceType));
/// \brief Matches typedef types.
///
/// Given
/// \code
/// typedef int X;
/// \endcode
/// typedefType()
/// matches "typedef int X"
AST_TYPE_MATCHER(TypedefType, typedefType);
/// \brief Matches enum types.
///
/// Given
/// \code
/// enum C { Green };
/// enum class S { Red };
///
/// C c;
/// S s;
/// \endcode
//
/// \c enumType() matches the type of the variable declarations of both \c c and
/// \c s.
AST_TYPE_MATCHER(EnumType, enumType);
/// \brief Matches template specialization types.
///
/// Given
/// \code
/// template <typename T>
/// class C { };
///
/// template class C<int>; // A
/// C<char> var; // B
/// \endcode
///
/// \c templateSpecializationType() matches the type of the explicit
/// instantiation in \c A and the type of the variable declaration in \c B.
AST_TYPE_MATCHER(TemplateSpecializationType, templateSpecializationType);
/// \brief Matches types nodes representing unary type transformations.
///
/// Given:
/// \code
/// typedef __underlying_type(T) type;
/// \endcode
/// unaryTransformType()
/// matches "__underlying_type(T)"
AST_TYPE_MATCHER(UnaryTransformType, unaryTransformType);
/// \brief Matches record types (e.g. structs, classes).
///
/// Given
/// \code
/// class C {};
/// struct S {};
///
/// C c;
/// S s;
/// \endcode
///
/// \c recordType() matches the type of the variable declarations of both \c c
/// and \c s.
AST_TYPE_MATCHER(RecordType, recordType);
/// \brief Matches types specified with an elaborated type keyword or with a
/// qualified name.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// class C {};
///
/// class C c;
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType() matches the type of the variable declarations of both
/// \c c and \c d.
AST_TYPE_MATCHER(ElaboratedType, elaboratedType);
/// \brief Matches ElaboratedTypes whose qualifier, a NestedNameSpecifier,
/// matches \c InnerMatcher if the qualifier exists.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))
/// matches the type of the variable declaration of \c d.
AST_MATCHER_P(ElaboratedType, hasQualifier,
internal::Matcher<NestedNameSpecifier>, InnerMatcher) {
if (const NestedNameSpecifier *Qualifier = Node.getQualifier())
return InnerMatcher.matches(*Qualifier, Finder, Builder);
return false;
}
/// \brief Matches ElaboratedTypes whose named type matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// N::M::D d;
/// \endcode
///
/// \c elaboratedType(namesType(recordType(
/// hasDeclaration(namedDecl(hasName("D")))))) matches the type of the variable
/// declaration of \c d.
AST_MATCHER_P(ElaboratedType, namesType, internal::Matcher<QualType>,
InnerMatcher) {
return InnerMatcher.matches(Node.getNamedType(), Finder, Builder);
}
/// \brief Matches types that represent the result of substituting a type for a
/// template type parameter.
///
/// Given
/// \code
/// template <typename T>
/// void F(T t) {
/// int i = 1 + t;
/// }
/// \endcode
///
/// \c substTemplateTypeParmType() matches the type of 't' but not '1'
AST_TYPE_MATCHER(SubstTemplateTypeParmType, substTemplateTypeParmType);
/// \brief Matches template type parameter types.
///
/// Example matches T, but not int.
/// (matcher = templateTypeParmType())
/// \code
/// template <typename T> void f(int i);
/// \endcode
AST_TYPE_MATCHER(TemplateTypeParmType, templateTypeParmType);
/// \brief Matches injected class name types.
///
/// Example matches S s, but not S<T> s.
/// (matcher = parmVarDecl(hasType(injectedClassNameType())))
/// \code
/// template <typename T> struct S {
/// void f(S s);
/// void g(S<T> s);
/// };
/// \endcode
AST_TYPE_MATCHER(InjectedClassNameType, injectedClassNameType);
/// \brief Matches decayed type
/// Example matches i[] in declaration of f.
/// (matcher = valueDecl(hasType(decayedType(hasDecayedType(pointerType())))))
/// Example matches i[1].
/// (matcher = expr(hasType(decayedType(hasDecayedType(pointerType())))))
/// \code
/// void f(int i[]) {
/// i[1] = 0;
/// }
/// \endcode
AST_TYPE_MATCHER(DecayedType, decayedType);
/// \brief Matches the decayed type, whos decayed type matches \c InnerMatcher
AST_MATCHER_P(DecayedType, hasDecayedType, internal::Matcher<QualType>,
InnerType) {
return InnerType.matches(Node.getDecayedType(), Finder, Builder);
}
/// \brief Matches declarations whose declaration context, interpreted as a
/// Decl, matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// \endcode
///
/// \c cxxRcordDecl(hasDeclContext(namedDecl(hasName("M")))) matches the
/// declaration of \c class \c D.
AST_MATCHER_P(Decl, hasDeclContext, internal::Matcher<Decl>, InnerMatcher) {
const DeclContext *DC = Node.getDeclContext();
if (!DC) return false;
return InnerMatcher.matches(*Decl::castFromDeclContext(DC), Finder, Builder);
}
/// \brief Matches nested name specifiers.
///
/// Given
/// \code
/// namespace ns {
/// struct A { static void f(); };
/// void A::f() {}
/// void g() { A::f(); }
/// }
/// ns::A a;
/// \endcode
/// nestedNameSpecifier()
/// matches "ns::" and both "A::"
const internal::VariadicAllOfMatcher<NestedNameSpecifier> nestedNameSpecifier;
/// \brief Same as \c nestedNameSpecifier but matches \c NestedNameSpecifierLoc.
const internal::VariadicAllOfMatcher<
NestedNameSpecifierLoc> nestedNameSpecifierLoc;
/// \brief Matches \c NestedNameSpecifierLocs for which the given inner
/// NestedNameSpecifier-matcher matches.
AST_MATCHER_FUNCTION_P_OVERLOAD(
internal::BindableMatcher<NestedNameSpecifierLoc>, loc,
internal::Matcher<NestedNameSpecifier>, InnerMatcher, 1) {
return internal::BindableMatcher<NestedNameSpecifierLoc>(
new internal::LocMatcher<NestedNameSpecifierLoc, NestedNameSpecifier>(
InnerMatcher));
}
/// \brief Matches nested name specifiers that specify a type matching the
/// given \c QualType matcher without qualifiers.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifier(specifiesType(
/// hasDeclaration(cxxRecordDecl(hasName("A")))
/// ))
/// matches "A::"
AST_MATCHER_P(NestedNameSpecifier, specifiesType,
internal::Matcher<QualType>, InnerMatcher) {
if (!Node.getAsType())
return false;
return InnerMatcher.matches(QualType(Node.getAsType(), 0), Finder, Builder);
}
/// \brief Matches nested name specifier locs that specify a type matching the
/// given \c TypeLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifierLoc(specifiesTypeLoc(loc(type(
/// hasDeclaration(cxxRecordDecl(hasName("A")))))))
/// matches "A::"
AST_MATCHER_P(NestedNameSpecifierLoc, specifiesTypeLoc,
internal::Matcher<TypeLoc>, InnerMatcher) {
return Node && InnerMatcher.matches(Node.getTypeLoc(), Finder, Builder);
}
/// \brief Matches on the prefix of a \c NestedNameSpecifier.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A")))) and
/// matches "A::"
AST_MATCHER_P_OVERLOAD(NestedNameSpecifier, hasPrefix,
internal::Matcher<NestedNameSpecifier>, InnerMatcher,
0) {
const NestedNameSpecifier *NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(*NextNode, Finder, Builder);
}
/// \brief Matches on the prefix of a \c NestedNameSpecifierLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// nestedNameSpecifierLoc(hasPrefix(loc(specifiesType(asString("struct A")))))
/// matches "A::"
AST_MATCHER_P_OVERLOAD(NestedNameSpecifierLoc, hasPrefix,
internal::Matcher<NestedNameSpecifierLoc>, InnerMatcher,
1) {
NestedNameSpecifierLoc NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(NextNode, Finder, Builder);
}
/// \brief Matches nested name specifiers that specify a namespace matching the
/// given namespace matcher.
///
/// Given
/// \code
/// namespace ns { struct A {}; }
/// ns::A a;
/// \endcode
/// nestedNameSpecifier(specifiesNamespace(hasName("ns")))
/// matches "ns::"
AST_MATCHER_P(NestedNameSpecifier, specifiesNamespace,
internal::Matcher<NamespaceDecl>, InnerMatcher) {
if (!Node.getAsNamespace())
return false;
return InnerMatcher.matches(*Node.getAsNamespace(), Finder, Builder);
}
/// \brief Overloads for the \c equalsNode matcher.
/// FIXME: Implement for other node types.
/// @{
/// \brief Matches if a node equals another node.
///
/// \c Decl has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Decl, equalsNode, const Decl*, Other, 0) {
return &Node == Other;
}
/// \brief Matches if a node equals another node.
///
/// \c Stmt has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Stmt, equalsNode, const Stmt*, Other, 1) {
return &Node == Other;
}
/// \brief Matches if a node equals another node.
///
/// \c Type has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Type, equalsNode, const Type*, Other, 2) {
return &Node == Other;
}
/// @}
/// \brief Matches each case or default statement belonging to the given switch
/// statement. This matcher may produce multiple matches.
///
/// Given
/// \code
/// switch (1) { case 1: case 2: default: switch (2) { case 3: case 4: ; } }
/// \endcode
/// switchStmt(forEachSwitchCase(caseStmt().bind("c"))).bind("s")
/// matches four times, with "c" binding each of "case 1:", "case 2:",
/// "case 3:" and "case 4:", and "s" respectively binding "switch (1)",
/// "switch (1)", "switch (2)" and "switch (2)".
AST_MATCHER_P(SwitchStmt, forEachSwitchCase, internal::Matcher<SwitchCase>,
InnerMatcher) {
BoundNodesTreeBuilder Result;
// FIXME: getSwitchCaseList() does not necessarily guarantee a stable
// iteration order. We should use the more general iterating matchers once
// they are capable of expressing this matcher (for example, it should ignore
// case statements belonging to nested switch statements).
bool Matched = false;
for (const SwitchCase *SC = Node.getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
BoundNodesTreeBuilder CaseBuilder(*Builder);
bool CaseMatched = InnerMatcher.matches(*SC, Finder, &CaseBuilder);
if (CaseMatched) {
Matched = true;
Result.addMatch(CaseBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches each constructor initializer in a constructor definition.
///
/// Given
/// \code
/// class A { A() : i(42), j(42) {} int i; int j; };
/// \endcode
/// cxxConstructorDecl(forEachConstructorInitializer(
/// forField(decl().bind("x"))
/// ))
/// will trigger two matches, binding for 'i' and 'j' respectively.
AST_MATCHER_P(CXXConstructorDecl, forEachConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *I : Node.inits()) {
BoundNodesTreeBuilder InitBuilder(*Builder);
if (InnerMatcher.matches(*I, Finder, &InitBuilder)) {
Matched = true;
Result.addMatch(InitBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches constructor declarations that are copy constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isCopyConstructor()) will match #2, but not #1 or #3.
AST_MATCHER(CXXConstructorDecl, isCopyConstructor) {
return Node.isCopyConstructor();
}
/// \brief Matches constructor declarations that are move constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isMoveConstructor()) will match #3, but not #1 or #2.
AST_MATCHER(CXXConstructorDecl, isMoveConstructor) {
return Node.isMoveConstructor();
}
/// \brief Matches constructor declarations that are default constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// cxxConstructorDecl(isDefaultConstructor()) will match #1, but not #2 or #3.
AST_MATCHER(CXXConstructorDecl, isDefaultConstructor) {
return Node.isDefaultConstructor();
}
/// \brief Matches constructors that delegate to another constructor.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(int) {} // #2
/// S(S &&) : S() {} // #3
/// };
/// S::S() : S(0) {} // #4
/// \endcode
/// cxxConstructorDecl(isDelegatingConstructor()) will match #3 and #4, but not
/// #1 or #2.
AST_MATCHER(CXXConstructorDecl, isDelegatingConstructor) {
return Node.isDelegatingConstructor();
}
/// \brief Matches constructor and conversion declarations that are marked with
/// the explicit keyword.
///
/// Given
/// \code
/// struct S {
/// S(int); // #1
/// explicit S(double); // #2
/// operator int(); // #3
/// explicit operator bool(); // #4
/// };
/// \endcode
/// cxxConstructorDecl(isExplicit()) will match #2, but not #1.
/// cxxConversionDecl(isExplicit()) will match #4, but not #3.
AST_POLYMORPHIC_MATCHER(isExplicit,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXConstructorDecl,
CXXConversionDecl)) {
return Node.isExplicit();
}
/// \brief Matches function and namespace declarations that are marked with
/// the inline keyword.
///
/// Given
/// \code
/// inline void f();
/// void g();
/// namespace n {
/// inline namespace m {}
/// }
/// \endcode
/// functionDecl(isInline()) will match ::f().
/// namespaceDecl(isInline()) will match n::m.
AST_POLYMORPHIC_MATCHER(isInline,
AST_POLYMORPHIC_SUPPORTED_TYPES(NamespaceDecl,
FunctionDecl)) {
// This is required because the spelling of the function used to determine
// whether inline is specified or not differs between the polymorphic types.
if (const auto *FD = dyn_cast<FunctionDecl>(&Node))
return FD->isInlineSpecified();
else if (const auto *NSD = dyn_cast<NamespaceDecl>(&Node))
return NSD->isInline();
llvm_unreachable("Not a valid polymorphic type");
}
/// \brief Matches anonymous namespace declarations.
///
/// Given
/// \code
/// namespace n {
/// namespace {} // #1
/// }
/// \endcode
/// namespaceDecl(isAnonymous()) will match #1 but not ::n.
AST_MATCHER(NamespaceDecl, isAnonymous) {
return Node.isAnonymousNamespace();
}
/// \brief If the given case statement does not use the GNU case range
/// extension, matches the constant given in the statement.
///
/// Given
/// \code
/// switch (1) { case 1: case 1+1: case 3 ... 4: ; }
/// \endcode
/// caseStmt(hasCaseConstant(integerLiteral()))
/// matches "case 1:"
AST_MATCHER_P(CaseStmt, hasCaseConstant, internal::Matcher<Expr>,
InnerMatcher) {
if (Node.getRHS())
return false;
return InnerMatcher.matches(*Node.getLHS(), Finder, Builder);
}
/// \brief Matches declaration that has a given attribute.
///
/// Given
/// \code
/// __attribute__((device)) void f() { ... }
/// \endcode
/// decl(hasAttr(clang::attr::CUDADevice)) matches the function declaration of
/// f. If the matcher is use from clang-query, attr::Kind parameter should be
/// passed as a quoted string. e.g., hasAttr("attr::CUDADevice").
AST_MATCHER_P(Decl, hasAttr, attr::Kind, AttrKind) {
for (const auto *Attr : Node.attrs()) {
if (Attr->getKind() == AttrKind)
return true;
}
return false;
}
/// \brief Matches the return value expression of a return statement
///
/// Given
/// \code
/// return a + b;
/// \endcode
/// hasReturnValue(binaryOperator())
/// matches 'return a + b'
/// with binaryOperator()
/// matching 'a + b'
AST_MATCHER_P(ReturnStmt, hasReturnValue, internal::Matcher<Expr>,
InnerMatcher) {
if (const auto *RetValue = Node.getRetValue())
return InnerMatcher.matches(*RetValue, Finder, Builder);
return false;
}
/// \brief Matches CUDA kernel call expression.
///
/// Example matches,
/// \code
/// kernel<<<i,j>>>();
/// \endcode
const internal::VariadicDynCastAllOfMatcher<
Stmt,
CUDAKernelCallExpr> cudaKernelCallExpr;
/// \brief Matches expressions that resolve to a null pointer constant, such as
/// GNU's __null, C++11's nullptr, or C's NULL macro.
///
/// Given:
/// \code
/// void *v1 = NULL;
/// void *v2 = nullptr;
/// void *v3 = __null; // GNU extension
/// char *cp = (char *)0;
/// int *ip = 0;
/// int i = 0;
/// \endcode
/// expr(nullPointerConstant())
/// matches the initializer for v1, v2, v3, cp, and ip. Does not match the
/// initializer for i.
AST_MATCHER_FUNCTION(internal::Matcher<Expr>, nullPointerConstant) {
return anyOf(
gnuNullExpr(), cxxNullPtrLiteralExpr(),
integerLiteral(equals(0), hasParent(expr(hasType(pointerType())))));
}
/// \brief Matches declaration of the function the statemenet belongs to
///
/// Given:
/// \code
/// F& operator=(const F& o) {
/// std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; });
/// return *this;
/// }
/// \endcode
/// returnStmt(forFunction(hasName("operator=")))
/// matches 'return *this'
/// but does match 'return > 0'
AST_MATCHER_P(Stmt, forFunction, internal::Matcher<FunctionDecl>,
InnerMatcher) {
const auto &Parents = Finder->getASTContext().getParents(Node);
llvm::SmallVector<ast_type_traits::DynTypedNode, 8> Stack(Parents.begin(),
Parents.end());
while(!Stack.empty()) {
const auto &CurNode = Stack.back();
Stack.pop_back();
if(const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
if(InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
return true;
}
} else if(const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
if(InnerMatcher.matches(*LambdaExprNode->getCallOperator(),
Finder, Builder)) {
return true;
}
} else {
for(const auto &Parent: Finder->getASTContext().getParents(CurNode))
Stack.push_back(Parent);
}
}
return false;
}
} // end namespace ast_matchers
} // end namespace clang
#endif